
Chapter 14

Meshing smooth surfaces and volumes

The theory of surface sampling and restricted Delaunay triangulations developed in the last two
chapters seems to mark a clear path to designing a Delaunay refinement algorithm for triangular
mesh generation on a smooth surface: maintain a restricted Delaunay triangulation by maintaining
a Delaunay tetrahedralization, refine it by inserting new vertices at the centers of circumballs of
restricted Delaunay triangles, and continue refining until the sample is denseenough to guarantee
topological correctness, geometric accuracy, and high triangle quality. Upon termination, the
algorithm returns a mesh that is related to the input surface by an isotopy andenjoys all the
geometric guarantees offered by the Surface Discretization Theorem (Theorem 13.22).

The fly in the ointment is that it is very difficult to know when the algorithm has succeeded
and can stop refining. In theory, we can achieve these guarantees by generating a 0.08-sample or
making sure that every restricted Voronoi cell is 0.09-small. In practice, there are two problems.
First, it is both difficult and expensive to compute the local feature size function. The Delaunay
refinement algorithms we have studied for polygonal and polyhedral domains use the local feature
size in their analysis, but do not need to compute it. Curved domains are different: without com-
puting the local feature size, it is difficult to be certain that a mesh generator has not overlooked
some high-curvature feature of the domain. Second, in practice it is usuallypossible to recover
a surface with a vertex set much less dense than a 0.08-sample, and we would prefer to have a
mechanism for knowing when we can stop early.

The first surface meshing algorithm we present assumes that the user can somehow compute
the LFS function, has domain knowledge that makes it possible to specify a lower bound on the
LFS function, or simply wants triangles small enough that resolution is not an issue. If a mesh of
uniformly-sized elements is acceptable, a constant lower bound on the feature size will do.

For many applications, however, no such approximation is known, or the concomitant over-
refinement is unacceptable. Fortunately, we can appeal directly to the Topological Ball Theorem
(Theorem 13.1), which says that if the faces in VorS intersectΣ in topological closed balls of
appropriate dimensions, then the underlying space of Del|Σ S is homeomorphic toΣ. A Delaunay
refinement algorithm can be driven directly by diagnosing violations of the conditions of the the-
orem. These violations can be detected by critical point computations and combinatorial checks,
which underlie our second surface meshing algorithm.

Neither algorithm is very practical, because both algorithms require expensive computations
of either local feature sizes or critical points. Our third surface meshing algorithm combines

295

296

Figure 14.1: Surface meshes generated by DS.

ideas from both algorithms in a more pragmatic way. In this algorithm, a user-specified size field
determines the fineness of the mesh and combinatorial tests guarantee that thefinal mesh is a
2-manifold, but a correct topology is guaranteed only if the size field is sufficiently small. Fig-
ure 14.1 depicts three Delaunay surface meshes produced by the algorithm. All three algorithms
can refine the mesh to guarantee that no angle is less than 30◦ or greater than 120◦.

The surface meshing algorithms generate a restricted Delaunay triangulation, which is a
subcomplex of a Delaunay tetrahedralization, so the volume enclosed by the surface is already
meshed by Delaunay tetrahedra. Of course, these tetrahedra have poor shapes unless we refine
them by inserting new vertices at their circumcenters, as we do for polyhedral domains. These
vertex insertions may delete some surface triangles, so an encroachment rule and several other
refinement rules for surface triangles act to maintain domain conformity. We finish the chapter
with a guaranteed-quality tetrahedral mesh generation algorithm for volumesbounded by smooth
surfaces, which enforces an upper bound on the radius-edge ratiosjust a little worse than 2.

Throughout this chapter,Σ is asmooth surface, our shorthand for a compact (bounded),C2-
smooth 2-manifold without boundary, embedded inR3. We also assume thatΣ is connected. If a
surface has multiple connected components, each component can be meshed separately.

14.1 Delaunay surface meshing with a known local feature size

For our first Delaunay refinement surface meshing algorithm, the user supplies a 1-Lipschitz
functionλ : Σ → R, called asize field, that reflects the locally desired spacing of vertices on the
surface. The algorithm promises to produce no triangle having an empty circumball centered at
c ∈ Σ with radius greater thanλ(c), which implies that no triangle has a circumradius greater than
λ(c). We require that infx∈Σ λ(x) > 0. To guarantee that the algorithm will produce a topologically
correct mesh, we also require thatλ(x) ≤ ε f (x) for someε ∈ (0,0.08]. As we have mentioned, it
can be quite difficult to estimate the value off , but in many practical applications, the user desires
elements smaller than those necessary for correctness.

The algorithm refines a restricted Delaunay triangulation by sampling new points onΣ at the
centers of circumballs of restricted Delaunay triangles, and adding them to the vertex set. Early in
the algorithm’s progress, when the sampleS is still sparse, Del|Σ S can contain edges and vertices
that are not faces of any triangle. There is no need for the algorithm to keep track of these dangling

297

q

p
u

v

Figure 14.2: The restricted Delaunay edgespq and uv, which are not faces of any restricted
Delaunay triangle, are present in Del|Σ S (left) but absent by definition from Del|2

Σ
S (right).

simplices, so we focus on the subcomplex of Del|Σ S consisting of restricted Delaunay triangles
and their faces. We call this subcomplex therestricted Delaunay2-subcomplex, denoted

Del|2Σ S = {τ : τ is a face of a triangle in Del|Σ S}.

Recall that a simplex is a face of itself; thus, Del|2
Σ

S contains every triangle in Del|Σ S with its
edges and vertices, but omits dangling edges and vertices, as Figure 14.2illustrates. Later, we
will introduce arestricted Delaunay3-subcomplexfor tetrahedral mesh generation.

Definition 14.1 (surface Delaunay ball). A surface Delaunay ballof a restricted Delaunay trian-
gleσ ∈ Del|Σ S is a circumball ofσ whose center lies both onΣ and on the Voronoi edgeσ∗ dual
toσ.

Every restricted Voronoi vertex is the center of a surface Delaunay ball. Ideally, for every
triangleσ ∈ Del|Σ S there would be exactly one point inΣ∩σ∗, but for a sparse sample there can
be many, so a triangle can have many surface Delaunay balls. A surface Delaunay ball’s interior
contains no vertex ofS because it is centered onσ∗, the Voronoi edge whose generating sites are
the vertices ofσ.

The Delaunay refinement algorithm splits triangles whose surface Delaunay balls are too
large. Specifically, if a surface Delaunay ballB(c, r) hasr > λ(c), the algorithm inserts its center
c into S and updates the Delaunay tetrahedralization DelS and the surface triangulation Del|2

Σ
S.

Note that there is no need to store two separate triangulations; it is only necessary to mark which
triangles in DelS are restricted Delaunay. When no large ball survives, every restricted Voronoi
cell Vp|Σ has vertices close to its generating sitep; specifically,Σp is ε-small for some appropriate
ε (recall Definition 13.4). By the Surface Discretization Theorem (Theorem 13.22), the underly-
ing space of Del|Σ S is homeomorphic toΣ and related by an isotopy, and Del|Σ S approximatesΣ
well geometrically. At this time, Del|Σ S = Del|2

Σ
S.

To bootstrap the algorithm, the sampleS is initially a set containing the three vertices of a
triangle chosen to be small enough that it remains restricted Delaunay throughout execution. We
call it thepersistent triangle. Its presence guarantees that at least one Voronoi edge intersects the
surface as required by the Surface Discretization Theorem, namely the persistent triangle’s dual
edge. Initially, the dual edge is a line that intersectsΣ in at least two points, one inducing a small
surface Delaunay ball and one inducing a large one, at whose center the fourth vertex is inserted.
We summarize the algorithm in pseudocode.

298

DS1(Σ, λ)

1. Compute a persistent triangle with vertices onΣ. Let S be the set of vertices of
the persistent triangle. Compute DelS and Del|2

Σ
S.

2. While some triangle in Del|2
Σ

S has a surface Delaunay ballB(c, r) with r > λ(c),
insertc into S, update DelS and Del|2

Σ
S, and repeat step 2.

3. Return Del|2
Σ

S.

DS1 is not concerned with the quality of the triangles it generates, but a small modifica-
tion can change that by refining skinny triangles as well as oversized ones; see Section 14.4.

A sore point is how to compute a persistent triangle. It is unclear how to do sodeterministi-
cally; the following randomized heuristic performs well in practice. Pick a point x ∈ Σ. Randomly
pick three points inΣ ∩ B(x, λ(x)/7) to form a triangleσ. Acceptσ as the persistent triangle if
Σ ∩ B(x, λ(x)/7) intersectsσ’s dual line, the line perpendicular toσ through its circumcenter.
Otherwise, throw away the vertices ofσ and try again. We justify this heuristic in the next section
(Proposition 14.3). The only reason we requireλ to be 1-Lipschitz is to ensure thatσ is persistent.

For DS1 to run quickly, it should maintain a queue containing all the surface Delaunay
balls whose radii exceed the threshold. When a new vertex is inserted into DelS, each new
triangular faceσ is tested to see if its dual Voronoi edge intersectsΣ, and if so, at what point
or points. This computation determines both whetherσ is restricted Delaunay and whether its
surface Delaunay balls are too large; oversized balls are enqueued. Step 2 of the algorithm is a
loop that begins by dequeueing a ball and checking whether it is still a surface Delaunay ball.
Be forewarned that it is not enough to check whetherσ is still in Del|2

Σ
S; refinement may have

shortenedσ’s dual edge without eliminating it, in which caseσ may still be restricted Delaunay
but have fewer surface Delaunay balls than it had when it was created.

14.1.1 Proof of termination and guarantees

We first show that DS1 terminates.

Proposition 14.1. If Σ is compact andinf x∈Σ λ(x) > 0, DS1 terminates.

P. DS1 inserts vertices only at the centers of empty open balls whose radii exceed
inf x∈Σ λ(x), so no two vertices inS are ever closer to each other than that—except that the ver-
tices of the persistent triangle may be closer to each other. AsΣ is bounded, the Packing Lemma
(Lemma 6.1) states that there is an upper bound on the number of verticesS can contain. �

The following theorem lists properties of a mesh generated by DS1.

Theorem 14.2.LetΣ ⊂ R3 be a C2-smooth, compact, connected surface without boundary. Let
λ : Σ → R be a 1-Lipschitz function andε ≤ 0.08 a value such that for every point x∈ Σ,
λ(x) ≤ ε f (x). Supposeinf x∈Σ λ(x) > 0. ThenDS1(Σ, λ) returns a meshT with the following
properties.

(i) |T| can be oriented so that for every triangleσ ∈ T and every vertex p ofσ, the angle
betweennp and the oriented normalnσ ofσ is less than7ε/(1− ε) < 0.61 radians.

299

(ii) Every two distinct triangles inT that share an edge meet at a dihedral angle greater than
π − 14ε/(1− ε).

(iii) The nearest point mapν : |T| → Σ, z 7→ z̃ is a homeomorphism between|T| andΣ that
induces an isotopy.

(iv) For every point z∈ |T|, d(z, z̃) < 15ε2

(1−ε)2 f (z̃) < 0.12f (z̃).

(v) The set of vertices inT is anε/(1− 2ε)-sample ofΣ.

P. Let S be the set of vertices inT, and recall thatT = Del|2
Σ

S. Let p be a vertex inS
whose restricted Voronoi cellVp|Σ has a restricted Voronoi vertexx, which is therefore a vertex of
Σp ⊆ Vp|Σ. Upon termination,d(p, x) ≤ λ(x); otherwise, DS1 would have inserted a vertex
at x. Becauseλ(x) ≤ ε f (x),

d(p, x) ≤ ε f (x) ≤ ε

1− ε f (p),

the last step following from the Feature Translation Lemma (Lemma 12.2). Therefore, Σp is
ε/(1− ε)-small for everyp ∈ S. Becauseε ≤ 0.08,ε/(1− ε) ≤ 0.09.

By Proposition 14.3 below, the presence of the persistent triangle guarantees that some edge
in Vor S intersectsΣ. Therefore, the premises of the Surface Discretization Theorem (Theo-
rem 13.22) are satisfied, and Del|Σ S has properties (i)–(iv). Property (iii) implies that Del|Σ S has
no dangling simplex that is not a face of a triangle, so Del|Σ S = Del|2

Σ
S = T. BecauseΣp is

ε/(1− ε)-small for everyp ∈ S, the Voronoi Intersection Theorem (Theorem 13.14) states thatS
is anε/(1− 2ε)-sample ofΣ. �

Proposition 14.3.The triangleσ computed as described at the end of Section 14.1 is persistent—
it is present in the output mesh.

P. By construction,Σ∩B(x, λ(x)/7) contains the vertices ofσ and intersects the line perpen-
dicular toσ through the circumcenter ofσ. Therefore, every surface Delaunay ball ofσ centered
at a point inΣ∩B(x, λ(x)/7) has radius at most 2λ(x)/7, and is included inB(x,3λ(x)/7). We will
see that DS1 never inserts a vertex inB(x,3λ(x)/7). Therefore, there is a surface Delaunay
ball ofσ that remains empty throughout the algorithm, andσ is a persistent triangle.

Let p be a vertex inserted by DS1 other thanσ’s vertices. Assume for the sake of
contradiction thatd(p, x) ≤ 3λ(x)/7. Letv be a vertex ofσ. The 1-Lipschitz property ofλ implies
thatλ(p) ≥ λ(x) − d(p, x) ≥ 4λ(x)/7 ≥ d(p, x) + d(v, x) ≥ d(p, v).

As DS1 insertsp at the center of a surface Delaunay ball with radius greater thanλ(p),
the vertexv lies inside this ball, contradicting the fact that every surface Delaunay ballis empty.�

14.1.2 Deleting two vertices of the persistent triangle

The vertices of the persistent triangle are much closer to each other than theuser requested. We
can fix this by deleting two of them from DelS. Unfortunately, their deletion may yield a surface
mesh with the wrong topology, or create restricted Delaunay triangles that have surface Delaunay
balls a bit larger than requested and a bit too large for the guarantees of Theorem 14.2 to apply.

300

We can mitigate this problem by choosing the vertices of the persistent triangle tobe very close
together, but not so close as to cause numerical problems. We can fix the problem entirely by
refining the mesh a little bit more after removing the two vertices. Unfortunately, itis possible
that this refinement can create a sample set whose Voronoi diagram has no edge that intersects
Σ—that is, Del|Σ S contains no triangle and the algorithm is stuck. At any rate, we do not know
how to prove that this never happens, though it seems utterly unlikely in practice. For the sake
of theoretical certainty, we discuss here a simple way to delete vertices of thepersistent triangle
while maintaining the guarantees of Theorem 14.2.

Let v andw be the two vertices of the persistent triangle we wish to delete. When DS1
terminates, it returns a triangulation of a 2-manifold, so Del|Σ S contains at least one triangleσ
that does not havev for a vertex. The Voronoi edgeσ∗ dual toσ intersectsΣ. Deletingv from S
may have the effect of lengtheningσ∗, but not of shortening or deleting it, soσ∗ still intersectsΣ.
If the deletion ofv causes the mesh to no longer satisfy the antecedents of Theorem 14.2, or ifit
creates a triangle that is too large, then continue to refine the mesh.

It is possible, as we have said, for the algorithm to get stuck if Del|Σ S contains no triangles
after a vertex insertion. In that unlikely event, fix it by insertingv again, thereby reintroducing
the persistent triangle. The key observation is that afterv is deleted, it is always possible to insert
at least one vertex besidesv before getting stuck. Perhapsv will be deleted and reinserted many
times, but the algorithm will make progress, and by the Packing Lemma it will terminate.

After producing a satisfactory mesh lackingv, deletew and continue refinement until the
mesh is again satisfactory or the algorithm gets stuck. In the latter case, reinsertboth vandw and
continue refining untilv can be removed again. Again, we argue that afterw is deleted, at least
one new vertex can be inserted beforev andw must be reintroduced, so even if both vertices are
deleted and reinserted many times, the algorithm will make progress and eventually succeed.

14.1.3 Computing edge-surface intersections

The crucial numerical computation in most surface meshing algorithms, including DS1, is
finding the points on a surface that intersect a line or edge. There is no universal algorithm to
perform this query, because there are many different ways to represent surfaces, each requiring a
different algorithm. A surface meshing program should abstract this computation as a black box
subroutine whose replacement allows the mesher to work with different surface representations.
Most solid modeling programs include an interface by which an application canask the solid
modeler to perform this query.

For most surface representations, the intersection points are solutions ofa system of equa-
tions. For a triangulated or polygonal surface, the equations are linear and easily solved. For a
parametrized spline, the equations are polynomial, and are usually best solved by iterative meth-
ods.

Many applications work with an important class of surfaces calledisosurfaces, also known
as implicit surfaces. An isosurface is induced by a smooth functionh : R3 → R. For any real
numberη, the point setΣ = h−1(η) = {p : h(p) = η} is an isosurface ofh having isovalueη. If η is
not a critical value ofh, Σ is a smooth surface.

Depending on the nature ofh, evaluating an isosurface can be arbitrarily difficult. But if
h(p) is polynomial inp, the intersection of a line with an isosurface ofh is computed by finding
the roots of a univariate polynomial. More commonly,h(p) is piecewise polynomial, and a root

301

finding computation must be done for each piece that intersects the line or edge. Isosurfaces of
piecewise polynomials are rarelyC2-smooth, but Delaunay surface meshing algorithms tend to
work well in practice anyway.

Isosurfaces are often created fromvoxel datasuch as medical images. Voxel data specifies
the value ofh at each vertex of a cubical grid, buth is not known anywhere else. There are many
triangulation algorithms for voxel data, some very fast, but most of them produce some skinny
triangles. Algorithms like DS1 can extract a high-quality mesh of a kidney from a medical
image by first extending the domain ofh from the vertices to the cubes by interpolation, then
meshing an isosurface of the interpolated function. The interpolation basis isusually piecewise
polynomial, most commonly piecewise trilinear. Of course, not all discrete point data sets use
a cubical grid. For instance, isosurfaces can be generated from irregularly placed data points by
constructing their Delaunay triangulation and interpolating the data with piecewise linear func-
tions or more sophisticated methods such as natural neighbor interpolation.

Call a Voronoi edgebipolar if the values ofh at its two vertices have opposite signs, indicating
that one vertex is enclosed byΣ and one is not. If all intersections are transverse, a bipolar
edge intersectsΣ an odd number of times. If a more sophisticated root finding procedure is not
available, a point where a bipolar edge intersectsΣ can be approximated by repeated bisection,
the secant method, or ifh is sufficiently smooth, the Newton–Raphson method.

A good strategy for speed is to delay computing edge-surface intersections until they are
needed and to avoid identifying non-bipolar edges that intersectΣ until it becomes necessary.
Maintain a queue of Delaunay triangles that dualize to bipolar edges and have not yet been
checked. Repeatedly remove a triangleσ from the queue and check whether its dual Voronoi
edgeσ∗ is still bipolar. If so, compute the intersection points inσ∗ ∩ Σ and decide if any of the
surface Delaunay balls centered at those points is too large. DS1 often succeeds in prac-
tice without considering non-bipolar edges (except when inserting the fourth vertex; there are no
bipolar edges whenS contains only the vertices of the persistent triangle). Only if the mesh is
inadequate when the queue runs empty must the algorithm resort to testing non-bipolar edges for
surface intersections.

Figure 14.3 shows meshes of voxel data obtained by using trilinear interpolation to define
isosurfaces and a variant of DS1 described in Section 14.3 to create surface meshes. Instead
of computing a persistent triangle, we took intersections of the isosurface with the lines of the
voxel grid as seed vertices.

14.2 Topology-driven surface meshing

The algorithm DS1 can fail ifλ does not satisfy the conditionλ(x) ≤ 0.08f (x) for all x ∈ Σ.
Unfortunately, it is difficult to estimatef (x), so it is difficult to know whether a user’s size field
is acceptable. Moreover, the constant 0.08 arising from the theory is conservative; much sparser
samples often suffice in practice. It is important to know when the algorithm can stop early.

Our second surface meshing algorithm does not need to know anything about the local feature
sizes. For simplicity, we will dispense with the size fieldλ and suppose that the user desires a
topologically correct mesh with no more vertices than the algorithm reasonablyrequires. Refine-
ment is driven solely by the wish to satisfy the topological ball property (TBP). Of course, the
algorithm can optionally incorporate a size field too.

302

Figure 14.3: Meshes produced by DS of isosurfaces from the A data set. In the top row,
three different isovalues provide three different isosurfaces. The bottom two meshes are generated
from medical images.

303

Unfortunately, the algorithm requires thatΣ beC4-smooth, whereas DS1 requires only
C2-smoothness. A collection of critical point computations is essential to the algorithm, soΣ
must have a representation that makes them possible.

Recall from Section 13.2 that the pair (S,Σ) satisfies the TBP if every Voronoik-face in VorS
that intersectsΣ does so transversally in a topological (k − 1)-ball. In that case, the Topological
Ball Theorem (Theorem 13.1) states that the underlying space of Del|Σ S is homeomorphic toΣ.
The topology-driven surface meshing algorithm searches for violationsof the TBP and attempts
to repair them by sampling points from the surface. It terminates only when (S,Σ) satisfies the
TBP. The algorithm maintains a minimum distance between sample points, thereby guaranteeing
termination. Before we describe the algorithm, we study the subroutines that diagnose violations
of the TBP.

14.2.1 Diagnosing violations of the topological ball property

To find violations of the topological ball property, we define four subroutines VE, TD,
VF, and S. When one of them identifies a violation, it samples a new point from
Σ for use as a mesh vertex. For simplicity we assume that no Voronoi vertex liesonΣ.

VE checks whether a Voronoi edgee satisfies the TBP. A Voronoi edge should either
be disjoint fromΣ or intersectΣ transversally at a single point, a 0-ball. Letσ be a restricted
Delaunay triangle dual toe, and letcmax(σ) ∈ e∩ Σ andrmax(σ) be the center and the radius of
σ’s largest surface Delaunay ball.

VE(e)

If e intersectsΣ tangentially or at multiple points, letσ be the triangle dual toe
and returncmax(σ). Otherwise, return null.

TD checks whether the setTp of restricted Delaunay triangles adjoining a vertexp
forms a topological disk. Figure 14.4 illustrates the test:|Tp| is a topological disk if and only if
every edge adjoiningp in a triangle inTp is an edge of exactly two triangles inTp, and there is
only one cycle of triangles aroundp, rather than two or more.

If every Voronoi edge intersectsΣ in at most one point (enforced by VE), then TD
detects two types of TBP violations. First, it diagnoses a Voronoi facetg that intersectsΣ in two or
more topological intervals. When this violation happens, the endpoints of the topological intervals
each lie on a different edge ofg (thanks to VE), so there are at least four such edges. Their
dual Delaunay triangles all share the edge dual tog, so the dual edge is not an edge of exactly two
restricted Delaunay triangles. Second, TD diagnoses a Voronoi cellVp whose boundary
intersectsΣ in two or more loops that meet Voronoi edges. This violation implies thatTp is a
union of two or more topological disks joined atp, as in Figure 14.4(c).

TD(p)

1. LetTp be the set of triangles in Del|2
Σ

S that adjoinp.

2. If |Tp| is empty or a topological disk, return null.

3. Letσ be the triangle that maximizesrmax(σ) amongTp. Returncmax(σ).

304

p p

y

x p

(a) (b) (c)

Figure 14.4: A test for whether the triangles adjoiningp form a topological disk. (a)|Tp| is a
topological disk. (b) The edgespx andpy are not edges of exactly two triangles, so|Tp| is not a
topological disk. (c) There is more than one cycle of triangles, so|Tp| is a union of topological
disks joined atp.

If a Voronoi facet intersectsΣ, the intersection should be transverse and it should be a single
topological interval. This property is violated if (i) the Voronoi facet intersectsΣ tangentially,
(ii) the Voronoi facet intersectsΣ in two or more topological intervals, or (iii) the Voronoi facet
intersectsΣ in a loop. All three violations (i), (ii), and (iii) can happen simultaneously.

As we have discussed, violation (ii) is detected by TD. The next subroutine, VF,
detects violations (i) and (iii). VF uses critical point computations. LetC be a smooth loop
on a plane. Given a directiond parallel to the plane, the critical points ofC in directiond are the
points whered is normal toC.

VF(g)

1. If there exists a point ing∩Σ whereg andΣ have the same tangent plane, return
that point.

2. LetΠ = aff g. Choose a random vectord parallel toΠ. Compute the setX of
critical points of the curves inΠ ∩ Σ in the directiond.

3. If no point inX lies ong, return null.

4. As g intersectsΣ transversally,g ∩ Σ is a collection of disjoint simple curves
(intervals or loops) andX ∩ g is the set of critical points of these curves in
directiond. Let Vp be a Voronoi cell with faceg. For eachx ∈ X ∩ g,

(a) Compute the lineℓx ⊂ Π throughx parallel tod. The lineℓx is normal to
g∩ Σ at x.

(b) ComputeY← ℓx∩g∩Σ. If Y contains two or more points, return the point
in Y furthest from the vertexp dual toVp.

5. Return null.

Step 2 of VF assumes thatΠ ∩ Σ has finitely many critical points in a direction. It is
known that the critical points in any direction are isolated ifΣ is C3-smooth, and the number of
critical points is finite for algebraic surfaces of fixed degree.

305

The three subroutines VE, TD, and VF ensure that the Voronoi edges and
Voronoi facets in VorS satisfy the TBP. The TBP has one other requirement: that each Voronoi
cell intersectΣ in a topological disk or not at all. The subroutines TD and VF ensure
that for each Voronoi cellVp, (BdVp) ∩ Σ is either empty or a single loop that crosses more than
one facet ofVp. Hence, the only ways thatVp can violate the TBP are ifVp ∩ Σ = Σ (we assume
Σ is connected) orVp∩Σ has a handle. We diagnose these cases by checking thesilhouettesof Σ.

Definition 14.2 (silhouette). For a smooth surfaceΣ and a specified directiond, the silhouetteJd

is the set of points{x ∈ Σ : nx · d = 0}. That is, the normal toΣ at each point inJd is orthogonal
to the directiond.

The following result motivates the use of silhouettes.

Proposition 14.4. Let δ be a connected component of Vp ∩ Σ for some Voronoi site p. IfBdδ is
empty, then for every direction d,δ ∩ Jd , ∅. If Bdδ is a single loop andδ ∩ Jd = ∅ for some
direction d, thenδ is a topological disk.

P. If Bd δ is empty, thenδ is the surfaceΣ and soδ ∩ Jd = Jd. It is clear in this case
that Jd is nonempty for every directiond. Suppose that Bdδ is a single loop. LetH be a plane
perpendicular tod. Consider the mapϕ : δ → H that projects each point ofδ orthogonally toH.
Sinceδ is connected and compact, it suffices to prove thatϕ is injective.

Assume to the contrary thatϕ is not injective. Then there is a lineℓ parallel tod that intersects
δ in two or more points. Letx andy be two consecutive intersection points alongℓ.

As δ∩ Jd = ∅, neitherx nory belongs toJd, which means that neithernx norny is orthogonal
to d. Becausex andy are consecutive inℓ ∩ δ, nx andny are oppositely oriented in the sense that
the inner productsnx · d andny · d have opposite signs. Becauseδ is connected, there is a smooth
curveρ ⊂ δ connectingx andy. The normal toΣ changes smoothly fromnx to ny alongρ. By
the mean value theorem, there is a pointz ∈ ρ such thatnz is orthogonal tod. But thenz ∈ δ∩ Jd,
contradicting the emptiness ofδ ∩ Jd. �

The subroutine S takes advantage of Proposition 14.4. It checks if a Voronoi cell
Vp intersects the silhouetteJd, whered = np is normal toΣ at p. If Vp ∩ Jd , ∅, either Jd

intersects some facets ofVp, or Vp contains a component ofJd. The first possibility is checked by
a subroutine SP(Σ,Π,np) that returns the points whereJd intersects the affine hullΠ
of a facet ofVp. The second possibility can be detected by checking ifVp contains a critical point
of Jd in a directiond′ orthogonal tod. To perform this check, we require thatJd be a set of smooth
loops, and that the number of critical points onJd along a direction be finite. The first requirement
is likely true if d is obtained by applying a tiny, random perturbation tonp; for simplicity, assume
it holds. The second requirement holds ifΣ is C4-smooth. Let SC(Σ,d,d′) be the
subroutine that returns the critical points ofJd in the directiond′ (see Exercise 5).

S(p)

1. Letd benp after a tiny random perturbation.

2. Choose a random directiond′ orthogonal tod.

3. ComputeX← SC(Σ,d,d′).

306

4. If X contains a point insideVp, return it.

5. Otherwise, for each facetg of Vp:

(a) ComputeY← SP(Σ,Π,d) whereΠ = aff g.

(b) If Y contains a point ong, return it.

6. Return null.

The following proposition gives a lower bound on the distance between a sitep and every
silhouette point inVp.

Proposition 14.5. Let p be a Voronoi site. For every point x∈ Vp ∩ Jnp, d(p, x) ≥ f (p)/3.

P. If d(p, x) < f (p)/3, the Normal Variation Theorem (Theorem 12.8) implies that∠(np,nx) ≤
α(1/3), contradicting the fact thatnx is orthogonal tonp by definition. �

14.2.2 A topology-driven Delaunay refinement algorithm

The topology-driven Delaunay refinement algorithm initializes the sampleS with a set of points
calledseeds, which are critical points ofΣ in a chosen direction. Then it repeatedly calls the
subroutines of Section 14.2.1 to search for violations of the topological ballproperty. When a
violation is found, a new vertex is added toS. When no violation survives, the underlying space
of Del|Σ S is homeomorphic toΣ, and the algorithm returns Del|2

Σ
S, which must be equal to

Del|Σ S. It is possible that some seeds are too close together, so that the surfacetriangulation may
have unnecessarily short edges adjoining the seeds. This problem canbe fixed by deleting the
seeds, then refining again to restore the correct topology.

DS2(Σ)

1. LetS be a set of seed points onΣ. Compute VorS and Del|2
Σ

S.

2. Perform steps (a)–(d) below in order. As soon as a non-null pointx is returned,
terminate the current loop, skip the remaining steps, and go to step 3.

(a) For every Voronoi edgee in Vor S, computex← VE(e).

(b) For everyp ∈ S, computex← TD(p).

(c) For every Voronoi facetg in Vor S, computex← VF(g).

(d) For everyp ∈ S, computex← S(p).

3. If x is non-null, insertx into S, update VorS and Del|2
Σ

S, and go to step 2.

4. Otherwise, return Del|2
Σ

S.

Instead of computing the seed set, DS2 could begin with just a single sample point
in S; S would generate more sites on each component ofΣ and the algorithm would
succeed. However, the computation of critical points of a silhouette in a specified direction is
more expensive than computing critical points ofΣ.

307

14.2.3 Proof of termination and homeomorphism

To show that DS2 terminates, we use the Small Intersection Theorem (Theorem 13.6) to
guarantee a lower bound on the distances among the sites inserted intoS, excepting distances
between pairs of seed points.

Proposition 14.6. DS2 terminates.

P. Let fmin = inf x∈Σ f (x). We claim that every point returned by a subroutine called by D-
S2 is at a distance of at least 0.09fmin from every site inS, so the Packing Lemma (Lemma 6.1)
implies that DS2 terminates.

If VE(e) returns a point, the Voronoi edgee intersectsΣ either tangentially or at more
than one point. Letp be a site whose Voronoi cellVp has the edgee. By the Voronoi Edge Lemma
(Lemma 13.7), the distance fromp to the furthest point ine∩Σ is greater than 0.15f (p). VE
returns that furthest point; call itx. The claim follows because no site is closer tox thanp.

If TD(p) returns a point,Tp is nonempty and not a topological disk. SoΣp is nonempty.
Σp is not 0.09-small; if it were, the Small Intersection Theorem (Theorem 13.6) would imply that
|Tp| is a topological disk. It follows that some triangle inTp has a surface Delaunay ball with
radius greater than 0.09f (p). The claim follows because TD returns the center of the largest
surface Delaunay ball.

If VF(g) returns a point, letp ∈ S be a site whose Voronoi cellVp has the faceg. If g
intersectsΣ tangentially, VF returns a tangential contact pointx such thatnx = ±ng, and
the contrapositive of Proposition 13.3(ii) implies thatd(x, p) ≥ f (p)/3, thusd(x,S) ≥ f (p)/3.
If g intersectsΣ transversally, then VF returns a pointx in the mutual intersection ofg,
Σ, and a lineℓ. There must be at least two such intersection points for VF to return a
point. Let y be the intersection point whereℓ is perpendicular to the silhouetteΣ ∩ g, and let
z be another intersection point. Proposition 13.3(ii) implies that∠(yz,ny) = π/2 − ∠a(ng,ny) ≤
α(0.09)+ arcsin 0.09 < α(0.09)+ β(0.09). Proposition 13.5 implies thatd(p, z) > 0.09f (p). As
VF returns the intersection point furthest fromp, the claim follows.

By Proposition 14.5, S(p) returns a point at a distance off (p)/3 or more fromp. �

DS2 inserts sites as long as the TBP is violated, so (S,Σ) satisfies the TBP when D-
S2 terminates. We appeal to the Homeomorphism Theorem (Theorem 13.16).

Theorem 14.7. Let Σ ⊂ R3 be a C4-smooth, compact, connected surface without boundary.
DS2(Σ) returns a restricted Delaunay triangulation whose underlying space is homeomor-
phic toΣ.

This theorem does not guarantee that the Hausdorff distance betweenΣ and the output mesh
is small—a guarantee that cannot be made unless feature sizes are computed. However, upper
bounds on the triangle sizes and lower bounds on the dihedral angles at which triangles meet can
be enforced by simply refining triangles that do not meet the bounds; see Section 14.4.

14.3 A practical surface meshing algorithm

Both DS1 and DS2 employ computationally expensive predicates. For DS1, it is
rarely practical to implement an oracle that computes local feature sizes, oreven a decent lower

308

bound on them. Computing the exact medial axis of a specified implicit surface isknown to be
hard. The medial axis can be approximated from a dense sample of the surface, but that requires
a dense sample to be available in the first place.

For DS2, the predicates that compute critical points are computationally expensive and
difficult to perform stably. On the bright side, the topological disk test TD performs easy
combinatorial checks, but it alone does not suffice to guarantee the homeomorphism of the input
surface and the output mesh. Here we discuss a practical compromise between the two algorithms.

Our third surface meshing algorithm uses two tests to drive refinement, one geometric and
one topological: the user-supplied size fieldλ : Σ → R from DS1 and the test TD
from DS2. A triangle is refined if its surface Delaunay ball is excessively large, or if the
triangle is the largest among a group of triangles that adjoin a vertex in a neighborhood that is
not a topological disk. Ifλ(x) ≤ ε f (x) for someε ∈ (0,0.08], the algorithm offers the same
guarantees as DS1, enumerated in Theorem 14.2. Otherwise, the output mesh might not
have the same topology as the input surface, but it is guaranteed to be a 2-manifold. In practice,
this usually suffices to achieve homeomorphism as well.

DS(Σ, λ)

1. Compute a persistent triangle with vertices onΣ. Let S be the set of vertices of
the persistent triangle. Compute DelS and Del|2

Σ
S.

2. While some triangle in Del|2
Σ

S has a surface Delaunay ballB(c, r) with r > λ(c),
insertc into S, update DelS and Del|2

Σ
S, and repeat step 2.

3. For everyp ∈ S, computec← TD(p); if somec is non-null, stop looping,
insertc into S, update DelS and Del|2

Σ
S, and go to step 2.

4. If S contains more than one vertex of the persistent triangle, delete one, update
DelS and Del|2

Σ
S, and go to step 2.

5. Return Del|2
Σ

S.

Figure 14.5 depicts meshes generated by DS for three different constant values ofλ. As
λ decreases, the mesh better captures both the geometry and the topology of the surface.

The next proposition shows that, like Ruppert’s algorithm, DS generates a mesh whose
size is proportional to the integral over the domain of the inverse squared local feature size—or
the inverse squared size field, if the latter is more demanding. There is an asymptotically matching
lower bound on the number of vertices needed to respect the size field, soin this sense DS
and DS1 produce size-optimal meshes. Observe that if the size field is constant, thisintegral
is proportional to the area of the surface. In the following bound, we assume that two vertices of
the persistent triangle have been deleted, as discussed in Section 14.1.2.

Proposition 14.8. If λ is 1-Lipschitz and for every point x∈ Σ, λ(x) ≤ 0.08f (x), then the mesh
generated byDS(Σ, λ) has fewer than8 ·

∫
Σ

dx/λ(x)2 vertices.

P. Every vertexc that step 2 of DS inserts intoS is at a distance of at leastλ(c)
from every previously inserted vertex. In step 3, if TD(p) returns a pointc, thenΣp is not
0.09-small; if it were, the Small Intersection Theorem (Theorem 13.6) implies that |Tp| would be
a topological disk. Therefore,d(c, p) ≥ 0.09f (p), and asf is 1-Lipschitz,d(c, p) ≥ 0.08f (c).

309

Figure 14.5: Both geometric and topological fidelity improve as the size field decreases.

Becausec is inserted inp’s Voronoi cell, c is a distance of at least 0.08f (c) from every pre-
viously inserted vertex. Therefore, every vertexc that DS inserts is a distance of at least
min{λ(c),0.08f (c)} = λ(c) from every previous vertex. Becauseλ is 1-Lipschitz, every vertex
p ∈ S is a distance of at leastλ(p)/2 from every other vertex inS.

If we center balls of radiiλ(p)/4 at every vertexp ∈ S, their interiors are pairwise disjoint.
Let Γp = Σ ∩ B(p, λ(p)/4), and letap be the area ofΓp. Becauseλ is 1-Lipschitz,λ(x) ≤ 5λ(p)/4
for everyx ∈ Γp. Thus

∫

Σ

1
λ(x)2

dx >
∑

p∈S

∫

Γp

1
λ(x)2

dx

>
∑

p∈S

16
25λ(p)2

ap

⇒ |S| <
25
16

(
min
p∈S

ap

λ(p)2

)−1 ∫

Σ

1
λ(x)2

.

The remainder of the proof shows thatap/λ(p)2 ≥ 0.196, from which the proposition follows.
Let B1 andB2 be the two medial balls sandwiching the surfaceΣ at p, with B1 not larger than

B2. Let D be the geometric disk bounded by the circle at the intersection of the boundaries of
B(p, λ(p)/4) andB1, as illustrated in Figure 14.6. Consider the orthogonal projectionsD̃ andΓ̃p

of D andΓp, respectively, onto the plane tangent toΣ at p. BecauseΣ has no boundary,̃D is
included iñΓp. Therefore,

ap = area(Γp) ≥ area(̃Γp) ≥ area(̃D) = area(D). (14.1)

We derive a lower bound on the radius ofD to boundap from below. From the similar triangles

310

B2

D

B

y

B1

Σ

z
x

m

p

Figure 14.6: Two medial ballsB1 andB2 sandwich the surfaceΣ. The projection ofD onto the
plane tangent toΣ at p is included in the projection ofΣ ∩ B onto the same plane.

pmzandpxy,
d(p, y)
d(p, x)

=
d(p, z)
d(p,m)

=
d(p, x)

2d(p,m)

⇒ d(p, y) =
d(p, x)2

2d(p,m)
=

λ(p)2

32d(p,m)
.

Therefore,

radius(D)2 = d(p, x)2 − d(p, y)2

=
λ(p)2

16
− λ(p)4

1,024 radius(B1)2
.

As radius(B1) ≥ f (p), which is greater than 12λ(p) by our assumption thatλ(p) ≤ 0.08f (p),

radius(D)2 ≥ λ(p)2

16
− λ(p)2

147,456
> 0.0624λ(p)2.

Hence, area(D) is greater than 0.0624π λ(p)2, implying thatap > 0.196λ(p)2 by (14.1). �

We summarize the properties of meshes generated by DS.

Theorem 14.9. Let Σ ⊂ R3 be a C2-smooth, compact, connected surface without boundary.
Supposeinf x∈Σ λ(x) > 0. ThenDS(Σ, λ) returns a meshT with the following properties.

(i) The underlying space ofT is a 2-manifold.

(ii) If there is a valueε ≤ 0.08 such thatλ(x) ≤ ε f (x) for every point x∈ Σ, then the nearest
point mapν : |T| → Σ, z 7→ z̃ is a homeomorphism between|T| and Σ that induces an
isotopy that moves each point z∈ |T| by a distance d(z, z̃) < 15ε2

(1−ε)2 f (z̃) < 0.12f (z̃).

311

(iii) If λ(x) ≤ 0.08f (x) for every point x∈ Σ and λ is 1-Lipschitz, then there are fewer than
8 ·

∫
Σ

dx/λ(x)2 vertices inT. This number is asymptotically optimal: every sample S⊂ Σ
such that d(x,S) ≤ λ(x) for every x∈ Σ hasΩ

(∫
Σ

dx/λ(x)2
)

vertices. In this sense,T is
size-optimal.

P. When DS terminates, every vertex inT adjoins a set of triangles whose underly-
ing space is a topological disk. By a well-known result of piecewise linear topology, |T| is a
2-manifold, proving (i). The proof of (ii) is the same as that of Theorem 14.2(iii, iv). The first
part of (iii) is Proposition 14.8. The second part of (iii) is Exercise 9 in Chapter 13. �

14.4 Extensions: quality, smoothness, and polyhedral surfaces

It is easy to incorporate refinement steps into the three surface meshing algorithms we have stud-
ied to ensure that the triangles of the output mesh have good quality or adjoin each other at
nearly-flat dihedral angles, thereby better capturing the geometry ofΣ.

Let ρ(σ) be the radius-edge ratio of a triangleσ, and letρ̄ be an upper bound on the acceptable
radius-edge ratio. Equivalently, arcsin 1/(2ρ̄) is a lower bound on the smallest acceptable angle.
The radius-edge ratio threshold can be as small as 1, in which case no triangle in the final mesh
has an angle less than 30◦ = π/6 radians nor an angle greater than 120◦ = 2π/3 radians. If there
is a skinny triangleσ in Del|Σ S, the subroutine Q insertscmax(σ), the center ofσ’s largest
surface Delaunay ball.

Q(S, ρ̄)

If there is a restricted Delaunay triangleσ in Del|2
Σ

S for which ρ(σ) > ρ̄, then
insertcmax(σ) into S, update DelS, and update Del|2

Σ
S.

As Σ is a smooth surface, the triangles of the mesh adjoin each other at dihedral angles that
approachπ as the edge lengths approach zero, as Theorem 14.2(ii) shows. Theroughnessof an
edgee in Del|Σ S, denoted rough(e), isπ radians minus the dihedral angle ate. If the roughness of
an edge exceeds a threshold ¯r, the subroutine S refines one of the two adjoining triangles.
S thereby enforces the restriction that the dihedral angles are at leastπ − r̄ radians.

S(S, ρ̄)

If there is an edgee in Del|2
Σ

S such that rough(e) > r̄, letσ be the restricted De-
launay triangle with the largest surface Delaunay ball among the two triangles
havinge for an edge, insertcmax(σ), update DelS, and update Del|2

Σ
S.

In the algorithm DS, the calls to Q and S can be added just after step 4.
Whenever either call inserts a new vertex, control should return to step 2to ensure that the mesh
respects the size field and is topologically valid. The persistent triangle must be removed before
Q is called, or its short edges may cause the region around it to be overrefined.

312

Figure 14.7: The topmost mesh is generated by DS with no attention to triangle quality
or the dihedral angles at which adjoining triangles meet. The histogram tabulates the triangles’
radius-edge ratios, with only a few triangles (at right) exceeding the threshold. The center mesh
shows that refinement intended to improve the dihedral angles succeeds at the expense of triangle
quality. The bottom mesh shows the mesh after further refinement to eliminate all the poor-quality
triangles.

313

Figure 14.7 illustrates the effects of S and Q. The mesh at center shows that the
quality of the triangles can suffer if we use S alone. The quality can be corrected by using
Q as well.

When Q(S, ρ̄) splits a skinny triangle with ¯ρ ≥ 1, the newly inserted vertex is at least
as far from every other vertex inS as the vertices of the skinny triangle’s shortest edge are from
each other. Therefore, Q never creates a shorter edge in DelS than the shortest existing
edge, so it cannot cause DS to run forever. Neither can S, because for any ¯r > 0,
Theorem 14.2(ii) guarantees that every edge will satisfy the roughnessbound once sufficient
refinement has taken place.

An alternative way to achieve high quality is to choose a size fieldλ that does not change too
quickly. For example, ifλ is 0.5-Lipschitz, no triangle of the final mesh has a radius-edge ratio
exceeding 2, nor therefore an angle less than 14.47◦. A constant size field guarantees no angle less
than 30◦, at the cost of losing the flexibility to create a graded mesh. We will use this observation
to analyze the grading of the Q subroutine when the size field is not so well-behaved.

Proposition 14.10. If the size fieldλ is δ-Lipschitz forδ < 1, andλ(x) ≤ 0.08f (x) for every point
x ∈ Σ, DS(Σ, λ) returns a mesh whose triangles have radius-edge ratios at most1/(1− δ).

P. Becauseλ(x) ≤ 0.08f (x), DS refines no triangle solely for topological reasons;
every vertexp ∈ S has no vertex within a distance ofλ(p) at the timep is inserted.

Let σ be an output triangle whose shortest edge has lengthℓ and whose surface Delaunay
ball has centerc and radiusr. The circumradius ofσ is less than or equal tor. Let p be the
most recently inserted vertex of the shortest edge ofσ; because it was inserted after the other
vertex,ℓ > λ(p). Because no vertex was inserted atc andλ is δ-Lipschitz,r ≤ λ(c) ≤ λ(p) + δr;
rearranging terms givesr ≤ λ(p)/(1− δ). Thusρ(σ) ≤ r/ℓ ≤ 1/(1− δ). �

We use this proposition to analyze Q(S, ρ̄), particularly how the grading of the mesh
depends on ¯ρ, when the size field is arbitrary. Define the (¯ρ− 1)/ρ̄-Lipschitzregularized size field

µ(x) = inf
y∈Σ

(
min{λ(y),0.08f (y)} + ρ̄ − 1

ρ̄
d(x, y)

)
,

and observe thatµ(x) ≤ λ(x) andµ(x) ≤ 0.08f (x). We will see that the Lipschitz property captures
how refining for quality can affect the edge lengths in the mesh. The more ¯ρ exceeds 1, the more
strongly the mesh can be graded.

The idea is that if we call DS(Σ, µ) with the regularized size fieldµ but no Q
option, it splits every triangle that would be split by DS(Σ, λ) with the original size fieldλ
and the Q(S, ρ̄) option, and possibly other triangles as well. Therefore, the latter does not
refine more than the former.

Theorem 14.11. If ρ̄ ≥ 1, DS(Σ, λ) with theQ(S, ρ̄) option terminates and returns
a mesh in which every vertex p is at a distance greater thanµ(p) · ρ̄/(2ρ̄ − 1) from the nearest
distinct vertex.

P. First, we claim that every vertexc is at a distance greater thanµ(c) from the nearest
vertex inserted before it. Suppose for the sake of contradiction that a vertex c is inserted such
that d(c, p) ≤ µ(c), wherep was inserted prior toc. Suppose thatc is the first such vertex. As

314

Figure 14.8: Polygonal surfaces (top row) remeshed by DS (bottom row).

µ(c) ≤ min{λ(c),0.08f (c)}, c must have been inserted by the subroutine Q at the center of
a surface Delaunay ball of a skinny triangle.

If DS had been called with the regularized size fieldµ(p) but without the Q option,
it could have created the same skinny triangle, becausec is the first vertex whose insertion is not
justified byµ, but DS would have declined to split the skinny triangle. But this contradicts
Proposition 14.10. Therefore,d(c, p) > µ(c).

Consider the same distance from the point of view of a pointp inserted beforec. By the
Lipschitz property ofµ, d(c, p) > µ(c) ≥ µ(p) − d(c, p) · (ρ̄ − 1)/ρ̄. Rearranging terms gives
d(c, p) > µ(p) · ρ̄/(2ρ̄ − 1). �

Although Q(S, ρ̄) and a (¯ρ − 1)/ρ̄-Lipschitz size field appear to be two theoretically
equivalent paths to quality, the former is lazier—it refines a triangle only when really necessary to
improve its quality—so it tends to produce meshes with fewer triangles than the theory suggests.
It also has the advantages of working well in conjunction with TD and S and not
requiring the user to implement a Lipschitz size field.

A polygonal surfaceis a PLC whose underlying space is a 2-manifold without boundary. Al-
though DS is designed to mesh smooth surfaces, it often succeeds in meshing or remeshing
polygonal surfaces that closely approximate smooth surfaces, in the sense that their faces meet at
dihedral angles close toπ. Remeshingis the act of replacing an existing mesh with a new one to
improve its quality, to make it finer or coarser, or to make its faces be Delaunay, as illustrated in
Figure 14.8. The initial Delaunay triangulation can be built from the vertices of the input surface,

315

Figure 14.9: Tetrahedral meshes generated by DTS.

but if the goal is to produce a coarser mesh, or if the input surface has closely spaced vertices that
are harmful to mesh quality, a well-spaced subset of the input vertices is a better start. Note that
in practice, we have never needed to use a persistent triangle for remeshing.

One of the authors of this book has software available that implements the algorithm DS.
There are two programs: SR1 takes polygonal surfaces as input and remeshes them,
whereas DI2 takes voxel data as input, interpolates an isosurface over the grid, and constructs
a surface mesh.

14.5 Tetrahedral meshing of volumes bounded by smooth surfaces

The beauty of using a restricted Delaunay triangulation to generate a surface mesh is that it comes
with a byproduct: a Delaunay tetrahedralization of the region it bounds. Thetetrahedra may
have poor quality, but we can refine them, as the meshes in Figure 14.9 illustrate; observe that
their boundary triangulations are the same polygonal meshes shown in Figure 14.8. This section
discusses an algorithm guaranteed to produce meshes in which no tetrahedron has a radius-edge
ratio greater than 2.

Tetrahedron refinement introduces vertices in the interior of the domain thatcan damage the
surface triangulation. We solve this problem by adopting an encroachmentrule similar to those
used for polyhedral domains in Chapters 6 and 8. Unfortunately, curved surfaces bring a new
hazard: internal vertices can be inserted too close to the boundary before the boundary is fully
resolved. Imagine a concave dent in a surface. As surface refinement places new vertices on
the dent, an internal vertex may become exposed because it is too close to thedent, perhaps
even outside the domain. A consequence is that restricted Delaunay triangles can appear whose
vertices do not all lie on the surface. We fix these triangles by deleting their internal vertices.

Let O be a volume enclosed by a smooth surfaceΣ. The definitions of restricted Voronoi
diagram and restricted Delaunay triangulation work withO as they do forΣ, thoughO is not
a surface. Thus Vor|O S is the Voronoi diagram restricted to the domainO, and Del|O S is a
subcomplex of DelS containing the simplices dual to faces of Vor|O S. These include all the

1http://www.cse.ohio-state.edu/∼tamaldey/surfremesh
2http://www.cse.ohio-state.edu/∼tamaldey/deliso.html

316

simplices in Del|Σ S and more. A tetrahedron is in Del|O S if its circumcenter is inO. The
algorithm does not need to keep track of dangling simplices, so we define therestricted Delaunay
3-subcomplex, denoted

Del|3
O

S = {τ : τ is a face of a tetrahedron in Del|O S}.

When refinement is done, the tetrahedral meshing algorithm returns the meshDel|3
O

S.
The boundary complexof Del|3

O
S, written ∂Del|3

O
S, is the subcomplex containing all the

triangles that are faces of exactly one tetrahedron in Del|3
O

S, and the faces of those triangles. It
is easy to see that∂Del|3

O
S ⊆ Del|2

Σ
S, because every triangle in∂Del|3

O
S dualizes to a Voronoi

edge that has one vertex inO and one outside, and therefore intersectsΣ. However, Del|2
Σ

S
can contain additional triangles whose dual Voronoi edges intersectΣ tangentially or at an even
number of points, so we refine these triangles by inserting vertices at thoseintersection points.
This refinement is essentially a special case of using vertices returned bythe subroutine VE
to refine. Ideally, we would like to have∂Del|3

O
S = Del|2

Σ
S, and for both to be a triangulation of

the surfaceΣ.
The algorithm begins by computing a persistent triangle. Just like DS, it refines triangles

in Del|2
Σ

S by inserting the centers of their largest surface Delaunay balls. The presence of the
persistent triangle ensures that surface refinement never gets stuck.The persistent triangle is
deleted as described in Section 14.1.2 once a surface mesh is built. It is important to delete the
persistent triangle before refining tetrahedra; otherwise, unnecessarily small tetrahedra will be
generated around its vertices.

Tetrahedra whose radius-edge ratios exceed ¯ρ are split by new vertices inserted at their circum-
centers, but a circumcenter that lies inside a surface Delaunay ball is rejected, and an encroached
surface triangle is split instead. The quality threshold ¯ρ must be at least 2 to guarantee that the
algorithm terminates. Pseudocode for the main algorithm follows.

DTS(Σ, λ, ρ̄)

1. Compute a persistent triangle with vertices onΣ. Let S be the set of vertices of
the persistent triangle. Compute DelS and Del|2

Σ
S.

2. While Del|2
Σ

S has a vertexp < Σ, deletep from S, update DelS, Del|2
Σ

S, and
Del|3

O
S, and repeat step 2.

3. If some triangle in Del|2
Σ

S has a surface Delaunay ballB(c, r) with r > λ(c),
insertc into S, update DelS, Del|2

Σ
S, and Del|3

O
S, and go to step 2.

4. If some triangleσ in Del|2
Σ

S is a face of zero or two tetrahedra in Del|3
O

S, insert
cmax(σ) into S, update DelS, Del|2

Σ
S, and Del|3

O
S, and go to step 2.

5. For everyp ∈ S, computec← TD(p); if somec is non-null, stop looping,
insertc into S, update DelS, Del|2

Σ
S, and Del|3

O
S, and go to step 2.

6. If S contains more than one vertex of the persistent triangle, delete one, update
DelS, Del|2

Σ
S, and Del|3

O
S, and go to step 2.

7. If there is a tetrahedronτ ∈ Del|3
O

S for whichρ(τ) > ρ̄, then

(a) If the circumcenterz of τ lies inside a surface Delaunay ballB(c, r), insert
c into S, update DelS, Del|2

Σ
S, and Del|3

O
S, and go to step 2.

317

Figure 14.10: More tetrahedral meshes generated by DTS.

(b) Insertz into S and update DelS, Del|2
Σ

S, and Del|3
O

S.

(c) If the insertion ofz creates a new triangle in Del|2
Σ

S, let B(c, r) be the
largest new surface Delaunay ball, deletez from S, insertc into S, and go
to step 2.

(d) Go to step 7.

8. Return Del|3
O

S.

Occasionally, the refinement of a boundary triangle can expose an internal vertex, making it
become a vertex of Del|2

Σ
S; when this happens, step 2 purges all such internal vertices before any

further refinement can occur. Step 3 refines oversized surface triangles as DS does. Step 4
refines any surface triangle in Del|2

Σ
S that is missing from∂Del|3

O
S. Step 5 ensures that Del|2

Σ
S is

a 2-manifold. Step 6 deletes vertices of the persistent triangle, which could be unnecessarily close
to each other. Step 7 refines skinny tetrahedra, but if a tetrahedron circumcenter threatens to delete
or create a triangle in Del|2

Σ
S, the circumcenter is rejected and a restricted Delaunay triangle is

split instead. Step 7(a) splits restricted Delaunay triangles that are encroached upon by rejected
circumcenters. Step 7(c) identifies circumcenters whose insertion createsnew restricted Delaunay
triangles without deleting any old ones; this occurs only when the surface mesh is coarse and the
shape ofΣ is still being discovered.

Figure 14.10 shows more volume meshes generated by DTS.
DTS raises the question of how to identify which tetrahedra in DelS are in Del|3

O
S,

which is necessary for step 7. These tetrahedra are the ones whose dual Voronoi vertices are in
O. Recall from Section 14.1.3 that there are at least two different ways to represent a surface: as
a collection of patches or polygons, or as an isosurface.

Suppose the input is a set of patches whose underlying space is a 2-manifoldΣwithout bound-
ary, enclosing the volumeO we wish to mesh. The edges of VorS form a graph whose vertices we
wish to label as being either inside the volume—these vertices dualize to tetrahedra in Del|3

O
S—

or outside the volume. Initially,S contains only the three vertices of the persistent triangle, and
Vor S contains only one vertex—the vertex at infinity—which is labeled “outside.” When a new
vertex is inserted intoS, we compute labels for the new Voronoi vertices. If one vertex of a
Voronoi edge is labeled and the other is not, we can normally compute the labelfor the second
vertex by counting the number of points where the Voronoi edge intersectsthe patches. However,

318

tangential intersections are tricky because the edge may or may not cross from outside to inside
the volume. One way to simplify this problem is to use the subroutine VE to refine these
intersections away, replacing step 4.

Isosurfaces, by contrast, make the identification of Del|3
O

S easy—even easier than identifying
Del|2

Σ
S. Recall that an isosurface of a functionh : R3 → R is a level setΣ = h−1(η) for a

selected isovalueη. Suppose thath is greater thanη inside the volume to be meshed, hence
O = {p : h(p) ≥ η}. Then determining whether the dual of a Voronoi vertexv is a restricted
Delaunay tetrahedron is a simple matter of evaluatingh(v).

For an isosurface, computing Del|2
Σ

S is more difficult than computing Del|3
O

S, as it neces-
sitates extra computation to identify Voronoi edges that cross the isosurface an even number of
times. It is natural to ask whether these computations can be eliminated by replacing Del|2

Σ
S

with ∂Del|3
O

S in DTS (and deleting step 4). This question remains open (see Exercise 9),
although it is clear that the persistent triangle must be replaced with a stronger strategy;∂Del|3

O
S

is empty whenS contains only the vertices of the persistent triangle. It is always possible tofall
back on edge-surface intersection computations when∂Del|3

O
S is empty.

14.5.1 Proof of termination and guarantees

As usual, our goal is to prove that there is a positive lower bound on the distances among the
vertices, hence DTS terminates, hence it returns a mesh in which every tetrahedron has a
radius-edge ratio at most ¯ρ.

The size fieldλ and local feature size functionf are defined only onΣ. We define a function
that extendsλ’s domain over the entirety ofO, and forces it to be (¯ρ−2)/(3ρ̄)-Lipschitz everywhere
in O. Let µ : O→ R be the regularized size field

µ(x) = inf
y∈Σ

(
min{λ(y),0.08f (y)} + ρ̄ − 2

3ρ̄
d(x, y)

)
,

and observe thatµ(x) ≤ λ(x) andµ(x) ≤ 0.08f (x) for every pointx ∈ Σ. Note that we useµ solely
to analyze the algorithm, not as an input. As in Section 14.4, the Lipschitz property captures how
refining for quality affects the edge lengths. The more ¯ρ exceeds 2, the more strongly the mesh
can be graded.

Recall from Section 8.3 that theinsertion radius rx of a vertexx is the distance fromx to the
nearest distinct vertex in the sampleS whenx is inserted intoS. Immediately after its insertion,
rx is the length of the shortest edge adjoiningx in DelS.

Proposition 14.12. Let S be the set of vertices in a mesh returned byDTS(Σ, λ, ρ̄). If
ρ̄ ≥ 2, then every vertex p∈ S has insertion radius rp > µ(p), and every internal vertex p∈ S \ Σ
has insertion radius rp > µ(p) · 3ρ̄/(ρ̄ + 1).

P. When step 3 of DTS inserts a vertexc, it is at the center of a surface Delaunay ball
whose interior contains no vertex and whose radius exceedsλ(c). Therefore,rc > λ(c) ≥ µ(c).

When step 4 of DTS inserts a vertexc, it is at the center of a surface Delaunay ball
of a triangleσ ∈ Del|2

Σ
S that is a face of either zero or two tetrahedra in Del|3

O
S. Therefore,

the vertices of its dual Voronoi edgeσ∗ are either both inO or both outsideO, soσ∗ intersects
Σ either tangentially or at more than one point. The new vertexc is the same vertex that would

319

be returned by VE(σ∗). Let p be a vertex ofσ; thusσ∗ is an edge of the Voronoi cellVp.
By the same reasoning given in the proof of Proposition 14.6,d(c, p) > 0.15f (p). Therefore,
rc > 0.15f (p) > 0.13f (c) ≥ µ(c) by the Feature Translation Lemma.

When step 5 of DTS inserts a vertexc, some vertexp adjoins a nonempty set of
triangles in Del|2

Σ
S that do not form a topological disk. SoΣp is nonempty. Σp is not 0.09-

small; otherwise, the Small Intersection Theorem (Theorem 13.6) would imply that the triangles
adjoining p form a topological disk. It follows that some triangle adjoiningp has a surface
Delaunay ball with radiusd(c, p) > 0.09f (p) > 0.08f (c) by the Feature Translation Lemma.
Therefore,rc > 0.08f (c) ≥ µ(c).

We use induction to show that a vertex inserted by step 7 also satisfies the claims. Assume
that rp > µ(p) for every previously inserted vertexp. This assumption holds before the first
tetrahedron is refined because steps 3, 4, and 5 ensure it for every vertex except the vertices of
the persistent triangle, two of which are deleted by step 6. Step 7 inserts a vertex either at the
circumcenterzof a tetrahedronτ whose radius-edge ratio exceeds ¯ρ, or at the centerc of a surface
Delaunay ball that containsz. The circumradius ofτ is Rτ > ρ̄ℓ, whereℓ is the length of the
shortest edge ofτ. Let p be the most recently inserted vertex of that shortest edge. Thenrp ≤ ℓ
and

Rτ > ρ̄rp ≥ ρ̄ · µ(p).

As µ is (ρ̄ − 2)/(3ρ̄)-Lipschitz,

Rτ > ρ̄

(
µ(z) − ρ̄ − 2

3ρ̄
d(p, z)

)

= ρ̄

(
µ(z) − ρ̄ − 2

3ρ̄
Rτ

)

⇒ Rτ >
3ρ̄
ρ̄ + 1

µ(z). (14.2)

If z does not encroach upon a surface Delaunay ball, then step 7(b) inserts z andrz = Rτ >
µ(z) · 3ρ̄/(ρ̄ + 1), as claimed.

Suppose the circumcenterz of τ encroaches upon a surface Delaunay ballB, and step 7(a)
inserts a vertexc at its center; or the insertion ofz creates a new surface Delaunay ballB, and
step 7(c) inserts a vertexc at its center. In either case, there is no vertex inB’s interior, sorc is the
radius ofB. Becausez ∈ B, d(c, z) ≤ rc, so

µ(z) ≥ µ(c) − ρ̄ − 2
3ρ̄

d(c, z)

≥ µ(c) − ρ̄ − 2
3ρ̄

rc (14.3)

The ballB circumscribes some triangle in Del|2S Σ. Let p be a vertex of this triangle other than
z. Observe thatp lies on the boundary ofB, but not in the open circumball of the Delaunay

320

tetrahedronτ. As z ∈ B,

2rc ≥ d(p, z)

≥ Rτ
(14.2)
>

3ρ̄
ρ̄ + 1

µ(z)

2(ρ̄ + 1)rc
(14.3)
≥ 3ρ̄ · µ(c) − (ρ̄ − 2)rc.

Rearranging terms givesrc > µ(c). �

Proposition 14.13. If ρ̄ ≥ 2 and inf x∈Σ λ(x) > 0, DTS(Σ, λ, ρ̄) terminates and returns a
mesh in which every vertex p is at a distance greater thanµ(p) · 3ρ̄/(4ρ̄ − 2) from the nearest
distinct vertex.

P. Observe thatµmin = inf x∈Oµ(x) is strictly positive because infx∈Σ λ(x) and infx∈Σ f (x)
are. By Proposition 14.12, every vertexp is at a distance greater thanµ(p) from every vertex
inserted before it. For any vertexq inserted afterp, d(p,q) > µ(q) ≥ µ(p) − d(p,q) · (ρ̄ − 2)/(3ρ̄).
Rearranging terms givesd(p,q) > µ(p) · 3ρ̄/(4ρ̄ − 2).

By the Packing Lemma (Lemma 6.1), there is an upper bound on the number of vertices in the
mesh. The Packing Lemma alone does not guarantee termination, because vertices are sometimes
deleted. Step 2 can delete internal vertices, but only vertices of Del|2

Σ
S. Step 7 never inserts an

internal vertex that changes Del|2
Σ

S; an internal vertex can become part of Del|2
Σ

S only during the
insertion of a new surface vertex. Therefore, after step 2 finishes looping, it cannot run again until
at least one new surface vertex is inserted. Surface vertices, except two vertices of the persistent
triangle, are never deleted. Eventually there will be no room for new surface vertices, then no
room for new internal vertices, whereupon DTS terminates. �

DTS returns the tetrahedral subcomplex Del|3
O

S and enforces the requirement that
∂Del|3

O
S = Del|2

Σ
S, regardless of the size fieldλ. If λ is sufficiently small, the two complexes

coincide with the subcomplex Del|2
Σ

(S∩Σ) obtained by discarding the vertices not on the surface.

Proposition 14.14.AfterDTS terminates, the following statements hold.

(i) ∂Del|3
O

S = Del|2
Σ

S .

(ii) If λ(x) ≤ 0.08f (x) for every x∈ Σ, then∂Del|3
O

S = Del|2
Σ

S = Del|2
Σ

(S∩Σ) = Del|Σ (S∩Σ),
and all four have an underlying space homeomorphic toΣ.

P. (i) DTS terminates only if every triangle in Del|2
Σ

S is in ∂Del|3
O

S too. Every
triangleσ in ∂Del|3

O
S is a face of exactly one tetrahedron in Del|3

O
S, so the Voronoi edge dual to

σ has one vertex inO and one outside. Hence the Voronoi edge intersectsΣ, andσ is in Del|2
Σ

S.
(ii) Any time execution reaches step 7—that is, just before tetrahedron refinement begins or

resumes—the restricted Delaunay 2-subcomplex is a triangulation ofΣ by Theorem 14.2. As
λ(x) ≤ 0.08f (x), Σp is 0.09-small for every vertexp in the mesh. By the Dense Sample Theorem
(Theorem 13.15), every edge in Vor (S∩Σ) that intersectsΣ does so transversally at a single point,

321

and by the Homeomorphism Theorem (Theorem 13.16),|Del|Σ (S ∩ Σ)| is homeomorphic toΣ,
which implies that Del|2

Σ
(S ∩ Σ) = Del|Σ (S ∩ Σ).

Consider the Voronoi diagram with the interior vertices as well. Steps 2 and 7of the algorithm
ensure that when DTS terminates, every triangle in Del|2

Σ
S has all three of its vertices on

Σ. Therefore, every edge in VorS that intersectsΣ is generated by vertices onΣ, and is thus
included in some edge of Vor (S ∩ Σ), and thus intersectsΣ transversally at a single point. It
follows that Del|2

Σ
S ⊆ Del|2

Σ
(S ∩ Σ).

If the inclusion Del|2
Σ

S ⊂ Del|2
Σ

(S ∩ Σ) is strict, then some edge in Del|2
Σ

S is an edge of a
single triangle, because|Del|2

Σ
(S∩Σ)| is a connected 2-manifold without boundary. But∂Del|3

O
S

cannot contain an edge of exactly one triangle, so Del|2
Σ

S = Del|2
Σ

(S ∩ Σ). �

We summarize the properties of meshes generated by DTS.

Theorem 14.15.LetO be a volume bounded by a C2-smooth, compact, connected surfaceΣ ⊂ R3

without boundary. Supposeinf x∈Σ λ(x) > 0 and ρ̄ ≥ 2. For properties (iv)–(vi) below, suppose
also thatλ(x) ≤ ε f (x) for someε ≤ 0.08 and every x∈ Σ. ThenDTS(Σ, λ, ρ̄) terminates
and returns a meshT = Del|3

O
S with the following properties.

(i) |T| is a3-manifold whose boundary is a2-manifold without boundary.

(ii) No tetrahedron inT has a radius-edge ratio exceedinḡρ.

(iii) Every edge adjoining each vertex p is longer thanµ(p) · 3ρ̄/(4ρ̄ − 2).

(iv) The underlying space ofT is homeomorphic toO, and the two are related by an isotopy.

(v) The boundary complex ofT is ∂T = Del|2
Σ

S = Del|Σ (S ∩ Σ).

(vi) The Hausdorff distance between|T| andO is less than15 ε2

(1−ε)2 fmax, where fmax = supp∈Σ f (p).

P. (i) By Proposition 14.13, DTS terminates. At that time,|Del|2
Σ

S| is a 2-manifold
without boundary because TD does not permit termination otherwise. By Proposition
14.14(i), the boundary complex is∂T = ∂Del|3

O
S = Del|2

Σ
S. The space bounded by a 2-manifold

embedded inR3 is a 3-manifold.
(ii, iii) D TS terminates only when no tetrahedron has a radius-edge ratio exceeding ¯ρ.

The bound on edge lengths is taken from Proposition 14.13.
(iv, v) By Proposition 14.14,∂T = ∂Del|3

O
S = Del|2

Σ
S = Del|Σ (S ∩ Σ) has an underlying

space homeomorphic toΣ. As discussed in the proof of that proposition,Σp is 0.09-small for every
p ∈ S ∩ Σ, so the Surface Discretization Theorem (Theorem 13.22) implies that|Del|Σ (S ∩ Σ)|
andΣ are related by an ambient isotopy. Specifically, Proposition 13.20 constructs an ambient
isotopyξ : R3 × [0,1]→ R3 such thatξ(|∂T|,0) = |∂T| andξ(|∂T|,1) = Σ. Because|∂T| andΣ are
both connected 2-manifolds without boundary that partitionR3 into two pieces, the mapξ(·,1) is
a homeomorphism between the regions they enclose,|T| andO. Moreover,ξ is an ambient isotopy
that takes the identity mapξ(·,0)||T| : |T| → |T| to the homeomorphismξ(·,1)||T| : |T| → O.

(vi) The Hausdorff distance between|T| andO is realized by points on their boundaries, and
therefore equals the Hausdorff distance between|Del|Σ (S∩Σ)| andΣ. With λ(x) ≤ ε f (x) for some
ε ≤ 0.08,Σp is ε

1−ε -small for everyp ∈ Σ. By the Surface Discretization Theorem, the Hausdorff

322

distance between|Del|Σ (S ∩ Σ)| andΣ is less than 15ε2

(1−ε)2 fmax. �

Recall from Section 14.5 that ifΣ is an isosurface, DTS becomes simpler and faster if
we replace Del|2

Σ
S with ∂Del|3

O
S, and do not compute Del|2

Σ
S at all. Unfortunately, we do not

know whether the guarantees (iv)–(vi) of Theorem 14.15 hold for∂Del|3
O

S whenλ is sufficiently
small, although it seems likely to be true. We leave it as an open question in Exercise 9.

14.6 Notes and exercises

Early surface meshing algorithms developed for computer graphics and medical imaging were
not concerned with triangle quality. By far the most famous and heavily usedof these is the 1987
marching cubesalgorithm of Lorensen and Cline [141], from the most-cited paper in the history
of the conference SIGGRAPH. The marching cubes algorithm triangulatesan isosurface of a
functionh by computing the value ofh at each vertex of a cubical grid, then the intersections of
the isosurface with the edges of the grid, then a few triangles in each cube that span the intersection
points. It can also create isosurfaces from voxel data such as medicalimages, in which case the
intersections of an unknown surface with the grid edges can be estimated bylinear interpolation.
The algorithm is very fast, and performs interpolation only over edges, not over whole cubes.
Unfortunately, it can create arbitrarily skinny triangles. Bloomenthal [24]proposes a similar
method that uses a tetrahedral background grid.

After the development of Delaunay refinement meshing in the late 1980s, Chew [61] in 1993
presented an algorithm for triangular surface meshing that flips the edgesof an existing surface
triangulation so that if its vertices are sufficiently dense, the final triangulation is, in some sense,
Delaunay. Then the algorithm refines the mesh by inserting vertices at the centers of surface
Delaunay balls of poor-quality triangles, until no triangle has an angle less than 30◦. In retrospect,
the meshes this algorithm generates are usually subsets of a restricted Delaunay triangulation.

The introduction of restricted Delaunay triangulations by Edelsbrunner and Shah [92], their
Topological Ball Theorem, and the sampling theory of Amenta and Bern [3] opened a path to de-
veloping algorithms with topological guarantees. By connecting Chew’s refinement strategy with
theε-sampling theory, Cheng, Dey, Edelsbrunner, and Sullivan [47] givea Delaunay refinement
algorithm for generating a restricted Delaunay triangulation that is homeomorphic to a specialized
smooth surface for molecular modeling, called askin surface[86].

Boissonnat and Oudot [29, 30] present a Delaunay refinement algorithm for homeomorphic
meshing of a more general class of smooth surfaces. Our DS1 pseudocode is essentially this
algorithm without support for surface boundaries, which we addressin the next chapter. Dey and
Levine [76] show that once the sample is sufficiently dense, one may discard the tetrahedralization
and continue to refine the surface triangulation; see Exercise 3.

Cheng, Dey, Ramos, and Ray [53] propose a topology-driven surface meshing algorithm that
uses critical point computations and the TD subroutine. Violations of the topological ball
property are detected and repaired. The algorithm does not need to estimate local feature sizes.
This algorithm is embodied in our DS2 pseudocode.

Our DTS pseudocode is a variation of the tetrahedral mesh generation algorithm of
Oudot, Rineau, and Yvinec [162] for volumes bounded by smooth surfaces. We have modified
it by using vertex deletions, thereby improving the radius-edge ratio bounds, permitting the algo-

323

rithm to work reasonably well with sparse samples, and removing the requirement for a Lipschitz
size field. The value of vertex deletion for improving both the theoretical guarantees and the
practical performance of Delaunay refinement algorithms was introducedby Chew’s pioneering
paper [61].

A related tetrahedral meshing algorithm calledvariational tetrahedral meshingcombines De-
launay triangulations and vertex smoothing in an interesting way. Recall that the Delaunay trian-
gulation of a fixed vertex set minimizes the volume bounded between the triangulation lifted to
the parabolic lifting map and the paraboloid itself, compared with all other triangulations of the
same vertex set. What if the domain’s interior vertices are not fixed? Chen and Xu [46] suggest
globally smoothing the interior vertices by minimizing the same volume. Alliez, Cohen-Steiner,
Yvinec, and Desbrun [2] implemented an iterative tetrahedral mesh improvement method that
alternates between this global smoothing step and recomputing the Delaunay triangulation—in
other words, it alternates between numerical and combinatorial optimization ofthe triangulation
with respect to the same objective function. During smoothing steps, verticeson the boundary are
constrained to maintain domain conformity.

A shortcoming of Delaunay refinement is that it does not scale well to meshesthat are too
large to fit in main memory, because its random patterns of access to a mesh cancause virtual
memory to thrash. Dey, Levine, and Slatton [78, 80] study how to make algorithms in this chapter
more local in their data access patterns so that they can generate huge meshes without heavy
thrashing.

Although most guaranteed-quality algorithms for meshing surfaces and the volumes they en-
close are founded on Delaunay triangulations, an exception is theisosurface stuffing algorithm
of Labelle and Shewchuk [128], which uses an octree to fill a smooth isosurface with tetrahedra
whose dihedral angles are guaranteed to be bounded between 10.7◦ and 164.8◦. Unfortunately, no
known Delaunay algorithm offers similar guarantees in theory, although they often achieve better
angles in practice.

There are many non-Delaunay surface meshing methods that focus on obtaining correct topol-
ogy, but not element quality, especially for isosurfaces and implicit surfaces. A few examples are
the small normal variation method of Plantinga and Vegter [171], the sweep approach of Mour-
rain and Técourt [153], the adaptive approach of Snyder [207], and the critical point method of
Boissonnat, Cohen-Steiner and Vegter [28].

Isosurfaces of smooth functions can be nonmanifold and nonsmooth for isovalues that are
critical values. Such isosurfaces cannot be meshed by the methods described in this chapter, but
recent research [138, 153] has begun to address this problem.

Edge-surface intersection computations are expensive. Boissonnat and Oudot [30] observe
an idea for reducing the number of these computations when the surfaceΣ is an isosurface of
a functionh. Boissonnat and Oudot show that, instead of maintaining Del|2

Σ
S, DS1 can

maintain a complex containing only the Delaunay triangles dual to the bipolar Voronoi edges, and
compute only a single intersection point (and a single surface Delaunay ball)for each such edge,
thereby reducing the computation time considerably.

Implementations of algorithms involving curved surfaces are plagued by floating-point round-
off error, which often causes algorithms to fail. Researchers are making geometric algorithms
more numerically robust with sophisticated methods from computational real algebraic geometry.
The literature on geometric robustness is too large to survey here. The software produced by the

324

CGAL project3 is making continuing progress in robust computing with curved geometries.

Exercises

1. [30] Let B be the set of surface Delaunay balls for a sample on a smooth surfaceΣ with-
out boundary. Prove thatΣ is included in the union of the balls inB if each ball with
circumcenterc has a circumradius of at most 0.09f (c).

2. Suppose we initialize DS1 with a set ofn random points onΣ instead of the vertices of
a persistent triangle. Show that the algorithm might be unable to insert additional vertices
by showing that for everyn, there is a surface and a sample of sizen such that no Voronoi
edge intersectsΣ.

3. [76] Suppose we have computed Del|Σ S for a 0.09-sampleS of a smooth surfaceΣ without
boundary. Design an algorithm that can insert the center of a surface Delaunay ball intoS
and update Del|Σ S without accessing the three-dimensional Delaunay triangulation DelS.
Then design a Delaunay refinement procedure for making a 0.09-sample even denser with-
out computing DelS.

4. Suppose thatΣ is given as an isosurfaceh(x, y, z) = 0. Explain in detail the numerical
computations needed to compute the critical setX∩g in step 4 of the subroutine VF.

5. [53] Explain in detail the numerical computations needed for SP and S-
C.

6. Some of the meshing algorithms in this chapter use vertex deletions. Supposethat the
Voronoi diagram VorS satisfies the TBP for a sampleS of a smooth surface. Prove that
for every sites ∈ S and for every sitep ∈ S \ {s}, each restricted Voronoi cellVp ∩ Σ in
Vor (S \ {s}) remains a topological disk. (Note that this does not imply that the TBP still
holds.)

7. Theorem 14.15 proves that the Hausdorff distance between|Del|3
O

S| andO is small. Prove
that under the same conditions, there is an isotopy relating|Del|3

O
S| to O that moves each

point x ∈ |Del|3
O

S| by a distance less than 15ε2 f (x).

8. Suppose we modify DTS as follows. Explain what happens in each case.

(a) Exclude step 6. Theorem 14.15 needs to be changed in this case.

(b) Exclude step 7(c). The algorithm might not terminate; why?

9. Recall that ifΣ is an isosurface, it is desirable to replace Del|2
Σ

S with ∂Del|3
O

S in DT-
S. Also recall that∂Del|3

O
S ⊆ Del|2

Σ
S. Suppose the modified algorithm is started with

a point sampleS ⊂ Σ such that while it runs,∂Del|3
O

S never becomes empty. Suppose that
λ(x) ≤ 0.08f (x) for eachx ∈ Σ. It is an open problem whether the properties (iv)–(vi) of
Theorem 14.15 hold for the modified algorithm. Prove or disprove them.

3http://www.cgal.org

