Chapter 14

Meshing smooth surfaces and volumes

The theory of surface sampling and restricted Delaunay triangulatior$oged in the last two
chapters seems to mark a clear path to designing a Delaunay refinemeithaldor triangular
mesh generation on a smooth surface: maintain a restricted Delaunay triamglojemaintaining
a Delaunay tetrahedralization, refine it by inserting new vertices at ttiersesf circumballs of
restricted Delaunay triangles, and continue refining until the sample is dansgh to guarantee
topological correctness, geometric accuracy, and high triangle qualipyn termination, the
algorithm returns a mesh that is related to the input surface by an isotopgramgs all the
geometric guaranteesfered by the Surface Discretization Theorem (Theorem 13.22).

The fly in the ointment is that it is very filicult to know when the algorithm has succeeded
and can stop refining. In theory, we can achieve these guaranteesiésagng a ®8-sample or
making sure that every restricted Voronoi cell i8®-small. In practice, there are two problems.
First, it is both dfficult and expensive to compute the local feature size function. The Dmtaun
refinement algorithms we have studied for polygonal and polyhedralidsmse the local feature
size in their analysis, but do not need to compute it. Curved domainsfégeedi: without com-
puting the local feature size, it isficult to be certain that a mesh generator has not overlooked
some high-curvature feature of the domain. Second, in practice it is ugessible to recover
a surface with a vertex set much less dense tha®&®ample, and we would prefer to have a
mechanism for knowing when we can stop early.

The first surface meshing algorithm we present assumes that the nssroahow compute
the LFS function, has domain knowledge that makes it possible to specifyea bmund on the
LFS function, or simply wants triangles small enough that resolution is nosae.is$f a mesh of
uniformly-sized elements is acceptable, a constant lower bound on thesfeete will do.

For many applications, however, no such approximation is known, or theoaatant over-
refinement is unacceptable. Fortunately, we can appeal directly to tledogigal Ball Theorem
(Theorem 13.1), which says that if the faces in Santersect in topological closed balls of
appropriate dimensions, then the underlying space df Bes homeomorphic t&. A Delaunay
refinement algorithm can be driven directly by diagnosing violations of dnelitions of the the-
orem. These violations can be detected by critical point computations andraiorial checks,
which underlie our second surface meshing algorithm.

Neither algorithm is very practical, because both algorithms require expet@mmputations
of either local feature sizes or critical points. Our third surface meshggrithm combines
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Figure 14.1: Surface meshes generated mSDrF.

ideas from both algorithms in a more pragmatic way. In this algorithm, a useifispesize field
determines the fineness of the mesh and combinatorial tests guarantee tiradltheesh is a
2-manifold, but a correct topology is guaranteed only if the size fieldfiscgntly small. Fig-
ure 14.1 depicts three Delaunay surface meshes produced by the ahgdkittihree algorithms
can refine the mesh to guarantee that no angle is less tfiar §feater than 120

The surface meshing algorithms generate a restricted Delaunay triangulahiarh is a
subcomplex of a Delaunay tetrahedralization, so the volume enclosed byrfheesis already
meshed by Delaunay tetrahedra. Of course, these tetrahedra hav&ppes unless we refine
them by inserting new vertices at their circumcenters, as we do for polgh@dmains. These
vertex insertions may delete some surface triangles, so an encroaclueeand several other
refinement rules for surface triangles act to maintain domain conformity. Mg fihe chapter
with a guaranteed-quality tetrahedral mesh generation algorithm for voloouesied by smooth
surfaces, which enforces an upper bound on the radius-edgejtsti@slittle worse than 2.

Throughout this chaptek, is asmooth surfaceour shorthand for a compact (bounded§;
smooth 2-manifold without boundary, embeddedh We also assume thatis connected. If a
surface has multiple connected components, each component can bel seshately.

14.1 Delaunay surface meshing with a known local feature size

For our first Delaunay refinement surface meshing algorithm, the uppliesi a 1-Lipschitz
functiona : £ — R, called asize field that reflects the locally desired spacing of vertices on the
surface. The algorithm promises to produce no triangle having an emptyritiadl centered at

c € X with radius greater than(c), which implies that no triangle has a circumradius greater than
A(c). We require that infs A(X) > 0. To guarantee that the algorithm will produce a topologically
correct mesh, we also require thigk) < £f(x) for somee € (0,0.08]. As we have mentioned, it
can be quite diicult to estimate the value df, but in many practical applications, the user desires
elements smaller than those necessary for correctness.

The algorithm refines a restricted Delaunay triangulation by sampling newspm at the
centers of circumballs of restricted Delaunay triangles, and adding them vettex set. Early in
the algorithm’s progress, when the samlis still sparse, Déd S can contain edges and vertices
that are not faces of any triangle. There is no need for the algorithnefotkack of these dangling
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Figure 14.2: The restricted Delaunay edg®sand uv, which are not faces of any restricted
Delaunay triangle, are present in Reb (left) but absent by definition from D|§IS (right).

simplices, so we focus on the subcomplex of|[P8lconsisting of restricted Delaunay triangles
and their faces. We call this subcomplex thstricted Delaunag-subcomplexdenoted

Dellg S ={r: ris aface of a triangle in DgIS}.

Recall that a simplex is a face of itself; thus, @ts contains every triangle in DgIS with its
edges and vertices, but omits dangling edges and vertices, as Figuridusirates. Later, we
will introduce arestricted Delaunag-subcomplesor tetrahedral mesh generation.

Definition 14.1 (surface Delaunay ball)A surface Delaunay balbf a restricted Delaunay trian-
gleo € Delz Sis a circumball ot whose center lies both dhand on the Voronoi edge* dual
too.

Every restricted Voronoi vertex is the center of a surface Delaunky loieally, for every
triangleo € Delly S there would be exactly one pointhn o, but for a sparse sample there can
be many, so a triangle can have many surface Delaunay balls. A suréaeriay ball’s interior
contains no vertex o because it is centered ori, the Voronoi edge whose generating sites are
the vertices ofr.

The Delaunay refinement algorithm splits triangles whose surface Dgldwails are too
large. Specifically, if a surface Delaunay bB(kt, r) hasr > A(c), the algorithm inserts its center
cinto S and updates the Delaunay tetrahedralization®ahd the surface triangulation II@eS
Note that there is no need to store two separate triangulations; it is onlysaegés mark which
triangles in Deb are restricted Delaunay. When no large ball survives, every restNaenoi
cell Vply has vertices close to its generating gitespecifically,X, is e-small for some appropriate
¢ (recall Definition 13.4). By the Surface Discretization Theorem (Thmat8.22), the underly-
ing space of Dgt S is homeomorphic t& and related by an isotopy, and Reb approximate&
well geometrically. At this time, D@l S = Del2 S.

To bootstrap the algorithm, the sam@Bds initially a set containing the three vertices of a
triangle chosen to be small enough that it remains restricted Delaunay loatugxecution. We
call it the persistent trianglelts presence guarantees that at least one Voronoi edge intergects th
surface as required by the Surface Discretization Theorem, namely$istpet triangle’s dual
edge. Initially, the dual edge is a line that intersetis at least two points, one inducing a small
surface Delaunay ball and one inducing a large one, at whose ceateutth vertex is inserted.
We summarize the algorithm in pseudocode.
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DEeLSurrl(Z, 2)

1. Compute a persistent triangle with verticesoriet S be the set of vertices of
the persistent triangle. Compute [Zeand Delg S.

2. While some triangle in Déls has a surface Delaunay bBl(c, r) with r > A(c),
insertcinto S, update De§ and Del§ S, and repeat step 2.

3. Return Deg S.

DeLSurrl is not concerned with the quality of the triangles it generates, but a smaificaed
tion can change that by refining skinny triangles as well as oversizes] see Section 14.4.

A sore point is how to compute a persistent triangle. It is unclear how to detsosministi-
cally; the following randomized heuristic performs well in practice. Pick atpomX. Randomly
pick three points irE N B(x, A1(xX)/7) to form a triangler. Accepto as the persistent triangle if
> N B(x, A(x)/7) intersecter’s dual line, the line perpendicular @ through its circumcenter.
Otherwise, throw away the vertices@fand try again. We justify this heuristic in the next section
(Proposition 14.3). The only reason we requite be 1-Lipschitz is to ensure thatis persistent.

For DeLSurrl to run quickly, it should maintain a queue containing all the surface Dejauna
balls whose radii exceed the threshold. When a new vertex is inserted @& Bach new
triangular facer is tested to see if its dual Voronoi edge intersestand if so, at what point
or points. This computation determines both whethés restricted Delaunay and whether its
surface Delaunay balls are too large; oversized balls are enquetegrl2 8f the algorithm is a
loop that begins by dequeueing a ball and checking whether it is still acuelaunay ball.
Be forewarned that it is not enough to check whethas still in Dellg S; refinement may have
shortenedr’s dual edge without eliminating it, in which casemay still be restricted Delaunay
but have fewer surface Delaunay balls than it had when it was created.

14.1.1 Proof of termination and guarantees
We first show that BLSurrl terminates.

Proposition 14.1. If ¥ is compact andnfycs A(X) > 0, DeLSurrl terminates.

Proor. DELSurrl inserts vertices only at the centers of empty open balls whose radiicexcee
infyex A(X), SO NO two vertices i1 are ever closer to each other than that—except that the ver-
tices of the persistent triangle may be closer to each othekt id$ounded, the Packing Lemma
(Lemma 6.1) states that there is an upper bound on the number of v&tiaescontain. O

The following theorem lists properties of a mesh generateddnBixrl.

Theorem 14.2.LetX c R3 be a G-smooth, compact, connected surface without boundary. Let
A 1 ¥ — R be a 1-Lipschitz function and < 0.08 a value such that for every point %,

A(X) < ef(X). Supposénfyes A(X) > 0. ThenDeLSurrl(Z, ) returns a mesh with the following
properties.

(i) 171 can be oriented so that for every triangke € T and every vertex p af, the angle
betweem and the oriented normai,. of o is less tharve/(1 - ) < 0.61radians.
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(i) Every two distinct triangles iff that share an edge meet at a dihedral angle greater than
n—14e/(1 - ¢&).

(iii) The nearest point map : |7] — X,z — Z is a homeomorphism betwefh and X that
induces an isotopy.

(iv) Forevery point = |T], d(z 2) < %f(i) < 0.121(2).

(v) The set of vertices ifi is ane/(1 — 2¢)-sample ok,

Proor. LetS be the set of vertices ifi, and recall thaf” = Dell2S. Let p be a vertex inS
whose restricted Voronoi celly|s has a restricted Voronoi vertexwhich is therefore a vertex of
Zp € Vplz. Upon terminationd(p, X) < A(xX); otherwise, RLSurrl would have inserted a vertex
atx. Becausel(x) < ef(x),

d(p,x) < ef(x) < ——f(p),
1-¢

the last step following from the Feature Translation Lemma (Lemma 12.2). foher&;, is
e/(1 - &)-small for everyp € S. Because: < 0.08,¢/(1 - ) < 0.09.
By Proposition 14.3 below, the presence of the persistent triangle deasahat some edge
in Vor S intersectsX. Therefore, the premises of the Surface Discretization Theorem {Theo
rem 13.22) are satisfied, and Reb has properties (i)—(iv). Property (iii) implies that Reb has
no dangling simplex that is not a face of a triangle, soj{®l= DeI|§S = 7J. Because& is
e/(1 - g)-small for everyp € S, the Voronoi Intersection Theorem (Theorem 13.14) statesSthat
is ane/(1 — 2¢)-sample ofx. O

Proposition 14.3. The triangles- computed as described at the end of Section 14.1 is persistent—
it is present in the output mesh.

Proor. By constructiony n B(x, A(X)/7) contains the vertices of and intersects the line perpen-
dicular too through the circumcenter of. Therefore, every surface Delaunay balbotentered

at a point inz N B(x, A(x)/7) has radius at most®x)/7, and is included ifB(x, 31(X)/7). We will
see that BLSurrl never inserts a vertex B(x, 31(x)/7). Therefore, there is a surface Delaunay
ball of o that remains empty throughout the algorithm, anid a persistent triangle.

Let p be a vertex inserted by HDSurrl other thano’s vertices. Assume for the sake of
contradiction thatl(p, X) < 31(x)/7. Letv be a vertex ofr. The 1-Lipschitz property of implies
thatA(p) = A(X) — d(p, X) > 44(X)/7 > d(p, X) + d(v, X) > d(p, V).

As DeLSurrl insertsp at the center of a surface Delaunay ball with radius greatertf@hn
the vertexv lies inside this ball, contradicting the fact that every surface Delaunajstetipty.o

14.1.2 Deleting two vertices of the persistent triangle

The vertices of the persistent triangle are much closer to each other thasetheequested. We
can fix this by deleting two of them from D8l Unfortunately, their deletion may yield a surface
mesh with the wrong topology, or create restricted Delaunay triangles thasheaace Delaunay
balls a bit larger than requested and a bit too large for the guaranteé®oféim 14.2 to apply.
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We can mitigate this problem by choosing the vertices of the persistent trianiggevery close
together, but not so close as to cause numerical problems. We can firotilerp entirely by
refining the mesh a little bit more after removing the two vertices. Unfortunateky pibssible
that this refinement can create a sample set whose Voronoi diagrano lealge that intersects
>—that is, Des S contains no triangle and the algorithm is stuck. At any rate, we do not know
how to prove that this never happens, though it seems utterly unlikely itiggad-or the sake

of theoretical certainty, we discuss here a simple way to delete vertices péthistent triangle
while maintaining the guarantees of Theorem 14.2.

Let v andw be the two vertices of the persistent triangle we wish to delete. WheSuRrr1
terminates, it returns a triangulation of a 2-manifold, solfXIcontains at least one triangbe
that does not havefor a vertex. The Voronoi edge* dual too intersects. Deletingv from S
may have theféect of lengthening*, but not of shortening or deleting it, 8¢ still intersectsz.

If the deletion ofv causes the mesh to no longer satisfy the antecedents of Theorem 14i2, or if
creates a triangle that is too large, then continue to refine the mesh.

It is possible, as we have said, for the algorithm to get stuck ifs[$etontains no triangles
after a vertex insertion. In that unlikely event, fix it by insertnggain, thereby reintroducing
the persistent triangle. The key observation is that afieideleted, it is always possible to insert
at least one vertex besidedefore getting stuck. Perhapsvill be deleted and reinserted many
times, but the algorithm will make progress, and by the Packing Lemma it will tetenina

After producing a satisfactory mesh lackingdeletew and continue refinement until the
mesh is again satisfactory or the algorithm gets stuck. In the latter casertbioth vandw and
continue refining untiv can be removed again. Again, we argue that aftés deleted, at least
one new vertex can be inserted befgr@ndw must be reintroduced, so even if both vertices are
deleted and reinserted many times, the algorithm will make progress andaiesticceed.

14.1.3 Computing edge-surface intersections

The crucial numerical computation in most surface meshing algorithms, ingliirSurrl, is
finding the points on a surface that intersect a line or edge. There isimersal algorithm to
perform this query, because there are maifiedkent ways to represent surfaces, each requiring a
different algorithm. A surface meshing program should abstract this compuéatia black box
subroutine whose replacement allows the mesher to work wiiirdint surface representations.
Most solid modeling programs include an interface by which an applicatioraskrihe solid
modeler to perform this query.

For most surface representations, the intersection points are solutiansystem of equa-
tions. For a triangulated or polygonal surface, the equations are lindagasily solved. For a
parametrized spline, the equations are polynomial, and are usually be=d bgliterative meth-
ods.

Many applications work with an important class of surfaces ca#ledurfacesalso known
asimplicit surfaces An isosurface is induced by a smooth function R® — R. For any real
numbers, the point seE = h™1(n) = {p : h(p) = n} is an isosurface df having isovalue. If n is
not a critical value o, X is a smooth surface.

Depending on the nature &f evaluating an isosurface can be arbitrarilyfidult. But if
h(p) is polynomial inp, the intersection of a line with an isosurfacehot computed by finding
the roots of a univariate polynomial. More commoriigp) is piecewise polynomial, and a root
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finding computation must be done for each piece that intersects the line ®r Bdgurfaces of
piecewise polynomials are rareG7-smooth, but Delaunay surface meshing algorithms tend to
work well in practice anyway.

Isosurfaces are often created fromoxel datasuch as medical images. Voxel data specifies
the value oth at each vertex of a cubical grid, buis not known anywhere else. There are many
triangulation algorithms for voxel data, some very fast, but most of themuse some skinny
triangles. Algorithms like BLSurrl can extract a high-quality mesh of a kidney from a medical
image by first extending the domain bffrom the vertices to the cubes by interpolation, then
meshing an isosurface of the interpolated function. The interpolation basssialy piecewise
polynomial, most commonly piecewise trilinear. Of course, not all discretet paita sets use
a cubical grid. For instance, isosurfaces can be generated fragnlarty placed data points by
constructing their Delaunay triangulation and interpolating the data with pieediwesar func-
tions or more sophisticated methods such as natural neighbor interpolation.

Call a Voronoi edgdipolar if the values oh at its two vertices have opposite signs, indicating
that one vertex is enclosed /and one is not. If all intersections are transverse, a bipolar
edge intersects an odd number of times. If a more sophisticated root finding procedurd is no
available, a point where a bipolar edge interséctan be approximated by repeated bisection,
the secant method, orlifis suficiently smooth, the Newton—Raphson method.

A good strategy for speed is to delay computing edge-surface intersectigih they are
needed and to avoid identifying non-bipolar edges that inteiSesttil it becomes necessary.
Maintain a queue of Delaunay triangles that dualize to bipolar edges amrdrmawet been
checked. Repeatedly remove a triangldrom the queue and check whether its dual Voronoi
edgeo™ is still bipolar. If so, compute the intersection pointssifin £ and decide if any of the
surface Delaunay balls centered at those points is too largeSukr1 often succeeds in prac-
tice without considering non-bipolar edges (except when inserting tivéhfeertex; there are no
bipolar edges whef contains only the vertices of the persistent triangle). Only if the mesh is
inadequate when the queue runs empty must the algorithm resort to testibipotar-edges for
surface intersections.

Figure 14.3 shows meshes of voxel data obtained by using trilinear intdgoota define
isosurfaces and a variant okC5urrl described in Section 14.3 to create surface meshes. Instead
of computing a persistent triangle, we took intersections of the isosurfabehe lines of the
voxel grid as seed vertices.

14.2 Topology-driven surface meshing

The algorithm RLSurrl can fail if 1 does not satisfy the conditiot{(x) < 0.08f(x) for all x € X.
Unfortunately, it is dificult to estimatef (x), so it is dificult to know whether a user’s size field
is acceptable. Moreover, the constar@i®arising from the theory is conservative; much sparser
samples often gfice in practice. It is important to know when the algorithm can stop early.

Our second surface meshing algorithm does not need to know anytlongtak local feature
sizes. For simplicity, we will dispense with the size figl&and suppose that the user desires a
topologically correct mesh with no more vertices than the algorithm reasoretlyres. Refine-
ment is driven solely by the wish to satisfy the topological ball property (TBF course, the
algorithm can optionally incorporate a size field too.
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Figure 14.3: Meshes produced byiSurr of isosurfaces from theram data set. In the top row,
three diferent isovalues provide thredfdirent isosurfaces. The bottom two meshes are generated
from medical images.
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Unfortunately, the algorithm requires tiabe C*-smooth, whereas BSurrl requires only
C?-smoothness. A collection of critical point computations is essential to theithigorso X
must have a representation that makes them possible.

Recall from Section 13.2 that the pa8, &) satisfies the TBP if every Vorong&iface in VorS
that intersect& does so transversally in a topologickl« 1)-ball. In that case, the Topological
Ball Theorem (Theorem 13.1) states that the underlying space ¢f ®& homeomorphic t&.
The topology-driven surface meshing algorithm searches for violatibtiee TBP and attempts
to repair them by sampling points from the surface. It terminates only W) Gatisfies the
TBP. The algorithm maintains a minimum distance between sample points, therebptgemg
termination. Before we describe the algorithm, we study the subroutinesidigaiode violations
of the TBP.

14.2.1 Diagnosing violations of the topological ball propry

To find violations of the topological ball property, we define four subirms VorEbce, ToroDisk,
VorFacer, and Scaouerte. When one of them identifies a violation, it samples a new point from
¥ for use as a mesh vertex. For simplicity we assume that no Voronoi vertenli®s

VorEbpGe checks whether a Voronoi edgesatisfies the TBP. A Voronoi edge should either
be disjoint fromX or intersecz transversally at a single point, a 0-ball. Letbe a restricted
Delaunay triangle dual te, and letcnax(c) € €N X andrmax(o) be the center and the radius of
o’'s largest surface Delaunay ball.

VorEDGE(€)

If eintersect< tangentially or at multiple points, let be the triangle dual te
and returrcnax(o). Otherwise, return null.

ToroDisk checks whether the s&@t, of restricted Delaunay triangles adjoining a vergex
forms a topological disk. Figure 14.4 illustrates the t¢B}! is a topological disk if and only if
every edge adjoining in a triangle inT, is an edge of exactly two triangles T, and there is
only one cycle of triangles arourg rather than two or more.

If every Voronoi edge intersecksin at most one point (enforced byWEbce), then ToroDisk
detects two types of TBP violations. First, it diagnoses a Voronoi fattedt intersectX in two or
more topological intervals. When this violation happens, the endpoints ofibogical intervals
each lie on a dierent edge of (thanks to \brREDpGE), S0 there are at least four such edges. Their
dual Delaunay triangles all share the edge dugl &b the dual edge is not an edge of exactly two
restricted Delaunay triangles. SeconapdDisk diagnoses a Voronoi cef, whose boundary
intersectsX in two or more loops that meet Voronoi edges. This violation implies Thais a
union of two or more topological disks joined gtas in Figure 14.4(c).

ToroDisk(p)

1. LetT, be the set of triangles in D%ls that adjoinp.
2. If [Tyl is empty or a topological disk, return null.
3. Leto be the triangle that maximizeégax(c) amongT . ReturnCmax(c).
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(@) (b) (c)

Figure 14.4: A test for whether the triangles adjoinindorm a topological disk. (a)Tp| is a
topological disk. (b) The edggsx and py are not edges of exactly two triangles,|$g| is not a
topological disk. (c) There is more than one cycle of trianglegTspis a union of topological
disks joined ap.

If a Voronoi facet intersects, the intersection should be transverse and it should be a single
topological interval. This property is violated if (i) the Voronoi facet inemtsX tangentially,
(i) the Voronoi facet intersects in two or more topological intervals, or (iii) the Voronoi facet
intersect< in a loop. All three violations (i), (ii), and (iii) can happen simultaneously.

As we have discussed, violation (ii) is detected lpdDisk. The next subroutine, d&Fackr,
detects violations (i) and (iii). dFacer uses critical point computations. LE&tbe a smooth loop
on a plane. Given a directiahparallel to the plane, the critical points ©fin directiond are the
points wherel is normal toC.

VorFacer(Q)

1. Ifthere exists a pointigNX whereg andX have the same tangent plane, return
that point.

2. LetIl = aff g. Choose a random vectdrparallel toIl. Compute the seX of
critical points of the curves ifl N X in the directiond.

3. If no point inX lies ong, return null.
4. Asg intersects transversallyg N X is a collection of disjoint simple curves

(intervals or loops) anK N g is the set of critical points of these curves in
directiond. LetV, be a Voronoi cell with facg. For eachx e XN g,

(&) Compute the linéy c II throughx parallel tod. The line¢y is normal to
gnxatx

(b) ComputeY « £xNgNZ. If Y contains two or more points, return the point
in'Y furthest from the vertey dual toV,,.

5. Return null.

Step 2 of \WbrFacer assumes thdid N X has finitely many critical points in a direction. It is
known that the critical points in any direction are isolatedl i C3-smooth, and the number of
critical points is finite for algebraic surfaces of fixed degree.
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The three subroutineso¥Epce, ToroDisk, and VorFacer ensure that the Voronoi edges and
Voronoi facets in VoS satisfy the TBP. The TBP has one other requirement: that each Voronoi
cell interseck in a topological disk or not at all. The subroutinesdDisk and VorFacer ensure
that for each Voronoi ceN/y, (BdVp) N X is either empty or a single loop that crosses more than
one facet oVy,. Hence, the only ways that, can violate the TBP are W, N X = X (we assume
X is connected) o¥, N X has a handle. We diagnose these cases by checkisglbaetteof X.

Definition 14.2(silhouette) For a smooth surface and a specified directioh, the silhouettely
is the set of point$x € X : ny - d = 0}. That is, the normal t& at each point inJq is orthogonal
to the directiord.

The following result motivates the use of silhouettes.

Proposition 14.4. Lets be a connected component of M X for some Voronoi site p. Bd¢ is
empty, then for every direction d,n Jg # 0. If Bdé is a single loop and N Jg = 0 for some
direction d, thery is a topological disk.

Proor. If Bd ¢ is empty, thery is the surface and sos N Jg = Jg. It is clear in this case
that Jg is nonempty for every directiod. Suppose that Bélis a single loop. LeH be a plane
perpendicular ta. Consider the map : 6 — H that projects each point éforthogonally toH.
Sinces is connected and compact, ittRaes to prove thap is injective.

Assume to the contrary thatis not injective. Then there is a lifgarallel tod that intersects
6 in two or more points. Lex andy be two consecutive intersection points alding

As N Jq = 0, neitherx nory belongs taly, which means that neithes nor ny is orthogonal
to d. Becausex andy are consecutive ifin §, ny andny are oppositely oriented in the sense that
the inner productsy - d andny - d have opposite signs. Becauses connected, there is a smooth
curvep C 6 connectingx andy. The normal ta= changes smoothly fromy to ny alongp. By
the mean value theorem, there is a paiatp such than, is orthogonal tal. But thenz € § N g,
contradicting the emptiness 6 Jg. O

The subroutine SrouerTE takes advantage of Proposition 14.4. It checks if a Voronoi cell
Vp intersects the silhouett®, whered = ny is normal toX at p. If Vo n Jg # 0, eitherJy
intersects some facets gf, or V, contains a component dfi. The first possibility is checked by
a subroutine snoueTTEPLANE(Z, IT, np) that returns the points whedg intersects thefine hullTl
of a facet ofVj,. The second possibility can be detected by checkiMy ontains a critical point
of Jq in a directiond’ orthogonal tal. To perform this check, we require thitbe a set of smooth
loops, and that the number of critical points&along a direction be finite. The first requirement
is likely true if d is obtained by applying a tiny, random perturbatiomgofor simplicity, assume
it holds. The second requirement hold& ils C*-smooth. Let SnouerteCriTicaL(Z, d, d’) be the
subroutine that returns the critical pointsJafin the directiond’ (see Exercise 5).

SILHOUETTE(P)

1. Letd ben, after a tiny random perturbation.
2. Choose a random directiah orthogonal tad.
3. ComputeX « SiLnouerteCriticaL(Z, d, d’).
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4. If X contains a point insid¥p, return it.
5. Otherwise, for each facgtof Vp,:

(a) ComputeY « SinouertePLane(Z, IT, d) wherell = aff g.
(b) If Y contains a point om, return it.

6. Return null.

The following proposition gives a lower bound on the distance between p sitel every
silhouette point invy,.

Proposition 14.5. Let p be a Voronoi site. For every pointxVp N Jy, d(p, X) > f(p)/3.

Proor. If d(p, X) < f(p)/3, the Normal Variation Theorem (Theorem 12.8) implies #fap, ny) <
«(1/3), contradicting the fact that, is orthogonal tan, by definition. O

14.2.2 A topology-driven Delaunay refinement algorithm

The topology-driven Delaunay refinement algorithm initializes the sa@plith a set of points
called seeds which are critical points of in a chosen direction. Then it repeatedly calls the
subroutines of Section 14.2.1 to search for violations of the topologicapbablerty. When a
violation is found, a new vertex is added$o When no violation survives, the underlying space
of Delz S is homeomorphic t&, and the algorithm returns D%B, which must be equal to
Dellz S. Itis possible that some seeds are too close together, so that the srgfagelation may
have unnecessarily short edges adjoining the seeds. This problebe dexed by deleting the
seeds, then refining again to restore the correct topology.

DELSURF2(Z)

1. LetS be a set of seed points an Compute VoIS and Del% S.

2. Perform steps (a)—(d) below in order. As soon as a non-null pagnteturned,
terminate the current loop, skip the remaining steps, and go to step 3.
(a) For every Voronoi edgein Vor S, computex « VorEDGE(€).
(b) For everyp € S, computex « TopoDisk(p).
(c) For every Voronoi faceg in Vor S, computex < VorFacet(Q).
(d) Foreveryp € S, computex « SILHOUETTE(P).

3. If xis non-null, inserk into S, update VotS and Def S, and go to step 2.
4. Otherwise, return DEIS.

Instead of computing the seed setLBurr2 could begin with just a single sample point
in S; Swrouerte would generate more sites on each componerit ahd the algorithm would
succeed. However, the computation of critical points of a silhouette in afiggedirection is
more expensive than computing critical pointsof
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14.2.3 Proof of termination and homeomorphism

To show that BLSurr2 terminates, we use the Small Intersection Theorem (Theorem 13.6) to
guarantee a lower bound on the distances among the sites inserte®l iexoepting distances
between pairs of seed points.

Proposition 14.6. DELSurr2 terminates.

Proor. Let fmin = infyex f(X). We claim that every point returned by a subroutine called ty D
Surr2 is at a distance of at leasO@fy,i, from every site ir5, so the Packing Lemma (Lemma 6.1)
implies that BLSurr2 terminates.

If V orEpGE(€) returns a point, the Voronoi edgeintersects either tangentially or at more
than one point. Lep be a site whose Voronoi cell, has the edge. By the Voronoi Edge Lemma
(Lemma 13.7), the distance fropto the furthest point ieNX is greater than.Q5f (p). VorEbGe
returns that furthest point; call X The claim follows because no site is closexthan p.

If ToroDisk(p) returns a point], is nonempty and not a topological disk. 5gis nonempty.
Xp is not Q09-small; if it were, the Small Intersection Theorem (Theorem 13.6) wouldyithpt
[Tyl is a topological disk. It follows that some triangle Ty has a surface Delaunay ball with
radius greater than@of (p). The claim follows becauseoPoDisk returns the center of the largest
surface Delaunay ball.

If VorFaceT(Q) returns a point, lep € S be a site whose Voronoi céll, has the face. If g

intersectsE tangentially, \brFacer returns a tangential contact poxsuch thainy = +ng, and
the contrapositive of Proposition 13.3(ii) implies thi{k, p) > f(p)/3, thusd(x,S) > f(p)/3.
If gintersectsE transversally, then dkFacer returns a poini in the mutual intersection df,
¥, and a linef. There must be at least two such intersection points faPycer to return a
point. Lety be the intersection point wheteis perpendicular to the silhouetien g, and let
z be another intersection point. Proposition 13.3(ii) implies #{gi, ny) = 7/2 — 2a(ng, Ny) <
(0.09) + arcsin 009 < «(0.09) + 3(0.09). Proposition 13.5 implies thd{p, 2) > 0.09f(p). As
VorFacet returns the intersection point furthest frgmthe claim follows.

By Proposition 14.5, Suouerte(p) returns a point at a distance 6fp)/3 or more fromp. o

DeLSurr2 inserts sites as long as the TBP is violated, S&] satisfies the TBP whend-
Surr2 terminates. We appeal to the Homeomorphism Theorem (Theorem 13.16).

Theorem 14.7.LetX c R® be a C*-smooth, compact, connected surface without boundary.
DeLSurr2(X) returns a restricted Delaunay triangulation whose underlying space issloomor-
phic toX.

This theorem does not guarantee that the HauBdmmtance betweel and the output mesh
is small—a guarantee that cannot be made unless feature sizes are contpatenier, upper
bounds on the triangle sizes and lower bounds on the dihedral angléschttwangles meet can
be enforced by simply refining triangles that do not meet the boundsesties14.4.

14.3 A practical surface meshing algorithm

Both DeLSurrl and xLSurr2 employ computationally expensive predicates. FarDrrl, it is
rarely practical to implement an oracle that computes local feature sizegeora decent lower
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bound on them. Computing the exact medial axis of a specified implicit surférmygn to be
hard. The medial axis can be approximated from a dense sample of theeslit that requires
a dense sample to be available in the first place.

For DeLSurr2, the predicates that compute critical points are computationally expensive an
difficult to perform stably. On the bright side, the topological disk tesbDisk performs easy
combinatorial checks, but it alone does noffise to guarantee the homeomorphism of the input
surface and the output mesh. Here we discuss a practical compromisehehe two algorithms.

Our third surface meshing algorithm uses two tests to drive refinement, emmeegric and
one topological: the user-supplied size fidld ¥ — R from DeLSurrl and the test droDisk
from DeLSurr2. A triangle is refined if its surface Delaunay ball is excessively largéf, the
triangle is the largest among a group of triangles that adjoin a vertex in abaelgiod that is
not a topological disk. 1f1(x) < ef(x) for somee € (0,0.08], the algorithm €ers the same
guarantees asHDSurrl, enumerated in Theorem 14.2. Otherwise, the output mesh might not
have the same topology as the input surface, but it is guaranteed to baaifdld. In practice,
this usually stfices to achieve homeomorphism as well.

DELSURF(Z, 1)

1. Compute a persistent triangle with verticesbriet S be the set of vertices of
the persistent triangle. Compute [Zehnd Delg S.

2. While some triangle in Déls has a surface Delaunay bBllc, r) with r > A(c),
insertcinto S, update De§ and Delg S, and repeat step 2.

3. Forevenyp € S, computec « ToroDisk(p); if somecis non-null, stop looping,
insertcinto S, update De§ and Del§ S, and go to step 2.

4. If S contains more than one vertex of the persistent triangle, delete one, update
DelS and Def S, and go to step 2.

5. Return DeE S.

Figure 14.5 depicts meshes generated by3Drr for three diferent constant values af As
A decreases, the mesh better captures both the geometry and the topolaggofdce.

The next proposition shows that, like Ruppert’s algorithm,$rr generates a mesh whose
size is proportional to the integral over the domain of the inverse squacebf&ature size—or
the inverse squared size field, if the latter is more demanding. There ismptasizally matching
lower bound on the number of vertices needed to respect the size figid{hge sense BL.Surr
and D:LSurrl produce size-optimal meshes. Observe that if the size field is constaintiegisl
is proportional to the area of the surface. In the following bound, werasghat two vertices of
the persistent triangle have been deleted, as discussed in Section 14.1.2.

Proposition 14.8. If A is 1-Lipschitz and for every point g %, A(X) < 0.08f(x), then the mesh
generated bYDeLSurr(Z, 1) has fewer tharB - fz dx/A(x)? vertices.

Proor. Every vertexc that step 2 of BLSurr inserts intoS is at a distance of at lead{(c)
from every previously inserted vertex. In step 3, drdDisk(p) returns a point, thenZ, is not
0.09-small; if it were, the Small Intersection Theorem (Theorem 13.6) impli¢gThiavould be
a topological disk. Thereforel(c, p) > 0.09f(p), and asf is 1-Lipschitz,d(c, p) > 0.08f(c).
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Figure 14.5: Both geometric and topological fidelity improve as the size fieletdses.

Becausec is inserted inp’s Voronoi cell, ¢ is a distance of at least@f(c) from every pre-
viously inserted vertex. Therefore, every vertethat DeLSurr inserts is a distance of at least
min{A(c), 0.08f(c)} = A(c) from every previous vertex. Becauges 1-Lipschitz, every vertex
p € Sis a distance of at lead{p)/2 from every other vertex is.

If we center balls of radiii(p)/4 at every vertexp € S, their interiors are pairwise disjoint.
LetI'p = X N B(p, A(p)/4), and leta, be the area df,. Becausel is 1-Lipschitz,A(x) < 51(p)/4

for everyx e I'yp. Thus
1 1
——- dx f —— dx
fz AP pzs ry A2

16
> ap
p;s 251(p)?

25(  ap \' o1
Tes(rﬁ‘e's”ﬂ(p)z) LW

The remainder of the proof shows tf@'f//l(p)2 > 0.196, from which the proposition follows.

Let B; andB; be the two medial balls sandwiching the surfacat p, with B; not larger than
B,. Let D be the geometric disk bounded by the circle at the intersection of the boemaér
B(p, A(p)/4) andBy, as illustrated in Figure 14.6. Consider the orthogonal projecfbaadfp
of D andTI'p, respectively, onto the plane tangentiat p. Because has no boundanD is
included inl,. Therefore,

= IS| <

ap = areal’p) > areafp) > areaD) = areaD). (14.1)

We derive a lower bound on the radius@fo bounda, from below. From the similar triangles



310

Figure 14.6: Two medial ballB; and B, sandwich the surfacE. The projection oD onto the
plane tangent t& at p is included in the projection & N B onto the same plane.

pmzand pxy,
dpy) _ dp2 _ dp.
d(p, X) d(p, m) 2d(p, m)
dp.x? Ap)?
= dPY) = Zapm T 32dpm)
Therefore,

radiusD)? = d(p, x)2 - d(p, y)?
Ap? A(p)*

16 1,024 radiugB)?’

As radiusBi) > f(p), which is greater than LR p) by our assumption thal(p) < 0.08f(p),

Ap*  Ap)?
16 147,456

radiusP)? > > 0.0624(p)>.

Hence, aredy) is greater than.0624r A(p)?, implying thata, > 0.1961(p)? by (14.1). O

We summarize the properties of meshes generatecbSurr.

Theorem 14.9.Let T c R3 be a CG-smooth, compact, connected surface without boundary.
Supposénfyes A(X) > 0. ThenDeLSurr(Z, A) returns a mesh with the following properties.

(i) The underlying space afis a 2-manifold.

(i) If there is a values < 0.08 such thati(x) < ef(x) for every point xe X, then the nearest
point mapvy : |J| — X,z — Z is a homeomorphism betweph and X that induces an

isotopy that moves each poinEz7| by a distance (&, 2) < % f(2) < 0.12f(2).
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(i) If A(X) < 0.08f(x) for every point xe ¥ and A is 1-Lipschitz, then there are fewer than
8- ﬁ: dx/A(x)? vertices inT. This number is asymptotically optimal: every sample S

such that gx, S) < A(x) for every xe X hasQ( f; dx/A(x)?) vertices. In this sensé; is
size-optimal.

Proor. When DxLSurr terminates, every vertex ffi adjoins a set of triangles whose underly-
ing space is a topological disk. By a well-known result of piecewise lingaoltgy, |7] is a
2-manifold, proving (i). The proof of (ii) is the same as that of Theoren2(li4 iv). The first
part of (iii) is Proposition 14.8. The second part of (iii) is Exercise 9 injéal3. O

14.4 Extensions: quality, smoothness, and polyhedral surfaces

It is easy to incorporate refinement steps into the three surface meshimighaigs we have stud-
ied to ensure that the triangles of the output mesh have good quality or adidinogher at
nearly-flat dihedral angles, thereby better capturing the geomeRly of

Letp(o) be the radius-edge ratio of a triangteand leto be an upper bound on the acceptable
radius-edge ratio. Equivalently, arcsif(2p) is a lower bound on the smallest acceptable angle.
The radius-edge ratio threshold can be as small as 1, in which case mpdiiiathe final mesh
has an angle less than38 /6 radians nor an angle greater than 1202/3 radians. If there
is a skinny triangler in Dells S, the subroutine @ity insertscmax(c), the center ofr’s largest
surface Delaunay ball.

QuaLity(S, p)

If there is a restricted Delaunay triangtein DeI|§ S for which p(c) > p, then
insertcmax(o) into S, update De§, and update D@ S.

As ¥ is a smooth surface, the triangles of the mesh adjoin each other at dihegled that
approachr as the edge lengths approach zero, as Theorem 14.2(ii) showsoudgtenesf an
edgeein Delz S, denoted rouglg), is 7 radians minus the dihedral angleesatf the roughness of
an edge exceeds a threshoJdhe subroutine @oorn refines one of the two adjoining triangles.
Smootn thereby enforces the restriction that the dihedral angles are akleastadians.

SmootH(S, p)

If there is an edgein Dellg S such that rougld) > r, leto be the restricted De-
launay triangle with the largest surface Delaunay ball among the two triangles
havinge for an edge, insetnax(c), update De§, and update D@ S.

In the algorithm RLSurr, the calls to Qauiry and Siootn can be added just after step 4.
Whenever either call inserts a new vertex, control should return to sieprsure that the mesh
respects the size field and is topologically valid. The persistent triangle raustioved before
QuaLrty is called, or its short edges may cause the region around it to be oved.efin
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Figure 14.7. The topmost mesh is generated ly3Drr with no attention to triangle quality

or the dihedral angles at which adjoining triangles meet.

iangles’

The histogram teddite tr

radius-edge ratios, with only a few triangles (at right) exceeding thehblgsThe center mesh
shows that refinement intended to improve the dihedral angles succdbd®apense of triangle
quality. The bottom mesh shows the mesh after further refinement to eliminate ptidin-quality

triangles.
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Figure 14.7 illustrates theffects of Stoorn and QuaLity. The mesh at center shows that the
quality of the triangles can fiier if we use Sioorn alone. The quality can be corrected by using
QuaLrry as well.

When Quauity(S, p) splits a skinny triangle witly > 1, the newly inserted vertex is at least
as far from every other vertex i@ as the vertices of the skinny triangle’s shortest edge are from
each other. Therefore, @ity never creates a shorter edge in Bahan the shortest existing
edge, so it cannot causesBurr to run forever. Neither canM®orn, because for any > 0,
Theorem 14.2(ii) guarantees that every edge will satisfy the rougtbessd once dticient
refinement has taken place.

An alternative way to achieve high quality is to choose a size fidltht does not change too
quickly. For example, ift is 0.5-Lipschitz, no triangle of the final mesh has a radius-edge ratio
exceeding 2, nor therefore an angle less thad7t4 A constant size field guarantees no angle less
than 30, at the cost of losing the flexibility to create a graded mesh. We will use theaditon
to analyze the grading of thesgLity subroutine when the size field is not so well-behaved.

Proposition 14.10.If the size field? is 6-Lipschitz foré < 1, andA(X) < 0.08f () for every point
X € X, DELSURF(Z, 1) returns a mesh whose triangles have radius-edge ratios at ti¢st- 5).

Proor. Becausel(x) < 0.08f(x), DeLSurr refines no triangle solely for topological reasons;
every vertexp € S has no vertex within a distance &fp) at the timep is inserted.

Let o be an output triangle whose shortest edge has lefgiid whose surface Delaunay
ball has centec and radiusr. The circumradius of- is less than or equal ta Let p be the
most recently inserted vertex of the shortest edge-;obecause it was inserted after the other
vertex,£ > A(p). Because no vertex was insertecc@nd is 6-Lipschitz,r < A(c) < A(p) + or;
rearranging terms givas< A(p)/(1 - 6). Thusp(o) <r/€ < 1/(1- ). O

We use this proposition to analyzesQury(S, p), particularly how the grading of the mesh
depends op, when the size field is arbitrary. Define the<{1)/p-Lipschitzregularized size field

u(x) = inf (min{/l(y),0.0Sf(y)}+ E__ld(x,y) ,
yex P

and observe thai(x) < A(x) andu(x) < 0.08f(x). We will see that the Lipschitz property captures
how refining for quality canféect the edge lengths in the mesh. The moexceeds 1, the more
strongly the mesh can be graded.

The idea is that if we call ELSurr(Z, 1) with the regularized size field but no QuaLiry
option, it splits every triangle that would be split byilSure(Z, 1) with the original size fieldl
and the QaLiry(S, p) option, and possibly other triangles as well. Therefore, the latter ddes no
refine more than the former.

Theorem 14.11.1f p > 1, DeLSurr(Z, A1) with the QuaLity(S, p) option terminates and returns
a mesh in which every vertex p is at a distance greater (@) - p/(20 — 1) from the nearest
distinct vertex.

Proor. First, we claim that every vertexis at a distance greater thaiic) from the nearest
vertex inserted before it. Suppose for the sake of contradiction thattex\eis inserted such
thatd(c, p) < u(c), wherep was inserted prior t@. Suppose that is the first such vertex. As
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Figure 14.8: Polygonal surfaces (top row) remeshed iny&hkr (bottom row).

u(c) < minfa(c), 0.08f(c)}, c must have been inserted by the subroutinei@y at the center of
a surface Delaunay ball of a skinny triangle.

If DeLSurr had been called with the regularized size figld) but without the @aLiry option,
it could have created the same skinny triangle, becaiséhe first vertex whose insertion is not

justified byu, but DeLSurr would have declined to split the skinny triangle. But this contradicts
Proposition 14.10. Thereford(c, p) > u(c).

Consider the same distance from the point of view of a ppiimserted before. By the
Lipschitz property ofu, d(c, p) > u(c) > u(p) — d(c,p) - (0 — 1)/p. Rearranging terms gives
d(c. p) > u(p) - p/(20 - 1).

m]
Although QuaLity(S, p) and a p — 1)/p-Lipschitz size field appear to be two theoretically
equivalent paths to quality, the former is lazier—it refines a triangle onlynwéally necessary to
improve its quality—so it tends to produce meshes with fewer triangles than thy theggests.

It also has the advantages of working well in conjunction witiroDisk and Sioots and not
requiring the user to implement a Lipschitz size field.

A polygonal surfacés a PLC whose underlying space is a 2-manifold without boundary. Al-
though DxLSurr is designed to mesh smooth surfaces, it often succeeds in meshing oriregmesh
polygonal surfaces that closely approximate smooth surfaces, in the &t their faces meet at
dihedral angles close ta Remeshings the act of replacing an existing mesh with a new one to
improve its quality, to make it finer or coarser, or to make its faces be Delaagsajustrated in
Figure 14.8. The initial Delaunay triangulation can be built from the verti€dseanput surface,
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but if the goal is to produce a coarser mesh, or if the input surfacelbsely spaced vertices that
are harmful to mesh quality, a well-spaced subset of the input verticeseidea btart. Note that
in practice, we have never needed to use a persistent triangle for riemesh

One of the authors of this book has software available that implements thilaig®ELSurr.
There are two programs: uBrRemesu! takes polygonal surfaces as input and remeshes them,
whereas BLlso? takes voxel data as input, interpolates an isosurface over the gridpastiucts
a surface mesh.

14.5 Tetrahedral meshing of volumes bounded by smooth surfaces

The beauty of using a restricted Delaunay triangulation to generate asunésh is that it comes
with a byproduct: a Delaunay tetrahedralization of the region it bounds. tdtrehedra may
have poor quality, but we can refine them, as the meshes in Figure 14.9 idustbserve that
their boundary triangulations are the same polygonal meshes shown i Eigy@: This section
discusses an algorithm guaranteed to produce meshes in which no tetrehad a radius-edge
ratio greater than 2.

Tetrahedron refinement introduces vertices in the interior of the domaicdahatamage the
surface triangulation. We solve this problem by adopting an encroachmiergimilar to those
used for polyhedral domains in Chapters 6 and 8. Unfortunately, dwugaces bring a new
hazard: internal vertices can be inserted too close to the boundame liboboundary is fully
resolved. Imagine a concave dent in a surface. As surface refingrlaees new vertices on
the dent, an internal vertex may become exposed because it is too closedenthg@erhaps
even outside the domain. A consequence is that restricted Delaunay tsi@agl@ppear whose
vertices do not all lie on the surface. We fix these triangles by deleting theinad vertices.

Let O be a volume enclosed by a smooth surfaceThe definitions of restricted Voronoi
diagram and restricted Delaunay triangulation work witlas they do forz, thoughO is not
a surface. Thus Vi S is the Voronoi diagram restricted to the domdin and Dely S is a
subcomplex of Deb containing the simplices dual to faces of Mp8. These include all the

Ihttpy//www.cse.ohio-state.egutamaldeysurfremesh
2httpy/www.cse.ohio-state.egiutamaldeydeliso.html
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simplices in Dk S and more. A tetrahedron is in DglS if its circumcenter is inO. The
algorithm does not need to keep track of dangling simplices, so we definesthieted Delaunay
3-subcomplexdenoted

Dell% S = {7 : ris a face of a tetrahedron in DglS}.

When refinement is done, the tetrahedral meshing algorithm returns theDeH%lS.

The boundary complexf Del|f9 S, written <9De||f9 S, is the subcomplex containing all the
triangles that are faces of exactly one tetrahedron irr?omaland the faces of those triangles. It
is easy to see thﬁIDellf’9 S ¢ DeI|§ S, because every triangle E“Dell% S dualizes to a Voronoi
edge that has one vertex i and one outside, and therefore intersettsHowever, De S
can contain additional triangles whose dual Voronoi edges inteXststgentially or at an even
number of points, so we refine these triangles by inserting vertices atititessection points.
This refinement is essentially a special case of using vertices returrtbd bybroutine YREpGe
to refine. Ideally, we would like to havﬁ)ell?9 S= Dellé S, and for both to be a triangulation of
the surfacex.

The algorithm begins by computing a persistent triangle. Just lik&Rr, it refines triangles
in DeI|§ S by inserting the centers of their largest surface Delaunay balls. Tisemre of the
persistent triangle ensures that surface refinement never gets sthekpersistent triangle is
deleted as described in Section 14.1.2 once a surface mesh is built. It is intgortkelete the
persistent triangle before refining tetrahedra; otherwise, unnetgssaall tetrahedra will be
generated around its vertices.

Tetrahedra whose radius-edge ratios exges@ split by new vertices inserted at their circum-
centers, but a circumcenter that lies inside a surface Delaunay ballégactjend an encroached
surface triangle is split instead. The quality thresholthust be at least 2 to guarantee that the
algorithm terminates. Pseudocode for the main algorithm follows.

DeLTETSURE(Z, 4, p)

1. Compute a persistent triangle with verticesoriet S be the set of vertices of
the persistent triangle. Compute [Zeand Del% S.

2. While De|§ S has a vertey ¢ %, deletep from S, update DeS, Dellg S, and
Del? S, and repeat step 2.

3. If some triangle in D@S has a surface Delaunay b#lc,r) with r > A(c),
insertcinto S, update De§, DelZ S, and Def} S, and go to step 2.

4. If some triangler in Del|§ Sis aface of zero or two tetrahedrain Il%e‘s insert
Cmax(0") into S, update De§, Del2 S, and Def} S, and go to step 2.

5. Forevery € S, computec « TopoDisk(p); if somecis non-null, stop looping,
insertcinto S, update DeS§, DelZ S, and Def} S, and go to step 2.

6. If S contains more than one vertex of the persistent triangle, delete one, update
DelS, DelZ S, and Def} S, and go to step 2.

7. If there is a tetrahedrone DeI|~f’9 S for which p(7) > p, then

(a) If the circumcentez of 7 lies inside a surface Delaunay bBlic, r), insert
cinto S, update DeS, Del2 S, and Del% S, and go to step 2.
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Figure 14.10: More tetrahedral meshes generateddnyHDSurr.

(b) Insertzinto S and update Des, Del2 S, and Def} S.

(c) If the insertion ofz creates a new triangle in D%B, let B(c,r) be the
largest new surface Delaunay ball, delefeom S, insertc into S, and go
to step 2.

(d) Gotostep?7.

8. Return Def S.

Occasionally, the refinement of a boundary triangle can expose anahtemtex, making it
become a vertex of D|§IS; when this happens, step 2 purges all such internal vertices befpre an
further refinement can occur. Step 3 refines oversized surfacgletas BLSurr does. Step 4
refines any surface triangle in Uges that is missing fromﬂDer'9 S. Step 5 ensures that Dg_es is
a 2-manifold. Step 6 deletes vertices of the persistent triangle, which ceuwidrzcessarily close
to each other. Step 7 refines skinny tetrahedra, but if a tetrahedramcieniter threatens to delete
or create a triangle in D%IS, the circumcenter is rejected and a restricted Delaunay triangle is
split instead. Step 7(a) splits restricted Delaunay triangles that are ehebapon by rejected
circumcenters. Step 7(c) identifies circumcenters whose insertion cnesteestricted Delaunay
triangles without deleting any old ones; this occurs only when the surfask imeoarse and the
shape ot is still being discovered.

Figure 14.10 shows more volume meshes generate:byECEURF.

DeLTerSurr raises the question of how to identify which tetrahedra in®ate in Del% S,
which is necessary for step 7. These tetrahedra are the ones wtadséorhnoi vertices are in
0. Recall from Section 14.1.3 that there are at least tvi@@int ways to represent a surface: as
a collection of patches or polygons, or as an isosurface.

Suppose the input is a set of patches whose underlying space is a DlchEnifthout bound-
ary, enclosing the volum@ we wish to mesh. The edges of \®iform a graph whose vertices we
wish to label as being either inside the volume—these vertices dualize to temanma% S—
or outside the volume. Initially§ contains only the three vertices of the persistent triangle, and
Vor S contains only one vertex—the vertex at infinity—which is labeled “outsidetiewa new
vertex is inserted int&, we compute labels for the new Voronoi vertices. If one vertex of a
Voronoi edge is labeled and the other is not, we can normally compute thefdalibé second
vertex by counting the number of points where the Voronoi edge interbecmtches. However,
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tangential intersections are tricky because the edge may or may not @wssedtside to inside
the volume. One way to simplify this problem is to use the subroutioxEWGE to refine these
intersections away, replacing step 4.

Isosurfaces, by contrast, make the identification otﬂp@leasy—even easier than identifying
Del|§ S. Recall that an isosurface of a functibn: R® — R is a level se = h™1() for a
selected isovalug. Suppose thah is greater tham, inside the volume to be meshed, hence
O = {p: h(p) = n}. Then determining whether the dual of a Voronoi vernteis a restricted
Delaunay tetrahedron is a simple matter of evaluatifwy

For an isosurface, computing [@es is more dificult than computing Dq% S, as it neces-
sitates extra computation to identify Voronoi edges that cross the isoswafaeven number of
times. It is natural to ask whether these computations can be eliminated byirngpﬂ}m@ S
with 8Del|% S in DecTerSurr (and deleting step 4). This question remains open (see Exercise 9),
although it is clear that the persistent triangle must be replaced with a sttm‘mjegy';9Del|?9 S
is empty whers contains only the vertices of the persistent triangle. It is always possiliddl to
back on edge-surface intersection computations Vﬂlﬂfﬂl% S is empty.

14.5.1 Proof of termination and guarantees

As usual, our goal is to prove that there is a positive lower bound on th&ndiss among the
vertices, hence B TerSurr terminates, hence it returns a mesh in which every tetrahedron has a
radius-edge ratio at mogt

The size fieldt and local feature size functiohare defined only o&. We define a function
that extendg’s domain over the entirety @, and forces it to bea=2)/(3p)-Lipschitz everywhere
in 0. Letu : O — R be the regularized size field

u(X) = inf (min{/l(y),0.08f )} + p;_zd(x, I,
yex 3p

and observe that(x) < A(X) andu(x) < 0.08f(x) for every pointx € X. Note that we usg solely
to analyze the algorithm, not as an input. As in Section 14.4, the Lipschitz pyyagagtures how
refining for quality dfects the edge lengths. The mgrexceeds 2, the more strongly the mesh
can be graded.

Recall from Section 8.3 that thesertion radius i of a vertexx is the distance fronx to the
nearest distinct vertex in the sami@avhenx is inserted intdS. Immediately after its insertion,
ry is the length of the shortest edge adjoininip Del S.

Proposition 14.12. Let S be the set of vertices in a mesh returnedbyTETSurr(Z, 2, p). If
p > 2, then every vertex p S has insertion radiusyr> u(p), and every internal vertex p S\ £
has insertion radiusg > u(p) - 3p/(p + 1).

Proor. When step 3 of BLTETSurr inserts a verteg, it is at the center of a surface Delaunay ball

whose interior contains no vertex and whose radius excé@jlsThereforef. > A(c) > u(c).
When step 4 of BLTErSurr inserts a vertex, it is at the center of a surface Delaunay ball

of a triangleo € Del|§ S that is a face of either zero or two tetrahedra in|@6|. Therefore,

the vertices of its dual Voronoi edge' are either both ird or both outside9, soo* intersects

¥ either tangentially or at more than one point. The new vectixthe same vertex that would
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be returned by WrREbGe(c*). Let p be a vertex ofr; thuso™ is an edge of the Voronoi ceVl,.
By the same reasoning given in the proof of Proposition 1d(6,p) > 0.15f(p). Therefore,
re > 0.15f(p) > 0.13f(c) > u(c) by the Feature Translation Lemma.

When step 5 of BXTeTSurr inserts a vertexc, some vertexp adjoins a nonempty set of
triangles in DqES that do not form a topological disk. Sq, is nonempty. X, is not Q09-
small; otherwise, the Small Intersection Theorem (Theorem 13.6) would imgiytta triangles
adjoining p form a topological disk. It follows that some triangle adjoinipchas a surface
Delaunay ball with radiusi(c, p) > 0.09f(p) > 0.08f(c) by the Feature Translation Lemma.
Thereforey. > 0.08f(c) > u(c).

We use induction to show that a vertex inserted by step 7 also satisfies the. chgmsne
thatr, > u(p) for every previously inserted vertgx This assumption holds before the first
tetrahedron is refined because steps 3, 4, and 5 ensure it for erey except the vertices of
the persistent triangle, two of which are deleted by step 6. Step 7 inserttea e@her at the
circumcentee of a tetrahedrom whose radius-edge ratio excegd®r at the center of a surface
Delaunay ball that contairs The circumradius of is R, > pf, where¢ is the length of the
shortest edge of. Let p be the most recently inserted vertex of that shortest edge. her?
and

R > prp > p-u(p)
As uis (o — 2)/(3p)-Lipschitz,

R > 5@@—8§§mna)
oy B2
= P(ﬂ(z)—:,’—p—Rf)

SR > =L ) (14.2)
p+1

If zdoes not encroach upon a surface Delaunay ball, then step 7(dsins@dr, = R, >
u(2) - 30/(p + 1), as claimed.

Suppose the circumcenternf T encroaches upon a surface Delaunay Baland step 7(a)
inserts a vertex at its center; or the insertion afcreates a new surface Delaunay [&lland
step 7(c) inserts a vertexat its center. In either case, there is no verteR'minterior, sor is the
radius ofB. Because € B, d(c, 2) < r¢, SO

mw—ﬁéémQa

v

jied

> u(c) -~

. 14.3
3% e ( )

The ballB circumscribes some triangle in E[)ge}:. Let p be a vertex of this triangle other than
z. Observe thap lies on the boundary oB, but not in the open circumball of the Delaunay
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tetrahedrorr. Asz € B,

2rc > d(p,2
> R
(142) 3o
> m jried
— (143) __ —
20+ e = 3o-u(c)— (o - 2)re.
Rearranging terms giveg > u(C). O

Proposition 14.13.1f p > 2 andinfycs A(X) > 0, DELTETSURF(Z, 4, p) terminates and returns a
mesh in which every vertex p is at a distance greater tl@) - 3p/(4o — 2) from the nearest
distinct vertex.

Proor. Observe thatmin = infycou(X) is strictly positive because ipfs A(X) and infcy f(X)
are. By Proposition 14.12, every vertpxis at a distance greater thap) from every vertex
inserted before it. For any vertexnserted aftep, d(p, q) > u(q) = u(p) — d(p, q) - (o — 2)/(3p).
Rearranging terms giveXp, ) > u(p) - 30/ (4o — 2).

By the Packing Lemma (Lemma 6.1), there is an upper bound on the numbeticésén the
mesh. The Packing Lemma alone does not guarantee termination, becdiges aee sometimes
deleted. Step 2 can delete internal vertices, but only vertices @Szestep 7 never inserts an
internal vertex that changes D§e$; an internal vertex can become part of @S only during the
insertion of a new surface vertex. Therefore, after step 2 finishe#lgoit cannot run again until
at least one new surface vertex is inserted. Surface vertices,téwcepertices of the persistent
triangle, are never deleted. Eventually there will be no room for nevasearfertices, then no
room for new internal vertices, whereuporiDerSurr terminates. O

DecTerSurr returns the tetrahedral subcomplex @6 and enforces the requirement that
c’)Dell3 S = DeI|2 S, regardless of the size field If A is suficiently small, the two complexes
c0|nC|de with the subcomplex D%(SHZ) obtained by discarding the vertices not on the surface.

Proposition 14.14. After DeLTerSurr terminates, the following statements hold.
i 3q_ 2
(i) dDely S = Delg S

(i) If A(X) < 0.08f(x) for every xe %, thendDel3 S = Del S = DellZ (SNX) = Delis (SN¥),
and all four have an underlying space homeomorphik.to

Proor. (i) DeLTErSurr terminates only if every triangle in D@IS is in dDell3 S too. Every
triangleo in 6De||3 S is a face of exactly one tetrahedron in [%éi so the Voron0| edge dual to
o has one vertex ||ﬁ) and one outside. Hence the Voronoi edge intersgcaésdo is in DeI|2

(i) Any time execution reaches step 7—that is, just before tetrahedrareneéint begins or
resumes—the restricted Delaunay 2-subcomplex is a triangulati@nbgf Theorem 14.2. As
A(x) < 0.08f(x), Xp is 0.09-small for every verteyp in the mesh. By the Dense Sample Theorem
(Theorem 13.15), every edge in V@(1X) that intersectE does so transversally at a single point,
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and by the Homeomorphism Theorem (Theorem 13.[08|s (S N X)| is homeomorphic t&,
which implies that Déf (S N £) = Dellz (SN X).

Consider the Voronoi diagram with the interior vertices as well. Steps 2 afth@ algorithm
ensure that when BTerSurr terminates, every triangle in D€ has all three of its vertices on
Y. Therefore, every edge in V& that intersect& is generated by vertices dy and is thus
included in some edge of VoB(N X), and thus intersects transversally at a single point. It
follows that Def S ¢ Deli2 (SN %).

If the inclusion Def S c DeliZ (S N X) is strict, then some edge in DgS is an edge of a
single triangle, becau$BeI|§ (SNZ)|is aconnected 2-manifold without boundary. Bﬂlel% S
cannot contain an edge of exactly one triangle, sd3ek Del2 (S N X). O

We summarize the properties of meshes generateebyeEBURF.

Theorem 14.15.LetO be a volume bounded by d@mooth, compact, connected surface R3
without boundary. Supposefy.s A(X) > 0 andp > 2. For properties (iv)—(vi) below, suppose
also thati(x) < ef(x) for somes < 0.08 and every x X. ThenDeLTerSurr(Z, 4, p) terminates
and returns a mesfi = Del|f:) S with the following properties.

() |71is a3-manifold whose boundary iszmanifold without boundary.
(i) No tetrahedron iry” has a radius-edge ratio exceedipg
(iii) Every edge adjoining each vertex p is longer thdp) - 30/(40 — 2).
(iv) The underlying space @fis homeomorphic t@®, and the two are related by an isotopy.

(v) The boundary complex 6fis 0T = DeI|§ S = Dellg (SN X).
(vi) The Hausdof distance betwedfi| andO is less thadS& fmax Where frax = sUpes f(P).

Proor. (i) By Proposition 14.13, ELTErSurr terminates. At that time}DeIl% S| is a 2-manifold
without boundary becauseodoDisk does not permit termination otherwise. By Proposition
14.14(i), the boundary complexd§ = 6Del|f’D S= Del|§ S. The space bounded by a 2-manifold
embedded iR? is a 3-manifold.
The bound on edge lengths is taken from Proposition 14.13.

(iv, v) By Proposition 14.149T = dDel} S = DelZ S = Delis (S n £) has an underlying
space homeomorphic & As discussed in the proof of that propositian,is 0.09-small for every
p € SNZ, so the Surface Discretization Theorem (Theorem 13.22) impliesDe#t (S N X)|
andX are related by an ambient isotopy. Specifically, Proposition 13.20 cotstincambient
isotopy¢ : R3 x [0, 1] — R2 such thatt (|71, 0) = |0T] and&(|9T], 1) = X. Becaus¢dT| andX are
both connected 2-manifolds without boundary that partiiédrinto two pieces, the mag(-, 1) is
a homeomorphism between the regions they encldsand©. Moreover £ is an ambient isotopy
that takes the identity mafy-, O)|5; : |71 — |7J] to the homeomorphisi&(-, 1)|i5 : [T] — O.

(vi) The Hausddif distance betweefi| andO is realized by points on their boundaries, and
therefore equals the Hausdadistance betweebells (SNX)| andZ. With A(x) < ef(x) for some
£ < 0.08,Zp is 1= -small for everyp € X. By the Surface Discretization Theorem, the Haufidor
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distance betweelpells (S N X)| andX is less than 1?1%2 fmax: O

Recall from Section 14.5 that¥ is an isosurface, B2TerSurr becomes simpler and faster if
we replace Dé¢f S with 9Dell?| S, and do not compute Di@IS at all. Unfortunately, we do not
know whether the guarantees (iv)—(vi) of Theorem 14.15 hoI@Iﬁmef'D S whena2 is suficiently
small, although it seems likely to be true. We leave it as an open question index@rc

14.6 Notes and exercises

Early surface meshing algorithms developed for computer graphics andah&daging were
not concerned with triangle quality. By far the most famous and heavily ofstese is the 1987
marching cubeslgorithm of Lorensen and Cline [141], from the most-cited paper in therlisto
of the conference SIGGRAPH. The marching cubes algorithm trianguetésosurface of a
functionh by computing the value di at each vertex of a cubical grid, then the intersections of
the isosurface with the edges of the grid, then a few triangles in each atlspn the intersection
points. It can also create isosurfaces from voxel data such as madagés, in which case the
intersections of an unknown surface with the grid edges can be estimaliee@dyinterpolation.
The algorithm is very fast, and performs interpolation only over edgesover whole cubes.
Unfortunately, it can create arbitrarily skinny triangles. Bloomenthal [@4jposes a similar
method that uses a tetrahedral background grid.

After the development of Delaunay refinement meshing in the late 1980, [Gligin 1993
presented an algorithm for triangular surface meshing that flips the efigesexisting surface
triangulation so that if its vertices arefiaiently dense, the final triangulation is, in some sense,
Delaunay. Then the algorithm refines the mesh by inserting vertices at nters®f surface
Delaunay balls of poor-quality triangles, until no triangle has an angle leas3(. In retrospect,
the meshes this algorithm generates are usually subsets of a restricteddydtzangulation.

The introduction of restricted Delaunay triangulations by EdelsbrunretiSaiah [92], their
Topological Ball Theorem, and the sampling theory of Amenta and Berrng@hed a path to de-
veloping algorithms with topological guarantees. By connecting Chewiseneient strategy with
the e-sampling theory, Cheng, Dey, Edelsbrunner, and Sullivan [47] @ielaunay refinement
algorithm for generating a restricted Delaunay triangulation that is homeoimaophspecialized
smooth surface for molecular modeling, calleskin surfacg86].

Boissonnat and Oudot [29, 30] present a Delaunay refinementtalgaior homeomorphic
meshing of a more general class of smooth surfaces. @BURr1 pseudocode is essentially this
algorithm without support for surface boundaries, which we addretbe next chapter. Dey and
Levine [76] show that once the sample isiatiently dense, one may discard the tetrahedralization
and continue to refine the surface triangulation; see Exercise 3.

Cheng, Dey, Ramos, and Ray [53] propose a topology-drivencurfeeshing algorithm that
uses critical point computations and therdDisk subroutine. Violations of the topological ball
property are detected and repaired. The algorithm does not need totedtice feature sizes.
This algorithm is embodied in ourddSurr2 pseudocode.

Our DerTerSurr pseudocode is a variation of the tetrahedral mesh generation algorithm of
Oudot, Rineau, and Yvinec [162] for volumes bounded by smooth ssgfad/e have modified
it by using vertex deletions, thereby improving the radius-edge ratio bopedumitting the algo-
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rithm to work reasonably well with sparse samples, and removing the retgntefor a Lipschitz
size field. The value of vertex deletion for improving both the theoreticataguees and the
practical performance of Delaunay refinement algorithms was introdug€&hew’s pioneering
paper [61].

A related tetrahedral meshing algorithm caledtiational tetrahedral meshingombines De-
launay triangulations and vertex smoothing in an interesting way. Recall thBtelaunay trian-
gulation of a fixed vertex set minimizes the volume bounded between the trisingulfied to
the parabolic lifting map and the paraboloid itself, compared with all other trlatigas of the
same vertex set. What if the domain’s interior vertices are not fixed? GiteX@[46] suggest
globally smoothing the interior vertices by minimizing the same volume. Alliez, Coleines,
Yvinec, and Desbrun [2] implemented an iterative tetrahedral mesh improwenmethod that
alternates between this global smoothing step and recomputing the Delaungylation—in
other words, it alternates between numerical and combinatorial optimizatitve tfiangulation
with respect to the same objective function. During smoothing steps, vestidbe boundary are
constrained to maintain domain conformity.

A shortcoming of Delaunay refinement is that it does not scale well to mekaeare too
large to fit in main memory, because its random patterns of access to a mesausanvirtual
memory to thrash. Dey, Levine, and Slatton [78, 80] study how to make alguritinthis chapter
more local in their data access patterns so that they can generate huges méblout heavy
thrashing.

Although most guaranteed-quality algorithms for meshing surfaces andlinmes they en-
close are founded on Delaunay triangulations, an exception isdlserface stging algorithm
of Labelle and Shewchuk [128], which uses an octree to fill a smoothrisasuwith tetrahedra
whose dihedral angles are guaranteed to be bounded betw@eaid@ 1648°. Unfortunately, no
known Delaunay algorithmfters similar guarantees in theory, although they often achieve better
angles in practice.

There are many non-Delaunay surface meshing methods that focutagmdpcorrect topol-
ogy, but not element quality, especially for isosurfaces and implicit sestaA few examples are
the small normal variation method of Plantinga and Vegter [171], the swa@pagh of Mour-
rain and Técourt [153], the adaptive approach of Snyder [20id,the critical point method of
Boissonnat, Cohen-Steiner and Vegter [28].

Isosurfaces of smooth functions can be nonmanifold and nonsmoothoi@lugs that are
critical values. Such isosurfaces cannot be meshed by the methodideesa this chapter, but
recent research [138, 153] has begun to address this problem.

Edge-surface intersection computations are expensive. Boissamh&uwdot [30] observe
an idea for reducing the number of these computations when the sirfizcan isosurface of
a functionh. Boissonnat and Oudot show that, instead of maintainingélSeIDELSURpl can
maintain a complex containing only the Delaunay triangles dual to the bipolandbedges, and
compute only a single intersection point (and a single surface DelaunaydrsaBch such edge,
thereby reducing the computation time considerably.

Implementations of algorithms involving curved surfaces are plagued binfiepoint round-
off error, which often causes algorithms to fail. Researchers are making gjeoaigorithms
more numerically robust with sophisticated methods from computational rediralg geometry.
The literature on geometric robustness is too large to survey here. Th@soproduced by the
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CGAL projec is making continuing progress in robust computing with curved geometries.

Exercises

1. [30] Let B be the set of surface Delaunay balls for a sample on a smooth strfaitke-
out boundary. Prove that is included in the union of the balls iB if each ball with
circumcentec has a circumradius of at mosO9f (c).

2. Suppose we initialize B.Surrl with a set oh random points ol instead of the vertices of
a persistent triangle. Show that the algorithm might be unable to insert addivierices
by showing that for every, there is a surface and a sample of sizich that no Voronoi
edge intersects.

3. [76] Suppose we have computed P& for a 009-samples of a smooth surfack without
boundary. Design an algorithm that can insert the center of a surfelegiiay ball intdS
and update D@l S without accessing the three-dimensional Delaunay triangulatiosDel
Then design a Delaunay refinement procedure for makin@@&fample even denser with-
out computing De8.

4. Suppose that is given as an isosurfad&x,y,2) = 0. Explain in detail the numerical
computations needed to compute the criticabéetg in step 4 of the subroutined#Facer.

5. [53] Explain in detail the numerical computations needed fiatdserTEPLANE and SLHOU-
ETTECRITICAL.

6. Some of the meshing algorithms in this chapter use vertex deletions. Suppbsbe
Voronoi diagram VoS satisfies the TBP for a samp& of a smooth surface. Prove that
for every sites € S and for every sitep € S\ {s}, each restricted Voronoi cell, N X in
Vor (S \ {s}) remains a topological disk. (Note that this does not imply that the TBP still
holds.)

7. Theorem 14.15 proves that the Haustldistance betweelDel2 S| and© is small. Prove
that under the same conditions, there is an isotopy rel¢dialy, S| to O that moves each
pointx € |Dell? S| by a distance less than 4% (x).

8. Suppose we modify iXTerSurr as follows. Explain what happens in each case.

(a) Exclude step 6. Theorem 14.15 needs to be changed in this case.
(b) Exclude step 7(c). The algorithm might not terminate; why?

9. Recall that ifS is an isosurface, it is desirable to replace[P8lwith dDel|? S in DecTer-
Surr. Also recall tha’ﬁDeIl% Sc DeI|§ S. Suppose the modified algorithm is started with
a point samplés c X such that while it runs@DeIl?9 S never becomes empty. Suppose that
A(X) < 0.08f(x) for eachx € X. It is an open problem whether the properties (iv)—(vi) of
Theorem 14.15 hold for the modified algorithm. Prove or disprove them.

3http;//www.cgal.org



