Chapter 4

Surface Reconstruction

In the previous chapter we learned that the restricted Delaunay triangulation
is a good approximation of a densely sampled surface ¥ from both topological
and geometric view point. Unfortunately, we cannot compute this triangula-
tion as the restricted Voronoi diagram Vor P|s; cannot be computed without
knowing .. As a remedy we approximate the restricted Voronoi diagram
and compute a set of triangles that include all restricted Delaunay triangles
and may be some more. This set is pruned to extract a manifold surface
which is output as an approximation to the sampled surface X.

4.1 Algorithm

First we observe that each restricted Voronoi cell V,|x; is almost flat if the
sampling density is sufficiently high. This follows from the Normal Varia-
tion Lemma (3.3) as the points in V,|x; cannot be far apart if € is small. In
particular, Vp|s lies within a thin neighborhood of the tangent plane 7, at
p. So, we need two approximations, (i) an approximation to 7, or equiva-
lently to n,, (ii) an approximation to V,|x based on the approximation to
n,. The following definitions of poles and cocones are used for these two
approximations.

4.1.1 Poles and Cocones

Definition 4.1 (Poles.) The farthest Voronoi vertez, denoted p™, in V, is
called the positive pole of p. The negative pole of p is the farthest point
p~ €V, from p so that the two vectors from p to p™ and p~ make an angle
more than 5. We call v, = p* —p, the pole vector for p. If V,, is unbounded,

67



68 Note by Tamal K. Dey, Ohio State U.

pt is taken at infinity, and the direction of v, is taken as the average of all
directions given by the unbounded Voronoi edges.

The following lemma is a direct consequence of Normal Lemma (3.2).
It says that the pole vectors approximate the true normals at the sample
points.

Lemma 4.1 (Pole.) For e < 1, the angle between the normal n, at p and
the pole vector v, satisfies the inequality:

€
Za(np,vp) < 2arcsin 1

PrOOF. First, consider the case where V), is bounded. Since the Voronoi
cell V, contains the centers of the medial balls at p, we have ||p* —p|| > f(p).
Thus, plugging g = 1 in the Normal Lemma (3.2) we obtain the result
immediately.

Next, consider the case where V}, is unbounded. In this case v, is com-
puted as the average of the directions of the infinite Voronoi edges. The
angle Z4(vp,n,) in this case cannot be more than the worst angle made by
an infinite Voronoi edge with n,. An infinite Voronoi edge e makes the same
angle with n, as the vector pps, does, where the infinite endpoint of e is
taken at poo. Again we have ||p — peo|| > f(p) and Normal Lemma (3.2) can
be applied with u =1 to give the result. |

The Pole Lemma (4.1) says that the pole vector approximates the nor-
mal n,. Thus, the plane 7, passing through p and with the pole vector as
normal approximates the tangent plane 7,. The following definition of co-
cone accommodates a thin neighborhood around 7, to account for the small
uncertainty in the estimation of n,,.

Definition 4.2 (Cocone.) The set C, = {y € V, : Zo(p¥,vp) > 27} is
called the cocone of p. In words, C, is the complement of a double cone that
15 clipped within V,,. This double cone has p as the apex and the pole vector
vy as the azis and an opening angle of 3{ with the axis. See Figure 4.1 for
an example of a cocone.

As an approximation to Vp|x, cocones meet all Voronoi edges that are
intersected by . So, if we compute all triangles dual to the Voronoi edges
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Figure 4.1: The positive pole p' helps estimating the normal n, and the
cocone helps estimating Vp|s.

intersected by cocones, we obtain all restricted Delaunay triangles and pos-
sibly a few others. We call this set of triangles cocone triangles. We will
see later that all cocone triangles lie very close to ¥. A cleaning step is
necessary to weed out some triangles from the set of cocone triangles so that
a 2-manifold is computed as output. This is accomplished by a manifold
extraction step.

COCONE(P)
1 Compute Vor P;
2 T=10
3 foreachpe P do
4 T, =COCONETRIANGLES(V},);
5 T:=TUT,
6 endfor

7 E :=EXTRACTMANIFOLD(T)

8 return E.

Let us now look into the details of the two steps COCONETRIANGLES()
and EXTRACTMANIFOLD().

In order to check if a Voronoi edge e = (a,b) intersects C), we consider
the three vectors v, a = (a —p), b = (b — p), and two conditions I and II:
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Condition I checks if any of the vertices a and b of the Voronoi edge e
lies inside Cp. Condition II checks if both a and b lie outside Cj, but the
edge e crosses it.

COCONETRIANGLES(V})

1 T,:=0

2 for each Voronoi edge e = (a,b) C V, do
3 if Condition I or II holds
4 T, =T, Uduale
5 endif

6 endfor

7 return T,

The set T' = UT), of cocone triangles enjoys some interesting geometric
properties which we exploit in the manifold extraction step as well as in the
proofs of geometric and topological guarantees of COCONE. Of course, the
sample has to be sufficiently dense for these properties to hold. In the rest
of the chapter we assume that € < 0.06 which satisfies Condition A stated
in chapter 3 enabling us to apply the results therein.

4.1.2 Cocone triangles

First we show that all triangles in 7" have a small empty ball circumscribing
it, i.e., the radius of this ball is small compared to the local feature sizes at
their vertices. This also means that their diametric ball is small. This fact
together with Triangle Normal Lemma (3.5) implies that all cocone triangles
lie almost flat to the surface.

Lemma 4.2 (Small Triangle.) Let t be any cocone triangle and r denote
the radius of the smallest empty ball circumscribing t. Then, for each vertex
p of t and € < 0.06,

(i) r < L= f(p), and

(ii) circumradius of t is at most S f(p).
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PrOOF. Let y be any point in V}, so that

3
Za(np, pY) > % — 2arcsin I c (4.1)

— &

First we claim that, for any such point y, we have ||y — p|| < LE2Ef(p) if
e < 0.06.

If Zo(ny,py) > 0 = arcsinﬁ + arcsin 1=, then [y — p| < pf(p)
according to Normal Lemma (3.2). With g = 112 and & < 0.06 we have

. 1 . 3 .
0 = arcsin—— + arcsin < — — 2arcsin

© 42
1.15 1—¢ 8 1—¢
Thus, from inequalities 4.1 and 4.2 we have
3
Zo(np, pYy) > % — 2arcsin 1 i 2> 0. (4.3)

Therefore, [ly — p|| < 52 f(p).

Now let ¢t be any cocone triangle with p being any of its vertices and
e = dualt being its dual Voronoi edge. For ¢ to be a cocone triangle, it is
necessary that there is a point y € e so that Z,(vp,py) > 3{. Taking into
account the angle Z4(vy,np), this necessary condition implies Z,(ny,, pj) >
3T £

s — 2arcsin ;= which satisfies the inequality 4.3. Hence, the previous claim

gives |ly — p|| < 2= f(p) for e < 0.06.
The ball By, |,,_p is empty and circumscribes ¢ proving (i). The claim in
(ii) follows immediately from (i) as the circumradius of ¢ cannot be larger

than the radius of any ball circumscribing it. O

The next lemma proves that all cocone triangles lie almost parallel to the
surface. The angle bounds are expressed in terms of a(e) and S(e) that are
defined in chapter 3.

Lemma 4.3 (Cocone Triangle Normal.) Let t be a cocone triangle and
n; be its normal. For any vertex p of t we have Zq(np,ny) < a(22)45(112)
when € < 0.06.

PROOF. Let g be a vertex of ¢t with a maximal angle of . The circumradius
of ¢ is at most % f(g) by Small Triangle Lemma (4.2). Then, by Triangle
Normal Lemma (3.5),

1.15¢
La(nqa nt) S /8( 1

) for € < 0.06.
—€
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The distance between p and ¢ is no more than the diameter of the cir-
cumcircle of ¢, ie., |[p—q| < 2% f(p) (Small Triangle Lemma (4.2)). By
Normal Variation Lemma (3.3), Z(np, ng) < a(22). The desired bound for
Zq(nyp,ny) follows since it is no more than the sum Z(n,,ng) + Z4(ng, ny).
a

4.1.3 Pruning

Prior to the extraction of a 2-manifold from the set of cocone triangles, some
of them are pruned. An edge e is sharp if any two consecutive cocone triangles
around it form an angle more than 37” See Figure 4.2. Edges with a single
triangle incident to them are also sharp by this definition. Also, we will show
later that the cocone triangles include all restricted Delaunay triangles for a
sufficiently dense sample. The set of restricted Delaunay triangles cannot be
incident to sharp edges. This implies that we can prune triangles incident
to sharp edges and still retain the set of restricted Delaunay triangles. In
fact, we can carry out this pruning in a cascaded manner. By deleting one
triangle incident to a sharp edge, we may create other sharp edges. Since
no restricted Delaunay triangle is pruned, none of their edges become sharp.
Therefore, it is safe to delete the new sharp edges with all of their incident

triangles.

Figure 4.2: The edge e is not sharp in the left picture. It is sharp in the
right picture.

This pruning step weeds out all triangles incident to sharp edges, but the
remaining triangles still may not form a surface. They may form “layers"
creating a non-manifold. A manifold surface is extracted from this possibly
layered set by walking outside the space covered by them. The manifold
extraction step depends heavily on the fact that cocone triangles contain all
restricted Delaunay triangles none of whose edges is sharp. We prove this
fact below.

Theorem 4.1 (Restricted Delaunay.) For ¢ < 0.06, the following con-
ditions hold:
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(i) cocone triangles contain all restricted Delaunay triangles, and

(i) no restricted Delaunay triangle has a sharp edge.

PrOOF.  Consider (i). Let y be any point in any restricted Voronoi cell
Vpls. We claim that Zgn,, py is larger than T — arcsin ﬁ The distance
ly—pll <ef(y) sincey € V,, » and P is an e-sample. By Feature Translation
Lemma (1.3) ||y — pl| < 1= f(p). We can therefore apply the proof of Edge
Normal Lemma (3.4) to establish the claim.

Let ¢ be any restricted Delaunay triangle and e = dualt be the dual
Voronoi edge. Consider the point y = e N X. We have y € V|5, for each of
the three points p € P determining e. For each such p, the angle Z,(ny, pj)
is larger than /2 — arcsin ﬁ Therefore

éa(p_@a"p) > Za(p_@,np) - La(npavp)
> I in——° 0
— —arcsin—— —
g MM a =g

where 0 = Z4(np,v,). By Pole Lemma (4.1) we have

. € . .
0 + arcsin ———— < 2arcsin -+ arcsin

2(1—-¢) — 1—¢ 2(1—¢)

< g for ¢ < 0.06.

So, Zu(py, vp) > 3?”. Therefore, the point ¥ is in the cocone Cp, by definition.
Hence the triangle ¢ is a cocone triangle.

Consider (ii). Let ¢; and t2 be adjacent triangles in the restricted Delau-
nay triangulation with e as their shared edge, and let p € e be any of their
shared vertices. Since #; and ¢35 belong to the restricted Delaunay triangu-
lation, they have circumscribing balls B; and Bs, respectively, centered at
points vy, vo of 2.

The boundaries of By and Bs intersect in a circle C contained in a plane
H, with e C H. The plane H separates t; and %9, since the third vertex of
each triangle lies on the boundary of its circumscribing ball, and By C By
on one side of H, while By C B; on the other. See Figure 4.3. The line
through v1,v9 is perpendicular to H. Both v; and vy belong to the Voronoi
facet dual to e. This means v; and vy belong to a restricted Voronoi cell,
and the distance ||v; — vo| < (IQTEE)f('ul) by Short Distance Lemma (3.6).
So the segment vive forms an angle of at least 7/2 — a,rcsinlL_6 with n,,
(proof of Edge Normal Lemma (3.4)). This normal differs, in turn, from
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n, by an angle of at most - (Normal Variation Lemma (3.3)). So, the
angle between H and n, is at most =5~ + arcsin ;=-. For small ¢, they
are nearly parallel. In particular, if ¢ < 0.06, H makes at most 9° with ny,.
Similarly, plugging ¢ < 0.06 in the angle upper bound of Cocone Triangle
Normal Lemma (4.3), one gets that both ¢; and to differ from the surface

normal at p by at most 14°.

B,

Figure 4.3: Illustration for Restricted Delaunay Theorem.

Thus we have t; on one side of H, t5 on the other, and the smaller angle
between H and either triangle is at least 67°. Hence the smaller angle be-
tween t; and %9 is at least 134°, and e is not sharp. O

4.1.4 Manifold extraction

A simplicial complex with an underlying space of a 2-manifold is extracted
out of the pruned set of cocone triangles. Let ¥’ C X be any connected
component of the sampled surface. Since cocone triangles are small (Small
Triangle Lemma 4.2), they cannot join points from different components of
Y. Let T' be the pruned set of cocone triangles with vertices in ¥’/. Consider
the medial axis of 3'. The triangles of T" lie much closer to ¥’ than to its
medial axis. Furthermore, 7" includes the restricted Delaunay triangulation
Del P|yy (Restricted Delaunay Theorem 4.1). Therefore, if |T”| denotes the
underlying space of T", the space R? \ |T"| has precisely two disjoint open sets
Oin and Oy containing the inner and outer medial axis of X' respectively.
The manifold extraction step computes the boundary of the closure of Oy,
which we simply refer to as the boundary of Ogyys.

Let E' be the boundary of O,;. We claim that E’ is a 2-manifold. Let
p be any vertex of E'. Orient the normal n, so that it points towards Ogy.
Consider a sufficiently small ball B centering p. Call the point where the ray
of n, intersects the boundary of B the north pole. Obviously the north pole
is in Ogyt. Let T, denote the set of triangles in 7" that are visible from the
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north pole within B. The triangles of T}, are in the boundary of O,,;. Since
there is no sharp edge in 7", the set of triangles T}, makes a topological disk.
We argue that T}, is the only set of triangles in the boundary of O, which
are incident to p.

Let g # p be a vertex of a triangle ¢ € T},. The triangle ¢ is also in Tj. If
not, the line of the normal n,, when moved parallelly through the edge pq
towards ¢, must hit an edge in T” that is sharp. The assumption to this claim
is that the normals n, and n, are almost parallel and hence the visibility
directions at p and q are almost parallel. Since T” does not have any sharp
edge, t is also in T,. This means that all topological disks at the vertices of
E' are compatible and they form a 2-manifold. This 2-manifold separates
Ogyt from T' implying that E' cannot have any other triangles from T’ other
than the ones in the topological disks described above.

We compute E’ from T” as a collection of triangles by a depth first walk
in the Delaunay triangulation Del P. The walk starts with a seed triangle
in T". The routine SEED computes this seed triangle for each component T’
of the pruned set by another depth first walk in the Delaunay triangulation.
At any generic step, SEED comes to a triangle ¢ via a tetrahedron ¢ and
performs the following steps. First, it checks if ¢ is a cocone triangle. If so,
it checks if it belongs to a component T” for which a seed has not yet been
picked. If so, the pair (o,t), also called the seed pair, is put into the seed set.
Then, it marks all triangles of 7" so that any subsequent check can identify
that a seed for 7" has been picked. Next, it continues walking through the
triangles and their adjacent tetrahedra in a depth first manner till another
cocone triangle is hit. SEED starts the walk at any convex hull triangle ¢. If
t is a cocone triangle, it puts the pair (o, t) into a seed set where o is the infi-
nite tetrahedron incident to ¢. The initiation of the walk from a convex hull
triangle ensures that the first triangle encountered in a component is on the
outside of that component or equivalently on the boundary of Oy, defined
for that component. Assuming the function SEED, a high level description
of EXTRACTMANIFOLD is given below.

EXTRACTMANIFOLD (7')

1 T := Pruned Tj

2 SD := SEED(T);

3 for each tuple (o,t) € SD do
4 E':= SURFTRIANGLES(0, t)
5 E=FEUF

6 endfor

7

return the simplicial complex of F.
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The main task in EXTRACTMANIFOLD is done by SURFTRIANGLES that
takes a seed pair (o,t) as input. First, we initialize the surface E’ with the
seed triangle ¢ which is definitely in E' (line 1). Next, we initialize a stack
Pending with the triple (o,t,e) where e is an edge of ¢ (lines 3 and 4). As
long as the stack Pending is not empty, we pop its top element (o,t,e). If
the edge e is not already processed we call the function SURFACENEIGHBOR
to compute a tetrahedron-triangle pair (o”,¢') (line 9). The tetrahedron o is
adjacent to ¢’ and intersects Oy while ¢’ is in E’ and is adjacent to ¢ via e.
The triangle ' is inserted in E’. Then two new triples (o’,#',€’) are pushed
on the stack pending for each edge e’ # e of ¢’ (lines 11 to 13). Finally we
return E' (line 16).

SURFTRIANGLES (o,1)

1 E':={t}

2 Pending := ()

3 Let e be any edge of ¢

4 push (o,t,e) on Pending.

5 while Pending # ()

6 pop (o,t,e) from Pending

7 if e is not marked processed

8 mark e processed

9 (¢',1') := SURFACENEIGHBOR (0,1, €)
10 E'=E U{t
11 for each edge e’ # e of t' do
12 push (¢',t',€) on Pending.
13 endfor
14 endif
15 endwhile
16 return E’

The question is how to implement the function SURFACENEIGHBOR(o, t, €).

It has to output a tuple (o',t') where ¢’ is the neighbor of ¢ on the surface
given by F’ and o' is an adjacent tetrahedron intersecting Ouy. One can
compute the surface neighbor #' of ¢ using some numerical computations
involving some dot product computations of vectors. However, these com-
putations often run into trouble due to numerical errors with finite precision
arithmetics. In particular, triangles of certain types of flat tetrahedra called
slivers tend to contribute to these numerical errors and slivers are not un-
common in the Delaunay triangulation of a sample from a surface.
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A robust and faster implementation of the function SURFACENEIGHBOR
avoids numerical computations by exploiting the combinatorial structure of
the Delaunay triangulation. Every triangle in the Delaunay triangulation
has two incident tetrahedra if we account for the infinite ones incident to
the convex hull triangles. SURFACENEIGHBOR is called with a triple (o, t, e).
It circles over the tetrahedra and triangles incident to the edge e starting
from ¢ and going towards the other triangle of ¢ incident to e. This circular
walk stops when another cocone triangle ¢’ is reached. If ¢’ is reached via
the tetrahedron o', we output the pair (o',#'). Assuming inductively that
o intersects Oy, the tetrahedron o' also intersects Opys. For example, in
Figure 4.4, SURFACENEIGHBOR is passed on the triple (71,t,e) and then it
circles through the tetrahedra T, 75, T3 and their triangles till it reaches #'.
At this point it returns (73, ') where both T} and T3 lie outside, i.e., in Ogys.
The SURFTRIANGLES with this implementation of SURFACENEIGHBOR is
robust since no numerical decisions are involved, see Figure 4.4. The latter
is also the reason why it is fast provided the Delaunay triangulation is given
in a form which allows to answer queries for neighboring tetrahedra quickly.
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Figure 4.4: A stable computation of SURFACENEIGHBOR (left), a zoom on a
reconstruction after an instable computation with numerical errors (middle),
and a stable computation without any numerical error (right).



