59 15. Line arrangements

“In drawing 7 or more lines on a pieée of paper
there are always 3 or more through a common point.”

15 Line arrangements

One of the oldest topics in discrete geometry is the study of decompositions of the plane obtained by drawing
finitely many lines, see Steiner [5] for one of the earliest references and Griinbaum {3] for a comprehensive survey.
Such decompositions are fundamental in geometry, which will become apparent when we see multiple connections
to other geometry problems, including those discussed in earlier sections. To avoid unnecessary confusion, we note
that a line in R? has no endpointe and decomposes R? into two half-planes. In other words, an edge connecting
two points is a line segment and not a line at all.

Definitions. Let H be a finite collection of lines in the plane. The decomposition of R? defined by the lines can be
formalized as a plane graph, with some edges going to infinity, or as a complex with convex cells of dimension 0, 1, 2.
A vertez is a point contained in two or more lines.. An edge is a segment connecting two contiguous endpoint on a
line (one or both endpoints can be at infinity in which case the edge is a half-line or a line). A chamber is a maximal
convex subset of R? whose interior is non-empty and avoids all lines in H » see figure 15.1. The arrangement of H,

Figure 15.1: A simple arrangement of 5 lines consists of 10 vertices, 25 edges (10 of which are half-lines), and 16
chambers (10 of which are unbounded). - ‘

A = A(H), is the collection of vertices, edges, and chambers defined by the lines. The elements of A are generically
referred to as faces. A is simple if every 2 and no 3 lines meet in a common point.

Counting faces. We will see shortly that every simple arrangement of n lines has the same number of vertices,
edges, and chambers. The numbers for non-simple arrangements can only be less. Indeed, if two lines are parallel
we can turn one slightly and gain 1 vertex, 2 edges, and 1 chamber. If three lines are concurrent we can move one
slightly and gain 2 vertices, 3 edges, and 1 chamber. Similar gains result from slight perturbations involving one
or several groups of parallel or concurrent lines. We present two proofs for the following face counting formulas for
line arrangements.

TuM. 15.1 A simple arrangement of n lines has (3) vertices, 2(%) + n edges, and (3) + n+1 chambers.

PROOF (plane sweep argument). Every 2 lines meet in a unique point, so there are (';) vertices. Assume no line in
H is horizontal and sweep A(H) with a horizontal line, ¢, from bottom to top. Initially, £ meets n edges (one per
line) and n + 1 chambers. Each time £ passes through a vertex, it encounters 2 new edges and 1 new chamber.

PROOF (induction). Write fy, f1, f2 for the number of vertices, edges, chambers of a simple arrangement. For one
line we have fo(1) = 0, f1(1) = 1, and f2(1) = 2. The nth line contributes n — 1 new vertices and n new edges,
and it cuts n — 1 old edges and n old chambers in two each. Hence,

Py = pn=Den=1=30-1= (),
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Ar) = filn-1)+21-1="©2i-1)=2(") +n, and
| 2 (2
fa(n) = failn-D)+n=1+ i= (" +n+1.

=

REMARK. Although any two simple arrangements have the same number of vertices, edges, and chambers, they
need not be isomorphic as complexes. For example, all simple arrangements of 4 lines are isomorphic but there
are two non-isomorphic arrangements of 5 lines. The number of non-isomorphic arrangements grows rapidly with
n and the enumeration of all non-isomorphic arrangements quickly becomes cumbersome and difficult, for simple
and for general line arrangements, see [4] for n < 7.

Incremental construction. Possibly the most straightforward algorithm for constructing A(H) adds a line at a
time to the growing arrangement. It follows the idea of the inductive proof of thm. 15.1. Let & = {h1,ha, ..., ha},
and for 1 <4 < n define H; = {hy, hs, ..., h;}. For simplicity assume A(H) is simple, see also section 13.

Construct A(H,);
fori:=3 tondo
find an unbounded chamber x € A(H;_;) whose intersection with h; is a half-line; € := 9;
loop add h; N x as a new edge that splits x;
find edge €’ # € of x that intersects h;;
if ¢ exists then let X’ # x be the chamber that shares ¢ with y;
€:=¢€; x :=x’; add h; N ¢ as a new vertex that splits ¢’ -
else exit
endif
forever
endfor.

We assume a data structure so that the edges of a chamber can be enumerated in constant time per edge. Similarly,
the vertices of an edge, the edges that contain a vertex, and the chambers that contain an edge are assumed to be
available in constant time. There are several different ways to find the first chamber whose intersection with A; is
a half-line in time O(¢). Each time the inner loop is executed, a chamber is cut in two, which happens less than n?
time, see thm. 15.1. However, it is not clear how much time is required to find edges ¢ and split chambers y. The
time needed for a single chamber x is proportional to its degree, deg x, defined as the number of edges bounding .

Zones. Let H be aset of n lines in R? and b € H another line so that .A(H U {b}) is simple. The zone of b in A(H)
is. Zy(H) = {x € A(H) | x is a chamber, x N b # 0}, see figure 15.2. For the purpose of analyzing the incremental

Figure 15.2: The shaded chambers belong to the zone of b.

algorithm, we are interested in z(H) = er Zy(H) deg x and
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Suppose b were to be added to A(H) using the above method. Then Zy(H) is the set of chambers visited, and
zy(H) is proportional to the time required to add b.

THM. 15.2 2(n) < 6n.

PRroOOF. Assume b is horizental and label the lines &y through A, so h; interszct b to the left of h; if ¢ < j. By
assumption of simplicity, all h; are non-vertical, so we can unambiguously distinguish between lines to the left
and lines to the right of a chamber. An edge of a chamber ¥ € A(H) is a left edge if its line is to the left of y.
Otherwise, it is a right edge of x. We use induction to show the chambers in Z;(H) have fewer than 3n left edges.

For n = 1 there is only one left edge. Let H,_; = H — {hn} and assume inductively that the chambers in
Zy(Hpn-1) have fewer than 3(n — 1) left edges. h, splits the rightmost chamber in two. At the same time, it splits
up to two left edges, one abave and one below b. In addition, h, contributes one new left edge, namely to the new
rightmost ckamber. No other left edges are added, although some are possibly removed. The argument for right
edges is symmetric (lines are added from right to left). It fcllows the sum of degrees of chambers in the zone of b,
which is the total number of left and right edges, is less than 3n + 3n = 6n.

Analysis. The time required to add the ith line to A(H;-1) is O(7), and the total time to construct A(H) is
O(3_r_, i) = O(n?). This is asymptotically optimal because A(H) can consist of more than n? faces.

REMARK. An extension of thm. 15.2 to three and higher dimensions has been proved in [2]. Algorithmic questions
related to arrangements of lines, planes, and hyperplanes are studied extensively in [1].

Homework exercises

15.1 A car race is organized on an infinitely long straight road. The cars start out at different positions and travel
with constant speed (different speed for different cars) in the same direction. The car immediately in front
a given car is its leader. The leader of a fixed car, C, changes when C overtakes its leader, C is overtaken
by another car, or the leader of C overtakes its own leader. Show that the number of times the leader of C
changes is less than 3n.

15.2 Consider the race as explained in exercise 15.1 and assume the number of participating cars is 2n — 1. Show
that the numbet of times the car in the middle, or nth position changes is O(n/n).

15.3 Let H be a set of n > 4 lines in R2 defining a simple arrangement. For h € H let ap < by be the numbers of
vertices in the two open half-planes defined by h. Show there is is a constant ¢, independent of n, so that H
contains a line h with bs < 3ap + £.
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