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Halıcıoğlu Data Science Institute

University of California, San Diego
La Jolla, California, USA 92093



Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 1

Topic 3: Homology groups
Now we focus on the second basic tool for TDA, namely homology groups.They are algebraic
structures to quantify topological features in a space. It does not capture all topological aspects
of a space in the sense that two spaces with the same homology groups may not be topologically
equivalent. However, two spaces that are topologically equivalent must have isomorphic homol-
ogy groups. It turns out that the homology groups are computationally tractable in many cases,
thus making them more attractive in topological data analysis. Before we introduce its definition
and variants in section 3.2, we need the important notions of chains, cycles, and boundaries given
in the following section.

3.1 Chains, cycles, boundaries

3.1.1 Algebraic structures

First, we recall briefly the definitions of some standard algebraic structures that are used in the
book. For details we refer the reader to any standard book on algebra.

Definition 1 (Group; Homomorphism; Isomorphism). A set G together with a binary operation
‘+’ is a group if it satisfies the following properties: (i) for every a, b ∈ G, a + b ∈ G, (ii) for
every a, b, c ∈ G, (a + b) + c = a + (b + c), (iii) there is an identity element denoted 0 in G so that
a + 0 = 0 + a = a for every a ∈ G, and (iv) there is an inverse −a ∈ G for every a ∈ G so that
a + (−a) = 0. If the operation + commutes, that is, a + b = b + a for every a, b ∈ G, then G is
called abelian. A subset H ⊆ G is a subgroup of (G,+) if (H,+) is also a group.

Definition 2 (Free abelian group; Basis; Rank; Generator). An abelian group G is called free if
there is a subset B ⊆ G so that every element of G can be written uniquely as a finite sum of
elements in B and their inverses disregarding trivial cancellations a + b = a + c − c + b. Such a
set B is called a basis of G and its cardinality is called its rank. If the condition of uniqueness is
dropped, then B is called a generator of G and we also say B generates G.

Definition 3 (Coset, quotient). For a subgroup H ⊆ G and an element a ∈ G, the left coset is
aH = {a + b | b ∈ H} and the right coset is Ha = {b + a | b ∈ H}. For abelian groups, the
left and right cosets are identical and hence are simply called cosets. If G is abelian, the quotient
group of G with a subgroup H ⊆ G is given by G/H = {aH | a ∈ G} where the group operation
is inherited from G as aH + bH = (a + b)H for every a, b ∈ G.

Definition 4 (Homomorphism; Isomorphism; Kernel; Image; Cokernel). A map h : G → H
between two groups (G,+) and (H, ∗) is called a homomorphism if h(a + b) = h(a) ∗ h(b) for
every a, b ∈ G. If, in addition, h is bijective, it is called an isomorphism. Two groups G and
H with an isomorphism are called isomorphic and denoted as G � H. The kernel, image, and
cokernel of a homomorphism h : G → H are defined as subgroups ker h = {a ∈ G | h(a) = 0},
im h = {b ∈ H | ∃a ∈ G with h(a) = b}, and coker h = H/im h respectively.

Definition 5 (Ring). A set R equipped with two binary operations, addition ‘+’ and multiplication
‘·’ is called a ring if (i) R is an abelian group with the addition, (ii) the multiplication is associative
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with the addition, that is, a · (b + c) = a · b + a · c, ∀a, b, c ∈ R, and (iii) there is an identity for the
multiplication.

The additive identity of a ring R is usually denoted as 0 whereas the multiplicative identity is
denoted as 1. Observe that, by the defintion of abelian group, the addition is commutative. How-
ever, the multiplication need not be so. When the multiplication is also commutative, R is called
a commutative ring. A commutative ring in which every nonzero element has a multiplicative
inverse is called a field .

Definition 6 (Module). Given a commutative ring R with multiplicative identity 1, an R-module
M is an abelian group with an operation R × M → M which satisfies the following properties
∀r, r′ ∈ R and x, y ∈ M:

• r · (x + y) = r · x + r · y

• (r + r′)x = r · x + r · x′

• 1 · x = x

• (r · r′) · x = r · (r′ · x)

Essentially, in an R-module, elements can be added and multiplied with coefficients in R.
However, if R is taken as a field k, each non-zero element acquires a multiplicative inverse and
we get a vector space.

Definition 7 (Vector space). An R-module V is called a vector space if R is a field. A set of
elements {g1, . . . , gk} is said to generate the vector space V if every element a ∈ V can be written
as a = α1g1 + . . . + αkgk for some α1, . . . , αk ∈ R. The set {g1, . . . , gk} is called a basis of V if
every a ∈ V can be written in the above way uniquely. All bases of V have the same cardinality
which is called the dimension of V . We say a set {g1, . . . , gm} ⊆ V is independent if the equation
α1g1 + . . . + αmgm = 0 can only be satisfied by setting αi = 0 for i = 1, . . . ,m.

Fact 1. A basis of a vector space is a generating set of minimal cardinality and an independent
set of maximal cardinality.

3.1.2 Chains

Let K be a simplicial complex. A p-chain c in K is a formal sum of p-simplices added with some
coefficients, that is, c =

∑k
i=1 αiσi where σi are the p-simplices and αi are the coefficients. Two

p-chains c =
∑
αiσi and c′ =

∑
α′iσi can be added to obtain another p-chain

c + c′ =

k∑
i=1

(αi + α′i)σi.

In general, coefficients can come from a ring R with its associated additions making the chains
constituting an R-module. For example, these additions can be integer additions where the coef-
ficients are integers; e.g., from two 1-chains (edges) we get

(2e1 + 3e2 + 5e3) + (e1 + 7e2 + 6e4) = 3e1 + 10e2 + 5e3 + 6e4.
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In our case, we will focus on the cases where the coefficients come from a field k. In particular,
we will mostly be interested in k = Z2. This means that the coefficients come from the field Z2
whose elements can only be 0 or 1 with the modulo-2 additions 0+0 = 0, 0+1 = 1, and 1+1 = 0.
This gives us Z2-additions of chains, for example, we have

(e1 + e3 + e4) + (e1 + e2 + e3) = e2 + e4.

Observe that p-chains with Z2-coefficients can be treated as sets: the chain e1 + e3 + e4 is the
set {e1, e3, e4}, and Z2-addition between two chains is simply the symmetric difference between
the corresponding sets.

From now on, unless specified otherwise, we will consider all chain additions to be Z2-
additions. One should keep in mind that one can have parallel concepts for coefficients and
additions coming from integers, reals, rationals, fields, and other rings. Under Z2-additions, we
have

c + c =

k∑
i=1

0σi = 0.

Below, we show addition of chains shown in Figure 3.1:

0-chain: ({b} + {d}) + ({d} + {e}) = {b} + {e} (left)
1-chain: ({a, b} + {b, d}) + ({b, c} + {b, d}) = {a, b} + {b, c} (left)
2-chain: ({a, b, c} + {b, c, e}) + ({b, c, e}) = {a, b, c} (right)

The p-chains with the Z2-additions form a group where the identity is the chain 0 =
∑k

i=1 0σi,
and the inverse of a chain c is c itself since c + c = 0. This group, called the p-th chain group, is
denoted Cp := Cp(K).

a

b

c

d

e

a

c

e
d

b

Figure 3.1: Chains, boundaries, cycles.
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3.1.3 Boundaries and cycles

The chain groups at different dimensions are related by a boundary operator. Given a p-simplex
σ = {v0, . . . , vp} (also denoted as v0v1 · · · vp), let

∂pσ =

p∑
i=0

{v0, . . . , v̂i, . . . , vp}

where v̂i indicates that the vertex vi is omitted. Informally, we can view ∂p as a map that sends
a p-simplex σ to the (p − 1)-chain that has non-zero coefficients only on σ’s (p − 1)-faces also
referred as σ’s boundary. At this point, it is instructive to note that the boundary of a vertex is
empty, that is, ∂0σ = ∅. Extending ∂p to a p-chain, we obtain a homomorphism ∂p : Cp → Cp−1
called the boundary operator that produces a (p − 1)-chain when applied to a p-chain:

∂pc =

mp∑
i=1

αi(∂pσi) for a p-chain c =

mp∑
i=1

αiσi ∈ Cp.

Again, we note the special case of p = 0 when we get ∂0c = ∅. The chain group C−1 has only one
single element which is its identity 0. On the other end, we also assume that if K is a k-complex,
then Cp is 0 for p > k.

Consider the complex in Figure 3.1(right). For the 2-chain abc + bcd we get

∂2(abc + bcd) = (ab + bc + ca) + (bc + cd + db) = ab + ca + cd + db.

It means that from the two triangles sharing the edge bc, the boundary operator returns the four
boundary edges that are not shared. Similarly, one can check that the boundary of the 2-chains
consisting of all three triangles in Figure 3.1(right) contains all 7 edges. In particular, the edge bc
does not get cancelled because of all three (odd) triangles adjoin it.

∂2(abc + bcd + bce) = ab + bc + ca + be + ce + bd + dc.

One important property of the boundary operator is that, applying it twice produces an empty
chain.

Proposition 1. For p > 0, ∂p−1 ◦ ∂p(c) = 0.

Proof. Observe that ∂0 is a zero map by definition. Also, for a k-complex, ∂p operates on a zero
element for p > k by definition. Then, it is sufficient to show that, for k ≤ p ≤ 1, ∂p−1 ◦∂p(σ) = 0
for a p-simplex σ. Observe that ∂pσ is the set of all (p − 1)-faces of σ and every (p − 2)-faces of
σ is contained in exactly two (p − 1)-faces. Thus, ∂p−1(∂pσ) = 0. �

Extending the boundary operator to the chains groups, we obtain the following sequence of
homomorphisms satisfying Proposition 1 for a simplicial k-complex; such a sequence is also
called a chain complex:

0 = Ck+1
∂k+1 // Ck

∂k // Ck−1
∂k−1 // Ck−2 · · · C1

∂1 // C0
∂0 // C−1 = 0. (3.1)

Fact 2.
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1. For p ≥ −1, Cp is a vector space because the coefficients are drawn from a field Z2–it has a
basis so that every element can be expressed uniquely as a sum of the elements in the basis.

2. There is a basis for Cp where every p-simplex form a basis element because any p-chain
is a unique subset of the p-simplices. The dimension of Cp is therefore n, the number of p-
simplices. When p = −1 and p ≥ k + 1, Cp is trivial with dimension 0. In Figure 3.1(right)
{abc, bcd, bce} is a basis for C2 and so is {abc, (abc + bcd), bce}.

Cycle and boundary groups.

Definition 8 (Cycle and cycle group). A p-chain c is a p-cycle if ∂c = 0. In words, a chain
that has empty boundary is a cycle. All p-cycles together form the p-th cycle group Zp under
the addition that is used to define the chain groups. In terms of the boundary operator, Zp is the
subgroup of Cp which is sent to the zero of Cp−1, that is, ker ∂p = Zp.

For example, in Figure 3.1(right), the 1-chain ab + bc + ca is a 1-cycle since

∂1(ab + bc + ca) = (a + b) + (b + c) + (c + a) = 0.

Also, observe that the above 1-chain is the boundary of the triangle abc. It’s not accident that
the boundary of a simplex is a cycle. Thanks to Proposition 1, the boundary of a p-chain is a
(p − 1)-cycle. This is a fundamental fact in homology theory.

The set of (p − 1)-chains that can be obtained by applying the boundary operator ∂p on p-
chains form a subgroup of (p− 1)-chains, called the (p− 1)-th boundary group Bp−1 = ∂p(Cp); or
in other words, the image of the boundary homomorphism is the boundary group, Bp−1 = Im ∂p.
We have ∂p−1Bp−1 = 0 for p > 0 due to Proposition 1 and hence Bp−1 ⊆ Zp−1. Figure 3.2
illustrates cycles and boundaries.

Figure 3.2: Each individual red, blue, green cycle is not a boundary because they do not bound
any 2-chain. However, the sum of the two red cycles, and the sum of the two blue cycles each
form a boundary cycle because they bound 2-chains consisting of redish and bluish triangles
respectively.

Fact 3. For a simplicial k-complex,

1. C0 = Z0 and Bk = 0.
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2. For p ≥ 0, Bp ⊆ Zp ⊆ Cp.

3. Like Cp, both Bp and Zp are vector spaces.

3.2 Homology

The homology groups classify the cycles in a cycle group by putting togther those cycles in the
same class that differ by a boundary. From a group theoretic point of view, this is done by taking
the quotient of the cycle groups with the boundary groups, which is allowed since the boundary
group is a subgroup of the cycle group.

Definition 9 (Homology group). For p ≥ 0, the p-th homology group is the quotient group
Hp = Zp/Bp. Since we use a field, namely Z2 for coefficients, Hp is a vector space and its
dimension is called the p-th Betti number, denoted by βp:

βp := dim Hp.

Every element of Hp is obtained by adding a p-cycle c ∈ Zp to the entire boundary group,
c + Bp, which is a coset of Bp in Zp. All cycles constructed by adding an element of Bp to c form
the class [c], referred to as the homology class of c. Two cycles in the same homology class are
called homologous, which also means [c] = [c′]. By definition, [c] = [c′] if and only if c ∈ c′+Bp,
and under Z2 coefficients, this also means that c + c′ ∈ Bp. For example, in Figure 3.2, the outer
green cycle is homologous to the sum of the inner-most blue and red cycles because they together
bound the 2-chain consisting of all triangles. Also, observe that the group operation for Hp is
defined by [c] + [c′] = [c + c′].

(a) (b) (c) (d)

Figure 3.3: Complex K of a tetrahedron: (a) Vertices, (b) spanning tree of the 1-skeleton, (c)
1-skeleton, (d) 2-skeleton of K.

Example. Consider the boundary complex K of a tetrahedron which consists of four triangles,
six edges, and four vertices. Consider the 0-skeleton K0 of K which consists of four vertices only.
All four vertices whose classes coincide with them are necessary to generate H0(K0). Therefore,
these four vertices form a basis of H0(K0). However, one can verify that H0(K1) for the 1-skeleton
K1 is generated by any one of the four vertices because all four vertices belong to the same
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class when we consider K1. This exemplifies the fact that rank of H0(K) captures the number of
connected components in a complex K.

The 1-skeleton K1 of the tetrahedron is a graph with four vertices and six edges. Consider
a spanning tree with any vertex and the three edges adjoining it as in Figure 3.3(b). There is no
1-cycle in this configuration. However, each of the other three edges create a new 1-cycle which
are not boundary because there is no triangle in K1. These three cycles c1, c2, c3 as indicated in
Figure 3.3(c) form their own classes in H1(K1). Observe that the 1-cycle at the base can be written
as a combination of the other three and thus all classes in H1(K1) can be generated by only three
classes [c1], [c2], [c3] and no fewer. Hence, these three classes form a basis of H1(K1). To develop
more intuition, consider a simplicial surface M without boundary embedded in R3. If the surface
has genus g, that is g tunnels and handles in the complement space, then H1(M) has dimension
2g.

The 2-chain of the sum of four triangles in K make a 2-cycle c because its boundary is 0.
Since K does not have any 3-simplex (the tetrahedron is not part of the complex), this 2-cycle
cannot be added to any 2-boundary other than 0 to form its class. Therefore, the homology class
of c is c itself, [c] = {c}. There is no other 2-cycle in K. Therefore, H2(K) is generated by [c]
alone. Its dimension is only one. If the tetrahedron is included in the complex, c becomes a
boundary element, and hence [c] = [0]. In that case, H2(K) = 0. Intuitively, one may think H2(K)
capturing the voids in a complex K embedded in R3. (Now, convince yourself that H1(K) = 0 no
matter whether the tetrahedron belongs to K or not.)

Fact 4. For p ≥ 0,

1. Hp is a vector space (when defined over Z2),

2. Hp may not be a vector space when defined over Z, the integer coefficients. In this case,
there could be torsion subgroups,

3. the Betti number, βp := dim Hp, is given by βp = dim Zp − dim Bp,

4. there are exactly 2βp homology classes in Hp when defined with Z2 coefficients.

3.2.1 Induced homology

Continuous functions from a topological space to another topological space takes cycles to cycles
and boundaries to boundaries. Therefore, they induce a map in their homology groups as well.
Here we will restrict ourselves only to simplicial complexes and simplicial maps that are the
counterpart of continuous maps between topological spaces. Simplicial maps between simplicial
complexes take cycles to cycles and boundaries to boundaries with the following definition.

Definition 10 (Chain map). Let f : K1 → K2 be a simplicial map. The chain map f# : Cp(K1)→
Cp(K2) corresponding to f is defined as follows. If c =

∑
αiσi is a p-chain, then f#(c) =

∑
αiτi

where

τi =

{
f (σi), if f (σi) is a p-simplex in K2
0 otherwise.

For example, in Figure 3.4, the 1-cycle bc+cd +db in K1 is mapped to the 1-chain eg+eg = 0
by the chain map f#.



8 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

a

b

c

d

e

g

K1 K2 K3h

Figure 3.4: Induced homology by simplicial map: Simplicial map f obtained by the vertex map
a → e, b → e, c → g, d → g induces a map at the homology level f∗ : H1(K1) → H1(K2) which
takes the only non-trivial class created by the empty triangle abc to zero though H1(K1) � H1(K2).
Another simplicial map K2 → K3 destroys the single homology class born by the empty triangle
egh in K2.

Proposition 2. Let f : K1 → K2 a simplicial map. Let ∂K1
p and ∂K2

p denote the boundary ho-
momorphisms in dimension p ≥ 0. Then, the induced chain maps commute with the boundary
homomorphisms, that is, f# ◦ ∂

K1
p = ∂K2

p ◦ f#.

The statement in the above proposition can also be represented with the following diagram,
which we say commutes since starting from the top left corner, one reaches to the same chain at
the lower right corner using both paths–first going right and then down, or first going down and
then right.

Cp(K1)

∂
K1
p
��

f# // Cp(K2)

∂
K2
p
��

Cp−1(K1)
f# // Cp−1(K2)

(3.2)

For example, in Figure 3.4, we have f#(c = ab + bd + da) = 0 and ∂K1
p (c) = 0. Therefore,

∂K2
p ( f#(c)) = ∂K2

p (0) = 0 = f#(0) = f#(∂K1
p (c)).

Since Bp(K1) ⊆ Zp(K1), we have that f#(Bp(K1)) ⊆ f#(Zp(K1)). Thus, the induced map in the
quotient space, namely,

f∗(Zp(K1)/Bp(K1)) := f#(Zp(K1))/ f#(Bp(K1))

is well defined. Furthermore, by the commutativity of the Diagram (3.2), f#(Zp(K1)) ⊆ Zp(K2)
and f#(Bp(K1)) ⊆ Bp(K2), which gives an induced homomorphism in the homology groups:

f∗ : Zp(K1)/Bp(K1)→ Zp(K2)/Bp(K2) or equivalently f∗ : Hp(K1)→ Hp(K2)

A homology class [c] = c + Bp in K1 is mapped to the homology class f#(c) + f#(Bp) in K2
by f∗. In Figure 3.4, we have B1 = {0, ab + bd + da}. Then, for c = bd + dc + cb, we have
f∗([c]) = { f#(c), f#(c) + f#(ab + bd + da)} = {0, 0} = [0].

Now we can state a result relating contiguous maps and homology groups.

Fact 5. For two contiguous maps f1 : K1 → K2 and f2 : K1 → K2, the induced maps f1∗ :
Hp(K1)→ Hp(K2) and f2∗ : Hp(K1)→ Hp(K2) are equal.
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3.2.2 Singular Homology

So far we have considered only simplicial homology which is defined on a simplicial complex
without any assumption of a particular topology. Now, we extend this definition to topological
spaces. Let X be a topological space. We bring the notion of simplices in the context of X by
considering maps from the standard d-simplices to X. A standard p-simplex ∆p is defined by the
convex hull of p + 1 points {(x1, . . . , xi, . . . , xp+1) | xi = 1 and x j = 0 f or j , i}i=1,...,p+1 in Rp+1.

Definition 11 (Singular simplex). A singular p-simplex for a topological space X is defined as a
map σ : ∆p → X.

Notice that the map σ need not be injective and thus ∆p may be ‘squashed’ arbitrarily in its
image. Nevertheless, we can still have a notion of the chains, boundaries, and cycles which are
the main ingredients for defining a homology group called the singular homology of X.

The boundary of a p-simplex σ is given by ∂σ = τ0 + τ2 + . . . + τp where τi : (∂∆p)i → X is
the restriction of the map σ on the ith facet (∂∆p)i of ∆p.

A p-chain is a sum of singular p-simplices with coefficients from integers, reals, or some
appropriate rings. As before, under our assumption of Z2 coefficients, a singular p-chain is given
by
∑

i αiσi where αi = 0 or 1. The boundary of a singular p-chain is defined the same way as we
did for simplicial chains, only difference being that we have to accommodate for infinite chains.

∂(cp = σ1 + σ2 + . . .) = ∂σ1 + ∂σ2 + . . .

We get the usual chain complex with ∂p ◦ ∂p−1 = 0 for all p > 0

· · ·
∂p+1
→ Cp

∂p
→ Cp−1

∂p−1
→ · · ·

and can define the cycle and boundary groups as Zp = ker ∂p and Bp = im ∂p+1. We have the
singular homology defined as the quotient group Hp = Zp/Bp.

A useful fact is that singular and simplicial homology coincide when both are well defined.

Theorem 3. Let X be a topological space with a triangulation K, that is, the underlying space
|K| is homeomorphic to X. Then Hp(K) � Hp(X) for any p ≥ 0.

Note that the above theorem also implies that different triangulations of the same topological
space give rise to isomorphic simplicial homology.

3.2.3 Cohomology

There is a dual concept to homology called cohomology. Although cohomology can be defined
with coefficients in rings as in case of homology groups, we will mainly focus on defining it over
a field thus becoming a vector space.

A vector space V defined with a field k admits a dual vector space V∗ whose elements are
linear functions φ : V → k. These linear functions themselves can be added and multiplied over
k forming the dual vector space V∗. The homology group Hp(K) as we defined in Definition 9 over
the field Z2 is a vector space and hence admits a dual vector space Hp(K) called the cohomology
group. We now describe this more precisely.
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Cochains, cobounadries, and cocycles. A p-cochain is a homomorphism φ : Cp → Z2 from
the chain group to the coefficient ring over which Cp is defined which is Z2 here. In this case, a
p-cochain φ is given by its evaluation φ(σ) (0 or 1) on every p-simplex σ in K, or more precisely,
a p-chain c =

∑mp

i=1 αiσi gets a value

φ(c) = α1φ(σ1) + α2φ(σ2) + · · · + αmpφ(σmp).

Also, verify that φ(c + c′) = φ(c) + φ(c′) satisfying the property of group homomorphism. For a
chain c, the particular cochain that assigns 1 to a simplex if and only if it has a non-zero coefficient
in c, is called its dual cochain c∗. The p-cochains form a cochain group Cp dual to Cp where the
addition is defined by (φ + φ′)(c) = φ(c) + φ′(c) by taking Z2-addition on the right. We can also
define a scalar multiplication (αφ)(c) = αφ(c) by using the Z2-multiplication. This makes Cp a
vector space.

Similar to boundaries of chains, we have the notion of coboundaries of cochains δp : Cp →

Cp+1. Specifically, for a p-cochain φ, its (p + 1)-coboundary is given by the homomorphism
δφ : Cp+1 → Z2 defined as δφ(c) = φ(∂c) for any (p + 1)-chain c. Therefore, the coboundary
operator δ takes a p-cochain and produces a (p + 1)-cochain giving the sequence for a simplicial
k-complex:

0 = C−1 δ−1
−−→ C0 δ0

−→ C1 δ1
−→ · · ·

δk−1
−−−→ Ck δk

−→ Ck+1 = 0

a

b

c

a

b

c

a

b

c

d

e

f

g

h

(i) (ii) (iii)

Figure 3.5: Illustration for cohomology: (i) and (iii) 1-cochain with support on the solid red
edges is a 1-cocycle which is not a 1-coboundary, so it constitutes a non-trivial class in H1. The
1-cochain with support on dashed red edges constitutes a cohomologous class, (ii) 1-cochain with
support on the solid red edges is a 1-cocycle which is also a 1-coboundary and hence belongs to
a trivial class.

The set of p-coboundaries forms the coboundary group (vector space) Bp where the group
addition and scalar multiplication are given by the same in Cp.

Now we come to cocycles, the dual notion to cycles. A p-cochain φ is called a p-cocycle if its
coboundary δφ is a zero homomorphism. The set of p-cocycles form a group Zp (a vector space)
where again the addition and multiplication are induced by the same in Cp.

Similar to the boundary operator ∂, the coboundary operator δ satisfies the following property:
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Fact 6. For p > 0, δp ◦ δp−1 = 0 which implies Bp ⊆ Zp.

Since Bp is a subgroup of Zp, the quotient group Hp = Zp/Bp is well defined which is called
the p-th cohomology group.

Example. Consider the three complexes in Figure 3.5. In the following discussion, for conve-
nience, we refer to the p-simplices on which cp evaluates to 1 as the support of cp. The 1-cochain
φ with the support on the edge ac is a cocycle because δ1φ = 0 as there is no triangle and hence
no non-zero 2-cochain. It is also not a coboundary because there is no 0-cochain φ′ (assignment
of 0 and 1 on vertices) so that

δ0φ
′(ac) = φ′(a + c) = 1 = φ(ac)

δ0φ
′(ab) = φ′(a + b) = 0 = φ(ab)

δ0φ
′(bc) = φ′(b + c) = 0 = φ(bc).

The 1-cochain φwith support on edges ab and ac in Figure 3.5(ii) is a 1-cocycle because δ1φ(abc) =

φ(ab + ac + bc) = 0. Notice that, now a cochain with support only on one edge ac cannot be a co-
cycle because of the presence of the triangle abc. The 1-cochain φ is also a 1-coboundary because
a 0-cochain with assignment of 1 on the vertex a produces φ as a coboundary.

Similarly, verify that the 1-cochain φ with support on edges cd and ce in Figure 3.5(iii) is
a cocycle but not a coboundary. Thus, the class [φ] is non-trivial in 1-dimensional cohomology
H1. Any other non-trivial class is cohomologous to it. For example, the class [φ′] where φ′ has
support on edges b f and bg is cohomologous to [φ]. This follows from the fact tha [φ] + [φ′] =

[φ + φ′] = [0] because φ + φ′ is a 1-coboundary obtained by assigning 1 to vertices a, b, and c.
Similar to the homology groups, a simplicial map f : K1 → K2 also induces a homomorphism

f ∗ between the two, but in the opposite direction. We will use it in Section ??.

Fact 7. A simplicial map f : K1 → K2 induces a homomorphism f ∗ : Hp(K2) → Hp(K1) for
every p ≥ 0.

3.3 Notes and Exercises

Homology groups and its associated concepts are main algebraic tools used in topological data
analysis. Because of their importance, many associated structures and results about them exist
in algebraic topology. We only cover the main necessary concepts that are used in this book and
leave others. Interested readers can familiarize themselves with these omitted topics by reading
Munkres [2] or Hatcher [1] among many other excellent sources.

Exercises

1. Let K be the simplicial complex of a tetrahedron. Write a basis for the chain groups C1,
C2, boundary groups B1, B2, and cycle group Z1, Z2. Write the boundary matrix repre-
senting the boundary operator ∂2 with rows and columns representing bases of C1 and C2
respectively.
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2. Let K be a triangulation of a 2-dimensional sphere S2. Now remove h number of vertex-
disjoint triangles from K, and let the resulting simplicial complex be K′. Describe the Betti
numbers of K′, and justify your answer.

3. Prove Proposition 2.

4. Consider a complex K = {a, b, c, ab, bc, ca, abc}. Enumerate all elements in the 1-chain,
1-cycle, 1-boundary groups defined on K under Z2 coefficient. Do the same for cochains,
cocycles, and coboundaries.

5. Show an example for the following:

• a chain that is a cycle but its dual cochain is not a cocycle.

• a chain that is a cycle and its dual cochain is a cocycle.

• a chain that is a boundary and its dual cochain is not a coboundary.

• a chain that is a boundary and its dual cochain is a coboundary.

6. Prove that ∂p−1 ◦∂p = 0 for relative chain groups and also δp ◦δp−1 = 0 for cochain groups.
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