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“No matter into how many segments we cut an interval,
the vertices will always outnumber the edges by one.”

26 Euler’s relation for convex polyhedra

The Euler cheracteristic of a simplicial complex, K, is the alternatinz sum of simplex numbers
) (=] )
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x(k) = 3 (~1)'s;,

i=-1

where's; = 5;(K) is the number of i-dimensional simplices and d is the dimension of K. Alternatively, we can write
X(K) =3 ,exc(=1)4m?. A nice introduction to the Euler characteristic and some of its applications can be found
in [6]. Interestingly, the Euler characteristic does not depend on K, but rather on |K|, the underlying space of K.
For example, it can be shown that x(K) = x(£) if |K| and || are homeomorphic.

This section considers the Euler characteristic for boundary complexes of convex polyhedra in R?. In this special
case, x(K) = 1 provided the polyhedron is bounded. Early proofs of this relation in arbitrary finite dimensions date
back as early as 1901 [5]. This century witnessed a variety of different proofs based on line shelling (1], sweeping a
hyperplane (3], decomposing with an arrangement [4], etc. We present an elementary inductive proof of the relation

taken from [2].

Inclusion-exclusion. Consider a finite set H of closed half-spaces in RY. The intersection of the half-spaces is
a convex polyhedron, (H = (hem h- For convenience, assume the hyperplanes bounding the half-spaces are in
general position and (JH # 0. The faces of this convex polyhedron do not, in general, form a simplicial complex,
but the nerve of the collection of facets is a simplicial complex. Faces of dimension less than d — 1 correspond to
simplices of dimension larger than 0. The alternating sum of face numbers for (H can thus be interpreted as the
Euler characteristic of this nerve, see also section 12. For each point £ € R? and each subset I C H, define the

indicator function
' 1 ifzghforallh€l, and

71(?) = { 0 otherwise.

To get an intuitive feeling of what v indicates consider a fixed subset I C H. Clearly, (VH C ()I. The hyperplanes
bounding half-spaces in I define a simple arrangement of which ()7 is one chamber. If (M is unbounded there is a
unique opposite chamber, and y;(z) = 1 iff  lies in the interior of the opposite chamber, see figure 26.1. For a set

Figure 26.1: vy(y) = 1 and v1(y) = 0 for all non-empty subsets ] of H. yr(z) =1forall I C H.

system S C 2H define
1"5(:::) — Zr_(_”card I,”(z).
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Note the effect of v is that it restricts the sum to half-space~ that do not contain z. The inclusion-exclusion principle
can be expressed by setting S = 27,



