“A convex quadrilateral has two diagonals, and in =
triangulation one can be substituted for the other.”

9 Edge flipping

Pecall lemma C from section 8, whick says if all edges of a triangulatior: are lvcally delone ther the triangulatioz
ia the Delaunay triangulation of the point set. This result suggests an iterative algorithm that substitutes a iocally
delone edge for one that is not locally delone. The idea for this algorithm is due to Lawson [3, 4], and it predates
its analysis based on lifting the points from two to three dimensions.

Flipping. Assume K is an arbitrary triangulation of a finite set S C R? in general position. Unless K = Dg, thers
is an edge zy € K that is not locally delone. Let azy and bzy be the two triangles that share zy. b lies inside the
circle through a, z, y, so azyUbzy is a convex quadrilateral, see figure 9.1. The other diagonal, ab, is locally delone

Figure 9.1: A flip substitutes one triangulation of a convex quadrilateral for the other.

To flip zy means to substitute £ = K — {zy, azy, bzy} U {abd, zab, yadb} for K. Note that a flip has a direction with
tendency towards locally delone edges. There is no such flip that takes £ to XK.

Algorithm. The details of the resulting iterative algorithm are now specified. It starts with an arbitrary triangu-
lation Ky of S. A stack is used: to quickly identify edges to be flipped. We mark edges to keep track of the ones
that are on the stack. The stack is initialized to contain all edges of Ky, so all edges are marked. The following
invariants are maintained throughout the algorithm:

(I1) the stack contains only edges of the current triangulation, K, and it contains at most one copy of each,

(I2) it contains all edges that are not locally delone in X, and possibly others.
Edges are flipped until all are locally delone and the stack is empty.

while stack is non-empty do
pop zy from the stack and unmark it;
if zy is not locally delone then
flip zy by substituting it with ab;
for uv € {az, ay, bz, by} do .
if uv is not marked then push uv and mark it endif
endfor '
endif
endwhile.

It is easy to see that (I1) and (I2) hold initially, for £ = K. and are maintained throughout. By Euler’s relation
K has fewer than 3n edges, n = card S, so (I1) implies that the size of the stack never exceeds 3n. For an efficient
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execution, we need a data structure for K that takes only constant time for local operations such as finding the
triangles containing a given edge. A number of such data structures have been proposed in the literature, and
the two most popular ones are possibly the winged-edge (1] and the quad-edge [2] data structures. Even with the
assumption of such a data structure, it is not obvious how to bound the running time of the iteration. The main
difficulty is that the stack shrinks and grows in a seemingly unpredictabie manner. We need a better understanding
of the changing geometry to get a handle on the time-complexity.

Lifting map. We introduce a map A : R? — R3 and study the effect of the algorithm on A(S), which is a finite set
in R®. For every p = (41, 62) € R? we define A(p) = (b1, 82,63+ ¢2). X can he visnalized by identifying R? with the
z123-plane in R3; it projects every point in this plane vertically into the paraboloid of revolution, 7 : z3 = z? 4 22,
see figure 9.2.

Figure 9.2: A defines a bijection between the z1Z2-plane and the paraboloid 7. Two triangles that are not locally delone
in the plane correspond to two lifted triangles forming a concave dihedral angle.

LEMMA A. For every circle ¢ in R? there is a plane % in R® so that ¢ = A~1(h N 7).

PROOF. We construct the plane from ¢. Let 71,72 be the coordinates of the center and p the radius of ¢. The

linear relation 3 = 2v121 + 2y222 — (v + 73 — p?) specifies a plane, h, and the projection of A N 7 into the first
two coordinates is give by

(21 —=71) + (22 — 12)? = p%,
which is c.

REMARK. The in-circle test decides whether a point z € R2 lies inside or outside the circle through three points
a,b,c € R%. The lemma implies that this test can be decided by checking whether A(z) € R3 lies below or above
the plane through A(a), A(b), A(c). The corresponding algebraic test is a product of two determinants:
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and z lies inside (outside) the circle iff the product is negative (positive). Degenerate cases. correspond to vanishing
determinants.

Time-complexity. For a triangulation X of S C R?, define X, = {conv X(T) | convT € K}. K, is a simplicial
2-complex in R?, and its underlying space, [Cx|, is a piecewise linear surface that intersects a vertical line in a
point or not at all. An edge zy € K corresponds to the edge A(z)A(y) € Ky. Lemma A implies zy is not locally
delone in K iff the dihedral angle at A(z)A(y) below Ky is less than 180°, see figure 9.2. Incidentally, this implies
that £ = Dy iff K is a convex surface. We will elaborate on this observation later. The edge-flipping algorithm
can now be visualized in R3. Flipping zy corresponds to gluing a tetrahedron, A(z)A(y)A(a)A(b), underneath [K,].
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The new lower surface is the underlying space of the new K, which projects to the new K. Each flip creates a
tetrahedron, and the entire algorithm creates a simplicial 3-complex in R3. The number of vertices of this complex
isn=-cardS.

LEMMA B. A simplicial complex with n vertices in R3 has fewer than ﬂ.; tetrahedra.

PRoOF. Consider all tetrahedra abcz that share a common vertex z. The triangles abc form a 2-complex with at
most n— 1 vertices around z. The 1-skeleton of this 2-complex is a planar graph, so there are at most 2(n-1)—4=

2n — 6 triangles. The total number of tetrahedra can thus not exceed %(2n — 6) < "2—2

Since each fiip is encoded by a tetrahedron, the algorithm cannot perform more than 1‘,; flips, and therefore takes
time at most O(n?). As mentioned earlier, the amount of storage is only O(n) because the marking mechanism

prevents the stack from growing beyond 3n edges.

Maxmin angle criterion. The edge-flipping algorithm can be used as a tool to proving that the Delaunay
triangulation optimizes certain quality criteria, over all triangulations of some fixed point set. One such criterion
is the smallest angle. For a triangulation K of S let (K) be the smallest angle within any triangle in K. We begin
by arguing that a flip cannot decrease the size of the smallest angle. Consider the flip shown in figure 9.1. The six
angles before the flip are a1 +az, 61 + 2, £1, €2, v1, vz, and the angles after the flip are a3, as, 81, B2, €1 + €2, v1 +vs.
All angles are positive, so 1,82 < §1 + €2 and v1,v3 < vy + v;. Furthermore, & < fs, €2 < as, v; < B, and
va < a1 because b lies inside the circle of azy and a lies inside the circle of bzy. So no matter which one of the 6
angles after the flip is smallest, there is an even smaller angle before the flip. Sibson [6] was the first to realize this
implies that Delaunay triangulations maximize smallest angles.

THM. 9.1 Let K be a triangulation of a finite set S C R? in general position. Then a(K) < a(Ds).

PrOOF. D can be constructed from K be a finite sequence of edge flips. Each flip either increases a or leaves it
unchanged.

REMARK. The result in thm. 9.1 can be strengthened by considering the lexicographically ordered angle vector.
Let K and £ be two triangulations of S and let x; and ); be the i-smallest angle in K and £, respectively. Write
K < Lif there is a j so that k; < A; and x; = X; for i < j. With the same argument as for thm. 9.1 we get £ < Ds
for all triangulations K # Dg of S.

Homework exercises

Let S be a set of n points in general position in R2. The flip graph of S, F = (T, A), is defined as follows: T is the
set of triangulations of S, and (u,v) € A if v can be obtained from g by a single flip substituting a locally delone
edge for one that is not locally delone. We have seen that w = Ds € T is the only sink and every node has a path

of length less than ﬂ; tow. A map ¢ : T — R is monotone if p(u) < p(v) for all arcs (u,v) € 4, or p(u) > p(v)
for all arcs. Observe that if ¢ is monotone then the Delaunay triangulation maximizes or minimizes ¢ over all

triangulations of S.
9.1 Define ¢;(u) equal to the largest circumcircle radius of any triangle in u. Argue that ¢, is monotone.
9.2 Define pa(u) equal to the smallest circumcircle radius of any triangle in u. Argue that ¢, is monotone.

9.3 Define the minidisk of a triangle o as the smallest disk that contains ; its bounding circle is not necessarily
the circumcircle of o. Define p3(u) equal to the largest minidisk radius of any triangle in 4. Show that 3 is
monotone.
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(Remark. It is interesting that unlike for 1 and @2 the stronger result about the lexicographic optimization is not
correct for 3. On the other hand, the result for p3 generalizes to three and higher dimensions [5], while 1 and ¢
are not necessarily optimized by Delaunay triangulations already in 3-dimensional space. )

9.4 Define p4(u) equal to the largest angle within any triangle in u. Show that w = Ds does not minimize v4.
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