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Edge Contraction Algorithm

Topics: edge contraction, decimation, hierarchy, numerical error.

Edge contraction. The basic operation in simplify-
ing a triangulated surface is the contraction of an edge.
Let K be a pure 2-complex and assume for the mo-
ment that | K| is a 2-manifold. The contraction of an
edge ab € K removes ab together with the two triangles
abz, aby and it mends the hole by gluing za to b and
ya to yb as illustrated in Figure 1. Vertices a and b are

Figure 1: The contraction of edge ab. Vertices a and b
are glued to a new vertex c.

glued to form a new vertex c¢. All simplices in the star of
¢ are new, and the rest of the complex stays the same.
To express this more formally we define the cone from
a point z to a simplex 7 as the union of line segments
connecting z to points p € 7:

z-t = conv(rU{z}).

It is defined only if x is not an affine combination of the
vertices of 7. With this restriction, z - 7 is a simplex of
one higher dimension: dim (z - 7) = 1+dim 7. For a set
of simplices the cone is defined if it is defined for each
simplex, and in this case - T = {z -7 |7 € T}. We
also need generalizations of the star and the link from a
single simplex to a set of simplices. Denote the closure
without the (—1)-simplex as 7' = C17 — {@}. The star
and link of T are

StT =
LkT

{loeK|o>1€T},
CIStT — StT.

For closed sets T' the link is simply the boundary of the
closed star. For example in Figure 1 the link of the set
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ab = {ab,a,b} is the cycle of dashed edges and hollow
vertices bounding the closed star of ab. The contraction
of the edge ab is the operation that changes K to

L = K- Stab U ¢-Lkab.

This definition applies generally and does not assume
that K is a manifold.

Decimation. The surface represented by K is simpli-
fied by performing a sequence of edge contractions. To
get a meaningful result we prioritize the contractions by
the numerical error they introduce. Contractions that
change the topological type of the surface are rejected.
Initially, all edges are evaluated and stored in a prior-
ity queue. The process continues until the number of
vertices shrinks to the target number m. Let n > m be
the number of vertices in K.

while n > m and priority queue non-empty do
extract top edge ab from priority queue;
if contracting ab preserves topology then
contract ab; n--
endif
endwhile.

The priority queue takes time O(logn) per operation.
Besides extracting the edge whose contraction causes
the minimum error we remove edges that no longer be-
long to the surface and we add new edges. The number
of edges removed and added during a single contraction
is usually bounded by a small constant, but in the worst
case it can be as large as n — 1. Before performing an
edge contraction we test whether or not it preserves the
topological type of the surface. This is done by checking
all edges and vertices in the link of ab. Precise condi-
tions to recognize edge contractions that preserve the
type will be discussed in the next lecture.

Hierarchy. We visualize the actions of the algorithm
by drawing the vertices as the nodes of an upside-down



forest. The contraction of the edge ab combines ver-
tices a and b into a new vertex c. In the forest this is
reflected by introducing ¢ as a new node and declaring
it the parent of @ and b. The leaves of the forest are the
vertices of K, and the roots are the vertices of the dec-
imated complex L, see Figure 2. We define a function

Figure 2: Vertices of K are shown as square nodes, inter-
mediate vertices as circle nodes, and vertices of the final
complex L as double circle nodes.

g : Vert K — Vert L that maps each vertex u € K to the
root g(u) of the tree in which u is a leaf. The preimage
of a vertex v € L is the set of leaves g=1(v) C K of the
tree with root v. The preimages of the roots partition
the set of leaves:

Vert K =

U o),

veL

where the union is over a collection of pairwise disjoint
sets. Later, we will extend function g from vertices to
edges and triangles. This will be useful in the study of
structural connections between the surfaces K and L.

Numerical error. As mentioned above, a vertex v €
Vert L represents a subset g~1(v) C Vert K of the ver-
tices in K. It makes sense to measure the numerical
error at v by comparing v to the part of the original
surface it represents. Specifically, we define the error at
v as the sum of square distances of v from the planes
spanned by triangles in the star of g=1(v). See Figure 3,
which shows a vertex v € L and the triangles in the star
of g71(v). The preimage of v is the collection of seven
solid vertices in the right half of the figure. The star
of the preimage contains the five shaded triangles and
the ring of white triangles around them. The shaded
triangles have all their vertices in ¢=!(v) and the white
triangles have either one or two vertices in the preimage.

Let H, be the set of planes spanned by triangles in
Stg~!(v). The sum of square distances is defined for
every point z € R3, so we can think of the error measure
as a function F, : R® — R. Specific properties of this
function will be discussed in the third lecture after this
one. For now we just observe that the error function
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Figure 3: Vertex v and its star to the left and the corre-
sponding piece of K to the right. The solid vertices on
the right are preimages of v and the hollow vertices are
preimages of the neighbors of v.

for the union of two sets of planes can be computed by
inclusion-exclusion. Specifically, if H, = H, U H; then
B(e) = Ea(e)+ Ey() - Bar(a),
where E; is the error function defined by the inter-
section, Hy, = Hy, N Hy. This formula together with
a compact representation of error functions will be the
mechanism we use to compute the error at a new ver-
tex ¢. Given a set of planes there is generally a unique
point that minimizes the corresponding error function.
Instead of computing ¢ directly from a and b we first
construct H, = H, U H;, and second choose ¢ at the
minimum of the error function E. defined by H..

Bibliographic notes. The idea of using edge con-
tractions for surface simplification appears first in
Hoppe et al. [3]. They select contractions together with
other local surface modification operations in an at-
tempt to optimize a measure of distance between the
original and the decimated surface. Hoppe [2] revis-
its the idea and shows how to use a given sequence of
contractions for efficiently switching back and forth be-
tween representations on different levels of detail. The
algorithm in these notes selects contractions greedily
using the quadratic error measure as suggested by Gar-

land and Heckbert [1].

[1] M. GARLAND AND P. S. HECKBERT. Surface simplifi-
cation using quadratic error metrics. Comput. Graphics,
Proc. siGGRAPH 1997, 209-216.

H. Hoppe. Progressive meshes.
Proc. siGGRAPH 1996, 99-108.

Comput. Graphics,

H. Hoppe, T. DERoOSE, T. Ducuamp, J. McDONALD
AND W. STUTZLE. Mesh optimization. Comput. Graph-
tcs, Proc. SIGGRAPH 1993, 19-26.
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Preserving Topology

Topics: manifolds, manifolds with boundary, open books, boundary, 2-complexes.

Manifolds. Suppose K is a 2-complex that triangu-
lates a 2-manifold. Then every point # € |K| has a
neighborhood homeomorphic to an open disk. To avoid
lengthy sentences we just say the neighborhood is an
open disk. This implies that in particular the star of
every vertex u is an open disk. Strictly speaking this
statement makes sense only if we replace the star by its
underlying space, which we define as the union of sim-
plex interiors, which is the set difference between the
underlying spaces of two complexes:

U it 7
TESt u
|ClSt u]|—|CLSt u — St u|.

|Stu| =

As 1t turns out the condition on vertex stars is sufficient
to guaranteed that | K | is a 2-manifold.

Cramm 1. | K| is a 2-manifold iff [St u| ~ R? for every
vertex u € K.

Now consider the contraction of an edge ab of K.
Whether or not the contraction preserves the topologi-
cal type depends on how the links of @ and b meet. On a
2-manifold the link of each vertex is a circle. In Figure 4
to the left the two circles intersect in two points and the
contraction preserves the topological type. To the right
the circles intersect in a point and an edge, and in this
case the contraction pinches the manifold along a newly
formed edge which forms the base of a fin similar to the
one in Figure 7. The condition that distinguishes topol-
ogy preserving edge contractions from others is that the
vertex links intersect in the link of the edge.

THEOREM 2A. Let K be the triangulation of a 2-
manifold. The contraction of ab € K preserves
the topological type iff Lka N Lkb = Lk ab.

A proof of the sufficiency of the link condition will be
given in the next lecture.
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Figure 4: The edges of the link of a are solid and those
of the link of b are dashed.

Manifolds with boundary. A triangulation K of
a manifold with non-empty boundary also has vertices
whose stars are open half-disks: |Stu| ~ H%. To keep
the number of cases small we add a dummy vertex, w,
and the cone from w to each boundary circle. This idea
is illustrated in Figure 5. The boundary of | K | consists

w

Figure 5: The two holes in the manifold are filled by
adding the cone from w to the circles bounding the holes.

of £ > 1 circles triangulated by cycles C; C K. We fill
the holes by adding the cone from w to every cycle:

l

Ku(w-JG).

i=1

KY =

In K% every vertex star is an open disk except possibly
the star of w. We denote the link of a vertex u in K“ as
Lk“wu. The condition that distinguishes topology pre-
serving edge contractions from others is now the same
as for manifolds.

THEOREM 2B. Let K be the triangulation of a 2-
manifold with boundary. The contraction of ab €



K preserves the topological type iff Lk”a N Lk“b =
Lk“ ab.

The proof of this result is only mildly more complicated
than that of the weaker Theorem 2A.

Open books. To attack the problem for general 2-
complexes we need a better understanding of the dif-
ferent types of neighborhoods that are possible. We
classify stars using a new type of space. The open book
with p pages is the topological space Kz homeomorphic
to the union of p copies of H? glued along the common
boundary line. For example, the open book with one
page is the open half-disk and the open book with two
pages is the open disk. The order of a simplex 7 € K
is

0 if|Str]|~R?
1L if St~ K2, p#2,

2 otherwise.

ordr =

Figure 6 illustrates the definition with sketches of four
vertex stars. The order of an edge in a 2-complex can
only be 0 or 1, and the order of a triangle is always 0.

@ (b)

©

(d)

Figure 6: The underlying space of the vertex star in (a) is
an open disk, in (b) is an open half-disk, in (¢) is an open
book with 4 pages, and in (d) is not an open book. The
corresponding order of the vertex is 0 in (a), 1in (b), 1in

(c), and 2 in (d).

Boundary. We generalize the notion of boundary in
such a way that only triangulations of 2-manifolds have
no boundary. At the same time we use the order infor-
mation to distinguish between different types of bound-
aries. Specifically, the j-th boundary of a 2-complex K
is the collection of all simplices with order j or higher:
Bd;K = {oc€K|ordo > j}.
As an example consider the shark fin complex shown in
Figure 7. It is constructed by gluing two closed disks
along a simple path. This path is a contiguous piece
of the boundary of one disk (the fin) and it lies in the
interior of the other disk. Note that | K | is a 2-manifold
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Figure 7: The shark fin 2-complex. A few of the vertices
are high-lighted and marked with their order.

with boundary iff Bd{ K = Bdy K = (. The 2-nd bound-
ary of a 2-manifold with boundary is empty, but there
are other spaces with this property. For example, the
sphere together with its equator disk has empty 2-nd
boundary. Its 1-st boundary is a circle of edges and
vertices (the equator) whose stars are open books of 3
pages each.

2-complexes. We are now ready to study conditions
under which an edge contraction in a general 2-complex
preserves the topological type of that complex. As it
turns out there does not exist a local condition that
is sufficient and necessary, but there is a characteriz-
ing local condition for a more restrictive notion of type
preservation. Let L be the 2-complex obtained from K
by contracting an edge ab € K. A local unfolding is a
homeomorphism f : | K| — | L] that differs from the
identity only outside the star of ab, that is, f(z) = =
for all z € | K — St ab|. The condition refers to links in
K¥ = KU (w-Bd1K) and in G¥ = Bd; K U (w-Bds K).
We denote the link of a simplex 7 in K* by Lkj 7 and
the link of 7 in G* by Lk} 7.

THEOREM 2C. Let K be a 2-complex, ab an edge of
K, and L the complex obtained by contracting ab.
There is a local unfolding | K| — | L | iff

(i) Lkga N Lkyb = Lkyab and
(i) Lk¥a N Lk%b = 0.

Instead of proving Theorem 2¢, which is a bit tedious
in any case, we show that there cannot be a similar con-
dition that recognizes the existence of a general home-
omorphism |K | — |L]. The example we use is the
folding chair complex displayed in Figure 8. Before the
contraction of ab it consists of five triangles in the star
of z and four disks U, VY, Z glued to the link of 2. Ver-
tices a and b belong to the 1-st boundary, but ab does
not. It follows that w violates condition (i) of Theorem
2¢ and there is therefore no local unfolding from | K |



Figure 8: The folding chair complex. The bold edges
belong to three triangles each.

to | L|. After the contraction there is one less triangle
in the star of , U loses two triangles, and V)Y, Z are
unchanged. The contraction of ab exchanges left and
right in the asymmetry of the complex. We can find a
homeomorphism | K | — | L | that acts like a mirror and
maps U to V, V to U, Y to Z, Z to Y. The homeo-
morphism is necessarily global and to detect it we can
force any algorithm to look at every triangle of K.

Bibliographic notes. The material of this lecture is
taken from a recent paper by Dey et al. [1]. It stud-
ies edge contraction in general simplicial complexes and
proves results for 2- and for 3-complexes. The order of
a simplex has already been defined in 1960 by Whittle-
sey [4], although in different words and notation. He
uses the concept to study the topological classification
of 2-complexes. O’Dunlaing et al. [2] use his results
to show that deciding whether or not two 2-complexes
have the same topological type is just as hard as de-
ciding whether or not two graphs are isomorphic. No
polynomial time algorithm is known, but it is also not
known whether the graph isomorphism problem is NP-
complete [3].

[1] T. K. DEY, H. EDELSBRUNNER, S. GUHA AND D. V.
NEKHAYEV. Topology preserving edge contraction. Re-
port rgi-tech-98-018, Raindrop Geomagic, Research Tri-
angle Park, North Carolina, 1998.

[2] C. O’DuNLAING, C. WATT AND D. WILKINS. Homeo-
morphism of 2-complexes is equivalent to graph isomor-
phism. Rept. TCDMATH 98-04, Math. Dept., Trinity
College, Ireland, 1998.

[3] M. R. GAREY AND D. S. JouNsoN. Computers and In-
tractibility. A Guide to the Theory of NP-Completeness.
Freeman, San Francisco, California, 1979.

[4] E. F. WHITTLESEY. Finite surfaces: a study of finite
2-complexes. Math. Mag. 34 (1960), 11-22 and 67-80.
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Error Measure

Topics: signed distance, fundamental quadric, error, eigenvalues and eigenvectors.

Signed distance. The surface simplification algo-
rithm measures the error of an edge contraction as the
sum of square distances of a point from a collection of
planes. A plane with unit normal vector v; and offset §;
contains all points p with orthogonal projection é; - v;:

_6Z}a

see Figure 1. The signed distance of a point z € R3
from the plane h; is

hi = {peR®|p" v =

Figure 1: We use the unit normal vector to define the
signed distance from h; so v; points from the negative to
the positive side.

dz,h)) = (x—p)! v
= 2" v+
= x" v,
where x¥ = (27,1) and v;7 = (v,7,6;). In words,

the signed distance in R3 can be expressed as a scalar
product in R* as illustrated in Figure 2.

Fundamental quadric. The sum of square distances
of a point z from a collection of planes H is

Ep(e) = Y d*(x,hi)
= Y & v (v x)
= xT-(ZvZ-~viT)~x,
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<_hj Vi/éj X4=1

0

Figure 2: The 3-dimensional space 4 = 1 is represented
by the horizontal line. It contains point x and plane h;,
which in the 1-dimensional representation are both points.

where

A
Q = DY vivi" = g
D

QW
~ o Q
~~QU

is a symmetric 4-by-4 matrix referred to as the fun-
damental quadric of the map Eyg : B> — R. The
sum of square distances is non-negative, so Q is pos-
itive semi-definite. The error of an edge contraction
1s obtained from an error function like £ = Ep. Let
x? = (z1, 79,23, 1) and note that

Ex) = x' Q- -x
= Azl 4+ Bzl + Hal
+ 2(Bxiz2 + Caxya3 + Fagrs)
+ 2(Dz1 + Gag + Iz3)
+ J.

We see that E is a quadratic map that is non-negative
and unbounded. TIts graph can only be an elliptic
paraboloid as illustrated in Figure 3. In other words,
the preimage of a constant error value ¢, E7'(e), is
an ellipsoid. Degenerate ellipsoids are possible, such as
cylinders with elliptic cross-sections and pairs of planes.

Error. The error of the edge contraction ab — ¢ is
the minimum value of E(x) = Eg(x) over all z €



Figure 3: lllustration of £ = Ey in one lower dimension.
The cross-section at a fixed height ¢ is an ellipse.

R3, where H is the set of planes spanned by trian-
gles in the preimage of the star of the new vertex c.
The geometric location of ¢ is the point z that min-
imizes E. In the non-degenerate case this point is
unique and can be computed by setting the gradient
VE = (0FE/0x1,0E [0x2, 0E[Ox3) to zero. The deriva-
tive with respect to z; is

OF oxT T
8xi(x) T fxy Qox4x-Q

= QZT X+ XT . Qi:
where QY is the i-th row of Q. The point ¢ € R3 that

minimizes E(z) is the solution to the system of three
linear equations @) - ¢ = ¢, where

ox

A B C D
Q=| B E F andg=1{ G
cC F H 1

Hence ¢ = Q! - ¢, and the sum of square distances
of ¢ from the planes in H is E(c¢). The equation for
¢ sheds light on the possible degeneracies. The non-
degenerate case corresponds to rank @ = 3, the case of
a cylinder corresponds to rank ) = 2, and the case of
two parallel planes corresponds to rank @ = 1. Rank
0 is not possible because ) is the non-empty sum of
products of unit vectors.

Eigenvalues and eigenvectors. We may translate
the planes by —c so E attains its minimum at the origin.
In this case D = G =T = 0 and J = E(0). The shape of
the ellipsoid E~!(¢) can be described by the eigenvalues
and eigenvectors of ). By definition, the eigenvectors
are non-zero vectors x that satisfy @ -x = A - x. The
value of A is the corresponding eigenvalue. The eigen-
values are the roots of the characteristic polynomial of

@, which is

A=A B c
det B E-) r
c r H -

P(\) =
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= detQ— A dtrQ+ 22 trQ — )3,

where det @) is the determinant, dtr ) is the sum of co-
factors of the three diagonal elements, and tr @ is the
trace of . For symmetric positive semi-definite matri-
ces the characteristic polynomial has three non-negative
roots, A7 > Az > Az > 0. Once we have an eigen-
value we can compute the corresponding eigenvector
to span the nullspace of the underconstrained system
(@—=X)-z=0.

What is the geometric meaning of eigenvectors and
eigenvalues? For symmetric matrices the eigenvectors
are pairwise orthogonal and can be viewed as defining
another coordinate system for R3. The three symmetry
planes of the ellipsoid E~1(€) coincide with the coordi-
nate planes of this new system, see Figure 4. We can
write the error function as

Figure 4: The ellipsoid is indicated by drawing the elliptic
cross-sections along the three symmetry planes spanned
by the eigenvectors.

l
™

E(x) T.

The preimage for a fixed error € > J is the ellipsoid

with axes of half-lengths /(e — J)/A; for i = 1,2, 3.

Bibliographic notes. The idea of using the sum of
square distances from face planes for surface simplifica-
tion is due to Garland and Heckbert [1]. Eigenvalues
and eigenvectors of matrices are topics in linear alge-
bra. A very readable introductory text is the book by
Gilbert Strang [2].

[1] M. GARLAND AND P. S. HECKBERT. Surface simplifica-
tion using quadratic error metrics. Computer Graphics,
Proc. siGGRAPH 1997, 209-216.

[2] G. STRANG. Introduction to Linear Algebra. Wellesley-
Cambridge Press, Wellesley, Massachusetts, 1993.



