2% 8. Delaunay triangulations

“If ab is an edge and abc, abd are triangles,
then the angle at c exceeds the angle at d
if d lies outside the circle through a, b, ¢.”

8 Delaunay triangulations

The convex hull of a finite point set gives a specific meanirg to the region spanned or occupied by the set. A
decomposition into triangles lends structure to this region, which is expressed by how the triangles are connected via
shared edges. Even if only edges connecting points of the set are considered, the zumber of possible decompositions
is in general exponential in the number of points. Among these decompositions there is an arguably most natural

one introduced in 1934 by Boris Delaunay, also Delone [2].

Triangulating a point set. Given a finite set S C R?, we consider decompositions of conv S into triangles using
the points in S as vertices. Formally, a (geometric) triangulation of S is a simpiicial complex K so that K} = conv S
and K(©) = S. Later, we will relax the second condition and admit simplicial complexes with vertex sets different
from S. Note that K(!) is a plane graph with n = card S vertices. If h of the vertices lie on bd conv S, we need
h — 3 additional edges to obtain a maximally connected planar graph. Hence, K has e = 3n — h — 3 edges and
e—n+1=2n— h— 2 triangles. '

Instead of a detailed discussion of algorithms that construct a triangulation of S, we refer back to section 5
where convex hull algorithms are studied. Indeed, both the incremental algorithm and the divide-and-conquer
algorithm effectively triangulate S. Whenever common tangents are sought, the intermediate edges constructed
in the process need to be retained, see figure 5.3. Both algorithms take time O(n) after sorting, so we have two
O(nlogn) time algorithms for constructing some arbitrary triangulation of S.

Nerves. We use Voronoi diagrams and certain set systems to introduce the triangulation of S that we consider
most natural. The systems can be defined for any arbitrary collection of sets. Let A be a collection that is finite
and otherwise arbitrary. The nerve of A is

N=NA)={XCA|[)X #0}.

For example, N = 24 if the sets in A have a non-empty common intersection. Clearly N is finite because A is
finite and /' C 24. By convention, (10 # @ so @ € N. Furthermore, if Y C X then ()X C Y, so if X € A then
Y € N. It follows that AV is an abstract simplicial complex. Nerves have been introduced as a tool in topology by
Alexandrov, also Alexandroff [1]. By Thm. 6.1, /' has a geometric realization if the dimension of the containing
space is sufficiently high. We will consider nerves that can be realized in R2.

Delaunay triangulations. Let S be a finite set of points in general position in R?, and let Vs = {V, | p € S} be
the collection of Voronoi cells. By assumption of general position, at most three cells have a non-empty common

Figure 8.1: The Delaunay triangulation of the 12 points with Voronoi diagram shown in figure 7.1.

intersection, so the nerve of Vs, N' = N(V5s), is a 2-dimensional abstract simplicial complex. The Delaunay
triangulation of S is the geometric realization, D = Ds of .\ defined by the injective map ¢ : Vs — R? with
©(Vp) = p. In other words, whenever two Voronoi cells share an edge, D contains the edge connecting the points
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generating the two cells, and whenever three Voronoi cells share a vertex, D contains the triangle spanned by
the three corresponding points, see figure 8.1. We should be careful and make sure ¢ really defines a geometric
realization of . We will see in lemma B that a triangle in D contains no vertices, other than its own. So it suffices
to show that no two vertex-disjoint edges intersect.

LEMMA A. If pg,rs € D and {p,q} N {r,s} =0 then pgNrs = 0.

Proo¥. Observe that pg € D iiaplies there is a circle, Cpq, through p and ¢ so that all other points lie outside
Cpq- Similarly, there is a circle C, through r and s so that ail other points iie outside Cy,. pq is an edge whose
endpoints lie on Cp, and outside Cy,, and rs is an edge whose endpoints lie on C;, and outside Cp4. Because pgNrs
is a point inside both, Cpq and Cy, must cross in at least four points,“see figure 8.2. This contradicts the fact that

v
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Figure 8.2: Two vertex-disjoint edges of the Delaunay triangulation have a non-empty intersection only if two circles
cross in 4 or more points, which is impossible.

L8]

two different circles intersect in at most two points.

Empty circle criterion. The Delaunay triangulation of S is not necessarily defined if S contains 4 or more
cocircular points, so we assume throughout that this is not the case. A most important property of Delaunay
triangulations is the following.

LEMMA B. ¢ = conv T is a simplex in D iff there is a disk D with SNbd D =T and SNintD = 0.

PROOF. o belongs to D iff Vr = {V, | p € T'} belongs to N(Vs). Take a point z in the interior of (\Vr. All
points in T are equally far from z, say at distance §, and all points in § — T are further from z than 6. Define
D = {y € R? | |yz| < 6} and observe that SNbd D = T and SNint D = §. To see the implication in the other
direction, notice that a disk D with the above properties implies that its center, z, belongs to the interior of (V7.

Lemma B is often used to define the Delaunay triangulation of a set S. It certainly implies that D = Dy .is unique
if S is in general position. For point sets not in general position, there are several ways to define a complex similar
to the Delaunay triangulation, and the choice will depend on the application. If, for example, ¥ > 3 Voronoi
cells share a common vertex, then the nerve of Vs contains all subsets of the k corresponding points as abstract
simplices, and the ones of dimension higher than two cannot be realized in R2. One possibility is to give up on
simpliciality and to replace these simplices by the k-gon spanned by the k cocircular points generating the cells.
Another is to give up on uniqueness and to retain k — 2 triangles that decompose the k-gon. Such triangles are
automatically generated if the general position assumption is simulated by an infinitesimal perturbation (3, 4].

Locality lemma. Let K be an arbitrary geometric triangulation of S. We call an edge pg € K locally delone if it
belongs to only one triangle or it belongs to two triangles, pgr. pgs € K, and there is a circle through p and ¢ so
that r and s lie outside the circle. If pg € D = Dgs then pq is locally delone (lemma B, but it is possible that an
edge of K is locally delone and does not belong to D, see figure 8 3. A useful property is that if all edges of K are
locally delone, then K is necessarily the Delaunay triangulatioa.

LEMMA C. (Delaunay, 1934). If every edge of a triangulation &' . 5 is Ioéally delone then £ = Ds.
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Figure 8.3: pq is locally delone because r and = lie outside a circle through rand g. ltis still possible to have two points
inside the circle that prevent pg from being an sdge of the Delaunay trianguiation.

PROOF. We show that if pgr is a triangle and s € § — {p.¢.7} is a vertex of K then s lies outside the circle 7

~pyr
through p, ¢, r. It follow that all triangles of K satisfy the condition of lemma B and thus belong to the Delaunay
triangulation of S.

Take a point z € pgr and consider the triangles pgr = 7, 7,..., 7. that intersect the open line segment from z
to s in this sequence. Since z can be chosen freely within pqr, we can assume that zs contains no vertex, so the
sequence of 7; is unambiguously defined. By construction, s and 1., lie on the same side of the line separating 7;
and 744, for 1 <7 < k— 1. This line is the radical axis of the disks D; and D;,; bounded by the circles through
the vertices of 7; and 7;,;. Because the common edge of 7; and 74, is locally delone, we have '

7I'Di(‘g) > TDipa (s)

Transitivity implies mp, (s) > 7D, (s). Since s is a vertex of 7, we also have TD,(s) = 0. So 7p,(s) > 0, which

implies s & D; and therefore s lies outside Cogr-

Homework exercises

8.1 Let A and B be two disjoint finite sets in R2. Prove that if a € A and b € B are such that lab| < |zy| for all
z € A and y € B then ab-is an edge of the Delaunay triangulation of A U B.

8.2 Let S be a finite set in R2, let G.= (S, (‘3)) be the complete graph with vertex set S, and define the length of
an edge zy € (‘g) equal to the Euclidean distance between z and y. Prove that the minimum spanning tree
of G is a subgraph of D), the 1-skeleton of the Delaunay triangulation of S.
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