Chapter 4

Three-dimensional
Delaunay triangulations

Three-dimensional triangulations are sometimes called tetrahedralizatidasnBgtetrahedral-
izations are not quite asfective as planar Delaunay triangulations at producing elements of good
guality, but they are nearly as popular in the mesh generation literatureiaswbrelimensional
cousins. Many properties of Delaunay triangulations in the plane gerestalizigher dimen-
sions, but many of the optimality properties do not. Notably, Delaunay tetralieations do not
maximize the minimum angle (whether plane angle or dihedral angle). Figuredidsia three-
dimensional counterexample. The hexahedron at the top is the convex itsifive vertices. The
Delaunay triangulation of those vertices, to the left, includes a thin tetrah&dmvn as aliver
or kite, whose vertices are nearly coplanar and whose dihedral angle® @bibrarily close to
0° and 180. A triangulation of the same vertices that is not Delaunay, at lower rightbétier
quality.

This chapter surveys Delaunay triangulations and constrained Deldtiaagulations in
three—and occasionally higher—dimensions. Constrained Delaunay ulgions generalize
uneasily to three dimensions, because there are polyhedra that do/e@ryatetrahedralization

A.

Figure 4.1: This hexahedron has two tetrahedralizations. The Delaunalygdralization at left
includes an arbitrarily thin sliver tetrahedron. The non-Delaunay tedrahization at right con-
sists of two nicely shaped tetrahedra.

83

84

Figure 4.2: At center, the Delaunay tetrahedralization of the points at lefigl, the circumball
of one Delaunay tetrahedron with two cross-sections showing it is empty.

4.1 Triangulations of a point set inRY

Definition 2.1 in Section 2.1 defines a triangulation of a set of points to be a sinhglicigolex
whose vertices are the points and whose union is the convex hull of this p@iith no change, the
definition holds in any finite dimensiah Figures 4.1-4.4 illustrate triangulations of point sets in
three dimensions. Every finite point setifl has a triangulation; for example, the lexicographic
triangulation of Section 2.1 also generalizes to higher dimensions with noe€hang

Let S be a set oh points inRY. Recall from Section 2.1 that if all the points$are collinear,
they have one triangulation havimgvertices andh — 1 collinear edges connecting them. This is
true regardless af; the triangulation is one-dimensional, although it is embeddékfinMore
generally, if the #ine hull of S is k-dimensional, then every triangulation $fis ak-dimensional
triangulation embedded iRY: the simplicial complex has at least okaimplex but no K + 1)-
simplex.

The complexityof a triangulation is its total number of simplices of all dimensions. Whereas
a planar triangulation of points hasO(n) triangles and edges, a surprising property of higher-
dimensional triangulations is that they can have superlinear complexity. e~gRrshows a tri-
angulation ofn points that ha®(n®) edges and tetrahedra. Every vertex lies on one of two
non-intersecting lines, and there is one tetrahedron for each pairimgesfgee on one line and an
edge on the other. This is tlomly triangulation of these points, and it is Delaunay. In general, a
triangulation ofn vertices inR® has at mostrf — 3n — 2)/2 tetrahedra, at mos€ — 3n triangles,
and at mostif? — n)/2 edges. Am-vertex triangulation irRY can have a maximum @(n'%/21)
d-simplices.

4.2 The Delaunay triangulation inR¢

Delaunay triangulations generalize easily to higher dimensionssS lbet a finite set of points in
RY, ford > 1. Leto be ak-simplex (for anyk < d) whose vertices are i8. The simplexo

is Delaunayif there exists an open circumball of that contains no point i5. Clearly, every
face of a Delaunay simplex is Delaunay too. The simptes strongly Delaunayf there exists

85

= r/ﬁ
\\\" Q‘\\\&!ﬁt‘{\l 7

"
\\\3¢/
= \\V\\‘

Figure 4.3: Three renderings of a Delaunay tetrahedralization.

a closed circumball of- that contains no point i§ except the vertices ef. Every point inS is
trivially a strongly Delaunay vertex.

Definition 4.1 (Delaunay triangulation)Let S be a finite point set iikY, and letk be the dimen-
sion of its dfine hull. ADelaunay triangulatiorDel S of S is a triangulation ofs in which every
k-simplex is Delaunay—and therefore, every simplex is Delaunay.

Figure 4.2 depicts a Delaunay tetrahedralization and the empty circumbak affds tetra-
hedra. Figure 4.3 depicts a more typical Delaunay tetrahedralization, witplegity linear in
the number of vertices.

The parabolic lifting map generalizes to higher dimensions too. It maps each pce=
(P1, P2, ., Pa) € R¥to itslifted companionthe pointp™ = (p1, Pz, ..., Pa, P5 + P35 + -+~ + P3)
in R4*1. Consider thed + 1)-dimensional convex hull of the lifted pointS;” = {v* : v € S}.
Projecting the downward-facing faces of c@wto RY yields a polyhedral complex called the
Delaunay subdivisioof S. If S is generig its Delaunay subdivision is simplicial arfsl has
exactly one Delaunay triangulation.

Definition 4.2 (generic) Let S be a point set irRY. Letk be the dimension of theffine hull of
S. The sefS is genericif no k + 2 points inS lie on the boundary of a singk&ball.

If Sif not generic, its Delaunay subdivision may have non-simplicial faces]IrEigure 2.3.

In that caseS has multiple Delaunay triangulations, whichfdr according to how the non-
simplicial faces are triangulated.

Whereas each non-simplicial face in a two-dimensional Delaunay suiogivdian be trian-
gulated independently, in higher dimensions the triangulations are notaindgpendent. Fig-
ure 4.4 illustrates a set of twelve pointskii whose Delaunay subdivision includes two cubic
cells that share a square 2-face. The square face can be dividégantidangles in two dierent
ways, and each cube can be divided into five or six tetrahedra in $&wys, but they are not
independent: the triangulation of the square face constrains how bath aubtriangulated.

A least-vertex triangulatioprovides one way to safely subdivide a polyhedral complex into
a simplicial complex. To construct it, triangulate the 2-faces throughdtfexzes in order of
increasing dimension. To triangulate a non-simplikigdce f, subdivide it intok-simplices of the
form conv (U Q), wherev s the lexicographically minimum vertex ¢f andg varies over thel(—
1)-simplices orf’s subdivided boundary that do not containThe choice of the lexicographically

86

Figure 4.4. A Delaunay subdivision comprising two cubic cells and theistathe least-vertex
Delaunay triangulation subdivides each 2-face into triangles adjoiningtleésfiexicographically
minimum vertex, and likewise subdivides each 3-face into tetrahedra.

minimum vertex of each face ensures that the face triangulations are colmpatibeach other.
The least-vertex triangulation is consistent with the weight perturbatiomsided in Section 2.9.

Many properties of planar Delaunay triangulations discussed in Chagere?alize to higher
dimensions. A few of them are summarized below. Proofs are omitted, blatofddbem is a
straightforward extension of the corresponding proof for two dimesion

Recall that afacetof a polyhedral complex is a(- 1)-face, and a facet of a triangulation
is a d — 1)-simplex. The forthcoming Delaunay Lemma provides an alternative defirofia
Delaunay triangulation: a triangulation of a point set in which every facktcially Delaunay.
A facet f in a triangulationJ is said to bdocally Delaunayif it is a face of fewer than twal-
simplices in7, or it is a face of exactly twal-simplicesr; andr, and it has an open circumball
that contains no vertex af, nor,. Equivalently, the open circumball ef contains no vertex of
72. Equivalently, the open circumball @ contains no vertex of;.

Lemma 4.1(Delaunay Lemma)LetT be a triangulation of a finite, d-dimensional set S of points
in RY. The following three statements are equivalent.

e Every d-simplex if¥ is Delaunay (i.eJ is Delaunay).
e Every facet il is Delaunay.
e Every facet ir is locally Delaunay. O

As in the plane, a generic point set has exactly one Delaunay triangulatimposed of every
strongly Delaunay simplex. The following three propositions have esserttiallyame proofs as
in Section 2.7.

Proposition 4.2. Let o be a strongly Delaunay simplex, and febe a Delaunay simplex. Then
o N1 is either empty or a shared face of batrand .

Proposition 4.3. Every Delaunay triangulation of a point set contains every strongly Dedgiu
simplex.

Theorem 4.4. A generic point set has exactly one Delaunay triangulation.

4.3 The optimality of the Delaunay triangulation in R

Some optimality properties of Delaunay triangulations hold in any dimension.i@ortee use
of triangulations for piecewise linear interpolation of a quadratic multivariatetfon. If the

87

function is isotropic—of the forma||p||2 + (&, p) + 3 for p € R%—then the Delaunay triangulation
minimizes the interpolation error measured in thenorm for everyq > 1, compared with all
other triangulations of the same points. (If the function is not isotropic, bsifgarabolic rather
than hyperbolic, then the optimal triangulation is a weighted Delaunay triangulatighich the
function determines the vertex heights.)

Delaunay triangulations also minimize the radius of the largest min-containmiéeof treeir
simplices (recall Definition 1.20). This result implies a third optimality result, aléated to
multivariate piecewise linear interpolation. Suppose one must choose aitetiag to interpolate
an unknown function, and one wishes to minimize the largest pointwise eittog dtomain. After
one chooses the triangulation, an adversary will choose the wordblgossooth function for the
triangulation to interpolate, subject to a fixed upper bound on the absolw&tare (i.e. second
directional derivative) of the function anywhere in the domain. The Delgdriangulation is the
optimal choice.

To better understand these three optimality properties, consider multivaigatsise linear
interpolation on a triangulatio of a point setS. LetT* = {o* : o € T} be the triangulation
lifted by the parabolic lifting map7™* is a simplicial complex embeddeditf*1. Think of T+ as
inducing a continuous piecewise linear functidi(p) that maps each point € convS to a real
value.

How well doesT* approximate the paraboloid? Letp) = T+(p) — |Ipl*> be the error in
the interpolated functiofi* as an approximation of the paraboldig[?>. At each vertex € S,
e(v) = 0. Becausép||? is convex, the error satisfiegp) > 0 for all p € convS.

Proposition 4.5. At every point pe convS, every Delaunay triangulatiot of S minimizes
T*(p), and therefore minimizes the interpolation errgpg among all triangulations of S . Hence,
every Delaunay triangulation of S minimizg, , for every Lebesgue nornyLand every other
norm monotonic in e.

Proor. If T is Delaunay, thefi™* is the set of faces of the underside of the convex hull ®nef
the lifted vertices (or a subdivision of those faces if some of them are@metisial). No simpli-
cial complex inR%1 whose vertices are all i6* can pass through any point below c@w. o

Proposition 4.6. Let 0 and r be the circumcenter and circumradius of a d-simpieket qnc and
rmc be the center and radius of the min-containment bati-of.et q be the point i nearest o.
Then g = g and . = r? — d(o, g).

Proor. Lett be the face ofr whose relative interior contairgs The facer is not a vertex, because
the vertices ofr ared™’s furthest points frono. Becausej is the point inr nearesb, and because
gis in the relative interior of, the line segmentqis orthogonal tar. (This is true even it = o,
in which caseo — q is the zero vector.) This fact, plus the fact tloas equidistant from all the
vertices ofr, implies thatq is equidistant from all the vertices of(as Figure 4.5 demonstrates).
Letr be the distance betweenand any vertex of. As g € 7, there is no containment ball of
(or o) with radius less than because cannot move in any direction without moving away from
some vertex of. Thereforeq andr are the center and radius of the min-containment badl of
By the following reasoningy has the same min-containment balkadf q = o, this conclu-
sion is immediate. Otherwise, latbe the hyperplane throughorthogonal toog. Observe that

88

Figure 4.5: Left: withino, the errore(p) is maximized at the point nearest the circumcenter.of
Right: top view ofo, its circumdisk, and its min-containment disk.

7 c h. No point in¢o is on the same side d¢f aso: if there were such a poiw, there would
be a point ino- (betweerw andq) closer too thang, contradicting the fact thaj is closest. The
hyperplaneh cuts the closed circumball ef into two pieces, and the piece that includess
included in the min-containment ball ef Therefore,q andr are the center and radius of the
min-containment ball ofr.

Let v be any vertex ofr. Pythagoras’ Theorem on the trianglgv (see Figure 4.5) yields
r2.=r?—d(o,q)? O
mc > .

Proposition 4.7. Every Delaunay triangulation of S minimizes the largest min-containmeint ba
compared with all other triangulations of S..

Proor. Over any singlal-simplexo, there is an explicit expression fetp). Recall from the
proof of the Lifting Lemma (Lemma 2.1) that the hyperpldnethat includesr* is defined by
the functionh,(p) = 2(0, p) — ||0|? + r2, whereo andr are the circumcenter and circumradius of
o andp € RY varies freely. Hence, for app € o,

ep) = T(p)-lplP
= hy(p) - lIpl?
= 20, p) - llol* + r? - |Ipl?
= r2—d(o, p)>.

Figure 4.5 (left) illustrates the functiors-(p) and||p||> over a triangler. The errore(p) is
the vertical distance between the two functions. At which ppint o is e(p) largest? At the
point nearest the circumcenter becausel(o, p)? is smallest there. (The error is maximized at
p = oif oisino; Figure 4.5 gives an example where it is not.) bgt andrmy¢ be the center and
radius of the min-containment ball of, respectively. By Proposition 4.6, the pointdnnearest
0 iS Omc, aNd&(Omc) = r? — d(0, Ome)? = I

It follows that the square of the min-containment radiusrofs r2, = maxse. &(p), and
thus maxcconvs &) is the squared radius of the largest min-containment ball of the entire tri-
angulationT. By Proposition 4.5, the Delaunay triangulation minimizes this quantity among all
triangulations ofS. O

89

The optimality of the Delaunay triangulation for controlling the largest min-contairt ra-
dius dovetails nicely with an error bound for piecewise linear interpolatioivett by Waldron.
Let F(c) be the space of scalar functions defined over ®fivat areC!-continuous and whose
absolute curvature nowhere exceedB other words, for every € F(c), every pointp € convs,
and every unit direction vectat, the magnitude of the second directional derivati{/gp) is at
mostc. This is a common starting point for analyses of piecewise linear interpolation e

Let f be a function inF(c). Let o C convS be a simplex (of any dimensionality) with
min-containment radiusyc. Let h, be a linear function that interpolatdsat the vertices ofr.
Waldron shows that for alp € o, the absolute errde(p)| = |nh,(p) — f(p)| is at mostcr?,./2.
Furthermore, this bound is sharp: for every simplewith min-containment radiusy, there is
a functionf € J(c) and a pointp € o such thate(p)| = cr?,./2. That function isf (p) = cl|pl[%/2,
as illustrated in Figure 4.5, and that poinfis= Onc.

Proposition 4.8. Every Delaunay triangulatioff of S minimizesnaxtcg(c) MaXpeconvs |7 (P) —
f(p)l, the worst-case pointwise interpolation error, among all triangulations .of S

Proor. Per Waldron, for any triangulatiofi, maxses(c) MaXpeconvs [T7(p) — f(p)l = crrznax/Z,
wherernax is the largest min-containment radius among all the simplic8s iFhe result follows
immediately from Proposition 4.7. O

One of the reasons for the longstanding popularity of Delaunay triangutatgothat, as
Propositions 4.5 and 4.8 show, the Delaunay triangulation is an optimal pieckmesr inter-
polating surface. Of course(p) is not the only criterion for the merit of a triangulation used
for interpolation. Many applications require that the interpolant approxintheteradient, i.e.,
VT*(p) must approximaté&’ f(p) well. For the goal of approximating f(p) in three or more
dimensions, the Delaunay triangulation is sometimes far from optimal even folesiumztions
like the paraboloidf (p) = ||p||%. This is why eliminating slivers is a crucial problem in Delaunay
mesh generation.

4.4 Bistellar flips and the flip algorithm

The flip algorithm described in Section 2.5 extends to three or more dimensignsfbrtunately,
it does not always produce a Delaunay triangulation. The naturatgleraions of edge flips are
bistellar flips operations that replace one set of simplices with another set filling the sdumaee:
Figure 4.6 illustrates the bistellar flips in one, two, and three dimensions. Térdimensional
analogs of edge flips are call@e3 flipsand3-2 flips The names specify the numbers of tetrahedra
deleted and created, respectively.

The upper half of the figure depicts basic bistellar flips, which retriangthateonvex hull of
d + 2 vertices inRY by replacing a collection df d-simplices withd + 2 — k differentd-simplices.
In three dimensions, there are four basic flips: 1-4, 2-3, 3-2, andi4d 1-4 flip inserts a vertex,
and the 4-1 flip deletes one.

The lower half of the figure depicts extended bistellar flips, in which a la¥iensional
basic flip transforms higher-dimensional simplices, possibly many of thenexaonple, consider
bisecting an edge of a tetrahedralization, as illustrated at the lower righe &ftire. In essence,
this operation is a one-dimensional 1-2 flip, replacing one edge with twoeRy tetrahedron

90

edge subdivision

o——>0

PpwaTE A Szb o2

>0

= JL Llbidore Oy ‘4

Figure 4.6: Basic bistellar flips in one, two, and three dimensions appeeae #imline. Extended
bistellar flips appear below the line. White arrows connect extended flipe towiter-dimensional

flips they are based on. The 2-2 flip at bottom left typically involves two eapl&riangular faces
on the boundary of a domain, whereas the 4-4 flip occurs when thesponding faces are in a
domain interior. Edge subdivisions and their inverses can also occudomain boundary, as at
bottom right, or in a domain interior.

N B
B i W S e T

Figure 4.7: If the convex hull of four points iR? is a tetrahedron, the facets on its underside
determine one planar triangulation, and the facets on its upper side determthera

that includes the subdivided edge is subdivided into two tetrahedra, eamdithber of tetrahedra
that share the edge can be arbitrarily large. Therefore, some extdipdechn delete and create
arbitrarily manyd-simplices.

An intuitive way to understand the basic bistellar flip&ihis through the faces of a simplex
in R™1 as illustrated in Figure 4.7. L&V be a set ofd + 2 points inRY, and letW* be the
same points lifted by the parabolic lifting map®§+1. Call the @ + 1)th coordinate axis (along
which the points are lifted) theertical axis Assume the points iV are not cospherical. Then
the points inW* are not cohyperplanar, and colw is a d + 1)-simplex—call it the/V/-simplex
Each facet of th&V-simplex can be placed in one of three classes: vertical (parallel to thealer
axis), lower (facing the negative end of the vertical axis), or uppesérthat would get wet if
rain were falling).

The W-simplex suggests two fllerent triangulations of the region cov. the Delaunay
triangulation by projecting the lower facets of caM/ to RY, and a non-Delaunay triangulation
by projecting the upper facets. (If the points\M* are cohyperplanaiV has two Delaunay
triangulations.) The act of replacing one such triangulation with the other istellar flip. If
the W-simplex has no vertical facet, the flip is basic. These are the only two wayiangulate
convW such that all the vertices are W. One of the two triangulations might omit a vertex of

91

W—uwitness the 3-1 flip, which deletes a vertex.

An extended bistellar flip ifRY is built on aj-dimensional basic flip as follows. Consider a
basic flip that replaces a s&p of k j-simplices with a sef¢ of j +2—k j-simplices. Let thgoin
7 x ¢ of two disjoint simplicesr andZ be the simplex conwr(U ¢) having all the vertices of and
£, and let thgoin of two setsT andZ of simplices be the set of simplicés«/ : T € T and/ € Z}.
Let Z be a set ofd — j — 1)-simplices such that every memberTj = Z is a nondegenerate
d-simplex andlp * Z contains every-simplex inT with a face inTp. If such aZ exists, the act
of replacing the simplice$p, = Z with the simplicesc « Z is an extended flip. For example, in the
edge bisection illustrated at the lower right of Figure 4.§,contains just the bisected edde;
contains the two edges the bisection yields, Zrmdntains one edge for each bisected tetrahedron.

The flip algorithm requires a solution to the following problem. A triangulafidmas a facet
f that is not locally Delaunay. What is the appropriate flip to elimingt®e Let W be the set
containing thed vertices off and the two additional vertices of the twlesimplices having for
a face. The fact that is not locally Delaunay implies thdt" lies on the upper surface of the
W-simplex conwV*. The upper facets of th&/-simplex indicate whicld-simplices the flip algo-
rithm should delete fronT (including the two adjoining’), and the lower facets indicate which
d-simplices should replace them. The procedune iq Figure 4.8 identifies these tetrahedra for
d = 3. If the W-simplex has vertical facetspir performs an extended flip.

The dificulty is that the simplices to be deleted might not all b&inFigure 4.9 illustrates
circumstances where the flip algorithm wishes to perform a flip, but carideft, the shaded
triangle is not locally Delaunay. The right flip to remove it is a 3-2 flip, but tigifl possible
only if the third tetrahedron is present. If four or more tetrahedra sharédhd edge, the flip
is blocked, at least until another flip creates the missing tetrahedron. iptadgbrithm can get
stuck in a configuration whemverylocally non-Delaunay triangle’s removal is blocked, and the
algorithm cannot make further progress toward the Delaunay triangulalibis is not a rare
occurrence in practice.

If the flip algorithm is asked to computengeightedDelaunay triangulation, it must sometimes
perform a flip that deletes a vertex, such as the 4-1 flip illustrated at rigkigisme 4.9. Such a
flip is possible only if all the simplices the flip is meant to delete are present. Extbe jplane,
there are circumstances where every desired 3-1 flip is blocked angtha>irithm is stuck.

Extended flips are even more delicate; they require not onlyTthat Z C T, but also that
Tp = Z containseverytetrahedron irf that has a face ifp.

Whether it succeeds or gets stuck, the running time of the flip algorithd{ris9/2)), by
the same reasoning explained in Section 2.5: a flip can be modeled as theghdhgfa @ +
1)-simplex to the underside of the lifted triangulation, and a triangulatidk®it has at most
O(n'*19/2)) simplices.

One of the most important open problems in combinatorial geometry asks whiegfép
graphis connected. For a specified point set, the flip graph has one nodeefyrteangulation
of those points. Two nodes are connected by an edge if one triangulatidredransformed into
the other by a single bistellar flip, excluding those flips that create or deletgtexy For every
planar point set, its flip graph is connected—in other words, any triangnlafithe points can
be transformed into any other triangulation of the same points by a sequieedgeoflips. One
way to see this is to recall that Proposition 2.5 states that every triangulationecipped to
the Delaunay triangulation. However, there exist point sets in five or morengions whose flip

92

Fuie(T, uvw)

1. X < ADIACENT(U, V, W)

2. Y < ADIACENT(W, V, U)

3. Tp <« {wvuyuvwy {delete tetrahedravvuyanduvwx}
4, Tc <0

5. V0

6. For @ b,c) « (u,v,w), (v,w,u), and (v, u, V)

7. @ « OrienT3D(a, b, X, Y)

8. Ifa>0

9. Tp « TpU{abxy {delete tetrahedroabxy}
10. else ifa < 0

11. Tc « Tcu{abyx {create tetrahedroabyx}
12. elseV « V U {c} { abxyis degenerate anglis not part of the basic flip }

{ perform a flip that replace$p with T¢ }
13. 1fVv=0 {basicflip: 2-3 flip or 3-2 flip or 4-1 flip }
{ note: if any simplex inTp is absent fronT, the flip is blocked }
14. For each € Tp

15. Call DeLETETETRAHEDRON(T)
16. For each € T
17. Call Aopb TETRAHEDRON(T)

18. else {extended flip: 2-2 flip or 4-4 flip or 3-1 flip or 6-2 flip or edge ge}
19. j<—3-1V|

20. Remove the vertices M from every simplex infp andTc¢, yielding j-simplices
21. o« aj-simplexinTp
22. For eachd — j — 1)-simplex{ such thatr = £ is a tetrahedron iff
23. For eachr € Tp
{ note: if T = ¢ is absent fron¥, the flip is blocked }
24, Call DeLETETETRAHEDRON(T * ()
25. For each € T¢
26. Call Aop TETRAHEDRON(T * ()

Figure 4.8: Algorithm for performing a tetrahedral bistellar flip. The partanseto ke are a
triangulationT and a facetivw € T to flip. FLir assumesivw can be flipped; comments identify
places where this assumption could fail.

N

blocked

|
h
'
h
'
"I
v
\
~

Figure 4.9: The shaded facet at left is not locally Delaunay. It careb®wved by a 3-2 flip,

but only if the third tetrahedron is present; the flip is blocked if more than tieteghedra share
the central edge (bold). The shaded facet at right can be removadifyflip if the other two

tetrahedra are present.

93

— A\ _—
B

Figure 4.10: Schénhardt’s untetrahedralizable polyhedron (centiamnied by rotating one end
of a triangular prism (left), thereby creating three diagonal reflex ®dgke convex hull of any
four polyhedron vertices (right) sticks out.

graphs are not connected; they have triangulations that cannot séotraed to Delaunay by a
sequence of bistellar flips. The question remains open in three and founglons. But even
if all flip graphs for three-dimensional point sets are connected, flipfaingts that are locally
non-Delaunay does not fice to find the Delaunay triangulation.

Despite the failure of the flip algorithm for three-dimensional Delaunay ttitigns and
weighted two-dimensional Delaunay triangulations, some Delaunay trianguggjorithms rely
on bistellar flips, including several incremental vertex insertion algorithrdsaaralgorithm for
inserting a polygon into a CDT, the latter described in Section 5.8. In particiéanew vertex
is introduced into a Delaunay triangulation by a simple 1-4 flip (or by subdigidifacet or edge
of the triangulation), and the flip algorithm is run before the triangulation iagéd in any other
way, the flip algorithm is guaranteed to restore the Delaunay property wigietting stuck.

4.5 Three-dimensional constrained Delaunay triangulations

Constrained Delaunay triangulations generalize to three or more dimenisidrvghereas every
piecewise linear complex in the plane has a CDT, not every three-dimeh&lb@ahas one.

Worse yet, there exist simple polyhedra that do not have triangulatiotisdhat is, they cannot
be subdivided into tetrahedra without creating new vertices (i.e. tetrame@rtices that are not
vertices of the polyhedron).

E. Schonhardt furnishes an example depicted in Figure 4.10. Theteaagiet envision this
polyhedron is to begin with a triangular prism. Imagine grasping the prism sits@ttom trian-
gular face cannot move, while twisting the top triangular face so it rotatesliglagbout its center
while remaining horizontal. This rotation breaks each of the three squage ifeto two triangular
faces along a diagonatflex edge—an edge at which the polyhedron is locally nonconvex. After
this transformation, the upper left corner and lower right corner df ¢@mecmer) square face are
separated by a reflex edge and are no longer visible to each other witipolyiedron. Any four
vertices of the polyhedron include two separated by a reflex edge; ahydetrahedron whose
vertices are vertices of the polyhedron does not lie entirely within the pditghe Therefore,
Schoénhardt’s polyhedron cannot be triangulated without additionatesr It can be subdivided
into tetrahedra with the addition of one vertex at its center.

Adding to the dificulty, it is NP-hard to determine whether a polyhedron has a triangulation,
or whether it can be subdivided into tetrahedra with dalgdditional vertices for an arbitrary

94

Figure 4.11: A three-dimensional piecewise linear complex and its congtrBiekunay trian-
gulation. Each polygon and polyhedron may have holes, slits, and vertiteselative interior.
Each polyhedron may also have polygons in its interior.

constank.

The following sections discuss triangulations and CDTs of polyhedra &g ih three di-
mensions. It is possible to refine any polyhedron or PLC by adding netce® on its edges so
that it has a constrained Delaunay triangulation. This fact makes CDTid irstiree dimensions.

4.5.1 Piecewise linear complexes and their triangulations R

The domain over which a general-dimensional CDT is defined is a generahdional piecewise
linear complex, which is a set of linear cells—vertices, edges, polygadgayhedra—as illus-
trated in Figure 4.11. The linear cells constrain how the complex can be tl@edueach linear
cell in the complex must be a union of simplices in the triangulation. The union difiger cells
specifies the region to be triangulated.

Definition 4.3 (piecewise linear complex)A piecewise linear complg®LC) P is a finite set of
linear cells that satisfies the following properties.

e The vertices and edges Jhform a simplicial complex.
e For each linear celf € P, the boundary of is a union of linear cells iP.

e If two distinct linear cellsf, g € P intersect, their intersection is a union of linear cells in
P, all having lower dimension than at least onefadr g.

As in the plane, the edges fh are calledsegments Its underlying spacés |P| = Usep f,
which is usually the domain to be triangulated. Taeesof a linear cellf € P are the linear cells
in P that are subsets df, including f itself.

A triangulation of a PLC must cover every polyhedron, respect evelygpn, and include
every segment and vertex.

Definition 4.4 (triangulation of a PLC) Let P be a PLC. Atriangulation of P is a simplicial
complexJ such thatP andT have the same vertices, every linear celPiis a union of simplices
in 7, and|7] = |P).

Because this definition does not all@wto have new vertices absent frdpevery edge irP
must appear iff. However, the polygons ift may be subdivided into triangles Th

95

Figure 4.13: Chazelle’s polyhedron.

Schonhardt's polyhedron shows that not every PLC has a trianguldiery convex poly-
hedron has a triangulation; what about convex polyhedra with inteagahents? Figure 4.12
illustrates a PLC with no triangulation, consisting of a cube inside which thithegwnal seg-
ments pass by each other but do not intersect. If any one of the segmentiited, the PLC
has a triangulation. This example shows that, unlike with planar triangulatiassdt always
possible to insert a new edge into a tetrahedralization.

Because some polyhedra and PLCs do not have triangulations, Steingulaigons are even
more important in three dimensions than in the plane.

Definition 4.5 (Steiner triangulation of a PLC)Let P be a PLC. ASteiner triangulation ofp,
also known as @onforming triangulation ofP or amesh ofP, is a simplicial complexXT” such
thatTJ contains every vertex ift and possibly more, every linear celldhis a union of simplices
in T, and|T| = |P|. The new vertices ifT, not present irP, are calledSteiner points A Steiner
Delaunay triangulationof P, also known as @onforming Delaunay triangulationf P, is a
Steiner triangulation dP in which every simplex is Delaunay.

Everyn-vertex polyhedron has a Steiner triangulation with at n@(st) vertices, found by
constructing aertical decompositioof the polyhedron. The same is true for PLCs of complexity
n. Unfortunately, there are polyhedra for which it is not possible to do hétigure 4.13 depicts
Chazelle's polyhedron, which hasvertices andO(n) edges, but cannot be divided into fewer
than®(n?) convex bodies. The worst-case complexity of subdividing a polyhemroelated to
its number of reflex edges: there is an algorithm that divides any polghedth r reflex edges
into O(n + r?) tetrahedra, and some polyhedra witreflex edges cannot be divided into fewer
thanQ(n + r?) convex bodies.

It appears likely, though it is proved only in two dimensions, that there &ti§ls whose
smallest Steiner Delaunay triangulations are asymptotically larger than their snsiéeer tri-
angulations. There are algorithms that can find a Steiner Delaunay tethbatibn of any three-
dimensional polyhedron, but they might introduce a superpolynomial nuofinew vertices. No

96

Figure 4.14: A constrained Delaunay tetrahedron

known algorithm for finding Steiner Delaunay tetrahedralizations is gteedrio introduce only
a polynomial number of new vertices, and no algorithm of any complexity bar bfered for
four- or higher-dimensional Steiner Delaunay triangulations. Moredkerexisting algorithms
all seem to introduce an unnecessarily large number of vertices neardemalin angles. These
problems can be partly remediated by Steiner CDTs.

4.5.2 The constrained Delaunay triangulation inR3

Three-dimensional constrained Delaunay triangulations aspire to retafrohtbs advantages of
Delaunay triangulations while respecting constraints. But Figures 4.1, dntl 4.13 demon-
strate that some PLCs, even some polyhedra, have no triangulation at adlowdg some poly-

hedra that do have triangulations do not have CDTs. Neverthelesss @@Tuseful because, if
we are willing to add new vertices, every three-dimensional PLC has a 5@k and a Steiner

CDT might require many fewer vertices than a Steiner Delaunay triangulation.

As in the plane, there are several equivalent definitions of “constiddetaunay triangula-
tion” in three dimensions. The simplest is that a CDT is a triangulation of a PLC ichvevery
facet not included in a PLC polygon is locally Delaunay. A CDTrelis from a Delaunay trian-
gulation in three ways: it is not necessarily convex, it is required to oegpBLC, and the facets
of the CDT that are included in PLC polygons are exempt from being localginay.

Recall from Definition 2.11 that a simplexrespecta PLC?P if o C |P| and for everyf € P
that intersectsr, f N o is a union of faces af. By Definition 2.13, two pointx andy arevisible
to each other iky respectsP. A linear cell in? that intersects the relative interior @y but does
not includexy occludeghe visibility betweerx andy. The primary definition of CDT specifies
that every tetrahedron is constrained Delaunay, defined as follows.

Definition 4.6 (constrained Delaunay)n the context of a PLCP, a simplexo is constrained
Delaunayif P contains the vertices af, o- respectsP, and there is an open circumball @fthat
contains no vertex if? that is visible from any point in the relative interior of

Figure 4.14 depicts a constrained Delaunay tetrahedroBvery face ofr whose relative
interior intersects the polygoh is included inf, sor respectsP. The open circumball of
contains one vertey, butv is not visible from any point in the interior af, becausd occludes
its visibility.

Definition 4.7 (constrained Delaunay triangulation)et P be a three-dimensional PLC. don-
strained Delaunay triangulatioCDT) of P is a triangulation ofP in which every tetrahedron

97

Figure 4.15: Left: a PLC with no CDT. Center: the sole tetrahedralizationi®RhC. Its three
tetrahedra are not constrained Delaunay. Right: the two Delaunay @taath@ not respect the
central segment.

is constrained Delaunay, and every dangling triangle (i.e. not a faceydietrahedron) is also
constrained Delaunay.

Figure 4.11 illustrates a PLC and its CDT. Observe that the PLC has a pdiygbis not a
face of any polyhedron; this face is triangulated with constrained Dejaiaagles.

Figure 4.15 illustrates a PLC that has no CDT because of a segment tisavettically
through the domain interior. There is only one tetrahedralization of this PlLdtrposed of
three tetrahedra encircling the central segment—and its tetrahedra a@sttined Delaunay,
because each of them has a visible vertex in its open circumball. Whelggsmousually block
enough visibility to ensure their presence in a CDT, segments usually do nbseBments can
dictate that a CDT does not exist at all. If the central segment in Figuragirébhoved, the PLC
has a CDT made up of two tetrahedra.

A Steiner CDTor conforming CDTof P is a Steiner triangulation ¢P in which every tetra-
hedron is constrained Delaunay, and every dangling triangle (i.e. raateaof any tetrahedron)
is also constrained Delaunay. A PLC with no CDT has a Steiner CDT, bubon®re Steiner
points must be added on its segments. For example, the PLC in Figure 4.1%5tesea CDT
with one Steiner point on its central segment.

45.3 The CDT Theorem

Although not all piecewise linear complexes have constrained Delaunaguf&tions, there is
an easy-to-test, flicient (but not necessary) condition that guarantees that a CDT eXsts.
three-dimensional PLQ is edge-protected every edge irfP is strongly Delaunay.

Theorem 4.9(CDT Theorem,) Every edge-protected PLC has a CDT. O

It is not suficient for every edge i to be Delaunay. If all six vertices of Schonhardt’'s
polyhedron lie on a common sphere, then all of its edges (and all its faseBedaunay, but it
still has no tetrahedralization. It is not possible to place the vertices ofnfBeindt’s polyhedron
so that all three of its reflex edges are strongly Delaunay, though anmayde.

What if a PLC that one wishes to triangulate is not edge-protected? Onmaemnit edge-
protected by adding vertices on its segments—a task that any Delaunayenesatgpn algorithm
must do anyway. The augmented PLC has a CDT, which is a Steiner CDT ofigfireal PLC.

Figure 4.16 illustrates the flierence between using a Delaunay triangulation and using a CDT
for mesh generation. With a Delaunay triangulation, the mesh generator reedtriew vertices

98

Figure 4.16: Comparison of Steiner Delaunay triangulations and Steines.CEYF clarity, ver-
tices inside each box are shown, but tetrahedra are not. For both fiyps@sgulation, missing
segments are recovered by inserting new vertices until each segmemidmatistrongly Delau-
nay edges. In a Steiner Delaunay triangulation, additional vertices amadsintil each polygon
is a union of strongly Delaunay triangles. In a Steiner CDT, no additiongices need be in-
serted; the polygons are recovered by computing a CDT.

that guarantee that every segment is a union of Delaunay (prefetatmgly Delaunay) edges,
and every polygon is a union of Delaunay (preferably strongly Delgumniangles. With a CDT,
new vertices must be inserted that guarantee that every segment is a Ustimngly Delaunay
edges; but then the augmented PLC is edge-protected, and the CDEffhgearantees that the
polygons can be recovered without inserting any additional vertices.a@ilantage of a CDT is
that many fewer vertices might be required.

Testing whether a PLQ@ is edge-protected is straightforward. Form the Delaunay triangu-
lation of the vertices irP. If a segment- € P is missing from the triangulation, then is not
strongly Delaunay, ant® is not edge-protected. if is present, it is Delaunay. If the symbolic
perturbations described in Section 2.9 are used to make the vertiGegémeric, then every
Delaunay edge is strongly Delaunay; so if every segmefit is present,? is edge-protected.
(If symbolic perturbations are not used, then testing whether a Delaggayeito is strongly
Delaunay is equivalent to determining whether the Voronoi polygon dualis;mondegenerate.)

4.5.4 Properties of the constrained Delaunay triangulatio in R3

This section summarizes the properties of three-dimensional CDTs.

The Delaunay Lemma for three-dimensional CDTs provides an alternativetobn of CDT:
a triangulation of a PL@ is a CDT if and only if every one of its facets is locally Delaurtayis
included in a polygon irP.

Lemma 4.10(Constrained Delaunay Lemma)et® be a PLC in which every linear cell is a face
of some polyhedron if?, so there are no dangling polygons. LEbe a triangulation ofP. The
following three statements are equivalent.

(i) Every tetrahedron ifT is constrained Delaunay (i.€. is constrained Delaunay).
(i) Every facet il not included in a polygon if? is constrained Delaunay.

(iii) Every facet il not included in a polygon if? is locally Delaunay. O

99

A constrained Delaunay triangulatidnof P induces a two-dimensional triangulation of each
polygonf € P, namelyT|s = {0 € T : o C f}. Statement (ii) above implies that the triangles in
7]t need not be constrained Delaunay with respetttebut theyare constrained Delaunay with
respect to the polygoh, in the following sense.

Proposition 4.11. Let T be a CDT of a three-dimensional PLE Let f € P be a polygon. Let
Tt be the set of simplices fithat are included in f. LeP|; be the set of faces of f (including f
itself); P|s is a two-dimensional PLC embedded in three-dimensional space. TThéna CDT
of Pls. O

A PLC isgenericif its vertices are generic. A generic PLC has a unique CDT, if it has one at
all.

Proposition 4.12. A generic piecewise linear complex has at most one constrained Dglauna
triangulation. O

A consequence of Propositions 4.11 and 4.12 is that, if a PLC is generiaTa@nstruction
algorithm can begin by computing the two-dimensional CDTs of the polygoes,uke them to
help compute the three-dimensional CDT of the PLC, secure in the knowlbdgthe polygon
triangulations will match the volume triangulation.

CDTs inherit the optimality properties of Delaunay triangulations describeg¢aticéh 4.3,
albeit with respect to a smaller set of triangulations, namely the triangulati@BloC. However,
if a PLC has no CDT, finding the optimal triangulation is an open problem.

Proposition 4.13.LetP be a PLC. IfP has a CDT, then every CDT @fminimizes the largest min-
containment ball, compared with all other triangulations®f Every CDT ofP also optimizes
the criteria discussed in Propositions 4.5 and 4.8. O

4.6 Notes and exercises

The upper bound o®(n¥?1) simplices in am-vertex triangulation follows from McMullen’s
celebrated Upper Bound Theorem [145] of 1970. Seidel [191]sgvene-paragraph proof of the
asymptotic bound.

Rajan [173] shows that the Delaunay triangulation minimizes the largest mtatoorent ball
in any dimensionality, thereby generalizing the two-dimensional result ozBvAdo and Simp-
son [67] and yielding Proposition 4.7. For an algebraic proof of Pritipagt.6 based on quadratic
program duality, see Lemma 3 of Rajan [173]. Rippa [176] shows that ¢feuDay triangulation
in the plane minimizes the piecewise linear interpolation error for bivariatdituscof the form
AX% + Ay’ + Bx+ Cy+ D, measured in thieg-norm for everyg > 1, and Melissaratos [146] gen-
eralizes Rippa’s result to higher dimensions, yielding Proposition 4.5. Ghéw[204] extends
all these optimality results to CDTs. The error bound for piecewise lineampioiggion given in
Section 4.3 is by Waldron [221].

Lawson [132] proves the claim from Section 4.4 that there are only twogwiations of the
configuration of vertices involved in a basic bistellar flip. An earlier pagdrdwson [130] shows
that for every planar point set, the flip graph is connected. Santos B34 gives examples of
point sets in five or more dimensions whose flip graphs are not connedted[118] gives an

100

example of a tetrahedralization for which the flip algorithm is stuck and can mak#ogress
toward the Delaunay tetrahedralization. Edelsbrunner and Shah [&lagiexample of a trian-
gulation in the plane and a set of weights for which the flip algorithm is stuckcandnake no
progress toward the weighted Delaunay triangulation. The fact that thedlypithm does not get
stuck after a single vertex is introduced into a Delaunay triangulation bynssiod is proved by
Joe [119], and by Edelsbrunner and Shah [91] for weighted Dejatniaamgulations.

Schoénhardt's polyhedron was discovered by Schonhardt [18id],Ghazelle’s polyhedron
by Chazelle [44]. The NP-hardness of determining whether a polyhddasra triangulation,
cited in Section 4.5, is proved by Ruppert and Seidel [181]. Chazellepfposes the vertical
decomposition of a polyhedron, and Chazelle and Palios [45] give anitalgothat subdivides
anyn-vertex polyhedron with reflex edges int@(n + r?) tetrahedra. This bound is optimal for
the worst polyhedra.

The notion of a PLC was proposed by Miller, Talmor, Teng, Walkington, and¢\149]*

Algorithms for computing a Steiner Delaunay triangulation of a PLC include thp3ddur-
phy, Mount, and Gable [156], Cohen-Steiner, Colin de Verdiere, avidet [65], Cheng and
Poon [56], Cheng, Dey, Ramos, and Ray [52], and Rand and Walkirig#@t. None has a
polynomial bound on the number of new vertices.

CDTs were generalized to three or more dimensions by Shewchuk [20bkerpaper in-
cludes proofs of the CDT Theorem and the properties of three-dimedd<iiiT s given in Sec-
tion 4.5.4.

Exercises

1. Definition 4.3 ofpiecewise linear complerplies that if the interior of a segment intersects
the interior of a polygon, the segment is entirely included in the polygon.eRtov

2. Show that the edges and triangular faces of a strongly Delaunayettoghare strongly
Delaunay.

3. Prove Proposition 4.2. Consult Figure 2.10 for inspiration.
4. Prove Proposition 4.11.

5. Exercise 7 in Chapter 2 asks for a proof of a fact about consttddeéaunay triangles in
the plane. Give a counterexample that demonstrates that the analogoigsfatdrue of
constrained Delaunay tetrahedra in three dimensions.

6. Design an algorithm that adds vertices to a three-dimensional PLC sih¢hatigmented
PLC has a CDT.

IMiller et al. call it apiecewise linear systerhut their construction is so obviously a complex that a change in name
seems obligatory. Our definition isftérent from that of Miller et al., but nearly equivalent, with one tru@edence:
Miller et al. do not impose the restriction that the vertices and edges formpdicial complex; they permit vertices to
lie in the relative interior of an edge. Disallowing such vertices simplifies cesgntation while entailing no essential
loss of generality, because edges with vertices in their relative interiarbeaubdivided into edges that obey the
restriction.

Chapter 5

Algorithms for constructing
Delaunay triangulations in R3

The most popular algorithms for constructing Delaunay triangulatiol®s iare incremental in-
sertion and gift-wrapping algorithms, both of which generalize to three oe mionensions with
little difficulty. This chapter reprises those algorithms, with attention to the aspectsdtuif-a
ferent in three dimensions. In particular, the analysis of the running timeiof [pcation with

a conflict graph is more complicated in three dimensions than in the plane. Whisigmp as
an opportunity to introduce a more sophisticated vertex ordering and itssesdlystead of fully
randomizing the order in which vertices are inserted, we recommend usiaged randomized
insertion orderthat employs just enough randomness to ensure that the expected rtintéeng
is the worst-case optim&@(n?)—or better yetO(nlogn) time for the classes of point sets most
commonly triangulated in practice—while maintaining enough spatial locality that implame
tions of the algorithm use the memory hierarchy mdfeiently. This vertex ordering, combined
with a simpler point location method, yields the fastest three-dimensional Bsldtiangulators
in practice.

CDTs have received much less study in three dimensions than in two. Tieengaclasses
of algorithm available: gift-wrapping and incremental polygon insertiont-@ipping is easier
to implement; it is not much éfierent in three dimensions than in two. It rungd(nh) time for
Delaunay triangulations and(nmh time for CDTs, wheran is the number of verticesn s the
total complexity of the PLC’s polygons, amds the number of tetrahedra produced.

Perhaps the fastest three-dimensional CDT construction algorithm itigeras similar to
the one we advocate in two dimensions. First, construct a Delaunay tritiogubd the PLC'’s
vertices, then insert its polygons one by one with a flip algorithm describ8édtion 5.8. This
algorithm constructs a CDT i®(n? log n) time, though there are reasons to believe it will run in
O(nlogn) time on most PLCs in practice. Be forewarned, however, that this algoattiyrworks
on edge-protected PLCs. This is rarely a fatal restriction, becauselageasration algorithm
that uses CDTs should probably insert vertices on the PLC’s edges witmalge-protected and
ensure that it has a CDT.

101

102

Procedure Purpose
AbDTETRAHEDRON(U, V, W, X) Add a positively oriented tetrahedromnwx
DeLete TETRAHEDRON(U, V, W, X) | Delete a positively oriented tetrahedrowwx
ADIACENT(U, V, W) Return a vertex such thauvwxis

a positively oriented tetrahedron
ADIACENT2VERTEX (U) Return verticey, w, x such thauvwxis

a positively oriented tetrahedron

Figure 5.1: An interface for a three-dimensional triangulation data steuctur

5.1 Adictionary data structure for tetrahedralizations

Figure 5.1 summarizes an interface for storing a tetrahedral complexganalto the interface
for planar triangulations in Section 3.2. Two procedures)PetraHEDRON and DELETE TETRAHE-
DRON, Specify a tetrahedron to be added or deleted by listing its vertices with aseasitentation,

as described in Section 3.1. The procedun@dent recovers the tetrahedron adjoining a specified
oriented triangular face, or returfsf there is no such tetrahedron. The vertices of a tetrahedron
may include the ghost vertex. The data structure enforces the invararurily two tetrahedra
may adjoin a triangular face, and only one on each side of the face.

The simplest fast implementation echoes the implementation described in SectiG3e2.
each tetrahedronvwxfour times in a hash table, keyed on the oriented fas®g uxv, uwx, and
vxw. Then the first three procedures run in expedi) time. To support AJACENT2VERTEX
queries, an array stores, for each verea triangleuvwsuch that the most recently added tetra-
hedron adjoiningl hasuvwfor a face. As Section 3.2 discusses, these queries take ex#dded
time in most circumstances, but not when the most recently added tetratetjoamingu has
subsequently been deleted.

The interface and data structure extend easily to permit the storage oféganmgedges that
are not part of any tetrahedron, but it does not support fasteujgaqueries on edges.

5.2 Delaunay vertex insertion inR3

The Bowyer—Watson algorithm extends in a straightforward way to threegoe) dimensions.
Recall that the algorithm inserts a verteXnto a Delaunay triangulation in four steps. First,
find one tetrahedron whose open circumball contairfpoint location). Second, a depth-first
search in the triangulation finds all the other tetrahedra whose open ciaflarmbntainu, in time
proportional to their number. Third, delete these tetrahedra, as illustrafféglire 5.2. The union
of the deleted tetrahedra is a star-shaped polyhedral cavity. Fourttadh triangular face of the
cavity, create a new tetrahedron joining it withas illustrated.

To support inserting vertices that lie outside the triangulation, each trianfada on the
boundary of the triangulation adjoinsghost tetrahedroranalogous to the ghost triangles of
Section 3.4, having three solid vertices and a ghost vegteX tetrahedron that is not a ghost
is calledsolid. Letvwxbe a boundary triangle, oriented so its back adjoins a positively oriented
solid tetrahedroxwvy, The incremental insertion algorithm stores a positively oriented ghost

103

Figure 5.2: The Bowyer—-Watson algorithm in three dimensions. A new véatsxin the open
circumballs of the two tetrahedra illustrated at left. These tetrahedra mayroeisded by other
tetrahedra, which for clarity are not shown. The two tetrahedra andatieethey share (shaded)
are deleted. At center, the five new Delaunay edges. At right, the nim®etaunay triangles—
one for each edge of the cavity. Six new tetrahedra are created—oeado facet of the cavity.

tetrahedrorvwxgin the triangulation data structure.
When a new vertex is inserted, there are two cases in whictgmust be deleted, i.&wxis
no longer a boundary triangle: if a vertex is inserted in the open halfspdoent of vwx or if
a newly inserted vertex lies in the open circumdiskaix (i.e. it is coplanar withvwxand in its
open diametric ball). Call the union of these two regionsatter halfspacef vwx It is the set
of points in the open circumball afwxgin the limit asg moves away from the triangulation.
The following pseudocode details the Bowyer—Watson algorithm in three diores) omit-
ting point location. The parameters testrTVERTEX3D are a vertexi to insert and a positively
oriented tetrahedronwxywhose open circumball contains|n this pseudocode, all the triangles
and tetrahedra are oriented, so the vertex order matters.

INSERTV ERTEX3D (U, VWXY)

1. Call DeLETETETRAHEDRON(V, W, X, Y).

2. Call DicCavity3D(u, xwV), DicCavity3D(u, yvw), DicCavity3D(u, vyX), and Dc-
Cavity3D(u, wxy) to identify the other deleted tetrahedra and insert new tetra-
hedra.

DicCavity3D(u, Wxy)

3. Letz = Absacent(W, X, Y); wxyzis the tetrahedron on the other side of favaly
fromu.

4. If z= 0, then return, because the tetrahedron has already been deleted.

5. If INSpuERE(U, W, X, Y,2) > 0, thenuwxy andwxyzare not Delaunay, so call
DEeLETETETRAHEDRON(W, X, Y, Z). Call DicCavity3D(u, wx2), DicCavity3D(u, Xy32),
and DcCavity3D(u, yw2) to recursively identify more deleted tetrahedra and in-
sert new tetrahedra, and return.

6. Otherwisewxyis a face of the polyhedral cavity, So calbélETRAHEDRON(U, W, X, V).

104

The correctness oféerTVERTEX3D depends on the use of a ghost vertex. In particular, step 4
should not confuse the ghost vertex withthe former marks the triangulation exterior and the
latter marks the cavity. Unlike with the planar algoritheserrVERTEX IN Section 3.4, Step 4 is
necessary for both unweighted and weighted Delaunay triangulations.

Step 5 requires a modification to theSbuere test discussed in Section 3.1: \ifxyzis a
ghost tetrahedron, then replace the formula (3.5) with a test of whetlies in the outer half-
space ofwxyz To adapt the code for a weighted Delaunay triangulation, replace (3th) w
Orient4D(U™, W', X", y*, Z"), which tests whetheu® is below the witness plane efxyz The
parameterwxyof InserTVERTEX3D must be a tetrahedron whose witness plane is abbve

How expensive is vertex insertion, leaving out the cost of point locatiim® insertion of a
single vertex into am-vertex Delaunay triangulation can del@&@én?) tetrahedra if the triangu-
lation is the one depicted in Figure 4.2. However, a single vertex insertionrdgrcreate®(n)
tetrahedra: observe that the boundary of the cavity is a planar gmaie savity has fewer than
2n boundary triangles.

It follows that during a sequence ofvertex insertion operations, at mad(n?) tetrahedra
are created. A tetrahedron can only be deleted if it is first created, mosti®(n?) tetrahedra
are deleted, albeit possibly most of them in a single vertex insertion. Fordlst points sets,
randomizing the vertex insertion order does not improve these numbers.

A special case that occurs frequently in practice—by all accountsriisezbe the norm—is
the circumstance where the Delaunay triangulation has complexity linear, ttzdinequadratic, in
the number of vertices, and moreover the intermediate triangulations pbdueg incremental
insertion have expected linear complexity. For point sets with this properandom insertion
order guarantees that each vertex insertion will create and delete ectesgonstant number of
tetrahedra, just as it does in the plane, and we shall see that the randamcizemental insertion
algorithm with a conflict graph runs in expect@fnlogn) time. This running time is often
observed in practice, even in higher dimensions. Be forewarned Meovtigat there are point sets
for which the final triangulation has linear complexity but the intermediate triatigns have
expected quadratic complexity, thereby slowing down the algorithm dramatically

Even for worst-case point sets, randomization helps to support fast Ipoation. Recall
that, excluding the point location step, the Bowyer—Watson algorithm runs inpgioportional
to the number of tetrahedra it deletes and creates, so the running time ofd@bedthrensional
incremental insertion algorithnexcludingpoint location, isO(n?). With a conflict graph and a
random insertion order, point location is no more expensive than thises@ildomized incre-
mental insertion algorithm achieves a worst-case optimal expected runningftidge?).

5.3 Biased randomized insertion orders

The advantage of inserting vertices in random order is that it guarathisdbe expected running
time of point location is optimal, and that pathologically slow circumstances like ilhostated

in Figure 3.8 are unlikely to happen. But there is a serious disadvantagdomized vertex
insertions tend to interact poorly with the memory hierarchy in modern compw@specially
virtual memory. ldeally, data structures representing tetrahedra aticbgdhat are close together
geometrically should be close together in memory—a property caflatal locality—for better
cache and virtual memory performance.

105

Fortunately, the permutation of vertices does not need to be uniformly mafatdhe running
time to be asymptotically optimal. Biased randomized insertion ordBRIO) is a permutation
of the vertices that has strong spatial locality but retains enough randsrinebtain an expected
running time ofO(n?). Experiments show that a BRIO greatly improves tligciency of the
memory hierarchy—especially virtual memory.

Experiments also show that incremental insertion achieves superior guimmigs in practice
when it uses a BRIO but replaces the conflict graph with a point locationadétlat simply walks
from the previously inserted vertex toward the next inserted vertexSeetton 5.5. Although
walking point location does noffi@r a strong theoretical guarantee on running time like a conflict
graph does, this incremental insertion algorithm is perhaps the most attracfivactice, as it
combines excellent observed speed with a simple implementation.

Let n be the number of vertices to triangulate. A BRIO orders the vertices in asequ
of roundsnumbered zero througHog, n]. Each vertex is assigned to the final round, round
[log, n1, with probability /2. The remaining vertices are assigned to the second-last round with
probability 1/2, and so on. Each vertex is assign to round zero with probabilig){a%"! < 1/n.
The incremental insertion algorithm begins by inserting the vertices in raenod then round one,
and so on to rounflog, n1.

Within any single round, the vertices can be arranged in any order withoattémiag the
worst-case expected running time of the algorithm, as Section 5.4 proveseHge order the
vertices within each round to create as much spatial locality as possible. @nwwlo this is
to insert the vertices in the order they are encountered on a space-filling such as a Hilbert
curve or a z-order curve. Another way is to store the vertices in aneootrk-d tree, refined
so each leaf node contains only a few vertices; then order the verticasrayersal of the tree.
(Octree traversal is one way to sort vertices along a Hilbert or z-autse.)

The tendency of vertices that are geometrically close together to be clostidogn the
ordering does not necessarily guarantee that the data structuremesbwith them will be close
together in memory. Nevertheless, experiments show that several pDglgamay triangulation
programs run faster with a BRIO than with a vertex permutation chosen mmyfat random,
especially when the programs run out of main memory and have to resortual viremory.

Whether one uses the traditional randomized incremental insertion algonithirBRIO, one
faces the problem of bootstrapping the algorithm, as discussed in Sectidrh&.most practical
approach is to choose fouffimely independent vertices, construct their Delaunay triangulation (a
single tetrahedron), create four adjoining ghost tetrahedra, conataanflict graph, and insert
the remaining vertices in a random order (a uniformly chosen permutationBétl@). Even
if the four bootstrap vertices are not chosen randomly, it is possible i@ ghat the expected
asymptotic running time of the algorithm is not compromised.

5.4 Optimal point location by a conflict graph in R3

Section 3.6 describes how to use a conflict graph to perform point loc&mnflict graphs gener-
alize to higher dimensions, yielding a randomized incremental insertion algahgtraonstructs
three-dimensional Delaunay triangulations in expe@éaf) time, which is optimal in the worst
case. Moreover, the algorithm runs in expec@ahlogn) time in the special case where the
Delaunay triangulation of a random subset of the input points has exidewar complexity.

106

Conflict graphs and the vertex redistribution algorithm extend to three oe diarensions
straightforwardly, with no new ideas needed. A conflict is a vertex-tetiain pair consisting of
an uninserted vertex and a tetrahedron whose open circumball contal ifach uninserted
vertex, the conflict graph records a tetrahedron that contains the vér@e uninserted vertex lies
outside the growing triangulation, its conflict is an unbounded, convegtdteirahedron,” each
having one solid triangular facet on the triangulation boundary and timeeunded ghost facets.
The ghost edges and ghost facets diverge from a point in the intdribe @riangulation (recall
Figure 3.10). For each tetrahedron, the conflict graph records af liseaininserted vertices
that choose that tetrahedron as their conflict. When a vertex is insertaténticangulation, the
conflict graph is updated exactly as described in Section 3.6.

Let us analyze the running time. No backward analysis is known for a B&iGhe analysis
given here dters substantially from that of Section 3.6. This analysis requires us tmagfiat
the point set is generic, although the algorithm is just as fast for pointtsstare not.

Let S be a generic set afpoints inR3, not all coplanar. Letr be a tetrahedron whose vertices
are inS. We callo a j-tetrahedronif its open circumball containgvertices inS.

Becauses is generic, Deb is composed of all the O-tetrahedraifHowever, the incremen-
tal insertion algorithm transiently constructs many other tetrahedra thattdoinve to the end;
these are 1l-tetrahedra, 2-tetrahedra, and so forth. We wish to detefarieachj, how many
j-tetrahedra exist and what is the probability that any one of them is cetetruFrom this we
can determine the expected numbeilj-¢étrahedra that appear.

The triggers of a j-tetrahedron are its four vertices, and 8teppersof a j-tetrahedron are
the j vertices its open circumball contains. A tetrahedron is constructed if algdfaail of its
triggers precede all of its stoppers in the insertion order. The probalilihabdecreases rapidly
asj increases. '

Let f; be the total number of-tetrahedra, which depends &y and letF; = Zi’:O fi be the
total number oi-tetrahedra for ali < j. DelS contains at mosD(n?) tetrahedra, s&q = fo =
O(n?). Unfortunately, it is a dtficult open problem to find a tight bound on the numibgrwe
must settle for a tight bound on the numlbgr The following proposition is an interesting use
of the probabilistic method. It exploits the fact that if we compute the Delaureygulation of
a random subset &, we know the probability that any giveptetrahedron will appear in the
triangulation.

Proposition 5.1. For a generic set S of n points, & O(j2n?). If the Delaunay triangulation of
a random r-point subset of S has expectéd)©omplexity for every k n, then F = o(j%n).

Proor. LetRbe arandom subset 8f where each point i§ is chosen with probability 4j. (This
is a magical choice, best understood by noting that for ptetrahedron, the expected number
of its stoppers irRis one.) Letr = |R. Observe that is a random variable with a binomial
distribution. Therefore, the expected complexity of Ré$ O(E[r?]) = O(E[r]?) = O(n?/j?).

Let o be ak-tetrahedron for an arbitraky Because is generic, DeR containss if and only
if R contains all four ob-’s triggers but none of itk stoppers. The probability of that is

S

107

If k< j, then

(0 3+
=\ i) “\i) e
whereeis the base of the natural logarithm. This inequality follows from the identity lia{1 +

x/j)l = €.
The expected number of tetrahedra in Ré$

n j i 4
. 1V e Fy
E[size(DelR)] = kZ:c:) Pk fk > kZ:;) Pk fk = kZ:(; (T) e e_j4'
Recall that this quantity i©(n?/j?). Therefore,
F; < ej*E[size(DelR)] = O(jn?).

If the expected complexity of the Delaunay triangulation of a random suifs®its linear,
the expected complexity of DBlis O(E[r]) = O(n/j), soF; = o(j%n). O

Proposition 5.1 places an upper bound on the numbéitefrahedra withj small. Next, we
wish to know the probability that any particultetrahedron will be constructed during a run of
the randomized incremental insertion algorithm.

Proposition 5.2. If the permutation of vertices is chosen uniformly at random, then theaprob
bility that a specified j-tetrahedron is constructed during the randomizennental insertion
algorithm is less thad!/ j*.

Proor. A j-tetrahedron appears only if its four triggers (vertices) appear in thauation
before itsj stoppers. This is the probability that if four vertices are chosen randawy the
j + 4 triggers and stoppers, they will all be triggers; namely

1 _ 4 4
(59~ Grai =

O

Proposition 5.2 helps to bound the expected running time of the standahmenedl incre-
mental insertion algorithm, but we need a stronger proposition to boundrhégutime with a
biased randomized insertion order.

Proposition 5.3. If the permutation of vertices is a BRIO, as described in Section 5.3, then the
probability g; that a specified j-tetrahedron will be constructed during the incremensairtion
algorithm is less than
16-4'+1
i
Proor. Let o be aj-tetrahedron. Let be the round in which its first stopper is inserted. The
incremental insertion algorithm can createnly if its last trigger is inserted in rouricbr earlier.

108

Consider a trigger that is inserted in rouindr earlier for anyi # 0. The probability of that
trigger being inserted before roumds 1/2. Therefore, the probability that all four triggers are
inserted in round # O or earlier is exactly 2times greater than the probability that all four
triggers are inserted before roundTherefore, the probability; that the algorithm creates is
bounded as follows.

IA

Prob[last trigger round: first stopper round]
2% Probllast trigger roune first stopper round} Probllast trigger rounet 0]
16 Prob[all triggers appear before all stoppers in

a uniform random permutation] (1/2)*1°%"
4! 1

dj

IA

IA

A
=
(e}

16-4!+1
< T

The fourth line of this inequality follows from Proposition 5.2. O

Theorem 5.4. The expected running time of the randomized incremental insertion algodth
a generic point set S in three dimensions, whether with a uniformly randgmugation or a
BRIO, is n). If the Delaunay triangulation of a random r-point subset of S has eegeqdr)
complexity for every K n, then the expected running time ign@og n).

Proor. Section 3.6 shows that the total running time of the algorithm is proportionas tatimber

of tetrahedra created plus the number of conflicts created. The expaatdskr of tetrahedra
created isz?:o q; fj, with g; defined as in Proposition 5.3. Becausgtatrahedron participates in
j conflicts, the expected number of conflicts createE’jigO jq; f;. Hence, the expected running

time is
n
n2 + Z qu' fj].
j=1

The O(n?) term accounts for the first term of the first summation, for whjck 0 andqj =
1, because the algorithm constructs every O-tetrahedron. The ssgomdation is bounded as

n

n
Daifi+) jajf;
i=0

=0

O <O

109

follows.

n
> jajfy
=1

A
'—\
()]
] =
+
=
Py,
_TI
|
_‘I'I
e

S Fp o Fit
= (16-41+1)| Y — - _‘]
n-1 n
F.
= (16-4!+1)Z.—J+F—;—Z%—FO]
j:lJ n k=2
n-1
F. F Fn
= (16-4!+1) (,—’__ ‘)+——Fo
,; B#oG(+13) n
n-1
Fj . 3 .3 Fn
< (16-4'+1 — ((i+1)° - + 1
()j:113(1+1)3((1 ¥ -7 n3]

= O(n?).

The last line follows from Euler's identity)2; 1/j* = #%/6. If the expected complexity of
the Delaunay triangulation of a random subse$ of linear,F; = O(j®n), so the expected running
time isO(n 31-3(1/j)) = O(nlogn). O

5.5 Point location by walking

In conjunction with a BRIO, a simple point location method caikadkingappears to outperform
conflict graphs in practice, although there is no guarantee of a fasihgitime. A walking point
location algorithm simply traces a straight line through the triangulation, visitingttetira that
intersect the line as illustrated in Figure 5.3, until it arrives at a tetrahettia@tncontains the
new vertex. In conjunction with a vertex permutation chosen uniformly ataan(rather than
a BRIO), walking point location visits many tetrahedra and is very slow. Balkiwg is fast in
practice if it follows two guidelines: the vertices should be inserted in anrdhd¢ has much
spatial locality, such as a BRIO, and each walk should begin at the mositlseceeated solid
tetrahedron. Then the typical walk visits a small constant number of tetiahed

To avoid a long walk between rounds of a BRIO, the vertex order (e.grebdraversal or the
direction of the space-filling curve) should be reversed on even-n@wadhleunds, so each round
begins near where the previous round ends.

Researchers have observed that the three-dimensional incremeetabmalgorithm with a
BRIO and walking point location appears to run in linear time, not counting ihiali®(nlog n)-

110

Figure 5.3: Walking to the triangle that contaips

time computation of a BRIO. This observation holds whether they use a BRiGgatial ordering
generated by traversing an octree with no randomness at all. Randoisafies unnecessary in
practice—frequently, simply sorting the vertices along a space-filling cwilegield excellent
speed—but because points sets like that illustrated in Figure 3.8 are commaaciicgy we
recommend choosing a BRIO to prevent the possibility of a pathologically slonimg time.

5.6 The gift-wrapping algorithm in R3

The simplest algorithm for retriangulating the cavity evacuated when a visrti{eted from a
three-dimensional Delaunay triangulation or CDT, or when a polygon istetser deleted in a
CDT, is gift-wrapping. (See the bibliographic notes for more sophisticate@x deletion algo-
rithms, also based on gift-wrapping, that are asymptotically faster in thebing)gift-wrapping
algorithm described in Section 3.11 requires few new ideas to work in tbremdre) dimen-
sions. The algorithm constructs tetrahedra one at a time, and maintains aatictbanfinished
triangular facets. The pseudocode faxiku and GrrWrapCDT can be adapted, with triangles
replaced by tetrahedra, oriented edges replaced by oriented fawgtsiyeumdisks replaced by
circumballs.

The biggest change is that triangles, not segments, seed the algoriththeRuwlygons in a
PLC are not always triangles. Recall from Proposition 4.11 that a CRIRMC?P induces a two-
dimensional CDT of each polygon ih. To seed the three-dimensional gift-wrapping algorithm,
one can compute the two-dimensional CDT of a polygon (or every polygfzer) enter each CDT
triangle (twice, with both orientations) in the dictionary.

To gift-wrap a Delaunay triangulation, seed the algorithm with one stronglgubay trian-
gle. One way to find one is to choose an arbitrary input point and its nesghbor. For the
third vertex of the triangle, choose the input point that minimizes the radiugditble through
the three vertices. If the set of input points is generic, the triangle havesgtthree vertices is
strongly Delaunay.

If the input (point set or PLC) is not generic, gift-wrapping is in eveeager danger in three
dimensions than in the plane. Whereas the planar gift-wrapping algorithrharadie subsets
of four or more cocircular points by identifying them and giving them spéa@atment, no such
approach works reliably in three dimensions. Imagine a point set that irscirxdpoints lying on a
common empty sphere. Suppose that gift-wrapping inadvertently tetrdizedithe space around
these points so they are the vertices of a hollow cavity shaped like Schifshalyhedron (from
Section 4.5). The algorithm will be unable to fill the cavity. By far the mosttracsolution is

111

to symbolically perturb the points so that they are generic, as discussedtiorS29. The same
perturbation should also be used to compute the two-dimensional CDTs di @ig [polygons.

Another dificulty is that the input PLC might not have a CDT, in which case gift-wrapping
will fail in one of two ways. One possibility is that the algorithm will fail to finish anfinished
facet, even though there is a vertex in front of that facet, becausentexvn front of that facet
is visible from the facet’s interior. This failure is easy to detect. The sepmsdibility is that
the algorithm will finish a facet by constructing a tetrahedron that is nostcained Delaunay,
either because the tetrahedron’s open circumball contains a visible vertegcause the tetra-
hedron intersects the preexisting simplices wrongly (not in a complex). Amptt® gift-wrap
Schénhardt’s polyhedron brings about the last fate. The algorithiwnbes substantially slower
if it tries to detect these failures. Perhaps a better solution is to run the atgaritty on PLCs
that are edge-protected or otherwise known to have CDTSs.

A strange property of the CDT is that it is NP-hard to determine whether ae-tlireensional
PLC has a CDT, if the PLC is not generic. However, a polynomial-time algorigranailable for
generic PLCs: run the gift-wrapping algorithm, and check whether itesczd.

Gift-wrapping takesO(nh) time for a Delaunay triangulation, @d@(nmh time for a CDT,
wheren is the number of input pointsn is the total complexity of the input polygons, ahds
the number of tetrahedra in the CDTjs usually linear im, but could be quadratic in the worst
case.

5.7 Inserting a vertex into a CDT inR3

Section 3.9 describes how to adapt the Bowyer—Watson vertex insertumitlatg to CDTs in the
plane. The same adaptions work for three-dimensional CDTs, but themeaish: even if a PLC

P has a CDT, an augmented PER {v} might not have one. This circumstance can be diagnosed
after the depth-first search step of the Bowyer—Watson algorithm in bheooways: by the
fact that the cavity is not star-shaped, thus one of the newly createdaditeahas nonpositive
orientation, or by the fact that a segment or polygon runs through thédintdrthe cavity. An
implementation can check explicitly for these circumstances, and signal thagrtiesv cannot

be inserted.

5.8 Inserting a polygoninto a CDT

To “insert a polygon into a CDT” is to take as input the CDTof some PLCP and a new
polygonf to insert, and produce the CDT &f = P U {f}. Itis only meaningful ifP! is a valid
PLC—which implies thaf’s boundary is a union of segmentsknamong other things. Itis only
possible ifPf has a CDT. If? is edge-protected, the is edge-protected (polygons play no role
in the definition of “edge-protected”), and both have CDTs. Bt i§ not edge-protected, it is
possible that” has a CDT an®’ does not; see Exercise 5.

The obvious algorithm echoes the segment insertion algorithm in Section @elé€re the
tetrahedra whose interiors interséctAll the simplices not deleted are still constrained Delaunay.
Then retriangulate the polyhedral cavities on either sidewith constrained Delaunay simplices,
perhaps by gift-wrapping. (Recall Figure 2.15.) Note thatfithas no CDT, the retriangulation
step will fail.

112

This section describes an alternative algorithm that uses bistellar flips ievadhe same
result. One can construct a three-dimensional CDT oh-aertex, ridge-protected PLQ in
O(n?logn) time by first constructing a Delaunay triangulation of the vertice® in expected
O(n?) time with the randomized incremental insertion algorithm, then inserting the palyayon
by one with the flip-based algorithm. For most PLCs that arise in practice, BilsgBnstruction
algorithm is likely to run inO(nlogn) time and much faster than gift-wrapping.

The algorithm exploits the fact that when the vertices of the triangulation &ee lify the
parabolic lifting map, every locally Delaunay facet lifts to a triangle where ttedifriangulation
is locally convex. Say that a facet shared by two tetrahedka and 7, is locally weighted
Delaunayif the lifted tetrahedrar™ andr* adjoin each other at a dihedral angle, measured from
above, of less than 180In other words, the interior of " lies above the fine hull of*, and
vice versa.

The algorithm’s main idea is to move some of the lifted vertices vertically, contityarsd
linearly so they rise above the paraboloid, and use bistellar flips to dynaminallytain local
convexity as they rise. Recall from Figure 4.7 that a tetrahedral bistéflés # transition between
the upper and lower faces of a 4-simplex. If the vertices of that simplemaxwng vertically at
different (but constant) speeds, they may pass through an instantategeus svhich the five
vertices of the 4-simplex are cohyperplanar, whereupon the lower@ret taces are exchanged.
In the facet insertion algorithm, this circumstance occurs when two lifted >ratr™ andr* that
share a triangular facet”™ become cohyperplanar, whereupon the algorithm uses the procedure
FLie from Section 4.4 to perform a bistellar flip that deleges

The algorithm for inserting a polygohinto a triangulatior” begins by identifying a region
R: the union of the tetrahedra ifi whose interiors intersedt, and thus must be deleted. The
polygon insertion algorithm only performs flips in the regi@n Let h be the planefé f. Call
the vertices irf? on one (arbitrary) side di left verticesand the vertices on the other sidght
vertices Vertices orh are neither. The flip algorithm linearly increases the heights of the vertices
according to their distance frolm and uses flips to maintain locally weighted Delaunay facets in
R as the heights change. Figure 5.4 is a sequence of snapshots of tlithmgbdmork.

Assign each vertex € P a time-varyingheightof v,(k) = |V|* + xd(v, h), wherex is the time
andd(v, h) is the Euclidean distance &ffrom h. (This choice ofd(;, -) is pedagogically useful
but numerically poor; a better choice for implementation is tal(gth) be the distance of from
h along one coordinate axis, preferably the axis most nearly perpendioliaThis distance is
directly proportional to the Euclidean distance, but can be computed withdiaais.)

When a set of vertices is transformefiirmely, its convex hull undergoes no combinatorial
change. Likewise, anfiane transformation of the vertex heights in a lifted triangulation does
not change which facets are locally weighted Delaunay. In the facetiorsalgorithm, however,
each half of space undergoes figlient dfine transformation, so the simplices that cross the plane
h change as the timeincreases. Observe that an algorithm in which only the heights of the right
vertices change (at twice the speed) is equivalent. For numericahasis better to raise only
half the vertices.

Let P(x) be a time-varying weighted PLC, which is identical Foexcept that each right
vertexv is lifted to a height of/,(«). As k increases, the algorithm.plnserTPorycon maintains a
triangulation ofR that isweighted constrained Delaunayith respect tdP(x), meaning that every
triangular facet is locally weighted Delaunay except those included in gpoly

113

T+

Figure 5.4: A two-dimensional example of inserting a segment into a CDT. [§bdthm extends
to any dimension.

Every simplex in the evolving triangulation that has no left vertex, or no rigitex, re-
mains constrained Delaunay with respecP(®) ask increases. The algorithmupINserTPoLYGON
deletes only simplices that have both a left and a right veatekpass through. All simplices
outside the regiolR, or strictly on the boundary d®, remain intact.

Whenk is suficiently large, the flip algorithm reaches a state where no simplex in the region
R has both a left vertex and a right vertex, heride a union of faces of the triangulation. At this
time, the triangulation is the CDT gt', and the job is done.

Pseudocode forikelnserTPoLycon appears below. The loop (step 4) dynamically maintains
the triangulationT as« increases from 0 too and the lifted companions of the right vertices
move up. For certain values &f the following event occurs: some faagin the regionR is
no longer locally weighted Delaunay after timgbecause the two lifted tetrahedra that include
gt are cohyperplanar at time Upon this event, an update operation replaces these and other
simplices that will not be locally weighted Delaunay after tiesith simplices that will be.

To ensure that it performs each bistellar flip at the right time, the algorithm nivasreigoriority
queue (e.g. a binary heap) that stores any flip that might occur. Fbrfaeetg that could be
flipped at some time in the future, the procedutai@y determines wheig might be flipped
and enqueues a flip event. The main loop nbkserTPorycon repeatedly removes the flip with
the least time from the priority queue, and performs a flip if the facet still existswas not
eliminated by other flips. When the queue is empthas transformed into the CDT 6X'.

114

FLipInserTPoLYGON(T,)

1. Find one tetrahedron il that intersects the interior df by a rotary search
around an edge df.

2. Find all tetrahedra ifil that intersect the interior df by a depth-first search.

3. Initialize Q to be an empty priority queue. For each fagéh T that intersects
the interior off and has a vertex on each sidefotcall Certiry(g, Q).

4. While Q is not empty

(&) Removed, «) with minimum« from Q.
(b) If g is still a facet inT:
(i) Call Fur(7T,g’) to eliminateg’.
() For each faceg that lies on the boundary of the cavity retriangulated
by the flip and has a vertex on each sidd p€all Certiry(g, Q).

CerTIFY(g, Q)

1. Leto andrt be the tetrahedra that share the faget
2. If the interior ofo* will be below & ™ at timeco:

(&) Compute the time at whicho* andr™ are cohyperplanar.
(b) Insert @, k) into the priority queue&.

Just as gift-wrapping can fail wheh is not generic, keerFuirPorycon can fail when® is
not generic or simultaneous events occur for other reasons. For anmegiion to succeed
in practice, step 2 of fkriry should perturb the vertex weights as described in Section 2.9 and
in Exercise 2 of Chapter 3. It is possible for several events that take jplathe same time (or
nearly the same time, if rounéfaerror occurs) to comefbthe priority queue in an unexecutable
order—recall that there are several circumstances annotated inithpseudocode in which it
might be impossible to perform a flip that eliminates a specified facet. In thezenstances,
step 4(a) of ErlnserTPoryGon should dequeue an event with an admissible flip and hold back
events with inadmissible flips until they become admissible.

The correctness proof foreInserTPoryGon is omitted, but it relies on the Constrained De-
launay Lemma. All the tetrahedra outside the regibremain constrained Delaunay, so their
facets are constrained Delaunay, except those included in a polygdwen Yke algorithm is
done, the original vertex heights are restored (returning them to thbgdai@d). This is an fiine
transformation of the lifted right vertices, so the facets created by bisteéflarrémain locally
Delaunay, except the facets includedfin Therefore, every facet not included in a polygon is
locally Delaunay. By the Constrained Delaunay Lemma, the final triangulate@CBT of P°.

For an analysis of the running time, letbe the number of vertices in the regiBnand letn
be the number of vertices ih

Proposition 5.5. Steps 3 and 4 dfLeInsertPoLyGon run in O(m? logm) time.

Proor. Every bistellar flip either deletes or creates an edge in the rdgidecause the vertex
weights vary linearly with time, an edge that loses the weighted constrainedriagi@roperty

115

will never regain it; so once an edge is deleted, it is never created aglagmefore, [EpINSERT-
Porycon deletes fewer tham(m — 1)/2 edges and creates fewer tham — 1)/2 edges over

its lifetime, and thus performs fewer thart flips. Each flip enqueues at most a constant num-
ber of events. Each event cof§logm) time to enqueue and dequeue, yielding a total cost of
O(m? logm) time. O

Miraculously, the worst-case running time for any sequenca.ef¥serrPoLyGoN operations
is only a constant factor larger than the worst-case time for one operation.

Proposition 5.6. The running time of any sequence of vaddigeINserTPoLYGoN operations applied
consecutively to a triangulation is (@ logn), if step 1 ofFLpInserTPoLyGoN is implemented
gfficiently enough.

Proor. A sequence of calls tokelnserTPoLyGoN, like a single call, has the property that every
simplex deleted is never created again. (Every deleted simplex crosségyarpand cannot
return after the polygon is inserted.) Therefore, a sequence of cékesléewer tham(n — 1)/2
edges, creates fewer thafn — 1)/2 edges, and performs fewer thahflips. Each flip enqueues
a constant number of events. Each event cOglsg n) time to enqueue and dequeue, summing
to O(n? logn) time for all events.

The cost of step 2 ofifirInserTPoryGon (the depth-first search) is proportional to the number
of tetrahedra that intersect the relative interior of the polygonThese tetrahedra either are
deleted wherf is inserted, or they interse€is relative interior without crossing. A tetrahedron
can intersect the relative interiors of at most ten PLC polygons that it doesross, so each
tetrahedron is visited in at most eleven depth-first searches. At@{oé} tetrahedra are deleted
and created during a sequence of calls telkserTPoLycon. Therefore, the total cost of step 2
over all calls to ErpInserTPoLyGon is O(n?).

The cost of step 1 ofikrInserTPoLyGon (identifying a tetrahedron that intersects the relative
interior of f) is O(n). This is a pessimistic running time; the worst case is achieved only if the
edge used for the rotary search is an edg@(oj facets. IfQ(nlogn) polygons are inserted into a
single triangulation (which is possible but unlikely in practice), we must redue cost of step 1
belowO(n). This can be done by giving each segment a balanced search treetligtiagjoining
facets in the triangulation, in rotary order around the segment. Then, stegclites irD(logn)
time. The balanced trees are update®(fogn) time per facet created or deleted. O

Recall from Section 4.4 that a bistellar flip replaces the top faces of a 4-simjtle its
bottom faces. Because no face reappears after it is deleted, thensefeflips performed
during incremental polygon insertion is structurally similar to a four-dimenstoiaagulation. It
has often been observed that most practical point sets have line&@ed@meay triangulations in
three or higher dimensions, so it seems like a reasonable inferencerthadgbpractical PLCs,
the sequence of flips should have linear length. For those PLCs, inci@n@DiT construction
with FrielnserTPoLyGon runs in®(nlogn) time.

116

5.9 Notes and exercises

An incremental insertion algorithm that works in any dimension was discdvadependently
by Bowyer [33], Hermeline [111, 112], and Watson [222]. Bowyed &katson submitted their
articles toComputer Journaand found them published side by side in 1981.

Although there is rarely a reason to choose them over the Bowyer—\Waltganithm, there is
a literature on vertex insertion algorithms that use bistellar flips. Joe [11®)rgkzes Lawson’s
flip-based vertex insertion algorithm [131] to three dimensions, Rajan] [§€Beralizes it to
higher dimensions, Joe [119] improves the speed of Rajan’s generatlizatio Edelsbrunner and
Shah [91] generalize Joe’s latter algorithm to weighted Delaunay triangusatio

Clarkson and Shor [64] introduce conflict graphs and show tharaimbd incremental in-
sertion with a conflict graph runs in expect®¢h’®/?) time for Delaunay triangulations ith> 3
dimensions. Amenta, Choi, and Rote [7] propose the idea of a biasedmaatbinsertion or-
der and give the analysis of the randomized incremental insertion algorit&®cition 5.4. The
bound on the number gftetrahedra in Proposition 5.1 was itself a major breakthrough of Clark-
son and Shor [64]. The simpler proof given here is due to Mulmuley [1Sd¢ Seidel [194] for
a backward analysis of the algorithm with a vertex permutation chosen onyf@t random, in
the style of Section 3.6.

Guibas and Stolfi [106] give an algorithm for walking point location in a plabalaunay
triangulation, and Deuvillers, Pion, and Teillaud [72] compare walking poication algorithms
in two and three dimensions. The discussion in Section 5.5 of combining a BRiGQvalking
point location relies on experiments reported by Amenta, Choi, and Rote [7].

The first gift-wrapping algorithm for constructing Delaunay triangulatiomgree or more
dimensions appeared in 1979 when Brown [34] published his lifting map bsereed that the
1970 gift-wrapping algorithm of Chand and Kapur [41] for computingegakdimensional con-
vex hulls can construct Voronoi diagrams. The first gift-wrapping r@lgm for constructing
three-dimensional CDTs appears in a 1982 paper by Nguyen [159ikéthe two-dimensional
CDT paper of Frederick, Wong, and Edge [97], the author doespp#ar to have been aware of
Delaunay triangulations at all. There is a variant of the gift-wrapping dlgorfor CDTs that, by
constructing the tetrahedra in a disciplined order and using other trickgi \@sgibility compu-
tations [200], runs iO(nt) worst-case time, wherreis the number of vertices arnds the number
of tetrahedra produced.

Devillers [71] and Shewchuk [200] give gift-wrapping algorithms foletiag a degreds-
vertex from a Delaunay or constrained Delaunay triangulatio@(ifogk) time, wheret is the
number of tetrahedra created by the vertex deletion operation and cansbeal asd(k) or as
large agd(k?). In practice, most vertices have a small degree, and naive gift-mgpusually
fast enough.

The polygon insertion algorithm of Section 5.8 is due to Shewchuk [203]sladr and
Shewchuk [105] show that it is NP-hard to determine whether a norrigdPleC has a CDT.

Exercises

1. You are using the incremental Delaunay triangulation algorithm to triangalateical
vnx {/nx +/ngrid of n vertices. The vertices are not inserted in random order; instead, an

117

adversary chooses the order to make the algorithm as slow as possitde. asgmptotic
function ofn, what is the largedbtal number of changes that might be made to the mesh
(i.e. tetrahedron creations and deletions, summed over all vertex insgréindsvhat inser-
tion order produces that asymptotic worst case? Ignore the time spegtmtwirt location.

. LetS andT be two sets of points i3, havings points and points respectively. Suppose
S UT is generic. Suppose we are given Beland our task is to incrementally insert the
points inT and thus construct DeB(U T).

We use the following algorithm. First, for each pomin T, find a tetrahedron or ghost
tetrahedron in Deb that containg by brute force (checking each point against each tetra-
hedron), and thereby build a conflict graprO(ts?) time. Second, incrementally insert the
points inT in random order, with each permutation being equally likely.

If we were constructing DeR U T) from scratch, with the insertion order wholly random-
ized, it would take at worst expect@j(s + t)?) = O(s? + t?) time. However, becaus®is
nota random subset & U T, the expected running time for this algorithm can be worse.
An adversary could choos®so that inserting the points ihis slow.

Prove that the expected time to incrementally insert the poirsisrO(t? + ts?).

. Extend the analysis of the randomized incremental insertion algorithm tbgaetéthat are

not generic. To accomplish that, we piggyback on the proof for geneiit pets. LetS

be a finite set of points i3, not necessarily generic, and &fiw] be the same points with
their weights perturbed as described in Section 2.9. By Theorem 5.4,rtlemézed in-
cremental insertion algorithm constructs 3gb] in expectedd(n?) time, and in expected
O(nlogn) time in the optimistic case where the expected complexity of the Delaunay trian-
gulation of a random subset of the points is linear.

When the randomized incremental insertion algorithm constructS bk tetrahedra and
conflicts created and deleted are not necessarily the same as whentritictsndelS[w],
but we can argue that the numbers must be comparable.

(a) Show that immediately after a vertexs inserted during the construction of [&l
all the edges that adjoim are strongly Delaunay. Show that immediately aftés
inserted during the construction of D&lw], the same edges adjoin and perhaps
others do too.

(b) The boundary of the retriangulated cavity is planar. Use this factdw $hat the
number of tetrahedra created wheis inserted during the construction of C®tan-
not exceed the number of tetrahedra created whgimserted during the construction
of Del S[w].

(c) Recall that each polyhedral cell of the Delaunay subdivisio8 bés its vertices on
a common sphere, and that the cell is subdivided into tetrahedra B[LEI Show
that the number of conflicts of a cell (vertices in its open circumball) in the Dakau
subdivision ofS cannot exceed the number of conflicts of any of the corresponding
tetrahedra in Deb[w]. Show that the number of conflicts created wivdn inserted
during the construction of D& cannot exceed the number of conflicts created when
vis inserted during the construction of Ci&fkw].

118

4. Recall from Figure 3.14 that gift-wrapping can fail to construct thiaDeay triangulation
of a point set that is not generic. One way to make the algorithm robust &eteyumbolic
weight perturbations. A dierent way is to identify groups of points that are cospherical
during the gift-wrapping step and triangulate them all at once.

Design a tetrahedral gift-wrapping algorithm that implements the seconéstigg with-
out help from any kind of perturbations. Recall from Figure 4.4 that lpadya of the
Delaunay subdivision cannot be subdivided into tetrahedra indeptynadd each other.
How does your solution ensure that these subdivisions will be consistdnéach other?

5. Give an example of a PL@ that has a CDT and a polygdnsuch thatP U {f} is a valid
PLC but does not have a CDT.

