
Chapter 4

Three-dimensional
Delaunay triangulations

Three-dimensional triangulations are sometimes called tetrahedralizations. Delaunay tetrahedral-
izations are not quite as effective as planar Delaunay triangulations at producing elements of good
quality, but they are nearly as popular in the mesh generation literature as their two-dimensional
cousins. Many properties of Delaunay triangulations in the plane generalize to higher dimen-
sions, but many of the optimality properties do not. Notably, Delaunay tetrahedralizations do not
maximize the minimum angle (whether plane angle or dihedral angle). Figure 4.1 depicts a three-
dimensional counterexample. The hexahedron at the top is the convex hullof its five vertices. The
Delaunay triangulation of those vertices, to the left, includes a thin tetrahedron known as asliver
or kite, whose vertices are nearly coplanar and whose dihedral angles can be arbitrarily close to
0◦ and 180◦. A triangulation of the same vertices that is not Delaunay, at lower right, hasbetter
quality.

This chapter surveys Delaunay triangulations and constrained Delaunaytriangulations in
three—and occasionally higher—dimensions. Constrained Delaunay triangulations generalize
uneasily to three dimensions, because there are polyhedra that do not have any tetrahedralization
at all.

Figure 4.1: This hexahedron has two tetrahedralizations. The Delaunay tetrahedralization at left
includes an arbitrarily thin sliver tetrahedron. The non-Delaunay tetrahedralization at right con-
sists of two nicely shaped tetrahedra.
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Figure 4.2: At center, the Delaunay tetrahedralization of the points at left. At right, the circumball
of one Delaunay tetrahedron with two cross-sections showing it is empty.

4.1 Triangulations of a point set inRd

Definition 2.1 in Section 2.1 defines a triangulation of a set of points to be a simplicial complex
whose vertices are the points and whose union is the convex hull of the points. With no change, the
definition holds in any finite dimensiond. Figures 4.1–4.4 illustrate triangulations of point sets in
three dimensions. Every finite point set inRd has a triangulation; for example, the lexicographic
triangulation of Section 2.1 also generalizes to higher dimensions with no change.

Let S be a set ofn points inRd. Recall from Section 2.1 that if all the points inS are collinear,
they have one triangulation havingn vertices andn− 1 collinear edges connecting them. This is
true regardless ofd; the triangulation is one-dimensional, although it is embedded inRd. More
generally, if the affine hull ofS is k-dimensional, then every triangulation ofS is ak-dimensional
triangulation embedded inRd: the simplicial complex has at least onek-simplex but no (k + 1)-
simplex.

Thecomplexityof a triangulation is its total number of simplices of all dimensions. Whereas
a planar triangulation ofn points hasO(n) triangles and edges, a surprising property of higher-
dimensional triangulations is that they can have superlinear complexity. Figure 4.2 shows a tri-
angulation ofn points that hasΘ(n2) edges and tetrahedra. Every vertex lies on one of two
non-intersecting lines, and there is one tetrahedron for each pairing of an edge on one line and an
edge on the other. This is theonly triangulation of these points, and it is Delaunay. In general, a
triangulation ofn vertices inR3 has at most (n2 − 3n− 2)/2 tetrahedra, at mostn2 − 3n triangles,
and at most (n2 − n)/2 edges. Ann-vertex triangulation inRd can have a maximum ofΘ(n⌈d/2⌉)
d-simplices.

4.2 The Delaunay triangulation inRd

Delaunay triangulations generalize easily to higher dimensions. LetS be a finite set of points in
Rd, for d ≥ 1. Letσ be ak-simplex (for anyk ≤ d) whose vertices are inS. The simplexσ
is Delaunayif there exists an open circumball ofσ that contains no point inS. Clearly, every
face of a Delaunay simplex is Delaunay too. The simplexσ is strongly Delaunayif there exists
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Figure 4.3: Three renderings of a Delaunay tetrahedralization.

a closed circumball ofσ that contains no point inS except the vertices ofσ. Every point inS is
trivially a strongly Delaunay vertex.

Definition 4.1 (Delaunay triangulation). Let S be a finite point set inRd, and letk be the dimen-
sion of its affine hull. ADelaunay triangulationDelS of S is a triangulation ofS in which every
k-simplex is Delaunay—and therefore, every simplex is Delaunay.

Figure 4.2 depicts a Delaunay tetrahedralization and the empty circumball of one of its tetra-
hedra. Figure 4.3 depicts a more typical Delaunay tetrahedralization, with complexity linear in
the number of vertices.

The parabolic lifting map generalizes to higher dimensions too. It maps each point p =
(p1, p2, . . . , pd) ∈ Rd to its lifted companion, the pointp+ = (p1, p2, . . . , pd, p2

1 + p2
2 + · · · + p2

d)
in Rd+1. Consider the (d + 1)-dimensional convex hull of the lifted points,S+ = {v+ : v ∈ S}.
Projecting the downward-facing faces of convS+ to Rd yields a polyhedral complex called the
Delaunay subdivisionof S. If S is generic, its Delaunay subdivision is simplicial andS has
exactly one Delaunay triangulation.

Definition 4.2 (generic). Let S be a point set inRd. Let k be the dimension of the affine hull of
S. The setS is genericif no k+ 2 points inS lie on the boundary of a singled-ball.

If S if not generic, its Delaunay subdivision may have non-simplicial faces; recall Figure 2.3.
In that case,S has multiple Delaunay triangulations, which differ according to how the non-
simplicial faces are triangulated.

Whereas each non-simplicial face in a two-dimensional Delaunay subdivision can be trian-
gulated independently, in higher dimensions the triangulations are not always independent. Fig-
ure 4.4 illustrates a set of twelve points inR3 whose Delaunay subdivision includes two cubic
cells that share a square 2-face. The square face can be divided intotwo triangles in two different
ways, and each cube can be divided into five or six tetrahedra in several ways, but they are not
independent: the triangulation of the square face constrains how both cubes are triangulated.

A least-vertex triangulationprovides one way to safely subdivide a polyhedral complex into
a simplicial complex. To construct it, triangulate the 2-faces through thed-faces in order of
increasing dimension. To triangulate a non-simplicialk-face f , subdivide it intok-simplices of the
form conv (v∪g), wherev is the lexicographically minimum vertex off , andg varies over the (k−
1)-simplices onf ’s subdivided boundary that do not containv. The choice of the lexicographically
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Figure 4.4: A Delaunay subdivision comprising two cubic cells and their faces. The least-vertex
Delaunay triangulation subdivides each 2-face into triangles adjoining the face’s lexicographically
minimum vertex, and likewise subdivides each 3-face into tetrahedra.

minimum vertex of each face ensures that the face triangulations are compatible with each other.
The least-vertex triangulation is consistent with the weight perturbations described in Section 2.9.

Many properties of planar Delaunay triangulations discussed in Chapter 2generalize to higher
dimensions. A few of them are summarized below. Proofs are omitted, but each of them is a
straightforward extension of the corresponding proof for two dimensions.

Recall that afacetof a polyhedral complex is a (d − 1)-face, and a facet of a triangulation
is a (d − 1)-simplex. The forthcoming Delaunay Lemma provides an alternative definition of a
Delaunay triangulation: a triangulation of a point set in which every facet islocally Delaunay.
A facet f in a triangulationT is said to belocally Delaunayif it is a face of fewer than twod-
simplices inT, or it is a face of exactly twod-simplicesτ1 andτ2 and it has an open circumball
that contains no vertex ofτ1 norτ2. Equivalently, the open circumball ofτ1 contains no vertex of
τ2. Equivalently, the open circumball ofτ2 contains no vertex ofτ1.

Lemma 4.1(Delaunay Lemma). LetT be a triangulation of a finite, d-dimensional set S of points
in Rd. The following three statements are equivalent.

• Every d-simplex inT is Delaunay (i.e.T is Delaunay).

• Every facet inT is Delaunay.

• Every facet inT is locally Delaunay. �

As in the plane, a generic point set has exactly one Delaunay triangulation,composed of every
strongly Delaunay simplex. The following three propositions have essentiallythe same proofs as
in Section 2.7.

Proposition 4.2. Letσ be a strongly Delaunay simplex, and letτ be a Delaunay simplex. Then
σ ∩ τ is either empty or a shared face of bothσ andτ.

Proposition 4.3. Every Delaunay triangulation of a point set contains every strongly Delaunay
simplex.

Theorem 4.4. A generic point set has exactly one Delaunay triangulation.

4.3 The optimality of the Delaunay triangulation in Rd

Some optimality properties of Delaunay triangulations hold in any dimension. Consider the use
of triangulations for piecewise linear interpolation of a quadratic multivariate function. If the
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function is isotropic—of the formα‖p‖2+ 〈a, p〉+ β for p ∈ Rd—then the Delaunay triangulation
minimizes the interpolation error measured in theLq-norm for everyq ≥ 1, compared with all
other triangulations of the same points. (If the function is not isotropic, but itis parabolic rather
than hyperbolic, then the optimal triangulation is a weighted Delaunay triangulation in which the
function determines the vertex heights.)

Delaunay triangulations also minimize the radius of the largest min-containment ball of their
simplices (recall Definition 1.20). This result implies a third optimality result, also related to
multivariate piecewise linear interpolation. Suppose one must choose a triangulation to interpolate
an unknown function, and one wishes to minimize the largest pointwise error inthe domain. After
one chooses the triangulation, an adversary will choose the worst possible smooth function for the
triangulation to interpolate, subject to a fixed upper bound on the absolute curvature (i.e. second
directional derivative) of the function anywhere in the domain. The Delaunay triangulation is the
optimal choice.

To better understand these three optimality properties, consider multivariate piecewise linear
interpolation on a triangulationT of a point setS. Let T+ = {σ+ : σ ∈ T} be the triangulation
lifted by the parabolic lifting map;T+ is a simplicial complex embedded inRd+1. Think of T+ as
inducing a continuous piecewise linear functionT+(p) that maps each pointp ∈ convS to a real
value.

How well doesT+ approximate the paraboloid? Lete(p) = T+(p) − ‖p‖2 be the error in
the interpolated functionT+ as an approximation of the paraboloid‖p‖2. At each vertexv ∈ S,
e(v) = 0. Because‖p‖2 is convex, the error satisfiese(p) ≥ 0 for all p ∈ convS.

Proposition 4.5. At every point p∈ convS , every Delaunay triangulationT of S minimizes
T+(p), and therefore minimizes the interpolation error e(p), among all triangulations of S . Hence,
every Delaunay triangulation of S minimizes‖e‖Lq for every Lebesgue norm Lq, and every other
norm monotonic in e.

P. If T is Delaunay, thenT+ is the set of faces of the underside of the convex hull convS+ of
the lifted vertices (or a subdivision of those faces if some of them are not simplicial). No simpli-
cial complex inRd+1 whose vertices are all inS+ can pass through any point below convS+. �

Proposition 4.6. Let o and r be the circumcenter and circumradius of a d-simplexσ. Let omc and
rmc be the center and radius of the min-containment ball ofσ. Let q be the point inσ nearest o.
Then omc = q and r2mc = r2 − d(o,q)2.

P. Letτ be the face ofσwhose relative interior containsq. The faceτ is not a vertex, because
the vertices ofσ areσ’s furthest points fromo. Becauseq is the point inτ nearesto, and because
q is in the relative interior ofτ, the line segmentoq is orthogonal toτ. (This is true even ifτ = σ,
in which caseo − q is the zero vector.) This fact, plus the fact thato is equidistant from all the
vertices ofτ, implies thatq is equidistant from all the vertices ofτ (as Figure 4.5 demonstrates).
Let r be the distance betweenq and any vertex ofτ. As q ∈ τ, there is no containment ball ofτ
(orσ) with radius less thanr becauseq cannot move in any direction without moving away from
some vertex ofτ. Therefore,q andr are the center and radius of the min-containment ball ofτ.

By the following reasoning,σ has the same min-containment ball asτ. If q = o, this conclu-
sion is immediate. Otherwise, leth be the hyperplane throughq orthogonal tooq. Observe that
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Figure 4.5: Left: withinσ, the errore(p) is maximized at the point nearest the circumcenter ofσ.
Right: top view ofσ, its circumdisk, and its min-containment disk.

τ ⊂ h. No point inσ is on the same side ofh aso: if there were such a pointw, there would
be a point inσ (betweenw andq) closer too thanq, contradicting the fact thatq is closest. The
hyperplaneh cuts the closed circumball ofσ into two pieces, and the piece that includesσ is
included in the min-containment ball ofτ. Therefore,q and r are the center and radius of the
min-containment ball ofσ.

Let v be any vertex ofτ. Pythagoras’ Theorem on the triangleoqv (see Figure 4.5) yields
r2
mc = r2 − d(o,q)2. �

Proposition 4.7. Every Delaunay triangulation of S minimizes the largest min-containment ball,
compared with all other triangulations of S .

P. Over any singled-simplexσ, there is an explicit expression fore(p). Recall from the
proof of the Lifting Lemma (Lemma 2.1) that the hyperplanehσ that includesσ+ is defined by
the functionhσ(p) = 2〈o, p〉 − ‖o‖2 + r2, whereo andr are the circumcenter and circumradius of
σ andp ∈ Rd varies freely. Hence, for allp ∈ σ,

e(p) = T
+(p) − ‖p‖2

= hσ(p) − ‖p‖2

= 2〈o, p〉 − ‖o‖2 + r2 − ‖p‖2

= r2 − d(o, p)2.

Figure 4.5 (left) illustrates the functionshσ(p) and‖p‖2 over a triangleσ. The errore(p) is
the vertical distance between the two functions. At which pointp in σ is e(p) largest? At the
point nearest the circumcentero, becaused(o, p)2 is smallest there. (The error is maximized at
p = o if o is inσ; Figure 4.5 gives an example where it is not.) Letomc andrmc be the center and
radius of the min-containment ball ofσ, respectively. By Proposition 4.6, the point inσ nearest
o is omc, ande(omc) = r2 − d(o,omc)2 = r2

mc.
It follows that the square of the min-containment radius ofσ is r2

mc = maxp∈σ e(p), and
thus maxp∈convS e(p) is the squared radius of the largest min-containment ball of the entire tri-
angulationT. By Proposition 4.5, the Delaunay triangulation minimizes this quantity among all
triangulations ofS. �
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The optimality of the Delaunay triangulation for controlling the largest min-containment ra-
dius dovetails nicely with an error bound for piecewise linear interpolation derived by Waldron.
Let F(c) be the space of scalar functions defined over convS that areC1-continuous and whose
absolute curvature nowhere exceedsc. In other words, for everyf ∈ F(c), every pointp ∈ convS,
and every unit direction vector~u, the magnitude of the second directional derivativef ′′

~u
(p) is at

mostc. This is a common starting point for analyses of piecewise linear interpolation error.
Let f be a function inF(c). Let σ ⊆ convS be a simplex (of any dimensionality) with

min-containment radiusrmc. Let hσ be a linear function that interpolatesf at the vertices ofσ.
Waldron shows that for allp ∈ σ, the absolute error|e(p)| = |hσ(p) − f (p)| is at mostcr2

mc/2.
Furthermore, this bound is sharp: for every simplexσ with min-containment radiusrmc, there is
a function f ∈ F(c) and a pointp ∈ σ such that|e(p)| = cr2

mc/2. That function isf (p) = c‖p‖2/2,
as illustrated in Figure 4.5, and that point isp = omc.

Proposition 4.8. Every Delaunay triangulationT of S minimizesmaxf∈F(c) maxp∈convS |T+(p) −
f (p)|, the worst-case pointwise interpolation error, among all triangulations of S.

P. Per Waldron, for any triangulationT, maxf∈F(c) maxp∈convS |T+(p) − f (p)| = cr2
max/2,

wherermax is the largest min-containment radius among all the simplices inT. The result follows
immediately from Proposition 4.7. �

One of the reasons for the longstanding popularity of Delaunay triangulations is that, as
Propositions 4.5 and 4.8 show, the Delaunay triangulation is an optimal piecewise linear inter-
polating surface. Of course,e(p) is not the only criterion for the merit of a triangulation used
for interpolation. Many applications require that the interpolant approximatethe gradient, i.e.,
∇T+(p) must approximate∇ f (p) well. For the goal of approximating∇ f (p) in three or more
dimensions, the Delaunay triangulation is sometimes far from optimal even for simple functions
like the paraboloidf (p) = ‖p‖2. This is why eliminating slivers is a crucial problem in Delaunay
mesh generation.

4.4 Bistellar flips and the flip algorithm

The flip algorithm described in Section 2.5 extends to three or more dimensions, but unfortunately,
it does not always produce a Delaunay triangulation. The natural generalizations of edge flips are
bistellar flips, operations that replace one set of simplices with another set filling the same volume.
Figure 4.6 illustrates the bistellar flips in one, two, and three dimensions. The three-dimensional
analogs of edge flips are called2-3 flipsand3-2 flips. The names specify the numbers of tetrahedra
deleted and created, respectively.

The upper half of the figure depicts basic bistellar flips, which retriangulatethe convex hull of
d+2 vertices inRd by replacing a collection ofk d-simplices withd+2− k differentd-simplices.
In three dimensions, there are four basic flips: 1-4, 2-3, 3-2, and 4-1. The 1-4 flip inserts a vertex,
and the 4-1 flip deletes one.

The lower half of the figure depicts extended bistellar flips, in which a lower-dimensional
basic flip transforms higher-dimensional simplices, possibly many of them. Forexample, consider
bisecting an edge of a tetrahedralization, as illustrated at the lower right of the figure. In essence,
this operation is a one-dimensional 1-2 flip, replacing one edge with two. Butevery tetrahedron
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2−2 flip

edge subdivision

4−4 flip

edge flip
1−3 flip

3−1 flip

2−1 flip
2−3 flip

3−2 flip

1−4 flip

4−1 flip

Figure 4.6: Basic bistellar flips in one, two, and three dimensions appear above the line. Extended
bistellar flips appear below the line. White arrows connect extended flips to the lower-dimensional
flips they are based on. The 2-2 flip at bottom left typically involves two coplanar triangular faces
on the boundary of a domain, whereas the 4-4 flip occurs when the corresponding faces are in a
domain interior. Edge subdivisions and their inverses can also occur on adomain boundary, as at
bottom right, or in a domain interior.

W

W+

Figure 4.7: If the convex hull of four points inR3 is a tetrahedron, the facets on its underside
determine one planar triangulation, and the facets on its upper side determine another.

that includes the subdivided edge is subdivided into two tetrahedra, and the number of tetrahedra
that share the edge can be arbitrarily large. Therefore, some extendedflips can delete and create
arbitrarily manyd-simplices.

An intuitive way to understand the basic bistellar flips inRd is through the faces of a simplex
in Rd+1, as illustrated in Figure 4.7. LetW be a set ofd + 2 points inRd, and letW+ be the
same points lifted by the parabolic lifting map inRd+1. Call the (d + 1)th coordinate axis (along
which the points are lifted) thevertical axis. Assume the points inW are not cospherical. Then
the points inW+ are not cohyperplanar, and convW+ is a (d+ 1)-simplex—call it theW-simplex.
Each facet of theW-simplex can be placed in one of three classes: vertical (parallel to the vertical
axis), lower (facing the negative end of the vertical axis), or upper (those that would get wet if
rain were falling).

The W-simplex suggests two different triangulations of the region convW: the Delaunay
triangulation by projecting the lower facets of convW+ to Rd, and a non-Delaunay triangulation
by projecting the upper facets. (If the points inW+ are cohyperplanar,W has two Delaunay
triangulations.) The act of replacing one such triangulation with the other is a bistellar flip. If
theW-simplex has no vertical facet, the flip is basic. These are the only two ways totriangulate
convW such that all the vertices are inW. One of the two triangulations might omit a vertex of
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W—witness the 3-1 flip, which deletes a vertex.
An extended bistellar flip inRd is built on a j-dimensional basic flip as follows. Consider a

basic flip that replaces a setTD of k j-simplices with a setTC of j +2− k j-simplices. Let thejoin
τ ∗ ζ of two disjoint simplicesτ andζ be the simplex conv (τ ∪ ζ) having all the vertices ofτ and
ζ, and let thejoin of two setsT andZ of simplices be the set of simplices{τ∗ζ : τ ∈ T andζ ∈ Z}.
Let Z be a set of (d − j − 1)-simplices such that every member ofTD ∗ Z is a nondegenerate
d-simplex andTD ∗ Z contains everyd-simplex inT with a face inTD. If such aZ exists, the act
of replacing the simplicesTD ∗Z with the simplicesTC ∗Z is an extended flip. For example, in the
edge bisection illustrated at the lower right of Figure 4.6,TD contains just the bisected edge,TC

contains the two edges the bisection yields, andZ contains one edge for each bisected tetrahedron.
The flip algorithm requires a solution to the following problem. A triangulationT has a facet

f that is not locally Delaunay. What is the appropriate flip to eliminatef ? Let W be the set
containing thed vertices off and the two additional vertices of the twod-simplices havingf for
a face. The fact thatf is not locally Delaunay implies thatf + lies on the upper surface of the
W-simplex convW+. The upper facets of theW-simplex indicate whichd-simplices the flip algo-
rithm should delete fromT (including the two adjoiningf ), and the lower facets indicate which
d-simplices should replace them. The procedure F in Figure 4.8 identifies these tetrahedra for
d = 3. If theW-simplex has vertical facets, F performs an extended flip.

The difficulty is that the simplices to be deleted might not all be inT. Figure 4.9 illustrates
circumstances where the flip algorithm wishes to perform a flip, but cannot.At left, the shaded
triangle is not locally Delaunay. The right flip to remove it is a 3-2 flip, but the flip is possible
only if the third tetrahedron is present. If four or more tetrahedra share the bold edge, the flip
is blocked, at least until another flip creates the missing tetrahedron. The flip algorithm can get
stuck in a configuration whereeverylocally non-Delaunay triangle’s removal is blocked, and the
algorithm cannot make further progress toward the Delaunay triangulation. This is not a rare
occurrence in practice.

If the flip algorithm is asked to compute aweightedDelaunay triangulation, it must sometimes
perform a flip that deletes a vertex, such as the 4-1 flip illustrated at right inFigure 4.9. Such a
flip is possible only if all the simplices the flip is meant to delete are present. Even inthe plane,
there are circumstances where every desired 3-1 flip is blocked and the flip algorithm is stuck.

Extended flips are even more delicate; they require not only thatTD ∗ Z ⊆ T, but also that
TD ∗ Z containseverytetrahedron inT that has a face inTD.

Whether it succeeds or gets stuck, the running time of the flip algorithm isO(n1+⌊d/2⌋), by
the same reasoning explained in Section 2.5: a flip can be modeled as the act ofgluing a (d +
1)-simplex to the underside of the lifted triangulation, and a triangulation inRd+1 has at most
O(n1+⌊d/2⌋) simplices.

One of the most important open problems in combinatorial geometry asks whether the flip
graph is connected. For a specified point set, the flip graph has one node for every triangulation
of those points. Two nodes are connected by an edge if one triangulation can be transformed into
the other by a single bistellar flip, excluding those flips that create or delete a vertex. For every
planar point set, its flip graph is connected—in other words, any triangulation of the points can
be transformed into any other triangulation of the same points by a sequence of edge flips. One
way to see this is to recall that Proposition 2.5 states that every triangulation can be flipped to
the Delaunay triangulation. However, there exist point sets in five or more dimensions whose flip
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F(T,uvw)
1. x← A(u, v,w)
2. y← A(w, v,u)
3. TD ← {wvuy,uvwx} { delete tetrahedrawvuyanduvwx}
4. TC ← ∅
5. V ← ∅
6. For (a,b, c)← (u, v,w), (v,w,u), and (w,u, v)
7. α← O3D(a,b, x, y)
8. If α > 0
9. TD ← TD ∪ {abxy} { delete tetrahedronabxy}
10. else ifα < 0
11. TC ← TC ∪ {abyx} { create tetrahedronabyx}
12. elseV ← V ∪ {c} { abxyis degenerate andc is not part of the basic flip }

{ perform a flip that replacesTD with TC }
13. If V = ∅ { basic flip: 2-3 flip or 3-2 flip or 4-1 flip }

{ note: if any simplex inTD is absent fromT, the flip is blocked }
14. For eachτ ∈ TD

15. Call DT(τ)
16. For eachτ ∈ TC

17. Call AT(τ)
18. else { extended flip: 2-2 flip or 4-4 flip or 3-1 flip or 6-2 flip or edge merge }
19. j ← 3− |V|
20. Remove the vertices inV from every simplex inTD andTC, yielding j-simplices
21. σ← a j-simplex inTD

22. For each (d − j − 1)-simplexζ such thatσ ∗ ζ is a tetrahedron inT
23. For eachτ ∈ TD

{ note: if τ ∗ ζ is absent fromT, the flip is blocked }
24. Call DT(τ ∗ ζ)
25. For eachτ ∈ TC

26. Call AT(τ ∗ ζ)

Figure 4.8: Algorithm for performing a tetrahedral bistellar flip. The parameters to F are a
triangulationT and a facetuvw∈ T to flip. F assumesuvwcan be flipped; comments identify
places where this assumption could fail.

? ?
? 4-1 flip?blocked3-2 flip?

Figure 4.9: The shaded facet at left is not locally Delaunay. It can be removed by a 3-2 flip,
but only if the third tetrahedron is present; the flip is blocked if more than threetetrahedra share
the central edge (bold). The shaded facet at right can be removed bya 4-1 flip if the other two
tetrahedra are present.
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Figure 4.10: Schönhardt’s untetrahedralizable polyhedron (center) isformed by rotating one end
of a triangular prism (left), thereby creating three diagonal reflex edges. The convex hull of any
four polyhedron vertices (right) sticks out.

graphs are not connected; they have triangulations that cannot be transformed to Delaunay by a
sequence of bistellar flips. The question remains open in three and four dimensions. But even
if all flip graphs for three-dimensional point sets are connected, flippingfacets that are locally
non-Delaunay does not suffice to find the Delaunay triangulation.

Despite the failure of the flip algorithm for three-dimensional Delaunay triangulations and
weighted two-dimensional Delaunay triangulations, some Delaunay triangulation algorithms rely
on bistellar flips, including several incremental vertex insertion algorithms and an algorithm for
inserting a polygon into a CDT, the latter described in Section 5.8. In particular, if a new vertex
is introduced into a Delaunay triangulation by a simple 1-4 flip (or by subdividing a facet or edge
of the triangulation), and the flip algorithm is run before the triangulation is changed in any other
way, the flip algorithm is guaranteed to restore the Delaunay property without getting stuck.

4.5 Three-dimensional constrained Delaunay triangulations

Constrained Delaunay triangulations generalize to three or more dimensions,but whereas every
piecewise linear complex in the plane has a CDT, not every three-dimensional PLC has one.
Worse yet, there exist simple polyhedra that do not have triangulations at all—that is, they cannot
be subdivided into tetrahedra without creating new vertices (i.e. tetrahedron vertices that are not
vertices of the polyhedron).

E. Schönhardt furnishes an example depicted in Figure 4.10. The easiest way to envision this
polyhedron is to begin with a triangular prism. Imagine grasping the prism so that its bottom trian-
gular face cannot move, while twisting the top triangular face so it rotates slightly about its center
while remaining horizontal. This rotation breaks each of the three square faces into two triangular
faces along a diagonalreflex edge—an edge at which the polyhedron is locally nonconvex. After
this transformation, the upper left corner and lower right corner of each (former) square face are
separated by a reflex edge and are no longer visible to each other within thepolyhedron. Any four
vertices of the polyhedron include two separated by a reflex edge; thus,any tetrahedron whose
vertices are vertices of the polyhedron does not lie entirely within the polyhedron. Therefore,
Schönhardt’s polyhedron cannot be triangulated without additional vertices. It can be subdivided
into tetrahedra with the addition of one vertex at its center.

Adding to the difficulty, it is NP-hard to determine whether a polyhedron has a triangulation,
or whether it can be subdivided into tetrahedra with onlyk additional vertices for an arbitrary



94

Figure 4.11: A three-dimensional piecewise linear complex and its constrained Delaunay trian-
gulation. Each polygon and polyhedron may have holes, slits, and verticesin its relative interior.
Each polyhedron may also have polygons in its interior.

constantk.
The following sections discuss triangulations and CDTs of polyhedra and PLCs in three di-

mensions. It is possible to refine any polyhedron or PLC by adding new vertices on its edges so
that it has a constrained Delaunay triangulation. This fact makes CDTs useful in three dimensions.

4.5.1 Piecewise linear complexes and their triangulationsin Rd

The domain over which a general-dimensional CDT is defined is a general-dimensional piecewise
linear complex, which is a set of linear cells—vertices, edges, polygons, and polyhedra—as illus-
trated in Figure 4.11. The linear cells constrain how the complex can be triangulated: each linear
cell in the complex must be a union of simplices in the triangulation. The union of thelinear cells
specifies the region to be triangulated.

Definition 4.3 (piecewise linear complex). A piecewise linear complex(PLC)P is a finite set of
linear cells that satisfies the following properties.

• The vertices and edges inP form a simplicial complex.

• For each linear cellf ∈ P, the boundary off is a union of linear cells inP.

• If two distinct linear cellsf ,g ∈ P intersect, their intersection is a union of linear cells in
P, all having lower dimension than at least one off or g.

As in the plane, the edges inP are calledsegments. Its underlying spaceis |P| = ⋃
f∈P f ,

which is usually the domain to be triangulated. Thefacesof a linear cellf ∈ P are the linear cells
in P that are subsets off , including f itself.

A triangulation of a PLC must cover every polyhedron, respect every polygon, and include
every segment and vertex.

Definition 4.4 (triangulation of a PLC). Let P be a PLC. Atriangulation ofP is a simplicial
complexT such thatP andT have the same vertices, every linear cell inP is a union of simplices
in T, and|T| = |P|.

Because this definition does not allowT to have new vertices absent fromP, every edge inP
must appear inT. However, the polygons inP may be subdivided into triangles inT.
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Figure 4.12: A convex PLC with no triangulation.

Figure 4.13: Chazelle’s polyhedron.

Schönhardt’s polyhedron shows that not every PLC has a triangulation. Every convex poly-
hedron has a triangulation; what about convex polyhedra with internal segments? Figure 4.12
illustrates a PLC with no triangulation, consisting of a cube inside which three orthogonal seg-
ments pass by each other but do not intersect. If any one of the segments isomitted, the PLC
has a triangulation. This example shows that, unlike with planar triangulations, itis not always
possible to insert a new edge into a tetrahedralization.

Because some polyhedra and PLCs do not have triangulations, Steiner triangulations are even
more important in three dimensions than in the plane.

Definition 4.5 (Steiner triangulation of a PLC). Let P be a PLC. ASteiner triangulation ofP,
also known as aconforming triangulation ofP or a mesh ofP, is a simplicial complexT such
thatT contains every vertex inP and possibly more, every linear cell inP is a union of simplices
in T, and|T| = |P|. The new vertices inT, not present inP, are calledSteiner points. A Steiner
Delaunay triangulationof P, also known as aconforming Delaunay triangulationof P, is a
Steiner triangulation ofP in which every simplex is Delaunay.

Everyn-vertex polyhedron has a Steiner triangulation with at mostO(n2) vertices, found by
constructing avertical decompositionof the polyhedron. The same is true for PLCs of complexity
n. Unfortunately, there are polyhedra for which it is not possible to do better; Figure 4.13 depicts
Chazelle’s polyhedron, which hasn vertices andO(n) edges, but cannot be divided into fewer
thanΘ(n2) convex bodies. The worst-case complexity of subdividing a polyhedron is related to
its number of reflex edges: there is an algorithm that divides any polyhedron with r reflex edges
into O(n + r2) tetrahedra, and some polyhedra withr reflex edges cannot be divided into fewer
thanΩ(n+ r2) convex bodies.

It appears likely, though it is proved only in two dimensions, that there existPLCs whose
smallest Steiner Delaunay triangulations are asymptotically larger than their smallest Steiner tri-
angulations. There are algorithms that can find a Steiner Delaunay tetrahedralization of any three-
dimensional polyhedron, but they might introduce a superpolynomial number of new vertices. No
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Figure 4.14: A constrained Delaunay tetrahedronτ.

known algorithm for finding Steiner Delaunay tetrahedralizations is guaranteed to introduce only
a polynomial number of new vertices, and no algorithm of any complexity has been offered for
four- or higher-dimensional Steiner Delaunay triangulations. Moreover, the existing algorithms
all seem to introduce an unnecessarily large number of vertices near smalldomain angles. These
problems can be partly remediated by Steiner CDTs.

4.5.2 The constrained Delaunay triangulation inR3

Three-dimensional constrained Delaunay triangulations aspire to retain most of the advantages of
Delaunay triangulations while respecting constraints. But Figures 4.10, 4.12, and 4.13 demon-
strate that some PLCs, even some polyhedra, have no triangulation at all. Moreover, some poly-
hedra that do have triangulations do not have CDTs. Nevertheless, CDTs are useful because, if
we are willing to add new vertices, every three-dimensional PLC has a Steiner CDT, and a Steiner
CDT might require many fewer vertices than a Steiner Delaunay triangulation.

As in the plane, there are several equivalent definitions of “constrained Delaunay triangula-
tion” in three dimensions. The simplest is that a CDT is a triangulation of a PLC in which every
facet not included in a PLC polygon is locally Delaunay. A CDT differs from a Delaunay trian-
gulation in three ways: it is not necessarily convex, it is required to respect a PLC, and the facets
of the CDT that are included in PLC polygons are exempt from being locally Delaunay.

Recall from Definition 2.11 that a simplexσ respectsa PLCP if σ ⊆ |P| and for everyf ∈ P

that intersectsσ, f ∩σ is a union of faces ofσ. By Definition 2.13, two pointsx andy arevisible
to each other ifxy respectsP. A linear cell inP that intersects the relative interior ofxy but does
not includexy occludesthe visibility betweenx andy. The primary definition of CDT specifies
that every tetrahedron is constrained Delaunay, defined as follows.

Definition 4.6 (constrained Delaunay). In the context of a PLCP, a simplexσ is constrained
Delaunayif P contains the vertices ofσ, σ respectsP, and there is an open circumball ofσ that
contains no vertex inP that is visible from any point in the relative interior ofσ.

Figure 4.14 depicts a constrained Delaunay tetrahedronτ. Every face ofτ whose relative
interior intersects the polygonf is included in f , so τ respectsP. The open circumball ofτ
contains one vertexv, butv is not visible from any point in the interior ofτ, becausef occludes
its visibility.

Definition 4.7 (constrained Delaunay triangulation). Let P be a three-dimensional PLC. Acon-
strained Delaunay triangulation(CDT) of P is a triangulation ofP in which every tetrahedron
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Figure 4.15: Left: a PLC with no CDT. Center: the sole tetrahedralization of this PLC. Its three
tetrahedra are not constrained Delaunay. Right: the two Delaunay tetrahedra do not respect the
central segment.

is constrained Delaunay, and every dangling triangle (i.e. not a face of any tetrahedron) is also
constrained Delaunay.

Figure 4.11 illustrates a PLC and its CDT. Observe that the PLC has a polygonthat is not a
face of any polyhedron; this face is triangulated with constrained Delaunay triangles.

Figure 4.15 illustrates a PLC that has no CDT because of a segment that runs vertically
through the domain interior. There is only one tetrahedralization of this PLC—composed of
three tetrahedra encircling the central segment—and its tetrahedra are notconstrained Delaunay,
because each of them has a visible vertex in its open circumball. Whereas polygons usually block
enough visibility to ensure their presence in a CDT, segments usually do not. But segments can
dictate that a CDT does not exist at all. If the central segment in Figure 4.15is removed, the PLC
has a CDT made up of two tetrahedra.

A Steiner CDTor conforming CDTof P is a Steiner triangulation ofP in which every tetra-
hedron is constrained Delaunay, and every dangling triangle (i.e. not a face of any tetrahedron)
is also constrained Delaunay. A PLC with no CDT has a Steiner CDT, but oneor more Steiner
points must be added on its segments. For example, the PLC in Figure 4.15 has aSteiner CDT
with one Steiner point on its central segment.

4.5.3 The CDT Theorem

Although not all piecewise linear complexes have constrained Delaunay triangulations, there is
an easy-to-test, sufficient (but not necessary) condition that guarantees that a CDT exists.A
three-dimensional PLCP is edge-protectedif every edge inP is strongly Delaunay.

Theorem 4.9(CDT Theorem). Every edge-protected PLC has a CDT. �

It is not sufficient for every edge inP to be Delaunay. If all six vertices of Schönhardt’s
polyhedron lie on a common sphere, then all of its edges (and all its faces) are Delaunay, but it
still has no tetrahedralization. It is not possible to place the vertices of Schönhardt’s polyhedron
so that all three of its reflex edges are strongly Delaunay, though any twomay be.

What if a PLC that one wishes to triangulate is not edge-protected? One canmake it edge-
protected by adding vertices on its segments—a task that any Delaunay mesh generation algorithm
must do anyway. The augmented PLC has a CDT, which is a Steiner CDT of theoriginal PLC.

Figure 4.16 illustrates the difference between using a Delaunay triangulation and using a CDT
for mesh generation. With a Delaunay triangulation, the mesh generator must insert new vertices
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Figure 4.16: Comparison of Steiner Delaunay triangulations and Steiner CDTs. For clarity, ver-
tices inside each box are shown, but tetrahedra are not. For both types of triangulation, missing
segments are recovered by inserting new vertices until each segment is a union of strongly Delau-
nay edges. In a Steiner Delaunay triangulation, additional vertices are inserted until each polygon
is a union of strongly Delaunay triangles. In a Steiner CDT, no additional vertices need be in-
serted; the polygons are recovered by computing a CDT.

that guarantee that every segment is a union of Delaunay (preferably strongly Delaunay) edges,
and every polygon is a union of Delaunay (preferably strongly Delaunay) triangles. With a CDT,
new vertices must be inserted that guarantee that every segment is a union of strongly Delaunay
edges; but then the augmented PLC is edge-protected, and the CDT Theorem guarantees that the
polygons can be recovered without inserting any additional vertices. The advantage of a CDT is
that many fewer vertices might be required.

Testing whether a PLCP is edge-protected is straightforward. Form the Delaunay triangu-
lation of the vertices inP. If a segmentσ ∈ P is missing from the triangulation, thenσ is not
strongly Delaunay, andP is not edge-protected. Ifσ is present, it is Delaunay. If the symbolic
perturbations described in Section 2.9 are used to make the vertices inP generic, then every
Delaunay edge is strongly Delaunay; so if every segment inP is present,P is edge-protected.
(If symbolic perturbations are not used, then testing whether a Delaunay segmentσ is strongly
Delaunay is equivalent to determining whether the Voronoi polygon dual toσ is nondegenerate.)

4.5.4 Properties of the constrained Delaunay triangulation in R3

This section summarizes the properties of three-dimensional CDTs.
The Delaunay Lemma for three-dimensional CDTs provides an alternative definition of CDT:

a triangulation of a PLCP is a CDT if and only if every one of its facets is locally Delaunayor is
included in a polygon inP.

Lemma 4.10(Constrained Delaunay Lemma). LetP be a PLC in which every linear cell is a face
of some polyhedron inP, so there are no dangling polygons. LetT be a triangulation ofP. The
following three statements are equivalent.

(i) Every tetrahedron inT is constrained Delaunay (i.e.T is constrained Delaunay).

(ii) Every facet inT not included in a polygon inP is constrained Delaunay.

(iii) Every facet inT not included in a polygon inP is locally Delaunay. �
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A constrained Delaunay triangulationT of P induces a two-dimensional triangulation of each
polygon f ∈ P, namelyT| f = {σ ∈ T : σ ⊆ f }. Statement (ii) above implies that the triangles in
T| f need not be constrained Delaunay with respect toP—but theyareconstrained Delaunay with
respect to the polygonf , in the following sense.

Proposition 4.11. Let T be a CDT of a three-dimensional PLCP. Let f ∈ P be a polygon. Let
T| f be the set of simplices inT that are included in f . LetP| f be the set of faces of f (including f
itself); P| f is a two-dimensional PLC embedded in three-dimensional space. ThenT| f is a CDT
of P| f . �

A PLC isgenericif its vertices are generic. A generic PLC has a unique CDT, if it has one at
all.

Proposition 4.12. A generic piecewise linear complex has at most one constrained Delaunay
triangulation. �

A consequence of Propositions 4.11 and 4.12 is that, if a PLC is generic, a CDT construction
algorithm can begin by computing the two-dimensional CDTs of the polygons, then use them to
help compute the three-dimensional CDT of the PLC, secure in the knowledgethat the polygon
triangulations will match the volume triangulation.

CDTs inherit the optimality properties of Delaunay triangulations described in Section 4.3,
albeit with respect to a smaller set of triangulations, namely the triangulations ofa PLC. However,
if a PLC has no CDT, finding the optimal triangulation is an open problem.

Proposition 4.13.LetP be a PLC. IfP has a CDT, then every CDT ofP minimizes the largest min-
containment ball, compared with all other triangulations ofP. Every CDT ofP also optimizes
the criteria discussed in Propositions 4.5 and 4.8. �

4.6 Notes and exercises

The upper bound ofΘ(n⌈d/2⌉) simplices in ann-vertex triangulation follows from McMullen’s
celebrated Upper Bound Theorem [145] of 1970. Seidel [191] gives a one-paragraph proof of the
asymptotic bound.

Rajan [173] shows that the Delaunay triangulation minimizes the largest min-containment ball
in any dimensionality, thereby generalizing the two-dimensional result of D’Azevedo and Simp-
son [67] and yielding Proposition 4.7. For an algebraic proof of Proposition 4.6 based on quadratic
program duality, see Lemma 3 of Rajan [173]. Rippa [176] shows that the Delaunay triangulation
in the plane minimizes the piecewise linear interpolation error for bivariate functions of the form
Ax2 + Ay2 + Bx+Cy+ D, measured in theLq-norm for everyq ≥ 1, and Melissaratos [146] gen-
eralizes Rippa’s result to higher dimensions, yielding Proposition 4.5. Shewchuk [204] extends
all these optimality results to CDTs. The error bound for piecewise linear interpolation given in
Section 4.3 is by Waldron [221].

Lawson [132] proves the claim from Section 4.4 that there are only two triangulations of the
configuration of vertices involved in a basic bistellar flip. An earlier paper by Lawson [130] shows
that for every planar point set, the flip graph is connected. Santos [184, 185] gives examples of
point sets in five or more dimensions whose flip graphs are not connected.Joe [118] gives an
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example of a tetrahedralization for which the flip algorithm is stuck and can makeno progress
toward the Delaunay tetrahedralization. Edelsbrunner and Shah [91] give an example of a trian-
gulation in the plane and a set of weights for which the flip algorithm is stuck andcan make no
progress toward the weighted Delaunay triangulation. The fact that the flipalgorithm does not get
stuck after a single vertex is introduced into a Delaunay triangulation by subdivision is proved by
Joe [119], and by Edelsbrunner and Shah [91] for weighted Delaunay triangulations.

Schönhardt’s polyhedron was discovered by Schönhardt [187], and Chazelle’s polyhedron
by Chazelle [44]. The NP-hardness of determining whether a polyhedronhas a triangulation,
cited in Section 4.5, is proved by Ruppert and Seidel [181]. Chazelle [44] proposes the vertical
decomposition of a polyhedron, and Chazelle and Palios [45] give an algorithm that subdivides
anyn-vertex polyhedron withr reflex edges intoO(n+ r2) tetrahedra. This bound is optimal for
the worst polyhedra.

The notion of a PLC was proposed by Miller, Talmor, Teng, Walkington, and Wang [149].1

Algorithms for computing a Steiner Delaunay triangulation of a PLC include thoseby Mur-
phy, Mount, and Gable [156], Cohen-Steiner, Colin de Verdière, and Yvinec [65], Cheng and
Poon [56], Cheng, Dey, Ramos, and Ray [52], and Rand and Walkington[174]. None has a
polynomial bound on the number of new vertices.

CDTs were generalized to three or more dimensions by Shewchuk [204], whose paper in-
cludes proofs of the CDT Theorem and the properties of three-dimensional CDTs given in Sec-
tion 4.5.4.

Exercises

1. Definition 4.3 ofpiecewise linear compleximplies that if the interior of a segment intersects
the interior of a polygon, the segment is entirely included in the polygon. Prove it.

2. Show that the edges and triangular faces of a strongly Delaunay tetrahedron are strongly
Delaunay.

3. Prove Proposition 4.2. Consult Figure 2.10 for inspiration.

4. Prove Proposition 4.11.

5. Exercise 7 in Chapter 2 asks for a proof of a fact about constrained Delaunay triangles in
the plane. Give a counterexample that demonstrates that the analogous fact is not true of
constrained Delaunay tetrahedra in three dimensions.

6. Design an algorithm that adds vertices to a three-dimensional PLC so thatthe augmented
PLC has a CDT.

1Miller et al. call it apiecewise linear system, but their construction is so obviously a complex that a change in name
seems obligatory. Our definition is different from that of Miller et al., but nearly equivalent, with one true difference:
Miller et al. do not impose the restriction that the vertices and edges form a simplicial complex; they permit vertices to
lie in the relative interior of an edge. Disallowing such vertices simplifies our presentation while entailing no essential
loss of generality, because edges with vertices in their relative interiors can be subdivided into edges that obey the
restriction.



Chapter 5

Algorithms for constructing
Delaunay triangulations inR3

The most popular algorithms for constructing Delaunay triangulations inR3 are incremental in-
sertion and gift-wrapping algorithms, both of which generalize to three or more dimensions with
little difficulty. This chapter reprises those algorithms, with attention to the aspects that are dif-
ferent in three dimensions. In particular, the analysis of the running time of point location with
a conflict graph is more complicated in three dimensions than in the plane. We usethis gap as
an opportunity to introduce a more sophisticated vertex ordering and its analysis. Instead of fully
randomizing the order in which vertices are inserted, we recommend using abiased randomized
insertion orderthat employs just enough randomness to ensure that the expected runningtime
is the worst-case optimalO(n2)—or better yet,O(n logn) time for the classes of point sets most
commonly triangulated in practice—while maintaining enough spatial locality that implementa-
tions of the algorithm use the memory hierarchy more efficiently. This vertex ordering, combined
with a simpler point location method, yields the fastest three-dimensional Delaunay triangulators
in practice.

CDTs have received much less study in three dimensions than in two. There are two classes
of algorithm available: gift-wrapping and incremental polygon insertion. Gift-wrapping is easier
to implement; it is not much different in three dimensions than in two. It runs inO(nh) time for
Delaunay triangulations andO(nmh) time for CDTs, wheren is the number of vertices,m is the
total complexity of the PLC’s polygons, andh is the number of tetrahedra produced.

Perhaps the fastest three-dimensional CDT construction algorithm in practice is similar to
the one we advocate in two dimensions. First, construct a Delaunay triangulation of the PLC’s
vertices, then insert its polygons one by one with a flip algorithm described inSection 5.8. This
algorithm constructs a CDT inO(n2 logn) time, though there are reasons to believe it will run in
O(n logn) time on most PLCs in practice. Be forewarned, however, that this algorithmonly works
on edge-protected PLCs. This is rarely a fatal restriction, because a mesh generation algorithm
that uses CDTs should probably insert vertices on the PLC’s edges to make it edge-protected and
ensure that it has a CDT.

101
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Procedure Purpose
AT(u, v,w, x) Add a positively oriented tetrahedronuvwx
DT(u, v,w, x) Delete a positively oriented tetrahedronuvwx
A(u, v,w) Return a vertexx such thatuvwxis

a positively oriented tetrahedron
A2V(u) Return verticesv, w, x such thatuvwxis

a positively oriented tetrahedron

Figure 5.1: An interface for a three-dimensional triangulation data structure.

5.1 A dictionary data structure for tetrahedralizations

Figure 5.1 summarizes an interface for storing a tetrahedral complex, analogous to the interface
for planar triangulations in Section 3.2. Two procedures, AT and DT-
, specify a tetrahedron to be added or deleted by listing its vertices with a positive orientation,
as described in Section 3.1. The procedure A recovers the tetrahedron adjoining a specified
oriented triangular face, or returns∅ if there is no such tetrahedron. The vertices of a tetrahedron
may include the ghost vertex. The data structure enforces the invariant that only two tetrahedra
may adjoin a triangular face, and only one on each side of the face.

The simplest fast implementation echoes the implementation described in Section 3.2.Store
each tetrahedronuvwxfour times in a hash table, keyed on the oriented facesuvw, uxv, uwx, and
vxw. Then the first three procedures run in expectedO(1) time. To support A2V
queries, an array stores, for each vertexu, a triangleuvwsuch that the most recently added tetra-
hedron adjoiningu hasuvwfor a face. As Section 3.2 discusses, these queries take expectedO(1)
time in most circumstances, but not when the most recently added tetrahedronadjoiningu has
subsequently been deleted.

The interface and data structure extend easily to permit the storage of triangles or edges that
are not part of any tetrahedron, but it does not support fast adjacency queries on edges.

5.2 Delaunay vertex insertion inR3

The Bowyer–Watson algorithm extends in a straightforward way to three (or more) dimensions.
Recall that the algorithm inserts a vertexu into a Delaunay triangulation in four steps. First,
find one tetrahedron whose open circumball containsu (point location). Second, a depth-first
search in the triangulation finds all the other tetrahedra whose open circumballs containu, in time
proportional to their number. Third, delete these tetrahedra, as illustrated inFigure 5.2. The union
of the deleted tetrahedra is a star-shaped polyhedral cavity. Fourth, for each triangular face of the
cavity, create a new tetrahedron joining it withu, as illustrated.

To support inserting vertices that lie outside the triangulation, each triangular face on the
boundary of the triangulation adjoins aghost tetrahedronanalogous to the ghost triangles of
Section 3.4, having three solid vertices and a ghost vertexg. A tetrahedron that is not a ghost
is calledsolid. Let vwxbe a boundary triangle, oriented so its back adjoins a positively oriented
solid tetrahedronxwvy. The incremental insertion algorithm stores a positively oriented ghost



103

Figure 5.2: The Bowyer–Watson algorithm in three dimensions. A new vertexfalls in the open
circumballs of the two tetrahedra illustrated at left. These tetrahedra may be surrounded by other
tetrahedra, which for clarity are not shown. The two tetrahedra and the face they share (shaded)
are deleted. At center, the five new Delaunay edges. At right, the nine new Delaunay triangles—
one for each edge of the cavity. Six new tetrahedra are created—one for each facet of the cavity.

tetrahedronvwxgin the triangulation data structure.
When a new vertex is inserted, there are two cases in whichvwxgmust be deleted, i.e.vwx is

no longer a boundary triangle: if a vertex is inserted in the open halfspacein front of vwx, or if
a newly inserted vertex lies in the open circumdisk ofvwx (i.e. it is coplanar withvwxand in its
open diametric ball). Call the union of these two regions theouter halfspaceof vwx. It is the set
of points in the open circumball ofvwxgin the limit asg moves away from the triangulation.

The following pseudocode details the Bowyer–Watson algorithm in three dimensions, omit-
ting point location. The parameters to IV3D are a vertexu to insert and a positively
oriented tetrahedronvwxywhose open circumball containsu. In this pseudocode, all the triangles
and tetrahedra are oriented, so the vertex order matters.

IV3D(u, vwxy)

1. Call DT(v,w, x, y).

2. Call DC3D(u, xwv), DC3D(u, yvw), DC3D(u, vyx), and D-
C3D(u,wxy) to identify the other deleted tetrahedra and insert new tetra-
hedra.

DC3D(u,wxy)

3. Letz= A(w, x, y); wxyzis the tetrahedron on the other side of facetwxy
from u.

4. If z= ∅, then return, because the tetrahedron has already been deleted.

5. If IS(u,w, x, y, z) > 0, thenuwxy and wxyzare not Delaunay, so call
DT(w, x, y, z). Call DC3D(u,wxz), DC3D(u, xyz),
and DC3D(u, ywz) to recursively identify more deleted tetrahedra and in-
sert new tetrahedra, and return.

6. Otherwise,wxyis a face of the polyhedral cavity, so call AT(u,w, x, y).
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The correctness of IV3D depends on the use of a ghost vertex. In particular, step 4
should not confuse the ghost vertex with∅; the former marks the triangulation exterior and the
latter marks the cavity. Unlike with the planar algorithm IV in Section 3.4, Step 4 is
necessary for both unweighted and weighted Delaunay triangulations.

Step 5 requires a modification to the IS test discussed in Section 3.1: ifwxyz is a
ghost tetrahedron, then replace the formula (3.5) with a test of whetheru lies in the outer half-
space ofwxyz. To adapt the code for a weighted Delaunay triangulation, replace (3.5) with
O4D(u+,w+, x+, y+, z+), which tests whetheru+ is below the witness plane ofwxyz. The
parametervwxyof IV3D must be a tetrahedron whose witness plane is aboveu+.

How expensive is vertex insertion, leaving out the cost of point location?The insertion of a
single vertex into ann-vertex Delaunay triangulation can deleteΘ(n2) tetrahedra if the triangu-
lation is the one depicted in Figure 4.2. However, a single vertex insertion canonly createΘ(n)
tetrahedra: observe that the boundary of the cavity is a planar graph, so the cavity has fewer than
2n boundary triangles.

It follows that during a sequence ofn vertex insertion operations, at mostΘ(n2) tetrahedra
are created. A tetrahedron can only be deleted if it is first created, so atmostΘ(n2) tetrahedra
are deleted, albeit possibly most of them in a single vertex insertion. For the worst points sets,
randomizing the vertex insertion order does not improve these numbers.

A special case that occurs frequently in practice—by all accounts it seems to be the norm—is
the circumstance where the Delaunay triangulation has complexity linear, rather than quadratic, in
the number of vertices, and moreover the intermediate triangulations produced during incremental
insertion have expected linear complexity. For point sets with this property, arandom insertion
order guarantees that each vertex insertion will create and delete an expected constant number of
tetrahedra, just as it does in the plane, and we shall see that the randomized incremental insertion
algorithm with a conflict graph runs in expectedO(n logn) time. This running time is often
observed in practice, even in higher dimensions. Be forewarned, however, that there are point sets
for which the final triangulation has linear complexity but the intermediate triangulations have
expected quadratic complexity, thereby slowing down the algorithm dramatically.

Even for worst-case point sets, randomization helps to support fast point location. Recall
that, excluding the point location step, the Bowyer–Watson algorithm runs in timeproportional
to the number of tetrahedra it deletes and creates, so the running time of the three-dimensional
incremental insertion algorithm,excludingpoint location, isO(n2). With a conflict graph and a
random insertion order, point location is no more expensive than this, so the randomized incre-
mental insertion algorithm achieves a worst-case optimal expected running timeof O(n2).

5.3 Biased randomized insertion orders

The advantage of inserting vertices in random order is that it guaranteesthat the expected running
time of point location is optimal, and that pathologically slow circumstances like thoseillustrated
in Figure 3.8 are unlikely to happen. But there is a serious disadvantage: randomized vertex
insertions tend to interact poorly with the memory hierarchy in modern computers, especially
virtual memory. Ideally, data structures representing tetrahedra and vertices that are close together
geometrically should be close together in memory—a property calledspatial locality—for better
cache and virtual memory performance.
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Fortunately, the permutation of vertices does not need to be uniformly random for the running
time to be asymptotically optimal. Abiased randomized insertion order(BRIO) is a permutation
of the vertices that has strong spatial locality but retains enough randomness to obtain an expected
running time ofO(n2). Experiments show that a BRIO greatly improves the efficiency of the
memory hierarchy—especially virtual memory.

Experiments also show that incremental insertion achieves superior running times in practice
when it uses a BRIO but replaces the conflict graph with a point location method that simply walks
from the previously inserted vertex toward the next inserted vertex; seeSection 5.5. Although
walking point location does not offer a strong theoretical guarantee on running time like a conflict
graph does, this incremental insertion algorithm is perhaps the most attractive in practice, as it
combines excellent observed speed with a simple implementation.

Let n be the number of vertices to triangulate. A BRIO orders the vertices in a sequence
of roundsnumbered zero through⌈log2 n⌉. Each vertex is assigned to the final round, round
⌈log2 n⌉, with probability 1/2. The remaining vertices are assigned to the second-last round with
probability 1/2, and so on. Each vertex is assign to round zero with probability (1/2)⌈log2 n⌉ ≤ 1/n.
The incremental insertion algorithm begins by inserting the vertices in round zero, then round one,
and so on to round⌈log2 n⌉.

Within any single round, the vertices can be arranged in any order without threatening the
worst-case expected running time of the algorithm, as Section 5.4 proves. Hence, we order the
vertices within each round to create as much spatial locality as possible. One way to do this is
to insert the vertices in the order they are encountered on a space-filling curve such as a Hilbert
curve or a z-order curve. Another way is to store the vertices in an octree or k-d tree, refined
so each leaf node contains only a few vertices; then order the vertices bya traversal of the tree.
(Octree traversal is one way to sort vertices along a Hilbert or z-ordercurve.)

The tendency of vertices that are geometrically close together to be close together in the
ordering does not necessarily guarantee that the data structures associated with them will be close
together in memory. Nevertheless, experiments show that several popularDelaunay triangulation
programs run faster with a BRIO than with a vertex permutation chosen uniformly at random,
especially when the programs run out of main memory and have to resort to virtual memory.

Whether one uses the traditional randomized incremental insertion algorithm or a BRIO, one
faces the problem of bootstrapping the algorithm, as discussed in Section 3.7. The most practical
approach is to choose four affinely independent vertices, construct their Delaunay triangulation (a
single tetrahedron), create four adjoining ghost tetrahedra, construct a conflict graph, and insert
the remaining vertices in a random order (a uniformly chosen permutation or aBRIO). Even
if the four bootstrap vertices are not chosen randomly, it is possible to prove that the expected
asymptotic running time of the algorithm is not compromised.

5.4 Optimal point location by a conflict graph in R3

Section 3.6 describes how to use a conflict graph to perform point location.Conflict graphs gener-
alize to higher dimensions, yielding a randomized incremental insertion algorithmthat constructs
three-dimensional Delaunay triangulations in expectedO(n2) time, which is optimal in the worst
case. Moreover, the algorithm runs in expectedO(n logn) time in the special case where the
Delaunay triangulation of a random subset of the input points has expected linear complexity.
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Conflict graphs and the vertex redistribution algorithm extend to three or more dimensions
straightforwardly, with no new ideas needed. A conflict is a vertex-tetrahedron pair consisting of
an uninserted vertex and a tetrahedron whose open circumball contains it.For each uninserted
vertex, the conflict graph records a tetrahedron that contains the vertex. If an uninserted vertex lies
outside the growing triangulation, its conflict is an unbounded, convex ghost “tetrahedron,” each
having one solid triangular facet on the triangulation boundary and three unbounded ghost facets.
The ghost edges and ghost facets diverge from a point in the interior of the triangulation (recall
Figure 3.10). For each tetrahedron, the conflict graph records a list of the uninserted vertices
that choose that tetrahedron as their conflict. When a vertex is inserted intothe triangulation, the
conflict graph is updated exactly as described in Section 3.6.

Let us analyze the running time. No backward analysis is known for a BRIO, so the analysis
given here differs substantially from that of Section 3.6. This analysis requires us to assume that
the point set is generic, although the algorithm is just as fast for point setsthat are not.

Let S be a generic set ofn points inR3, not all coplanar. Letσ be a tetrahedron whose vertices
are inS. We callσ a j-tetrahedronif its open circumball containsj vertices inS.

BecauseS is generic, DelS is composed of all the 0-tetrahedra ofS. However, the incremen-
tal insertion algorithm transiently constructs many other tetrahedra that do not survive to the end;
these are 1-tetrahedra, 2-tetrahedra, and so forth. We wish to determine, for each j, how many
j-tetrahedra exist and what is the probability that any one of them is constructed. From this we
can determine the expected number ofj-tetrahedra that appear.

The triggers of a j-tetrahedron are its four vertices, and thestoppersof a j-tetrahedron are
the j vertices its open circumball contains. A tetrahedron is constructed if and only if all of its
triggers precede all of its stoppers in the insertion order. The probability of that decreases rapidly
as j increases.

Let f j be the total number ofj-tetrahedra, which depends onS, and letF j =
∑ j

i=0 fi be the
total number ofi-tetrahedra for alli ≤ j. DelS contains at mostO(n2) tetrahedra, soF0 = f0 =
O(n2). Unfortunately, it is a difficult open problem to find a tight bound on the numberf j ; we
must settle for a tight bound on the numberF j . The following proposition is an interesting use
of the probabilistic method. It exploits the fact that if we compute the Delaunay triangulation of
a random subset ofS, we know the probability that any givenj-tetrahedron will appear in the
triangulation.

Proposition 5.1. For a generic set S of n points, Fj = O( j2n2). If the Delaunay triangulation of
a random r-point subset of S has expected O(r) complexity for every r< n, then Fj = O( j3n).

P. LetRbe a random subset ofS, where each point inS is chosen with probability 1/ j. (This
is a magical choice, best understood by noting that for anyj-tetrahedron, the expected number
of its stoppers inR is one.) Letr = |R|. Observe thatr is a random variable with a binomial
distribution. Therefore, the expected complexity of DelR is O(E[r2]) = O(E[r]2) = O(n2/ j2).

Letσ be ak-tetrahedron for an arbitraryk. BecauseS is generic, DelRcontainsσ if and only
if R contains all four ofσ’s triggers but none of itsk stoppers. The probability of that is

pk =

(
1
j

)4 (
1− 1

j

)k

.
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If k ≤ j, then

pk ≥
(
1
j

)4 (
1− 1

j

) j

≥
(
1
j

)4 1
e
,

wheree is the base of the natural logarithm. This inequality follows from the identity limj→∞(1+
x/ j) j = ex.

The expected number of tetrahedra in DelR is

E[size(DelR)] =
n∑

k=0

pk fk ≥
j∑

k=0

pk fk ≥
j∑

k=0

(
1
j

)4 fk
e
=

F j

e j4
.

Recall that this quantity isO(n2/ j2). Therefore,

F j ≤ e j4E[size(DelR)] = O( j2n2).

If the expected complexity of the Delaunay triangulation of a random subsetof S is linear,
the expected complexity of DelR is O(E[r]) = O(n/ j), soF j = O( j3n). �

Proposition 5.1 places an upper bound on the number ofj-tetrahedra withj small. Next, we
wish to know the probability that any particularj-tetrahedron will be constructed during a run of
the randomized incremental insertion algorithm.

Proposition 5.2. If the permutation of vertices is chosen uniformly at random, then the proba-
bility that a specified j-tetrahedron is constructed during the randomized incremental insertion
algorithm is less than4!/ j4.

P. A j-tetrahedron appears only if its four triggers (vertices) appear in the permutation
before its j stoppers. This is the probability that if four vertices are chosen randomly from the
j + 4 triggers and stoppers, they will all be triggers; namely

1(
j+4
4

) = j!4!
( j + 4)!

<
4!
j4
.

�

Proposition 5.2 helps to bound the expected running time of the standard randomized incre-
mental insertion algorithm, but we need a stronger proposition to bound the running time with a
biased randomized insertion order.

Proposition 5.3. If the permutation of vertices is a BRIO, as described in Section 5.3, then the
probability qj that a specified j-tetrahedron will be constructed during the incremental insertion
algorithm is less than

16 · 4! + 1
j4

.

P. Let σ be a j-tetrahedron. Leti be the round in which its first stopper is inserted. The
incremental insertion algorithm can createσ only if its last trigger is inserted in roundi or earlier.
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Consider a trigger that is inserted in roundi or earlier for anyi , 0. The probability of that
trigger being inserted before roundi is 1/2. Therefore, the probability that all four triggers are
inserted in roundi , 0 or earlier is exactly 24 times greater than the probability that all four
triggers are inserted before roundi. Therefore, the probabilityq j that the algorithm createsσ is
bounded as follows.

q j ≤ Prob[last trigger round≤ first stopper round]

≤ 24 Prob[last trigger round< first stopper round]+ Prob[last trigger round= 0]

≤ 16 Prob[all triggers appear before all stoppers in

a uniform random permutation]+ (1/2)4⌈log2 n⌉

< 16
4!
j4
+

1
n4

≤ 16 · 4! + 1
j4

.

The fourth line of this inequality follows from Proposition 5.2. �

Theorem 5.4. The expected running time of the randomized incremental insertion algorithm on
a generic point set S in three dimensions, whether with a uniformly random permutation or a
BRIO, is O(n2). If the Delaunay triangulation of a random r-point subset of S has expected O(r)
complexity for every r≤ n, then the expected running time is O(n logn).

P. Section 3.6 shows that the total running time of the algorithm is proportional to the number
of tetrahedra created plus the number of conflicts created. The expectednumber of tetrahedra
created is

∑n
j=0 q j f j , with q j defined as in Proposition 5.3. Because aj-tetrahedron participates in

j conflicts, the expected number of conflicts created is
∑n

j=0 jq j f j . Hence, the expected running
time is

O


n∑

j=0

q j f j +

n∑

j=0

jq j f j

 ≤ O

n
2 +

n∑

j=1

jq j f j

 .

The O(n2) term accounts for the first term of the first summation, for whichj = 0 andq j =

1, because the algorithm constructs every 0-tetrahedron. The secondsummation is bounded as
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follows.
n∑

j=1

jq j f j <

n∑

j=1

16 · 4! + 1
j3

(F j − F j−1)

= (16 · 4! + 1)


n∑

j=1

F j

j3
−

n∑

k=1

Fk−1

k3



= (16 · 4! + 1)


n−1∑

j=1

F j

j3
+

Fn

n3
−

n∑

k=2

Fk−1

k3
− F0



= (16 · 4! + 1)


n−1∑

j=1

(
F j

j3
−

F j

( j + 1)3

)
+

Fn

n3
− F0



< (16 · 4! + 1)


n−1∑

j=1

F j

j3( j + 1)3
(
( j + 1)3 − j3

)
+

Fn

n3



= O


n−1∑

j=1

j2n2

j6
j2 + n



= O

n
2

n−1∑

j=1

1
j2
+ n



= O(n2).

The last line follows from Euler’s identity
∑∞

j=1 1/ j2 = π2/6. If the expected complexity of

the Delaunay triangulation of a random subset ofS is linear,F j = O( j3n), so the expected running
time isO(n

∑n−1
j=1(1/ j)) = O(n logn). �

5.5 Point location by walking

In conjunction with a BRIO, a simple point location method calledwalkingappears to outperform
conflict graphs in practice, although there is no guarantee of a fast running time. A walking point
location algorithm simply traces a straight line through the triangulation, visiting tetrahedra that
intersect the line as illustrated in Figure 5.3, until it arrives at a tetrahedronthat contains the
new vertex. In conjunction with a vertex permutation chosen uniformly at random (rather than
a BRIO), walking point location visits many tetrahedra and is very slow. But walking is fast in
practice if it follows two guidelines: the vertices should be inserted in an order that has much
spatial locality, such as a BRIO, and each walk should begin at the most recently created solid
tetrahedron. Then the typical walk visits a small constant number of tetrahedra.

To avoid a long walk between rounds of a BRIO, the vertex order (e.g. thetree traversal or the
direction of the space-filling curve) should be reversed on even-numbered rounds, so each round
begins near where the previous round ends.

Researchers have observed that the three-dimensional incremental insertion algorithm with a
BRIO and walking point location appears to run in linear time, not counting the initial O(n logn)-
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p

Figure 5.3: Walking to the triangle that containsp.

time computation of a BRIO. This observation holds whether they use a BRIO ora spatial ordering
generated by traversing an octree with no randomness at all. Randomnessis often unnecessary in
practice—frequently, simply sorting the vertices along a space-filling curvewill yield excellent
speed—but because points sets like that illustrated in Figure 3.8 are common in practice, we
recommend choosing a BRIO to prevent the possibility of a pathologically slow running time.

5.6 The gift-wrapping algorithm in R3

The simplest algorithm for retriangulating the cavity evacuated when a vertexis deleted from a
three-dimensional Delaunay triangulation or CDT, or when a polygon is inserted or deleted in a
CDT, is gift-wrapping. (See the bibliographic notes for more sophisticated vertex deletion algo-
rithms, also based on gift-wrapping, that are asymptotically faster in theory.)The gift-wrapping
algorithm described in Section 3.11 requires few new ideas to work in three (or more) dimen-
sions. The algorithm constructs tetrahedra one at a time, and maintains a dictionary of unfinished
triangular facets. The pseudocode for F and GWCDT can be adapted, with triangles
replaced by tetrahedra, oriented edges replaced by oriented facets, and circumdisks replaced by
circumballs.

The biggest change is that triangles, not segments, seed the algorithm. Butthe polygons in a
PLC are not always triangles. Recall from Proposition 4.11 that a CDT ofa PLCP induces a two-
dimensional CDT of each polygon inP. To seed the three-dimensional gift-wrapping algorithm,
one can compute the two-dimensional CDT of a polygon (or every polygon), then enter each CDT
triangle (twice, with both orientations) in the dictionary.

To gift-wrap a Delaunay triangulation, seed the algorithm with one strongly Delaunay trian-
gle. One way to find one is to choose an arbitrary input point and its nearest neighbor. For the
third vertex of the triangle, choose the input point that minimizes the radius of the circle through
the three vertices. If the set of input points is generic, the triangle having these three vertices is
strongly Delaunay.

If the input (point set or PLC) is not generic, gift-wrapping is in even greater danger in three
dimensions than in the plane. Whereas the planar gift-wrapping algorithm canhandle subsets
of four or more cocircular points by identifying them and giving them special treatment, no such
approach works reliably in three dimensions. Imagine a point set that includes six points lying on a
common empty sphere. Suppose that gift-wrapping inadvertently tetrahedralizes the space around
these points so they are the vertices of a hollow cavity shaped like Schönhardt’s polyhedron (from
Section 4.5). The algorithm will be unable to fill the cavity. By far the most practical solution is
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to symbolically perturb the points so that they are generic, as discussed in Section 2.9. The same
perturbation should also be used to compute the two-dimensional CDTs of the PLC’s polygons.

Another difficulty is that the input PLC might not have a CDT, in which case gift-wrapping
will fail in one of two ways. One possibility is that the algorithm will fail to finish anunfinished
facet, even though there is a vertex in front of that facet, because no vertex in front of that facet
is visible from the facet’s interior. This failure is easy to detect. The secondpossibility is that
the algorithm will finish a facet by constructing a tetrahedron that is not constrained Delaunay,
either because the tetrahedron’s open circumball contains a visible vertex, or because the tetra-
hedron intersects the preexisting simplices wrongly (not in a complex). An attempt to gift-wrap
Schönhardt’s polyhedron brings about the last fate. The algorithm becomes substantially slower
if it tries to detect these failures. Perhaps a better solution is to run the algorithm only on PLCs
that are edge-protected or otherwise known to have CDTs.

A strange property of the CDT is that it is NP-hard to determine whether a three-dimensional
PLC has a CDT, if the PLC is not generic. However, a polynomial-time algorithmis available for
generic PLCs: run the gift-wrapping algorithm, and check whether it succeeded.

Gift-wrapping takesO(nh) time for a Delaunay triangulation, orO(nmh) time for a CDT,
wheren is the number of input points,m is the total complexity of the input polygons, andh is
the number of tetrahedra in the CDT;h is usually linear inn, but could be quadratic in the worst
case.

5.7 Inserting a vertex into a CDT inR3

Section 3.9 describes how to adapt the Bowyer–Watson vertex insertion algorithm to CDTs in the
plane. The same adaptions work for three-dimensional CDTs, but there isa catch: even if a PLC
P has a CDT, an augmented PLCP∪{v}might not have one. This circumstance can be diagnosed
after the depth-first search step of the Bowyer–Watson algorithm in one of two ways: by the
fact that the cavity is not star-shaped, thus one of the newly created tetrahedra has nonpositive
orientation, or by the fact that a segment or polygon runs through the interior of the cavity. An
implementation can check explicitly for these circumstances, and signal that thevertexv cannot
be inserted.

5.8 Inserting a polygon into a CDT

To “insert a polygon into a CDT” is to take as input the CDTT of some PLCP and a new
polygon f to insert, and produce the CDT ofP f = P ∪ { f }. It is only meaningful ifP f is a valid
PLC—which implies thatf ’s boundary is a union of segments inP, among other things. It is only
possible ifP f has a CDT. IfP is edge-protected, thenP f is edge-protected (polygons play no role
in the definition of “edge-protected”), and both have CDTs. But ifP is not edge-protected, it is
possible thatP has a CDT andP f does not; see Exercise 5.

The obvious algorithm echoes the segment insertion algorithm in Section 3.10:delete the
tetrahedra whose interiors intersectf . All the simplices not deleted are still constrained Delaunay.
Then retriangulate the polyhedral cavities on either side off with constrained Delaunay simplices,
perhaps by gift-wrapping. (Recall Figure 2.15.) Note that ifP f has no CDT, the retriangulation
step will fail.
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This section describes an alternative algorithm that uses bistellar flips to achieve the same
result. One can construct a three-dimensional CDT of ann-vertex, ridge-protected PLCP in
O(n2 logn) time by first constructing a Delaunay triangulation of the vertices inP in expected
O(n2) time with the randomized incremental insertion algorithm, then inserting the polygons one
by one with the flip-based algorithm. For most PLCs that arise in practice, this CDT construction
algorithm is likely to run inO(n logn) time and much faster than gift-wrapping.

The algorithm exploits the fact that when the vertices of the triangulation are lifted by the
parabolic lifting map, every locally Delaunay facet lifts to a triangle where the lifted triangulation
is locally convex. Say that a facetg, shared by two tetrahedraσ and τ, is locally weighted
Delaunayif the lifted tetrahedraσ+ andτ+ adjoin each other at a dihedral angle, measured from
above, of less than 180◦. In other words, the interior ofτ+ lies above the affine hull ofσ+, and
vice versa.

The algorithm’s main idea is to move some of the lifted vertices vertically, continuously, and
linearly so they rise above the paraboloid, and use bistellar flips to dynamicallymaintain local
convexity as they rise. Recall from Figure 4.7 that a tetrahedral bistellar flip is a transition between
the upper and lower faces of a 4-simplex. If the vertices of that simplex aremoving vertically at
different (but constant) speeds, they may pass through an instantaneous state in which the five
vertices of the 4-simplex are cohyperplanar, whereupon the lower and upper faces are exchanged.
In the facet insertion algorithm, this circumstance occurs when two lifted tetrahedraσ+ andτ+ that
share a triangular facetg+ become cohyperplanar, whereupon the algorithm uses the procedure
F from Section 4.4 to perform a bistellar flip that deletesg.

The algorithm for inserting a polygonf into a triangulationT begins by identifying a region
R: the union of the tetrahedra inT whose interiors intersectf , and thus must be deleted. The
polygon insertion algorithm only performs flips in the regionR. Let h be the plane aff f . Call
the vertices inP on one (arbitrary) side ofh left vertices, and the vertices on the other sideright
vertices. Vertices onh are neither. The flip algorithm linearly increases the heights of the vertices
according to their distance fromh, and uses flips to maintain locally weighted Delaunay facets in
Ras the heights change. Figure 5.4 is a sequence of snapshots of the algorithm at work.

Assign each vertexv ∈ P a time-varyingheightof vz(κ) = ‖v‖2 + κd(v,h), whereκ is the time
andd(v,h) is the Euclidean distance ofv from h. (This choice ofd(·, ·) is pedagogically useful
but numerically poor; a better choice for implementation is to letd(v,h) be the distance ofv from
h along one coordinate axis, preferably the axis most nearly perpendicular to h. This distance is
directly proportional to the Euclidean distance, but can be computed without radicals.)

When a set of vertices is transformed affinely, its convex hull undergoes no combinatorial
change. Likewise, an affine transformation of the vertex heights in a lifted triangulation does
not change which facets are locally weighted Delaunay. In the facet insertion algorithm, however,
each half of space undergoes a different affine transformation, so the simplices that cross the plane
h change as the timeκ increases. Observe that an algorithm in which only the heights of the right
vertices change (at twice the speed) is equivalent. For numerical reasons, it is better to raise only
half the vertices.

Let P(κ) be a time-varying weighted PLC, which is identical toP except that each right
vertexv is lifted to a height ofvz(κ). As κ increases, the algorithm FIPmaintains a
triangulation ofR that isweighted constrained Delaunaywith respect toP(κ), meaning that every
triangular facet is locally weighted Delaunay except those included in a polygon.
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Figure 5.4: A two-dimensional example of inserting a segment into a CDT. The algorithm extends
to any dimension.

Every simplex in the evolving triangulation that has no left vertex, or no rightvertex, re-
mains constrained Delaunay with respect toP(κ) asκ increases. The algorithm FIP
deletes only simplices that have both a left and a right vertexandpass throughf . All simplices
outside the regionR, or strictly on the boundary ofR, remain intact.

Whenκ is sufficiently large, the flip algorithm reaches a state where no simplex in the region
Rhas both a left vertex and a right vertex, hencef is a union of faces of the triangulation. At this
time, the triangulation is the CDT ofP f , and the job is done.

Pseudocode for FIP appears below. The loop (step 4) dynamically maintains
the triangulationT as κ increases from 0 to∞ and the lifted companions of the right vertices
move up. For certain values ofκ, the following event occurs: some facetg in the regionR is
no longer locally weighted Delaunay after timeκ, because the two lifted tetrahedra that include
g+ are cohyperplanar at timeκ. Upon this event, an update operation replaces these and other
simplices that will not be locally weighted Delaunay after timeκ with simplices that will be.

To ensure that it performs each bistellar flip at the right time, the algorithm maintains a priority
queue (e.g. a binary heap) that stores any flip that might occur. For each facetg that could be
flipped at some time in the future, the procedure C determines wheng might be flipped
and enqueues a flip event. The main loop of FIP repeatedly removes the flip with
the least time from the priority queue, and performs a flip if the facet still exists, i.e. was not
eliminated by other flips. When the queue is empty,T has transformed into the CDT ofP f .
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FIP(T, f )

1. Find one tetrahedron inT that intersects the interior off by a rotary search
around an edge off .

2. Find all tetrahedra inT that intersect the interior off by a depth-first search.

3. Initialize Q to be an empty priority queue. For each facetg in T that intersects
the interior of f and has a vertex on each side off , call C(g,Q).

4. WhileQ is not empty

(a) Remove (g′, κ) with minimumκ from Q.

(b) If g′ is still a facet inT:

(i) Call F(T,g′) to eliminateg′.

(i) For each facetg that lies on the boundary of the cavity retriangulated
by the flip and has a vertex on each side off , call C(g,Q).

C(g,Q)

1. Letσ andτ be the tetrahedra that share the facetg.

2. If the interior ofσ+ will be below aff τ+ at time∞:

(a) Compute the timeκ at whichσ+ andτ+ are cohyperplanar.

(b) Insert (g, κ) into the priority queueQ.

Just as gift-wrapping can fail whenP is not generic, FFP can fail whenP is
not generic or simultaneous events occur for other reasons. For an implementation to succeed
in practice, step 2 of C should perturb the vertex weights as described in Section 2.9 and
in Exercise 2 of Chapter 3. It is possible for several events that take place at the same time (or
nearly the same time, if roundoff error occurs) to come off the priority queue in an unexecutable
order—recall that there are several circumstances annotated in the F pseudocode in which it
might be impossible to perform a flip that eliminates a specified facet. In these circumstances,
step 4(a) of FIP should dequeue an event with an admissible flip and hold back
events with inadmissible flips until they become admissible.

The correctness proof for FIP is omitted, but it relies on the Constrained De-
launay Lemma. All the tetrahedra outside the regionR remain constrained Delaunay, so their
facets are constrained Delaunay, except those included in a polygon. When the algorithm is
done, the original vertex heights are restored (returning them to the paraboloid). This is an affine
transformation of the lifted right vertices, so the facets created by bistellar flips remain locally
Delaunay, except the facets included inf . Therefore, every facet not included in a polygon is
locally Delaunay. By the Constrained Delaunay Lemma, the final triangulation isa CDT ofP f .

For an analysis of the running time, letm be the number of vertices in the regionR, and letn
be the number of vertices inT.

Proposition 5.5. Steps 3 and 4 ofFIP run in O(m2 logm) time.

P. Every bistellar flip either deletes or creates an edge in the regionR. Because the vertex
weights vary linearly with time, an edge that loses the weighted constrained Delaunay property
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will never regain it; so once an edge is deleted, it is never created again. Therefore, FI-
P deletes fewer thanm(m − 1)/2 edges and creates fewer thanm(m − 1)/2 edges over
its lifetime, and thus performs fewer thanm2 flips. Each flip enqueues at most a constant num-
ber of events. Each event costsO(logm) time to enqueue and dequeue, yielding a total cost of
O(m2 logm) time. �

Miraculously, the worst-case running time for any sequence of FIP operations
is only a constant factor larger than the worst-case time for one operation.

Proposition 5.6. The running time of any sequence of validFIP operations applied
consecutively to a triangulation is O(n2 logn), if step 1 ofFIP is implemented
efficiently enough.

P. A sequence of calls to FIP, like a single call, has the property that every
simplex deleted is never created again. (Every deleted simplex crosses a polygon, and cannot
return after the polygon is inserted.) Therefore, a sequence of calls deletes fewer thann(n− 1)/2
edges, creates fewer thann(n− 1)/2 edges, and performs fewer thann2 flips. Each flip enqueues
a constant number of events. Each event costsO(logn) time to enqueue and dequeue, summing
to O(n2 logn) time for all events.

The cost of step 2 of FIP (the depth-first search) is proportional to the number
of tetrahedra that intersect the relative interior of the polygonf . These tetrahedra either are
deleted whenf is inserted, or they intersectf ’s relative interior without crossingf . A tetrahedron
can intersect the relative interiors of at most ten PLC polygons that it doesnot cross, so each
tetrahedron is visited in at most eleven depth-first searches. At mostO(n2) tetrahedra are deleted
and created during a sequence of calls to FIP. Therefore, the total cost of step 2
over all calls to FIP is O(n2).

The cost of step 1 of FIP (identifying a tetrahedron that intersects the relative
interior of f ) is O(n). This is a pessimistic running time; the worst case is achieved only if the
edge used for the rotary search is an edge ofΘ(n) facets. IfΩ(n logn) polygons are inserted into a
single triangulation (which is possible but unlikely in practice), we must reduce the cost of step 1
belowO(n). This can be done by giving each segment a balanced search tree listingthe adjoining
facets in the triangulation, in rotary order around the segment. Then, step 1executes inO(logn)
time. The balanced trees are updated inO(logn) time per facet created or deleted. �

Recall from Section 4.4 that a bistellar flip replaces the top faces of a 4-simplex with its
bottom faces. Because no face reappears after it is deleted, the sequence of flips performed
during incremental polygon insertion is structurally similar to a four-dimensional triangulation. It
has often been observed that most practical point sets have linear-sizeDelaunay triangulations in
three or higher dimensions, so it seems like a reasonable inference that for most practical PLCs,
the sequence of flips should have linear length. For those PLCs, incremental CDT construction
with FIP runs inΘ(n logn) time.
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5.9 Notes and exercises

An incremental insertion algorithm that works in any dimension was discovered independently
by Bowyer [33], Hermeline [111, 112], and Watson [222]. Bowyer and Watson submitted their
articles toComputer Journaland found them published side by side in 1981.

Although there is rarely a reason to choose them over the Bowyer–Watsonalgorithm, there is
a literature on vertex insertion algorithms that use bistellar flips. Joe [118] generalizes Lawson’s
flip-based vertex insertion algorithm [131] to three dimensions, Rajan [173] generalizes it to
higher dimensions, Joe [119] improves the speed of Rajan’s generalization, and Edelsbrunner and
Shah [91] generalize Joe’s latter algorithm to weighted Delaunay triangulations.

Clarkson and Shor [64] introduce conflict graphs and show that randomized incremental in-
sertion with a conflict graph runs in expectedO(n⌈d/2⌉) time for Delaunay triangulations ind ≥ 3
dimensions. Amenta, Choi, and Rote [7] propose the idea of a biased randomized insertion or-
der and give the analysis of the randomized incremental insertion algorithm inSection 5.4. The
bound on the number ofj-tetrahedra in Proposition 5.1 was itself a major breakthrough of Clark-
son and Shor [64]. The simpler proof given here is due to Mulmuley [154]. See Seidel [194] for
a backward analysis of the algorithm with a vertex permutation chosen uniformly at random, in
the style of Section 3.6.

Guibas and Stolfi [106] give an algorithm for walking point location in a planarDelaunay
triangulation, and Devillers, Pion, and Teillaud [72] compare walking point location algorithms
in two and three dimensions. The discussion in Section 5.5 of combining a BRIO with walking
point location relies on experiments reported by Amenta, Choi, and Rote [7].

The first gift-wrapping algorithm for constructing Delaunay triangulationsin three or more
dimensions appeared in 1979 when Brown [34] published his lifting map and observed that the
1970 gift-wrapping algorithm of Chand and Kapur [41] for computing general-dimensional con-
vex hulls can construct Voronoi diagrams. The first gift-wrapping algorithm for constructing
three-dimensional CDTs appears in a 1982 paper by Nguyen [159], but like the two-dimensional
CDT paper of Frederick, Wong, and Edge [97], the author does not appear to have been aware of
Delaunay triangulations at all. There is a variant of the gift-wrapping algorithm for CDTs that, by
constructing the tetrahedra in a disciplined order and using other tricks to avoid visibility compu-
tations [200], runs inO(nt) worst-case time, wheren is the number of vertices andt is the number
of tetrahedra produced.

Devillers [71] and Shewchuk [200] give gift-wrapping algorithms for deleting a degree-k
vertex from a Delaunay or constrained Delaunay triangulation inO(t logk) time, wheret is the
number of tetrahedra created by the vertex deletion operation and can be as small asΘ(k) or as
large asΘ(k2). In practice, most vertices have a small degree, and naive gift-wrapping is usually
fast enough.

The polygon insertion algorithm of Section 5.8 is due to Shewchuk [203]. Grislain and
Shewchuk [105] show that it is NP-hard to determine whether a non-generic PLC has a CDT.

Exercises

1. You are using the incremental Delaunay triangulation algorithm to triangulatea cubical
3√n× 3√n× 3√n grid of n vertices. The vertices are not inserted in random order; instead, an
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adversary chooses the order to make the algorithm as slow as possible. Asan asymptotic
function ofn, what is the largesttotal number of changes that might be made to the mesh
(i.e. tetrahedron creations and deletions, summed over all vertex insertions), and what inser-
tion order produces that asymptotic worst case? Ignore the time spent doing point location.

2. LetS andT be two sets of points inR3, havings points andt points respectively. Suppose
S ∪ T is generic. Suppose we are given DelS, and our task is to incrementally insert the
points inT and thus construct Del (S ∪ T).

We use the following algorithm. First, for each pointp in T, find a tetrahedron or ghost
tetrahedron in DelS that containsp by brute force (checking each point against each tetra-
hedron), and thereby build a conflict graph inO(ts2) time. Second, incrementally insert the
points inT in random order, with each permutation being equally likely.

If we were constructing Del (S ∪ T) from scratch, with the insertion order wholly random-
ized, it would take at worst expectedO((s+ t)2) = O(s2 + t2) time. However, becauseS is
not a random subset ofS ∪ T, the expected running time for this algorithm can be worse.
An adversary could chooseS so that inserting the points inT is slow.

Prove that the expected time to incrementally insert the points inT is O(t2 + ts2).

3. Extend the analysis of the randomized incremental insertion algorithm to point sets that are
not generic. To accomplish that, we piggyback on the proof for generic point sets. LetS
be a finite set of points inR3, not necessarily generic, and letS[ω] be the same points with
their weights perturbed as described in Section 2.9. By Theorem 5.4, the randomized in-
cremental insertion algorithm constructs DelS[ω] in expectedO(n2) time, and in expected
O(n logn) time in the optimistic case where the expected complexity of the Delaunay trian-
gulation of a random subset of the points is linear.

When the randomized incremental insertion algorithm constructs DelS, the tetrahedra and
conflicts created and deleted are not necessarily the same as when it constructs DelS[ω],
but we can argue that the numbers must be comparable.

(a) Show that immediately after a vertexv is inserted during the construction of DelS,
all the edges that adjoinv are strongly Delaunay. Show that immediately afterv is
inserted during the construction of DelS[ω], the same edges adjoinv, and perhaps
others do too.

(b) The boundary of the retriangulated cavity is planar. Use this fact to show that the
number of tetrahedra created whenv is inserted during the construction of DelS can-
not exceed the number of tetrahedra created whenv is inserted during the construction
of DelS[ω].

(c) Recall that each polyhedral cell of the Delaunay subdivision ofS has its vertices on
a common sphere, and that the cell is subdivided into tetrahedra in DelS[ω]. Show
that the number of conflicts of a cell (vertices in its open circumball) in the Delaunay
subdivision ofS cannot exceed the number of conflicts of any of the corresponding
tetrahedra in DelS[ω]. Show that the number of conflicts created whenv is inserted
during the construction of DelS cannot exceed the number of conflicts created when
v is inserted during the construction of DelS[ω].
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4. Recall from Figure 3.14 that gift-wrapping can fail to construct the Delaunay triangulation
of a point set that is not generic. One way to make the algorithm robust is to use symbolic
weight perturbations. A different way is to identify groups of points that are cospherical
during the gift-wrapping step and triangulate them all at once.

Design a tetrahedral gift-wrapping algorithm that implements the second suggestion, with-
out help from any kind of perturbations. Recall from Figure 4.4 that polyhedra of the
Delaunay subdivision cannot be subdivided into tetrahedra independently of each other.
How does your solution ensure that these subdivisions will be consistentwith each other?

5. Give an example of a PLCP that has a CDT and a polygonf such thatP ∪ { f } is a valid
PLC but does not have a CDT.


