Chapter 2

Curve Reconstruction

We will describe two algorithms for curve reconstruction, CRUST and NN-
CRUST in this chapter. First, we will develope some general results that will
be applied to prove the correctness of the both algorithms.

A single curve in the plane is defined by a map &: [0,1] — R? where
[0,1] is the closed interval between 0 and 1 on the real line. The function
¢ is one-to-one everywhere except at the endpoints where £(0) = £(1). The
curve is smooth if £ has a continuous non-zero first derivative in the interior
of [0,1] and the right derivative at 0 is same as the left derivative at 1 both
being non-zero. When we refer to a curve 3 in the plane, we actually mean
the image of one or more such maps. By definition 3 does not self-intersect
though can have multiple components each of which is a closed curve, i.e.,
without any end point.

For a finite sample to be an e-sample for some ¢ > 0, it is essential that
the local feature size f is positive everywhere. While this is true for most
of the smooth curves, the definition of smoothness alone cannot prohibit
f from approaching zero. Indeed there are pathological examples where a
smooth curve has a zero local feature size. So, we explicitly assume that
Y. has strictly positive local feature size everywhere. Semi-analytic curves
satisfy this property.

For any two points z,y in ¥ define two curve segments, y(z,y) and
v (z,y) between z and vy, i.e., ¥ = y(z,y) Uv'(z,y) and y(z,y) N+ (z,y) =
{z,y}. Let P be a set of sample points from ¥. We say a curve segment is
empty if its interior does not contain any point from P. An edge connecting
two sample points, say p and g, is called correct if any of y(p, q) and v/ (p, q) is
empty. In other words, p and ¢ are two consecutive sample points on X. Any
edge that is not correct is called incorrect. The goal of curve reconstruction
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is to compute a piecewise linear curve consisting of only all correct edges. In
Figure 2.1(b) all solid edges are correct and dotted edges are incorrect.

(a)

Figure 2.1: (a) A smooth curve, (b) its reconstruction from a sample shown
with solid edges.

We will describe CRUST in subsection 2.2 and NN-CRUST in subsec-
tion 2.3. Some general results are presented in subsection 2.1 which are used
later to claim the correctness of the algorithms.

2.1 Consequences of e-sampling

When P is an e-sample of X for sufficiently small €, several properties can
be proved.

Lemma 2.1 (Empty Segment.) Let p € P and z € ¥ so that vy(p,x)
is empty. Let the perpendicular bisector of px intersect the empty segment
v(p,z) at z. For e <1, the ball B, ,|jp—z| has the following properties:

(i) it intersects X only in vy(p,x),
(i) it is empty,
(1i1) |lp — z|l < ef(2).

PROOF.  Suppose B = B, |, does not intersect 3 in v = (p, z), see
Figure 2.2. Shrink B continuously centering z till B Ny becomes a 1-ball
and it is tangent to some other point of X. Call the deformed ball B as B’.
The ball B’ exists as B would eventually intersect ¥ in an arbitrarily small
neighborhood of z which is a 1-ball and B N ¥ is not the 1-ball v to begin
with. The ball B’ is empty of any sample point as Int B’ intersects X only in
a subset of y which is empty. But, since B’ N X is not a 1-ball, it contains a
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medial axis point by Feature Ball Lemma (1.1). Then, its radius is at least
f(z). The point z does not have any sample point within f(z) distance as
B’ is empty. This contradicts the e-sampling condition for € < 1. Therefore,
B intersects ¥ only in «y(p, z) completing the proof of (i).

The property (ii) follows immediately as y(p,z) is empty and B inter-
sects X only in y(p,z). By e-sampling, the nearest sample point p to z is
within e f(z) distance establishing (iii). ]

Figure 2.2: Illustration for Empty Segment Lemma. The picture on the left
is impossible while the one on the right is correct.

The Empty Segment Lemma (2.1) implies that points in an empty seg-
ment are close by and any correct edge is Delaunay when € is small.

Lemma 2.2 (Small Segment.) Let z, y be any two points so that y(z,y)
is empty. Then ||z —y|| < lz—fef(x) fore < 1.

PROOF. Since y(z,y) is empty, it is a subset of an empty segment v(p, q)
for two sample points p and ¢. Let z be the point where the perpendicular
bisector of pg meet y(p,q). Consider the ball B = B, |, |- Since y(p, q) is
empty, the ball B has the properties stated in the Empty Segment Lemma
(2.1). Since B contains y(p, q), both z and y are in B. Therefore, ||z —z| <
ef(z) by the e-sampling condition. By Feature Translation Lemma (1.3)
f(z) < 12 We have
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Lemma 2.3 (Small Edge.) Let pq be a correct edge. Then, for e < 1,

(i) lp—qll < Zf(p) fore <1,

(71) pq is Delaunay.

PROOF. Any correct edge pq has the property that either v(q,p) or v(p, q)
is empty. Therefore, (i) is immediate from Small Segment Lemma (2.2). It
follows from property (ii) of Empty Segment Lemma (2.1) that there exists
an empty ball circumscribing the correct edge pg proving (ii). a

If three points =,y and z on X are sufficiently close, the segments zy and
yz make small angle with the tangent at y. This implies that the angle Zzyz
is close to . As a corollary two adjacent correct edges make an angle close
to .

Lemma 2.4 (Segment Angle.) Let x,y and z be three points on ¥ with
|z —y|| and ||y — z|| being no more than 2= f(y). Let  be the angle between
the tangent to 3 at y and yz. Then

(i) a < arcsin =,

() Zxyz > m — 2arcsin 1=

PrOOF. Consider the two medial balls sandwiching ¥ at y as in Fig-
ure 2.3. Let « be the angle between the tangent at y and the segment yz.
Since z lies outside the medial balls, the length of the segment 2z’ is no more
than that of yz where 2’ is the point of intersection of yz and a medial ball
as shown.

In that case,

(G )
= arcsin ((2520) /()

It is given that ||y —z|| < = f(y). Also, |[m —y|| > f(y) since m is a medial
axis point. Plugging these values we get

. €
o < arcsin 1

completing the proof of (i).
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Figure 2.3: Illustration for Segment Angle Lemma.

We have
myz > g -«
/ > T i
myz > o arcsin .

Similarly it can be shown that /myz > 7 — arcsin {=-. The property (ii)
follows immediately as Zzyz = Zmyz + Lmyx. O

Since any correct edge pg has a length no more than 12_—65 flp) fore <1
(Small Edge Lemma (2.3)), we have the following result.

Lemma 2.5 (Edge Angle.) Let pg and pr be two correct edges incident to
p. We have Zqpr > m — 2arcsin ;= for e < 1.

2.2 Crust

We have already seen that all correct edges connecting consecutive sample
points in an e-sample are present in the Delaunay triangulation of the sample
points if € < 1. The main algorithmic challenge is to distinguish these edges
from the rest of the Delaunay edges. The CRUST algorithm achieves this by
observing some properties of the Voronoi vertices.

2.2.1 Algorithm

Consider Figure 2.4. The left picture shows the Voronoi diagram clipped
within a box for a dense sample of a curve. The picture on the right shows the
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Figure 2.4: Voronoi vertices approximate the medial axis of a curve in the
plane. The Voronoi vertices are shown with hollow circles in the right picture.

Voronoi vertices separately. A careful observation reveals that the Voronoi
vertices lie near the medial axis of the curve (see exercise 3). The CRUST
algorithm exploits this fact. All empty balls circumscribing incorrect edges
in Del P cross the medial axis and hence contain Voronoi vertices inside.
Therefore, they cannot appear in the Delaunay triangulation of P and V
together where V' is the set of Voronoi vertices in Vor P. On the other hand,
all correct edges still survive in Del (PUV'). So, the algorithm first computes
Vor P and then computes the Delaunay triangulation of P UV where V is
the set of Voronoi vertices of Vor P. The Delaunay edges of Del (PUV') that
connect two points in P are output. It is proved that an edge is output if
and only if it is correct.

CRrusT (P)
1 compute Vor P;
2 Let V be the Voronoi vertices of Vor P;
3 compute Del (PUV);
4 FE:=¢;
5 for each edge pg € Del (PUV) do
6 ifpePandge P
7 E :=FEUpq
8 endif;
9 return E.
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The Voronoi and the Delaunay diagrams of a set of n points in the plane
can be computed in O(nlogn) time and O(n) space. The second Delaunay
triangulation in step 3 deals with O(n) points as the Voronoi diagram of
n points can have at most 2n Voronoi vertices. Therefore, CRUST runs in
O(nlogn) time and takes O(n) space.

2.2.2 Correctness

The correctness of CRUST is proved in two parts. First, it is shown that each
correct edge is present in the output of CRUST (Correct Edge Lemma (2.6)).
Then, it is shown that no incorrect edge is output (Incorrect Edge Lemma

(2.7)).

Lemma 2.6 (Correct Edge.) Each correct edge is output by CRUST when
1
°< vt

PROOF. Let pq be a correct edge. Let z be the point where the
perpendicular bisector of pq intersects the empty segment 7(p, q). Consider
the ball B = B, ||,_,- This ball is empty of any point from P when ¢ <1
(Empty Segment Lemma (2.1) (i)). We show that this ball does not contain
any Voronoi vertex of Vor P either.

Figure 2.5: Illustration for Correct Edge Lemma

Suppose that B contains a Voronoi vertex, say v, from V (Figure 2.5).
Without loss of generality, let p be no further away from v than ¢ is. Then,
by simple circle geometry, the maximum distance of v from p is v/2|[p — 2|

which by Empty Segment Lemma (2.1) (iii) implies ||[p — v|| < X2 f(p). The

— l—¢
Delaunay ball B’ centering v contains three points from P on its boundary.

This means bd B’ N X is not a 0-sphere. So, B’ contains a medial axis point
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by Feature Ball Lemma (1.1). As the Delaunay ball B’ is empty, p cannot
lie in Int B’. So, the medial axis point in B’ lies within 2||p — v|| distance

from p. Therefore, 2||p — v|| > f(p). But, ||p —v|| < &f(p) enabling us to

— 1—¢
reach a contradiction when 1\/_722 < %, ie., when ¢ < ———

. (1+2v2)

Therefore, for € < Trava) there is a circumscribing ball of pg empty of

any point from PUV. So, it appears in Del (PUV) and is output by CRUST
as it connects two points from P. O

Lemma 2.7 (Incorrect Edge.) No incorrect edge is output by CRUST when
e <1/5.

PROOF. We need to show that there is no ball, empty of both sample
points and Voronoi vertices, circumscribing an incorrect edge between two
sample points, say p and q. For the sake of contradiction, assume that D is
such a ball.

Let v and v’ be the two points where the perpendicular bisector of pq
intersects the boundary of D, see Figure 2.6. Consider the two balls B = B,
and B' = B,y , that circumscribe pg.

We claim that both B and B’ are empty of any sample points. Suppose
on the contrary, any one of them, say B, contains a sample point. Then, one
can push D continually towards B by moving its center on the perpendicular
bisector of pg and keeping p,q on its boundary. During this motion, the
deformed D would hit a sample point s for the first time before its center
reaches v. At that moment p, ¢ and s define a ball empty of any other sample
points. The center of this ball is a Voronoi vertex in Vor P which resides
inside D. This is a contradiction as D is empty of any Voronoi vertex from
V.

The angle Zvpv' is m/2 as vv' is a diameter of D. The tangents to
the boundary circles of B and B’ at p are perpendicular to vp and v'p
respectively. Therefore, the tangents make an angle of m/2. This implies
that ¥ cannot be tangent to both B and B’ at p.

First consider the case where Y is tangent neither to B nor to B’. Let
p1 and po be the points of intersection of ¥ with the boundaries of B and
B' respectively that are consecutive to p among all such intersections. The
curve segment between p and p; and the curve segment between p and po
do not have any sample point other than p. By Small Segment Lemma (2.2)
both ||p—p1|| and ||p— p2|| are no more than {2 f(p). So, by Segment Angle
Lemma (2.4) Zp1pps < 7 — 2arcsin 1.
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Figure 2.6: Illustration for Incorrect Edge Lemma

Without loss of generality, let the angle between pp; and the tangent to
B at p be larger than the angle between pps and the tangent to B’ at p.
Then, pp; makes an angle a with the tangent to B at p where

1
a > 3 ((71'—2arcsin1i€)—g)

s . €
= 4 —aresing—.

Consider the other case where ¥ is tangent to one of the two balls B and
B’ at p. Without loss of generality, assume that it is tangent to B’ at p.
Then, again the lower bound on the angle « as stated above holds.

Let x be the point where the perpendicular bisector of pp; intersects the
curve segment between p and p;. Clearly, z is in B. Since B intersects 3 at
p and ¢ which are not consecutive sample points, it cannot contain v(p, q)
or 7' (p, q) inside completely. This means B N Y cannot be a 1-ball. So, by
Feature Ball Lemma (1.1) B has a medial axis point and thus its radius r is
at least f(z)/2. By simple geometry, one gets that

1
lp =zl > 5lp=pill
= rsina

1 i
> §f(w) sin a.

By property (iii) of Empty Segment Lemma (2.1) ||p—z|| < ef(z). We reach

a contradiction if
% < sin | = in—°
€ < sin | — — arcsin )
4 1-—c¢
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For € < é, this inequality is satisfied. O

Combining Correct Edge Lemma (2.6) and Incorrect Edge Lemma (2.7)
we get the following theorem.

Theorem 2.1 For e < %, CRUST computes only all the correct edges.

2.3 NN-crust

The next algorithm for curve reconstruction is based on the concept of near-
est neighbors. A point p € P is a nearest neighbor of ¢ € P if there is no
other point s € P\ {p,q} with ||¢ — s|| < ||g — p||. Notice that p being a
nearest neighbor of ¢ does not necessarily mean that ¢ is a nearest neighbor
of p.

We first observe that edges that connect nearest neighbors in P must
be correct edges if P is sufficiently dense. But, all correct edges do not
connect nearest neighbors. Figure 2.7 shows all edges that connect nearest
neighbors. The missing correct edges in this example connect points that are
not nearest neighbors. However, these correct edges connect points that are
not very far from being nearest neighbors. We capture them in NN-CRUST
using the notion of half neighbors.

[

S '\.\H./'
K ol
I R

(a)

Figure 2.7: (a) Only nearest neighbor edges may not reconstruct a curve,
(b) half neighbor edges fill up the gaps such as pr.

2.3.1 Algorithm

Let pg be an edge connecting p to its nearest neighbor ¢ and pg be the vector
from p to q. Consider the closed halfplane H bounded by the line passing
through p with pg as outward normal. Clearly, ¢ ¢ H. The nearest neighbor
to p in the set HN P is called its half neighbor. In Figure 2.7(b), r is the half
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neighbor of p. It can be shown that two correct edges incident to a sample
point connect it to its nearest and half neighbors.

The above discussion immediately suggests an algorithm for curve re-
construction. But, we need efficient algorithms to compute nearest neighbor
and half neighbor for each sample point. The Delaunay triangulation Del P
turns out to be useful for this computation as all correct edges are Delaunay
if P is sufficiently dense. Small Edge Lemma (2.3) implies that, for each
sample point p, it is sufficient to check only the Delaunay edges to determine
correct edges. We check all edges incident to p in Del P and determine the
shortest edge connecting it to its nearest neighbor, say ¢. Next, we check
all other edges incident to p which make at least 5 angle with pq at p and
choose the shortest among them. This second edge connects p to its half
neighbor. The entire computation can be done in time proportional to the
number of edges incident to p. Since the sum of the number of incident
edges over all vertices in the Delaunay triangulation is O(n) where |P| = n,
correct edge computation takes only O(n) time once Del P is computed. The
Delaunay triangulation of a set of n points in the plane can be computed in
time O(nlogn) which implies that NN-crust takes O(nlogn) time.

NN-CRusT (P)
1 compute Del P;
2 E=¢
3 foreach pe P do
4 compute the shortest edge pq in Del P;
) compute the shortest edge ps so that Zpgs > 7;
6 E=EU{pgps};
7 endfor
8 return E.

2.3.2 Correctness

As we discussed before, NN-CRUST computes edges connecting each sample
point to its nearest and half neighbors. The correctness of NN-CRUST follows
from the proofs that these edges are correct.

Lemma 2.8 (Neighbor.) Letp € P be any sample point and q be its near-
est neighbor. The edge pq is correct for € < %

PROOF. Consider the ball B with pq as diameter. If B does not intersect
¥ in a 1-ball, it contains a medial axis point by Feature Ball Lemma (1.1).
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(a) (b)

Figure 2.8: Diametric ball of pq intersects ¥ in (a) two components, (b)
single component.

See Figure 2.8(a). This means ||p — ¢|| > f(p). A correct edge ps satisfies
lp — sll < & f(p) by Small Edge Lemma (2.3). Thus, for ¢ < 3 we have

llp —s|| < ||;7 - q||, a contradiction to the fact that ¢ is the nearest neighbor
to p.

So, B intersects X in a 1-ball, namely v = ~(p,q) as shown in Figure
2.8(b). If pq is not correct, 7y contains a sample point, say s, between p and
q inside B. Again, we reach a contradiction as |[p — s|| < |lp —¢||. O

Next we show that edges connecting a sample point to its half neighbors
are also correct.

Lemma 2.9 (Half Neighbor.) An edge pq where q is a half neighbor of p
1s correct when € < %

PROOF. Let r be the nearest neighbor of p. According to the definition pg

makes at least 5 angle with pi.

If pq is not correct, consider the correct edge ps incident to p other than
K

pr. By Edge Angle Lemma (2.5) p5 also makes at least § angle with pir for

e < 1/3. We show that s is closer to p than ¢. This contradicts that ¢ is the

half neighbor of p since both ps and pg make an angle at least 5 with p.

Consider the ball B with pg as a diameter. If B does not intersect X
in a 1-ball (Figure 2.9(a)), it would contain a medial axis point, and thus
lp — gl > f(p). On the other hand |p — s|| < 2 f(p) by Small Edge
Lemma (2.3). We reach a contradiction as |[p — s|| < [|p — ¢|| for £ < 3. So,
assume that B intersects ¥ in a 1-ball, namely in y(p, q), as in Figure 2.9(b).
Since pq is not a correct edge, s must be on this curve segment. It implies

llp — s|| < |lp — ¢|| reaching a contradiction again. O
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Figure 2.9: (a) Diametric ball of pg intersects ¥ in (a) more than one com-
ponent, (b) a single component.

Theorem 2.2 NN-CRUST computes all and only correct edges when € < %

PrROOF. By Small Edge Lemma (2.3) all correct edges are Delaunay. Step
4 and 5 assure that all edges joining samples points to their nearest and
half neighbors are computed as output. These edges are correct by Neighbor
Lemma (2.8) and Half Neighbor Lemma (2.9) when e < 3. Also, there is no
other correct edges since each sample point can only be incident to exactly
two correct edges.

2.4 Notes

In its simplest form the curve reconstruction problem appears in applications
such as pattern recognition, image boundary detection, and cluster analysis.
In the 1980s several geometric graphs connecting a set of points in the plane
were discovered which reveal a pattern among the points. The influence
graph of Toussaint [AH85], the 8-skeleton of Kirkpatrick and Radke [KR85],
the a-shapes of Edelsbrunner, Kirkpatrick, Seidel [EKS83] are such graphs.

A set of points from a curve X is called a §-uniform sample if each point
z € 3 has a sample point within a fixed distance §. Several algorithms
were devised to reconstruct curves from J-uniform samples with § being suf-
ficiently small. Attali proposed a Delaunay based reconstruction for such
samples [Att97] (also see exercise 4). Figueiredo and Gomes [FG95] showed
that Euclidean minimum spanning tree (EMST) can reconstruct curves with
boundaries from sufficiently dense uniform sample. Bernardini and Ba-
jaj [BB97] proved that the a-shapes of Edelsbrunner et al. reconstruct curves
from §-uniform samples with guarantees if § is sufficiently small.
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The first breakthrough in reconstructing curves from non-uniform sam-
ples was made by Amenta, Bern and Eppstein [ABE98]. The presented
CRuST algorithm is taken from this paper with some modifications in the
proofs. Following the development of CRUST, Dey and Kumar devised the
NN-crusT algorithm [DK99]. The presented NN-CRUST algorithm is taken
from this paper again with some modifications in the proofs. This algorithm
also can reconstruct curves in three and higher dimensions, albeit with ap-
propriate modifications of the proofs (exercise 5).

The CRUST and NN-CRUST assume that the sample is derived from a
smooth curve without boundaries. The questions of reconstructing non-
smooth curves and curves with boundaries have also been studied.

Giesen [Gie00] showed that a fairly large class of non-smooth curves can
be reconstructed by Traveling Salesman Path (or Tour). A curve ¥ is called
benign if the left tangent and the right tangent exist at each point and make
an angle less than w. Giesen proved that, a benign curve ¥ can be recon-
structed from a sufficiently dense uniform sample by the Traveling Salesman
Path (or Tour) in case ¥ has a boundary (or no boundary). The uniform
sampling condition was later removed by Althaus and Mehlhorn [AMO02], who
also gave a polynomial time algorithm to compute the Traveling Salesman
Path (or Tour) in the special case of curve reconstruction. The Traveling
Salesman approach cannot handle curves with multiple components. Also,
the sample points representing the boundaries need to be known a priori to
choose between path or tour.

Dey, Mehlhorn and Ramos [DMRO00] presented an algorithm named CON-
SERVATIVE CRUST that provably reconstructs smooth curves with bound-
aries. Any algorithm for handling curves with boundaries faces a dilemma
when an input point set samples a curve without boundary densely and si-
multaneously samples densely another curve with boundary. This dilemma
is resolved in CONSERVATIVE CRUST by a justification on the output. For
any input point set P, the graph output by the algorithm is guaranteed to
be the reconstruction of a smooth curve possibly with boundary for which
P is a dense sample. The main idea of the algorithm is that an edge pg
is output only if there is a large enough ball centering the midpoint of pg
which is empty of all Voronoi vertices in Vor P. The rationale behind this
choice is that these edges are small enough with respect to local feature size
of the sampled curve since the Voronoi vertices approximate the medial axis.
With a sampling condition tailored to handle non-smooth curves, Funke and
Ramos [FR01] and Dey and Wenger [DW02] proposed algorithms to recon-
struct non-smooth curves. The algorithm of Funke and Ramos can handle
boundaries as well.
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Exercises

. Give an example of a point set P such that P is an 1-sample of two

curves for which the correct reconstructions are different.

. Given a i—sample P of a smooth curve, show that all correct edges are

Gabriel in Del (PU V) where V is the set of Voronoi vertices in Vor P.

. Let P be an e-sample of a smooth curve without boundary. Let 7,

be the sum of the angles opposite to pg in the two (or one if pq is a
convex hull edge) triangles incident to pg in Del P. Prove that there is
an ¢ for which pq is correct if and only if 1y, < 7.

. Show that the NN-CRUST algorithm can reconstruct curves in three

dimensions from sufficiently dense samples.

. Correct Edge Lemma (2.6) is proved for ¢ < —L—. Show that it also

1+2v2°
holds for ¢ < m Similarly show that Neighbor Lemma (2.8) and

Half Neighbor Lemma (2.9) hold for € < 1/3.

. Gold and Snoeyink [GS01] showed that the CRUST algorithm can be

modified to guarantee a reconstruction with € < 0.42. Althaus [Alt01]
showed that the NN-CRUST algorithm can be proved to reconstruct
curves from e-samples for € < 0.5. Can this bound on € be improved?
What is the largest value of € for which curves can be reconstructed
from e-samples?

. Let v be a Voronoi vertex in the Voronoi diagram Vor P of an e-sample

P of a smooth curve .. Show that there exists a point m in the medial
axis of ¥ so that |m — v|| < cef(p) for e sufficiently small and an
appropriate constant ¢ > 0.



