
Chapter 6

Delaunay refinement in the plane

Delaunay refinement algorithms generate high-quality meshes by inserting vertices into a Delau-
nay or constrained Delaunay triangulation. The vertices are placed to ensure domain conformity
and to eliminate elements that are badly shaped or too large. Delaunay refinement has many
virtues: the optimality of Delaunay triangulations with respect to criteria related tointerpolation
and the smallest angles; our rich inheritance of theory and algorithms for Delaunay triangulations;
the fast, local nature of vertex insertion; and most importantly, the guidance that the Delaunay tri-
angulation provides in finding locations to place new vertices that are far from the other vertices,
so that short edges do not appear.

This chapter describes an enormously influential Delaunay refinement algorithm for triangu-
lar mesh generation invented by Jim Ruppert—arguably the first provably good mesh generation
algorithm to be truly satisfying in practice. Ruppert’s algorithm was inspired by Chew’s algo-
rithm, discussed in Section 1.2, but it has the advantage that it constructs graded meshes and it
offers mathematical guarantees on triangle grading and size optimality. Figure 6.1 shows a mesh
produced by Ruppert’s algorithm.

We use Ruppert’s algorithm to introduce ideas that recur throughout the book. We begin
by introducing a generic template that summarizes most Delaunay refinement algorithms. Then
we describe Ruppert’s algorithm and show that, under the right conditions, it is mathematically
guaranteed to produce high-quality triangular meshes. Ruppert’s work established the theoretical
strength of the generic algorithm, which we extend to tetrahedral meshing in subsequent chapters.

One guarantee is that the triangles in these meshes have high quality. Anotherguarantee is
that the edges are not unduly short: there is a lower bound on the edge lengths proportional to
a space-varying function called thelocal feature size, which roughly quantifies the longest edge
lengths possible in any high-quality mesh of a specified piecewise linear complex. A highlight
of the theory of mesh generation is that one can estimate both the maximum edge lengths and
the minimum number of triangles in a high-quality mesh. Ruppert’s algorithm comes within a
constant factor of optimizing both these quantities, and so we say that the meshes it produces are
size-optimal, a notion we define formally in Section 6.5.

119

120

Figure 6.1: Meshing the Columbus skyline: a PLC and a Delaunay mesh thereof with no angle
less than 28◦, produced by Ruppert’s Delaunay refinement algorithm.

6.1 A generic Delaunay refinement algorithm

The following generic Delaunay refinement method meshes a complexP.

DR(P)

1. Choose a vertex setS ⊂ |P|.
2. Compute DelS.

3. If DelS fails to satisfy a property guaranteeing its geometric or topological
conformity toP, choose a pointc ∈ |P| at or near the violation, insertc into S,
update DelS, and repeat step 3.

4. If an elementτ ∈ DelS is poorly shaped or too large, choose a pointc ∈ |P| in
or nearτ’s circumball, insertc into S, update DelS, and go to step 3.

121

Figure 6.2: Inserting the circumcenter of a triangle whose radius-edge ratio exceeds 1. Every new
edge adjoins the circumcenter and is at least as long as the circumradius of the skinny triangle,
which is at least as long as the shortest edge of the skinny triangle.

5. Return the mesh{σ ∈ DelS : σ ⊆ |P|}.

The first step depends on the type of complex. For a piecewise linear domain, S is the set of
vertices inP. For a smooth or piecewise smooth domain, points are chosen carefully fromthe
surfaces to form an initial vertex set. Step 2 constructs an initial Delaunay triangulation. Some
algorithms maintain a constrained Delaunay triangulation instead; see Section 6.7. Steps 3 and 4
refine the triangulation by calling a vertex insertion algorithm such as the Bowyer–Watson algo-
rithm. The properties enforced by Step 3 can encompass conforming to the domain boundary,
capturing the domain topology, and approximating curved domain geometry with sufficient ac-
curacy. Step 5 obtains a mesh ofP by deleting the extraneous simplices that are not included in
|P|.

DR terminates only when the mesh has the desired geometric properties and
element shapes and sizes. The algorithm designer’s burden is to choosethe properties to enforce,
choose vertices to insert, and prove that the mesh will eventually satisfy the properties, so the
algorithm will terminate. Counterintuitive as it may seem, the proof usually proceeds by first
showing that the algorithm must terminate, and hence the properties must be satisfied and the
elements must have high quality.

The main insight behind all Delaunay refinement algorithms is that they constrain how close
together two vertices can be, and thus constrain how short an edge can be. Consider inserting
a new vertex at the circumcenter of an element whose radius-edge ratio is one or greater, as
illustrated in Figure 6.2. Because a Delaunay simplex has an empty circumball, thedistance from
the new vertex to any other vertex is at least as great as the circumball’s radius, which is at least
as great as the simplex’s shortest edge. Therefore,the new vertex cannot participate in an edge
shorter than the shortest edge already existing. This explains why circumcenters are excellent
places to put new vertices, why the radius-edge ratio is the quality measure naturally optimized
by Delaunay refinement algorithms, and why these algorithms must terminate: they eventually
run out of places to put new vertices. The following lemma formalizes the last idea.

Lemma 6.1(Packing Lemma). Let D⊂ Rd be a bounded domain. Let S⊂ D be a point set and
λ > 0 a scalar constant such that for every two distinct points u and v in S , d(u, v) ≥ λ. Then
there is a constantξ depending solely on D andλ such that|S| ≤ ξ.

122

P. Consider the point setDλ/2 = {x ∈ Rd : d(x,D) ≤ λ/2}, known as theMinkowski sumof
D with a ball of radiusλ/2. Dλ/2 is bounded, asD is bounded. Every Euclideand-ball having a
center inS and radiusλ/2 is included inDλ/2. Because every pair of points inS is separated by a
distance of at leastλ, these balls have disjoint interiors, and we call this set ofd-balls apacking.
Therefore,|S| ≤ volume(Dλ/2)/((λ/2)dVd), whereVd is the volume of a unitd-ball. �

The Delaunay refinement algorithms we study in this book place a lower boundλ on inter-
vertex distances that is proportional to the aforementionedlocal feature sizefunction, which lo-
cally estimates the longest edge lengths possible in a high-quality mesh. For a polyhedral domain,
the local feature size is related to the distances between disjoint linear cells. For a domain whose
boundary is a smooth surface, it is related to the distance from that boundary to its medial axis.
We give formal definitions for the local feature size in the sections where they are first used.

6.2 Ruppert’s Delaunay refinement algorithm

The input to Ruppert’s algorithm is a piecewise linear complexP (recall Definition 2.8) and a
positive constant ¯ρ that specifies the maximum permitted radius-edge ratio for triangles in the
output mesh. Recall from Section 1.7 that this equates to a minimum permitted angle of θmin =

arcsin 1
2ρ̄ and a maximum permitted angle ofθmax = 180◦−2θmin. The output is a mesh ofP—that

is, a Steiner triangulation ofP (recall Definition 2.12)—whose triangles all meet the standard of
quality. The algorithm is guaranteed to terminate if ¯ρ ≥

√
2 and no two edges inP meet at an

acute angle. (We remove the latter restriction in Section 6.6).
Ruppert’s algorithm begins by settingS to be the set of vertices inP and constructing DelS.

Let ρ(τ) denote the radius-edge ratio of a triangleτ. Suppose that step 4 of DR
is elaborated as:

If there is a triangleτ ∈ DelS with ρ(τ) > ρ̄, insert the circumcenterc of τ into S,
update DelS, and go to step 3.

Let λ be the shortest distance between any two points inS beforec is inserted. Letr be τ’s
circumradius, and letℓ be the length ofτ’s shortest edge. Recall the main insight from the previous
section: becauseτ’s open circumdisk is empty,d(c,S) ≥ r = ρ(τ)ℓ > ρ̄λ. If we choose ¯ρ ≥ 1,
then step 4 maintains a lower bound ofλ on inter-point distances and we can apply the Packing
Lemma (Lemma 6.1). If we choose ¯ρ = 1, every triangle whose smallest angle is less than 30◦

will be split by the algorithm. Therefore, if the algorithm terminates, every triangle has all its
angles between 30◦ and 120◦.

Unfortunately, this simple refinement rule has a serious flaw, because someof the new vertices
might lie outside the domain|P|. Moreover, recall from Figure 2.12 that DelS does not always
respect the domain boundaries. We fix both problems by incorporating special treatment of the
domain boundaries into step 3 of the algorithm.

A goal of the algorithm is to force eachsegment—each edge inP—to be represented by a
sequence of edges in DelS. During refinement, the algorithm maintains a setE of subsegments,
edges that should ideally appear in the mesh. Initially,E is the set of segments inP; but as
the algorithm adds new vertices toS, these vertices subdivide segments into subsegments, and

123

Figure 6.3: Segments (bold) are split until no subsegment is encroached.

subsegments into shorter subsegments. The algorithm explicitly maintains the identity of the
subsegments, whether or not they appear as edges in DelS.

Consider a subsegmente that is absent from DelS, as at upper right in Figure 2.12. By
Proposition 2.10, DelS contains every strongly Delaunay edge, soe is not strongly Delaunay,
and some vertexv ∈ S must lie ine’s closed diametric disk besidese’s vertices.

Definition 6.1 (encroachment). A vertexv that lies in the closed diametric ball of a subsegment
ebut is not a vertex ofe is said toencroach upon e.

The following procedure SS treats an encroached subsegment by inserting a
new vertex at its midpoint, thereby dividing it into two subsegments of half the length. All en-
croached subsegments are treated this way, whether they are present inDelS or not, as illustrated
in Figure 6.3. The recovery of a boundary segment by repeatedly inserting vertices on its missing
subsegments is sometimes calledstitching.

SS(e,S,E)

1. Insert the midpoint ofe into S.

2. Removee from E and add its two halves toE.

We will see at the end of this section that if no subsegment is encroached, every triangle’s
circumcenter lies in the domain|P|, so we can remove any skinny triangle by inserting a vertex at
its circumcenter. However, this triangle refinement rule still has a serious flaw: a vertex inserted
at a circumcenter can lie arbitrarily close to a segment, thereby forcing the Delaunay refinement
algorithm to generate extremely small triangles in the region between the vertex and segment.
We sidestep this hazard with a more complicated rule for treating skinny trianglesthat prevents
vertices from getting dangerously close to segments, at the cost of weakening the angle bounds
from 30◦ and 120◦ to approximately 20.7◦ and 138.6◦. If a triangleτ has a radius-edge ratio
greater than ¯ρ, we consider inserting its circumcenterc, as before. But ifc encroaches upon a
subsegmente, we rejectc and splite instead.

ST(τ,S,E)

1. Letc be the circumcenter ofτ.

2. If c encroaches upon some subsegmente ∈ E, call SS(e,S,E).
Otherwise, insertc into S.

124

If ST elects not to insertc and instead calls SS, we say thatc is
rejected. Although rejected vertices do not appear in the final mesh, they play a significant role
in the algorithm’s analysis. The new vertex inserted at the midpoint ofe by SS
might or might not lie inτ’s open circumdisk. If not,τ survives the call to ST, but the
Delaunay refinement algorithm can subsequently attempt to splitτ again.

The following pseudocode implements Ruppert’s Delaunay refinement algorithm.

DTPLC(P, ρ̄)

1. LetS be the set of vertices inP. Let E be the set of edges inP.

2. Compute DelS.

3. While some subsegmente ∈ E is encroached upon by a vertex inS, call S-
S(e,S,E), update DelS, and repeat step 3.

4. If DelS contains a triangleτ ⊆ |P| for whichρ(τ) > ρ̄, call ST(τ,S,E),
update DelS, and go to step 3.

5. Return the mesh{σ ∈ DelS : σ ⊆ |P|}.

Figure 6.4 illustrates the algorithm DTPLC with a sequence of snapshots of the triangu-
lation. The theoretical minimum angle of 20.7◦ is quite pessimistic compared to the algorithm’s
observed performance; it is almost always possible to obtain a minimum angle of 33◦ in practice.

Observe that step 4 ignores skinny triangles that lie outside the domain. DTPLC gives
priority to encroached subsegments, and splits a triangle only if no subsegment is encroached.
This policy guarantees that every new vertex lies in the domain|P|.

Proposition 6.2. Let T be a Steiner triangulation of a PLCP in the plane. If no subsegment
in T (i.e. edge inT included in a segment inP) is encroached, then every triangle inT has its
circumcenter in|P|.

P. Suppose for the sake of contradiction that some triangleτ ∈ T has a circumcenterc < |P|.
Let p be a point in the interior ofτ. As Figure 6.5 shows, the line segmentpc crosses from the
interior of |P| to its exterior, and therefore must cross a subsegmente on the boundary of|P|. We
will show thate is encroached.

Let Bτ be the closed circumdisk ofτ, let Be be the closed diametric disk ofe, and letH be
the closed halfplane containingp whose boundary line ise’s affine hull, soBe∩ H is a half-disk.
The interior ofBτ must intersecte, aspc⊂ Bτ, but note’s vertices, asτ is Delaunay. Because the
centerc of Bτ lies outsideH, it follows thatBe ⊃ Bτ ∩ H ⊃ τ. Therefore,Be contains all three
vertices ofτ. Two of τ’s vertices might be vertices ofe, but the third vertex encroaches one. This
contradicts the assumption that no subsegment is encroached. �

In Chapter 7, we describe a generalization of Proposition 6.2 called the Orthocenter Contain-
ment Lemma (Lemma 7.7), which provides an an alternative proof of the proposition.

6.3 Implementation and running time

We offer some recommendations on how to implement Ruppert’s algorithm efficiently.

125

p

(a) (b) (c)

c

a

b

(d) (e) (f)

Figure 6.4: The algorithm DTPLC in action. (a) The input PLC. (b) The Delaunay triangu-
lation of the input vertices. (c) The bottom edge is encroached, so it is splitat its midpointp.
(d) After all the encroached subsegments are split, the shaded triangle has poor quality, so the
algorithm considers inserting its circumcenterc. (e) Becausec encroaches upon the segmentab,
the algorithm does not insertc; instead it splitsab. (f) The final mesh.

Be

Bτ

c

ep

τ

Figure 6.5:Be includes the portion ofτ’s circumdiskBτ on the same side ofeasp.

126

First, an implementation should maintain a queue of skinny and oversized triangles and a
queue of encroached subsegments, which help steps 3 and 4 to run quickly. Newly created tri-
angles and subsegments are added to these queues if they ought to be split,but deleted triangles
and subsegments are not removed from the queues until they reach the front of a queue and are
discovered to be no longer in the mesh. Second, there is an easy, local, constant-time test for
whether a subsegmente is encroached: eithere < DelS, or DelS contains a triangle that hase
for an edge and an angle of 90◦ or greater oppositee—see Exercise 1. Therefore, after the initial
Delaunay triangulation is computed, the queues can be initialized in time linear in the number of
triangles.

Third, when a new vertex is inserted, only the newly created triangles needbe checked to
see if they are skinny, and only the edges of those triangles need be checked to see if they are
encroached subsegments. Recall that the dictionary data structure of Section 3.2 maps each edge
of the mesh to the two triangles that have it for an edge in expected constant time; the same
data structure can record which edges of the mesh are subsegments. If the new vertex splits a
subsegment, the two new subsegments must be tested; recall Figure 6.3.

Fourth, the easiest way to discover whether a triangle circumcenter encroaches upon a sub-
segment and should be rejected is to insert it, then check the edges opposite it.It is wise to store
the deleted triangles so they can be rapidly restored if the circumcenter is rejected. A triangle that
is deleted then restored should be in the queue of bad triangles if and only if itwas in the queue
before the vertex insertion,including the triangle that the circumcenter was meant to split—the
rejected circumcenter might be successfully inserted later.

Fifth, if the bound ¯ρ on triangle quality is strict, prioritizing the skinny triangles so that those
with the largest radius-edge ratios (the smallest angles) are split first usually reduces the number
of triangles in the final mesh by as much as 35%. (If the bound is not strict, ordering seems
to make little difference.) Circumcenters of very skinny triangles tend to eliminate more skinny
triangles than circumcenters of mildly skinny triangles. Although one can use abinary heap to
prioritize triangles, experiments show that it is much faster, and equally effective, to maintain
multiple queues representing different quality ranges.

Sixth, if the domain|P| is not convex, the triangulation DelS contains triangles that lie out-
side the domain but in its convex hull. If a tiny angle forms between the boundary of |P| and
the boundary of conv|P|, DTPLC could perpetually add new vertices, trying to get rid of the
skinny triangle in vain. To avoid this fate, step 4 of the algorithm declines to splittriangles that are
not in |P|. Unfortunately, identifying these triangles can be costly. A simple alternative—in fact,
Ruppert’s original algorithm—is to encloseP in a large square bounding box and mesh the entire
box. The advantage is that no small angle can form betweenP and the bounding box. The disad-
vantages are that time is spent creating triangles that will be discarded in the end, and that small
exterior angles of|P| can still put the algorithm into an infinite loop of refinement. Section 6.7
discusses another alternative that works better but requires an implementation of constrained De-
launay triangulations.

There is a notable discrepancy between the running time of Ruppert’s algorithm in practice
and its running time in the theoretical worst case. Letn be the number of vertices in the PLCP,
and letN ≥ n be the number of vertices in the final mesh. With a careful implementation, Rup-
pert’s algorithm is observed to consistently takeO(n logn+ N) time in practice. The termn logn
covers the construction of the initial triangulation. The termN covers the cost of refinement, be-

127

cause most vertex insertions during Delaunay refinement take constant time. There is little need
for point location during the refinement stage, as almost every new vertexthe Delaunay refinement
algorithm generates is associated with a known subsegment that contains it or a known triangle
whose open circumball contains it. The exception is when the algorithm insertsthe midpoint of a
subsegment that is missing from the mesh, in which case the algorithm must search the triangles
adjoining a vertex of the subsegment to find one whose open circumball contains the midpoint.
The use of a CDT eliminates this small cost.

However, recall from Section 3.5 that an unlucky vertex insertion can delete and create a
linear number of triangles. PLCs are known for which refinement takesΘ(N2) time, but such
examples are contrived and do not arise in practice. Delaunay refinement tends to rapidly even
out the distribution of vertices so that most new vertices have constant degree and take constant
time to insert.

6.4 A proof of termination

DTPLC has two possible outcomes: either it will eventually delete the last skinny triangle
or encroached subsegment and succeed, or it will run forever, creating new skinny triangles and
encroached subsegments as fast as it deletes old ones. If we prove it does not run forever, we
prove it succeeds.

If ρ̄ >
√

2 and no two edges inP meet at an acute angle, we can prove that DTPLC ter-
minates by showing that it maintains a lower bound on the distances between meshvertices, then
invoking the Packing Lemma. The lengths of the edges in a mesh produced by Ruppert’s algo-
rithm are roughly proportional to a space-varying function that characterizes the local distances
between the geometric features of a PLC.

Definition 6.2 (local feature size). The local feature size(LFS) of a PLCP, where|P| ⊂ Rd, is a
function f : Rd → R such thatf (x) is the radius of the smallest ball centered atx that intersects
two disjoint linear cells inP.

Figure 6.6 shows local feature sizes for a PLC at three pointsp, q, andr. A useful intuition is
to imagine an inflating ball centered at a point; the ball stops growing when it first intersects two
mutually disjoint features. For example, the ball growing outward fromp in the figure does not
stop growing when it first intersects two segments, because they adjoin each other; it continues to
grow until it touches a vertex that is disjoint from the upper segment, as shown. Then f (p) is the
radius of the ball.

For every pointp ∈ Rd, there is a linear cell at a distancef (p) from p. Moreover, there is a
linear cell with dimension less thand at a distancef (p), because the boundary of everyd-cell in
P is a union of lower-dimensional cells inP. Omitting thed-cells from a PLC does not changef .

An important property of the local feature size is that it is 1-Lipschitz.

Definition 6.3 (k-Lipschitz). A real-valued functionϕ is k-Lipschitz if for any two pointsx and
y,

ϕ(x) ≤ ϕ(y) + k d(x, y).

The 1-Lipschitz property implies thatf is continuous and its gradient, where it exists, has magni-
tude no greater than 1; butf is not differentiable everywhere.

128

f (r)

r

q

f (q)

f (p)

p

Figure 6.6: Examples of local features sizes inR2. At each pointp, q, andr, the local feature size
f (p), f (q), or f (r) is the radius of the smallest disk that intersects two mutually disjoint linear
cells.

Proposition 6.3. The local feature size f is1-Lipschitz—that is, f(x) ≤ f (y)+ d(x, y) for any two
points x, y ∈ R2.

P. By the definition of local feature size,B(y, f (y)) intersects two mutually disjoint cells in
P. The ballB(x, f (y) + d(x, y)) includesB(y, f (y)), and therefore intersects the same two cells. It
follows that f (x) ≤ f (y) + d(x, y). �

We assign every mesh vertexx an insertion radius rx = d(x,S), the distance fromx to the
nearest distinct vertex in the setS of mesh vertices the instant beforex is added toS. Observe that
immediately afterx is added toS, rx is the length of the shortest edge adjoiningx in DelS. Every
vertex that ST rejects for encroaching upon a subsegment has an insertion radius too,
equal to its distance to the nearest vertex inS at the moment it is considered and rejected. To
show that DTPLC does not run forever, we will prove that the insertion radii do not become
much smaller than the local feature size.

We say that a vertex is oftype i if it lies on a lineari-cell in P but not on a lower-dimensional
cell. Every vertex inserted or rejected by DTPLC, except vertices of type 0, has aparent
vertex that, loosely speaking, is blamed for generating the child vertex. Theparent might be inS,
or it might be a rejected vertex.

• Type 0 verticesare input vertices inP. A type 0 vertex has no parent. The insertion radius
rx of a type 0 vertexx is the distance fromx to the nearest distinct vertex inP.

• Type 1 verticesare those inserted at the midpoints of encroached subsegments by S-
S. For a type 1 vertexx generated on an encroached subsegmente, there are
two possibilities. If the point encroaching upone is a vertex inS, definex’s parentp to
be the vertex inS nearestx; then the insertion radius ofx is rx = d(x, p). Otherwise, the
encroaching pointp is a rejected circumcenter, which we define to bex’s parent, andx’s
insertion radiusrx is the radius ofe’s diametric ball. Becausep is in that ball,d(x, p) ≤ rx.

• Type 2 verticesare those inserted or rejected at triangle circumcenters by ST.
For a type 2 vertexx generated at the circumcenter of a triangleτ, definex’s parentp to be
the most recently inserted vertex of the shortest edge ofτ; if both vertices are inP, choose
one arbitrarily. Becauseτ’s circumdisk is empty, the insertion radius ofx is rx = d(x, p),
the circumradius ofτ.

129

q

τ

rx

x

p
rp

e

x
rx

p
rp

b

a

(a) (b)

Figure 6.7: (a) The insertion radiusrx of the circumcenterx of a triangleτ is at leastρ(τ) times
the insertion radiusrp of the most recently inserted vertexp of τ’s shortest edge. (b) The inser-
tion radiusrp of an encroaching circumcenterp of a Delaunay triangle is at most

√
2 times the

insertion radiusrx of the midpointx of the encroached subsegment.

The following proposition proves a lower bound on the insertion radius of each vertex in
terms of either its parent’s insertion radius or the local feature size. Thesebounds will lead to
lower bounds on the edge lengths in the final mesh.

Proposition 6.4. LetP be a PLC in which no two edges meet at an acute angle. Let x be a vertex
inserted into S or rejected byDTPLC. Let p be the parent of x, if one exists.

(i) If x is of type 0, then rx ≥ f (x).

(ii) If x is of type 1, and its parent p is of type 0 or 1, then rx ≥ f (x).

(iii) If x is of type 1, and its parent p is of type 2, then rx ≥ rp/
√

2.

(iv) If x is of type 2, then rx > ρ̄rp.

P. If x is of type 0, then the diskB(x, rx) containsx ∈ P and another vertex inP, hence
f (x) ≤ rx by the definition of local feature size.

If x is of type 2, thenx is the circumcenter of a Delaunay triangleτwith ρ(τ) > ρ̄, as illustrated
in Figure 6.7(a). The parentp is the most recently inserted vertex ofτ’s shortest edgepq, or both
p andq are vertices inP; it follows from the definition of insertion radius thatrp ≤ d(p,q). The
insertion radius ofx (and the circumradius ofτ) is rx = d(x, p) = ρ(τ) d(p,q) > ρ̄rp as claimed.

If x is of type 1, it is the midpoint of a subsegmente of a segments ∈ P, andx’s parentp
encroaches upone. There are three cases to consider, depending on the type ofp.

• If p is of type 0, thenp ∈ P, and the diskB(x,d(x, p)) intersects two disjoint linear cells in
P, namelyp ands. By the definition of local feature size,f (x) ≤ d(x, p) = rx.

• If p is of type 1, thenp was previously inserted on some segments′ ∈ P. The segmentss
ands′ cannot share a vertex, because the presence ofp in e’s diametric disk would imply
thatsmeetss′ at an angle less than 90◦. ThusB(x,d(x, p)) intersects two disjoint segments
and f (x) ≤ d(x, p) = rx.

130

subsegment
circumcenters

triangle
midpointsfactor ρ̄ factor 1√

2

Figure 6.8: Flow graph illustrating the worst-case relation between a vertex’s insertion radius and
the insertion radii of the children it begets. If no cycle has a product smaller than one, Ruppert’s
algorithm will terminate.

• If p is of type 2, thenp is a circumcenter rejected for encroaching upone, so it lies in the
diametric disk ofe, whose center isx, as illustrated in Figure 6.7(b). Letb be the vertex
of e nearestp; then∠pxb≤ 90◦ andd(p,b) ≤

√
2d(x,b). DTPLC calls ST

only when no subsegment is encroached, sorx = d(x,b). The parentp is the center of the
circumdisk of a Delaunay triangle, sorp is the radius of the circumdisk. The triangle’s open
circumdisk does not containb, sorp ≤ d(p,b) ≤

√
2d(x,b) =

√
2rx, as claimed.

�

The flow graph in Figure 6.8 depicts the relationship between the insertion radius of a vertex
and the smallest possible insertion radii of its children, from Proposition 6.4.The boxes represent
type 2 and type 1 vertices, respectively. Type 0 vertices are omitted because they cannot contribute
to cycles in the flow graph. We can prove that DTPLC terminates by showing that it cannot
produce sequences of vertices with ever-diminishing insertion radii—that is, there is no cycle in
the flow graph whose product is less than one. This is true if we choose ¯ρ to be at least

√
2. When

a rejected circumcenter splits a subsegment, the newly created edges can bea factor of
√

2 shorter
than the circumradius of the skinny triangle; we compensate for that by tryingto split a triangle
only if its circumradius is at least a factor of

√
2 greater than the length of its shortest edge. If

ρ̄ =
√

2, the final mesh has no angle less than arcsin1
2
√

2
� 20.7◦.

From this reasoning, it follows that if ¯ρ ≥
√

2, DTPLC creates no edge shorter than the
shortest distance between two disjoint linear cells inP. Proposition 6.5 below makes a stronger
statement: DTPLC spaces vertices proportionally to the local feature size. If a user chooses
ρ̄ <
√

2, the algorithm will try to obtain the quality requested, but it might fail to terminate,or it
might generate a mesh that is not properly graded.

Proposition 6.5. Suppose that̄ρ >
√

2 and no two segments inP meet at an angle less than90◦.
Define the constants

CS =

(√
2+ 1

)
ρ̄

ρ̄ −
√

2
, CT =

ρ̄ + 1

ρ̄ −
√

2
.

Let x be a vertex inserted or rejected byDTPLC(P, ρ̄).

131

(i) If x is of type 1, then rx > f (x)/CS.

(ii) If x is of type 2, then rx > f (x)/CT .

P. The expressions forCS andCT above arise as the solution of the equationsCS =
√

2CT+1
andCT = 1+CS/ρ̄, which are both used below. Observe thatCS > CT > 1. The proof proceeds
by induction on the sequence of points that are inserted or rejected by DTPLC. Letx be one
such point, and suppose for the sake of induction that the claim holds for every previously inserted
or rejected point.

If x is of type 1 and its parentp is of type 0 or 1, thenrx ≥ f (x) > f (x)/CS by Proposition 6.4,
confirming property (i). Ifx is of type 1 andp is of type 2, thenrx ≥ rp/

√
2 by Proposition 6.4

andd(x, p) ≤ rx. Inductive application of property (ii) givesrp > f (p)/CT . By the Lipschitz
property of f (Proposition 6.3),

f (x) ≤ f (p) + d(x, p) < CTrp + rx ≤
(√

2CT + 1
)
rx = CSrx,

confirming property (i).
If x is of type 2, then by the inductive hypothesis its parentp satisfiesrp > f (p)/CS. By

Proposition 6.4,rx > ρ̄rp. The Lipschitz property impliesf (x) ≤ f (p) + d(x, p) = f (p) + rx, so

rx > ρ̄rp >
ρ̄

CS
f (p) ≥ ρ̄

CS
(f (x) − rx).

Rearranging terms gives

rx >
f (x)

1+CS/ρ̄
=

f (x)
CT

,

confirming property (ii). �

Proposition 6.5 gives a lower bound on the distance between a newly inserted vertex and all
the preceding vertices. We want a more general bound on the distance between a vertex and all
the other vertices, including those that are inserted later. The Lipschitz property of f allows us to
derive the latter bound from the former.

Proposition 6.6. Suppose that̄ρ >
√

2 and no two segments inP meet at an angle less than90◦.
For any two vertices p and q thatDTPLC inserts, d(p,q) ≥ f (p)/(CS + 1).

P. If p is inserted afterq, Proposition 6.5 states thatd(p,q) ≥ f (p)/CS. If q is inserted after
p, d(p,q) ≥ f (q)/CS. Becausef is 1-Lipschitz, f (p) ≤ f (q) + d(p,q) ≤ (CS + 1)d(p,q). Either
way, the result follows. �

Proposition 6.6 establishes a lower bound on the distances between verticesproportional to
the local feature size, which implies that DTPLC is guaranteed to produce graded meshes if
the local feature size function is strongly graded, as Figure 6.9 illustrates.We call this guarantee
provably good grading, because it implies that small geometric features of the domain do not
cause the algorithm to produce unduly short edges far from those features.

To make the proposition concrete, consider choosing ¯ρ = 1.93 to guarantee that no angle is
smaller than roughly 15◦. ThenCS � 9.01, so the spacing of vertices is at worst about ten times

132

Figure 6.9: A domain with two polygons, the top one being extremely thin comparedto the
bottom one. Four meshes generated by Ruppert’s algorithm, with no angle smaller than 5◦, 20◦,
30◦, and 34.2◦, respectively.

smaller than the local feature size. This worst theoretical outcome never occurs in practice; for
example, the edges of the 20◦ mesh in Figure 6.9 are at least one third as long as their local feature
sizes. The bound permits us to apply the Packing Lemma to prove that the algorithm does not run
forever.

Theorem 6.7. Suppose that̄ρ >
√

2 and no two segments inP meet at an angle less than90◦.
ThenDTPLC(P, ρ̄) terminates and returns a Steiner Delaunay triangulation ofP whose tri-
angles have radius-edge ratios at mostρ̄.

P. Let fmin = minx∈|P| f (x). BecauseP is finite and any two disjoint linear cells inP are
separated by a positive distance,fmin > 0. By Proposition 6.6, DTPLC maintains an inter-
vertex distance of leastfmin/(CS+1) > 0. By the Packing Lemma (Lemma 6.1), there is an upper
bound on the number of vertices in the triangulation, so DTPLC must terminate. The algo-
rithm terminates only if no subsegment is encroached and no skinny triangle lies in the domain,
so it returns a high-quality mesh ofP as stated. �

Figure 6.9 shows that the algorithm often succeeds for angle bounds wellin excess of 20.7◦,
failing to terminate on the depicted domain only for angle bounds over 34.2◦. The meshes illus-
trate the expected trade-off between mesh size and quality, albeit with longer edges than the lower
bounds suggest.

For simplicity, we have not discussed the effects of refining triangles for being too large. In
practice, it is usual for a user to specify asize fieldλ : R2 → R that dictates space-varying upper
bounds on the edge lengths or triangle circumradii in the mesh. Triangles thatviolate these bounds
are split, just like skinny triangles. See Section 14.4 for an example of an analysis method that
can extend the termination guarantee and derive lower bounds on the edgelengths in the mesh
when refinement is driven by both a size field and the geometry of the domain.

133

6.5 A proof of size optimality and optimal grading

An algorithm is said to generatesize-optimalmeshes if the number of triangles in every mesh it
produces is within a constant factor of the minimum possible number.

Definition 6.4 (size optimality). Let P be a class of piecewise linear complexes—that is, a set
containing all PLCs that satisfy some criterion. For every PLCP ∈ P, let T(P, ρ̄) be the trian-
gulation with the fewest triangles among all possible Steiner triangulations ofP whose triangles’
radius-edge ratios do not exceed ¯ρ. Let M(P, ρ̄) be the Steiner triangulation ofP generated by an
algorithm that guarantees that no triangle in the mesh has a radius-edge ratiogreater than ¯ρ. The
triangulations this algorithm generates aresize-optimalif for everyP ∈ P, the number of triangles
in M(P, ρ̄) is at mostc times the number of triangles inT(P, ρ̄), wherec is a constant that depends
solely onρ̄.

Ruppert’s algorithm generates size-optimal meshes of the class of PLCs whose underlying
spaces are convex and in which no two segments meet at an angle less than 90◦, for ρ̄ ∈ (

√
2,∞).

The inclusion is strict: the constantc approaches infinity as ¯ρ approaches
√

2 from above or in-
finity from below, so the guarantee is most meaningful for moderate demandson triangle quality.

Size optimality does not mean that we can find the perfectly optimal meshT—likely a futile
quest—but we can still reason about its size and prove that the size ofM is asymptotically optimal.
The reader might ask, asymptotic in relation to what? One of the most interesting theoretical
discoveries about mesh generation is that there is a natural measure of how many elements are
required in any high-quality simplicial mesh: the integral over the domain of the inverse squared
local feature size.

The following proposition shows that this integral is an asymptotic upper bound on the number
of triangles in a meshM generated by Ruppert’s algorithm. Subsequent propositions show that
it is an asymptotic lower bound on the number of triangles in any high-quality mesh, including
T, soM is size-optimal. Unfortunately, the lower bound is contingent on|P| being convex; in
its original form, Ruppert’s algorithm does not offer a size-optimality guarantee for nonconvex
domains. In Section 6.7, we discuss how a variant of Ruppert’s algorithm that uses constrained
Delaunay triangulations does offer size-optimality for nonconvex domains, with the insight that
the analysis method must redefine the local feature size function to use shortest distances in|P|.

Proposition 6.8. Let P be a PLC in the plane in which no two segments meet at an angle less
than90◦. LetM be a mesh ofP generated byDTPLC(P, ρ̄) with ρ̄ >

√
2. Then the number of

triangles inM is less than
8(3+ 2CS)2

π
·
∫

|P|

dx

f (x)2
,

where CS is a constant that depends solely onρ̄, defined in Proposition 6.5, and dx represents an
infinitesimal measure of area in the plane.

P. Let S be the set of vertices inM, and let|S| denote the number of vertices inM. For each
vertexv ∈ S, consider the Euclidean diskBv = B(v, rv) whererv = f (v)/(2+ 2CS). The interiors
of these disks are pairwise disjoint by Proposition 6.6. As no two segments inP meet each other

134

at an acute angle, at least one quarter of each disk is included in|P|. Therefore,
∫

|P|

dx

f (x)2
>

∑

v∈S

∫

Bv∩|P|

dx

f (x)2

>
∑

v∈S

∫

Bv∩|P|

dx

(f (v) + rv)2

≥ 1
4

∑

v∈S

∫

Bv

dx

(f (v) + rv)2

=
1
4

∑

v∈S

πr2
v

(3+ 2CS)2r2
v

=
π

4(3+ 2CS)2
|S|.

Recall from Section 2.1 that an|S|-vertex triangulation has at most 2|S| − 5 triangles. The result
follows. �

The matching lower bound on the number of triangles in a high-quality mesh depends on
several observations that seem unsurprising, but require care to prove: small domain features are
surrounded by proportionally small triangles; triangles that adjoin each other cannot have arbi-
trarily different sizes; and triangles that are distant from each other cannot have a size difference
far greater than the distance between them. Together, these observationsimply that the local fea-
ture size function places an upper bound on the local edge lengths in a good mesh. None of these
observations is true if arbitrarily skinny triangles are allowed; all of them depend on having an
upper bound on the radius-edge ratio, or equivalently, a lower bound on the smallest angle. They
also require that|P| be convex.

The following series of propositions formalizes these observations to prepare for the lower
bound proof. A triangleτ has three altitudes—the distance from a vertex ofτ to the affine hull
of the opposite edge; leth(τ) denote its shortest altitude. The following proposition shows that
between any two disjoint simplices in a triangulation, there is a triangle whose shortest altitude
does not exceed the distance between the simplices. The proposition holds for any triangulation,
of good quality or not. But note that good quality implies that the triangle with a bounded altitude
also has bounded edge lengths.

Proposition 6.9. Let T be a triangulation in the plane. Let p and q be two points such that
pq ∈ |T|. Letσp andσq be the unique simplices inT whose relative interiors contain p and q,
respectively. Ifσp andσq are disjoint, there is a triangleτ ∈ T that intersects both pq andσp

such that h(τ) ≤ d(p,q).

P. Consider three cases:σp is a vertex, an edge, or a triangle.
If σp is a vertex, namely the pointp, let τ ∈ T be a triangle adjoiningp that intersects

pq\ {p}—there are either one or two such triangles. Becausep andσq are disjoint, the edge ofτ
oppositep intersectspq. Therefore,h(τ) ≤ d(p,q) and the proposition holds.

If σp is an edge, consider several possibilities. Ifq is collinear withσp, replacep with the
vertex ofσp nearestq and apply the reasoning above. Otherwise, letτp ∈ T be the triangle that
hasσp for an edge and intersectspq \ {p}. If h(τp) ≤ d(p,q), the proposition holds. Otherwise,

135

u

e q

ℓ
τp

p vσp

τ

w

Figure 6.10: Betweenp andq, at least one triangleτ adjoininguv has an altitude ofd(p,q) or
less.

let u, v, andw be the vertices ofτp, with u andv being the vertices ofσp. Assume without loss
of generality that the plane is rotated so thatσp is horizontal withτp above it, that the plane is
reflected so thatw lies to the left ofpq, and that the vertices are labeled sou lies to the left ofv,
as illustrated in Figure 6.10.

Consider the fan of triangles inT that adjoinv and have interiors that intersectpq, starting
with τp and proceeding in clockwise order, as illustrated. None of these triangles’ interiors can
containq, because thenσq would not be disjoint fromσp. Therefore, the chain of edges opposite
v in the fan starts with the edgeuw and ends with an edge that intersectspq; these edges are
bold in Figure 6.10. Becauseh(τp) > d(p,q), the apexw is higher than the pointq—that is,
it is further above the affine hull of σp. But the last edge in the chain intersectspq and so
must have at least one vertex as low asq or lower. Therefore, the chain includes at least one
down edgewhose clockwise vertex is lower than its counterclockwise vertex. Lete be the most
clockwise down edge in the chain, letℓ be e’s affine hull, and letτ ∈ T be the triangle joining
edgee with vertex v. Becausee is the last down edge, all subsequent edges and the pointq
must lie above or onℓ. Becausee is a down edge,p is further fromℓ thanv. It follows that
h(τ) ≤ d(v, ℓ) < d(p, ℓ) ≤ d(p,q).

In the third and final case,σp is a triangle. Letp′ be the point wherepq intersects the bound-
ary ofσp, and letσ′p be the face ofσp whose relative interior containsp′. Replacep with p′,
replaceσp with σ′p, and apply the reasoning above. �

Any bound on the smallest angle of a triangulation imposes a limit on the grading oftriangle
sizes. The next proposition bounds the difference in sizes between two triangles that share a
vertex. In the following propositions, letℓmax(τ) denote the length ofτ’s longest edge.

Proposition 6.10. LetT be a triangulation in the plane with|T| convex. Let̄ρ = maxσ∈T ρ(σ) be
the maximum radius-edge ratio among the triangles inT; thus,θmin = arcsin 1

2ρ̄ is the minimum
angle. Letτ and τ′ be two triangles inT that share a vertex v. Thenℓmax(τ) ≤ ηh(τ′), where
η = (2 cosθmin)1+180◦/θmin/ sinθmin = 2ρ̄(4− 1/ρ̄2)0.5+90◦/arcsin 1/(2ρ̄).

P. Let a be the length of the longest edge adjoining the vertexv, let b be the length of the
shortest, and letφ ≤ 180◦ be the angle separating the two edges. We claim that the ratioa/b
cannot exceed (2 cosθmin)φ/θmin. This bound is tight ifφ/θmin is an integer; Figure 6.11 offers an
example where the bound is obtained.

136

30◦

30◦

30◦
30◦

30◦

30◦

a b

Figure 6.11: In a triangulation with no angle smaller than 30◦, the ratioa/b cannot exceed 27.

We prove this claim by induction on the sequence of edges aroundv from the longest edge
to the shortest. For the base case, suppose the longest and shortest edges belong to a common
triangle. Letα andβ be the angles opposite the edges of lengthsa and b, respectively; then
α + β + φ = 180◦ and sinα = sin(β + φ) = sinβ cosφ + sinφ cosβ. By the Law of Sines,
a/b = sinα/ sinβ = cosφ + sinφ/ tanβ, so a/b is maximized whenβ = θmin. Observe that
if φ also equalsθmin, thena/b = 2 cosθmin. It is straightforward to verify that ifφ > θmin, then
a/b < (2 cosθmin)φ/θmin, because the former grows more slowly than the latter asφ increases above
θmin. This establishes the base case.

If the longest and shortest edges adjoiningv are not edges of a common triangle, letc be the
length of an intermediate edge adjoiningv. Then by the inductive hypothesis,a/b = (a/c)(c/b) ≤
(2 cosθmin)∠ac/θmin(2 cosθmin)∠bc/θmin = (2 cosθmin)φ/θmin, and the claim holds.

Becauseτ has two edges no longer thana and no angle smaller thanθmin, its longest edge
satisfiesℓmax(τ) ≤ 2acosθmin. Becauseτ′ has two edges no shorter thanb and no angle smaller
thanθmin, its shortest altitude satisfiesh(τ′) ≥ bsinθmin. The result follows by combining in-
equalities. �

The constantη in Proposition 6.10 can be improved; see Exercise 8.
The next proposition shows that in a high-quality triangulation, every triangle’s longest edge

has an upper bound proportional to the local feature size at any point inthe triangle. Recall that
Proposition 6.6 gives a proportional lower bound for the edges produced by DTPLC. Together,
the two propositions show that Ruppert’s algorithm generates meshes whose edge lengths are
within a constant factor of the longest possible. We call this guaranteeoptimal grading.

Proposition 6.11. Let P be a PLC in the plane with|P| convex. LetT be a Steiner triangulation
of P. Let ρ̄ = maxσ∈T ρ(σ). Letτ be a triangle inT. Let x be a point inτ. Thenℓmax(τ) ≤ 2η f (x),
whereη is a constant that depends solely onρ̄, specified in Proposition 6.10.

P. By the definition of local feature size, the diskB(x, f (x)) intersects two disjoint linear
cells in P, each a vertex or edge, at two pointsp andq, respectively. Becausep andq lie on
disjoint edges or vertices inP, they lie on disjoint edges or vertices inT. Because|P| is convex,
pq ∈ |P| and we can apply Proposition 6.9 to show there is a triangleτ′ ∈ T that intersectspq
such thath(τ′) ≤ d(p,q).

If τ adjoinsτ′, thenℓmax(τ) ≤ ηh(τ′) by Proposition 6.10. It follows thatℓmax(τ) ≤ ηd(p,q) ≤
2η f (x), and the claim holds.

137

Otherwise, letu be a point inτ′ ∩ pq. By a second application of Proposition 6.9 to the points
x andu, there is a triangleτ′′ ∈ T that adjoinsτ and satisfiesh(τ′′) ≤ d(x,u). Becauseu lies on
pq, it lies in B(x, f (x)) andd(x,u) ≤ f (x). Therefore,ℓmax(τ) ≤ ηh(τ′′) ≤ ηd(x,u) ≤ η f (x), and
the claim holds. �

We can now prove a lower bound on the size of a high-quality mesh.

Proposition 6.12. Let P be a PLC in the plane with|P| convex. LetT be a Steiner triangulation
of P. Let ρ̄ = maxσ∈T ρ(σ). The number of triangles inT is at least

1
√

3η2
·
∫

|P|

dx

f (x)2
,

whereη is a constant that depends solely onρ̄, specified in Proposition 6.10.

P. Let ℓmax(x) be a function that maps each pointx ∈ |P| to the length of the longest edge of
the triangle inT that containsx, taking the greatest value if more than one triangle containsx. By
Proposition 6.11,ℓmax(x) ≤ 2η f (x), so

∫

|P|

dx

f (x)2
≤ 4η2

∫

|P|

dx

ℓmax(x)2

= 4η2
∑

τ∈T

∫

τ

dx

ℓmax(τ)2

= 4η2
∑

τ∈T

area(τ)
ℓmax(τ)2

≤
√

3η2
∑

τ∈T
1,

because area(τ)/ℓmax(τ)2 = h(τ)/(2ℓmax(τ)) attains its maximum possible value of
√

3/4 for an
equilateral triangle. The summation is the number of triangles inT, so the claim follows. �

Propositions 6.8 and 6.12 together establish the size optimality of meshes produced by D-
TPLC, formally stated in the following theorem.

Theorem 6.13. Let P be a PLC in the plane such that|P| is convex and no two segments inP

meet at an angle less than90◦. Let ρ̄ be a real number greater than
√

2. DTPLC produces
a meshM of P whose triangles’ radius-edge ratios do not exceedρ̄, such that the number of
triangles inM is at most a constant factor greater than the number of triangles in any other
Steiner triangulation ofP whose radius-edge ratios do not exceedρ̄.

6.6 Meshing domains with small angles

Ruppert’s algorithm requires that no two segments meet at an acute angle. This is a severe restric-
tion. In practice, the algorithm often succeeds despite acute angles, but as domain angles drop
below about 45◦, it becomes increasingly likely to fail to terminate.

138

u
w

a

x

v

Figure 6.12: Ping-pong encroachment caused by a small input angle. Vertex v encroaches upon
au, which is split atw. Vertexw encroaches uponav, which is split atx, which encroaches upon
aw, and so on.

Figure 6.12 demonstrates one difficulty caused by small input angles. If two adjoining seg-
ments have unequal lengths, an endless cycle of mutual encroachment mayproduce ever-shorter
subsegments incident to the apex of the small angle. This phenomenon, sometimes calledping-
pong encroachment, is observed only with angles of 45◦ or less.

Sometimes it is impossible to obtain good element quality. If two segments of a domain adjoin
each other at a 1◦ angle, some triangle of the final mesh will have an angle of 1◦ or less. Moreover,
a small domain angle sometimes necessitates generating elements with new small angles that are
not inherited from the domain (recall Figure 1.5). Given a domain with small angles, a mesh
generator must diagnose where it is necessary to give up and accept some poor-quality elements.

This section discusses two modifications to Ruppert’s algorithm that extend it so it works
remarkably well with domains that have small angles. The first modification wasproposed by
Ruppert himself; he calls it “modified segment splitting using concentric circular shells.” The
second modification is a simple observation about which skinny triangles the mesh generator
should not try to split. Together, these two modifications yield a variant of Ruppert’s algorithm
that always terminates and has some impressive properties. Most importantly, it can guarantee
that no triangle has an angle greater than 138.6◦. It also guarantees that skinny triangles appear
only between segments separated by small angles. Recall that for many applications, bounding
the largest angles is more important than bounding the smallest angles, because the former are
related to the discretization and interpolation errors.

The first modification is to split some encroached subsegments off-center, rather than at their
midpoints. Imagine that each input vertex is enclosed by concentric circles whose radii are all the
powers of two—that is, 2i for all integersi, as illustrated in Figure 6.13. When an encroached
subsegment adjoins another segment at an angle less than 90◦, split the subsegment not at its
midpoint, but at one of the circular shells centered at the shared vertex, so that one of new sub-
segments has a power-of-two length. Choose the shell that gives the best-balanced split, so the
two new subsegments produced by the split are between one-third and two-thirds the length of
the split subsegment.

If both vertices of a segment adjoin other segments, the segment may undergo up to two
unbalanced splits—one for each end. Choose one vertex arbitrarily, and split the segment so the

139

new vertex

midpoint

Figure 6.13: Concentric circular shells appear at left. If an encroached subsegment meets another
segment at an acute angle, the subsegment is split at its intersection with a circular shell whose
radius is 2i for some integeri. The illustrations at right are a sample input and output of Ruppert’s
algorithm with concentric shell segment splitting.

subsegment adjoining that vertex has a power-of-two length between one-quarter and one-half
the length of the split subsegment. The other subsegment produced by this split might undergo
a subsequent off-center split, in which case all three subsegments will be at least one-fifth the
length of the original segment. All subsequent subsegment splits are bisections.

Concentric shell segment splitting prevents the runaway cycle of ever-shorter subsegments
portrayed in Figure 6.12, because adjoining subsegments of equal lengthdo not encroach upon
each other. Ruppert also suggests changing his algorithm so that it doesnot attempt to split a
skinny triangle nestled in the corner of a small input angle. These changesare often effective,
as the mesh at right in Figure 6.13 shows, and they always suffice for simple polygons with no
internal boundaries.

However, Figure 6.14 illustrates a more treacherous way by which small input angles and
internal boundaries can cause Delaunay refinement to fail to terminate. Recall the key idea that
Delaunay refinement should create no new edge that is shorter than the shortest edge previously
existing. If two subsegments that adjoin each other at a very small angle arebisected, the new
edge connecting their two midpoints can starkly violate this rule. The new, shorter edge can cause
subsequent refinement as the algorithm removes skinny triangles, as illustrated, which can cause
the subsegments to be split again, creating a yet shorter edge, and the cycle may continue forever.

An idea that breaks this cycle is to deny these new, unduly short edges theprivilege of causing
further refinement. Specifically, call an edgeseditiousif its vertices lie on two distinct segments
that meet each other at an angle less than 60◦, the two vertices lie on the same concentric shell,
and the two vertices are true midpoints (not off-center splits), as illustrated in Figure 6.14.

The second modification is to simply decline to try to split any skinny triangle whoseshortest
edge is seditious. This precaution prevents the short lengths of seditious edges from propagating
through the mesh. Triangles with small angles can survive, but only between segments adjoining
each other at small angles. Figure 6.14 depicts a mesh generated by the modified algorithm for a
PLC that requires both modifications to stop the algorithm from refining forever.

The observation behind why this modified algorithm terminates is that unduly short edges—
edges shorter than those predicted by Proposition 6.4—can be created in only two circumstances.
Off-center subsegment splits can create them, but only twice per PLC segment. Unduly short

140

refinement

encroachment seditious edge

Figure 6.14: At left, a demonstration of how segments separated by small angles create short,
seditious edges as they are split; the refinement of skinny triangles can cause the subsegments to
be split again. At right, a mesh generated by Ruppert’s algorithm with concentric shells when it
declines to split triangles whose shortest edges are seditious. No angle in this mesh is greater than
127.1◦, and no triangle has an angle less than 26.45◦ unless its shortest edge is seditious.

edges are also created by cascading bisections of adjoining segments, asillustrated in Figure 6.14,
but these edges are all seditious, and are prevented from causing further refinement.

Proposition 6.14. Let ρ̄ >
√

2 be the maximum permitted radius-edge ratio of a triangle whose
shortest edge is not seditious. If Ruppert’s algorithm is modified to use concentric shells for seg-
ment splitting and to decline to try to split any triangle whose shortest edge is seditious, it is guar-
anteed to terminate for any two-dimensional PLCP, with no restrictions on the angles at which
segments meet. Moreover, no triangle of the final mesh has an angle greater than180◦−2 arcsin 1

2ρ̄

nor an angle less thansinφmin/
√

5− 4 cosφmin, whereφmin is the smallest angle separating two
adjoining segments inP.

P. Let P′ be a copy of the PLCP modified to include every off-center vertex the algorithm
inserts on a segment; i.e. each vertex that is not the true midpoint of the subsegment being split.
The segments inP′ are subdivided accordingly. At most two off-center splits occur for each
segment inP, soP′ has only finitely many extra vertices. Letf (·) denote the local feature size
with respect toP′, and let fmin = minx∈|P′ | f (x).

Consider a group of segments that meet at a common vertexz in P′, with consecutive seg-
ments in the group separated by angles less than 60◦. These segments have power-of-two lengths
(possibly excepting some segments that will never be split, which we can ignore). When they are
refined, they are split at their true midpoints, so their subsegments have power-of-two lengths. At
any time during refinement, if the shortest subsegment of the segments in the group has length 2i ,
then all the vertices on the segments lie on circular shells centered atz of radii j · 2i for positive

141

integers j, and two vertices can be separated by a distance less than 2i only if they lie on the
same shell. If a vertexv on one segment encroaches upon a subsegmente of another subsegment
in the group, thene crosses the shell thatv lies on, and the two subsegments created whene is
split cannot be shorter than the two subsegments adjoiningv. It follows that a cascading chain
of mutual encroachments solely within the group does not create a subsegment shorter than the
shortest subsegment already in the group.

Say that a pair of vertices (v, x) is seditiousif they lie on two distinct segments inP′ that
meet each other at an angle less than 60◦ at some vertexz, and they lie on the same shell; that is,
d(z, v) = d(z, x). Thusvx is a seditious edge if the mesh contains it. We claim that the modified
algorithm never generates two vertices separated by a distance less thanfmin unless they are a
seditious pair. Suppose for the sake of contradiction thatv is the first vertex inserted that breaks
this invariant. Then there is a vertexx such that (v, x) is not seditious butd(v, x) < fmin. Let w be
the vertex nearestv at the momentv is inserted. Thend(v,w) ≤ d(v, x) < fmin. It is possible that
w andx are the same vertex.

We claim thatv is neither a circumcenter nor a type 1 vertex whose parent is a rejected
circumcenter. Ifv is the circumcenter of a skinny triangleτ, thenτ’s shortest edge has length
at leastfmin because the algorithm does not split a triangle whose shortest edge is seditious, and
by the inductive hypothesis, all the nonseditious edges had lengthfmin or greater beforev was
inserted. Butτ’s radius-edge ratio exceeds ¯ρ, so its circumradius is greater than ¯ρ fmin >

√
2 fmin

and thusd(v,w) >
√

2 fmin, a contradiction. Ifv is a type 1 vertex whose parentp is a rejected
circumcenter, thenrp >

√
2 fmin by the same reasoning, so Proposition 6.4(iii) implies thatrv ≥

rp/
√

2 > fmin. Thend(v,w) ≥ rv > fmin, a contradiction.
Therefore,v is a type 1 vertex inserted on an encroached subsegmente of a segments, and

the diametric disk ofe contains some encroaching vertex, and hence containsw. Thusw is not a
circumcenter (which would have been rejected). The fact thatd(v,w) < fmin implies thatw is not
a vertex inP′ and does not lie on a segment disjoint froms. The same is true forx. Therefore,
w lies on a segment inP′ that adjoinss at a shared vertexz. By our reasoning above, the two
subsegments created whene is split are not shorter than the two subsegments adjoiningw, which
have lengths of at leastfmin by the inductive hypothesis. Butd(v, x) < fmin, sox is in e’s diametric
disk. Thusx, like w, lies on a segments′ that adjoinss at z, and adjoins two subsegments whose
lengths are at leastfmin. The fact thatd(v, x) < fmin implies thatv andx lie on a common circular
shell. The radius of that shell is at leastfmin, so s and s′ meet at an angle less than 60◦. This
contradicts our assumption that (v, x) is not seditious. It follows that only seditious pairs can be
separated by a distance less thanfmin.

Because every subsegment has a length of at leastfmin, every seditious edge has a length of at
least 2fmin sin φmin

2 . It follows from the Packing Lemma (Lemma 6.1) that the modified algorithm
terminates.

When the algorithm terminates, every triangle whose shortest edge is not seditious has no
angle less than arcsin12ρ̄ , and thus no angle greater than 180◦−2 arcsin 1

2ρ̄ . To bound the angles of
the other triangles, consider the seditious edgewx in Figure 6.15. Its vertices lie on two distinct
segments that meet at a vertexv at an angleφ < 60◦, and the vertexx is a true midpoint of
vy. If a triangle whose shortest edge iswx respects the segments, its largest angle cannot exceed
∠wxy= 90◦ + φ/2 < 120◦, which establishes our claim about the largest angles.

Let ψ = ∠xyw, and observe thatψ < φ. No Delaunay triangle with shortest edgewx can

142

ℓ

ℓ

ℓ
ψ

w

φ/2
φ/2v

x

y

Figure 6.15: If a triangle’s shortest edgewx is seditious and subtends an input angleφ, the triangle
has no angle greater than 90◦ + φ/2 nor less thanψ.

have an angle less thanψ, because by the Inscribed Angle Theorem, any such triangle would have
eithery or v inside its circumdisk. By the Law of Sines, sinψ/d(v,w) = sin∠vwy/d(v, y), hence

2 sinψ = sin∠vwy= sin(180◦ − φ − ψ) = sin(φ + ψ) = sinφ cosψ + cosφ sinψ.

Therefore, (2− cosφ)2 sin2ψ = sin2 φ cos2ψ = sin2 φ (1 − sin2ψ). Rearranging terms gives
sinψ = sinφ/

√
5− 4 cosφ, which establishes our claim about the smallest angles. �

Proposition 6.14 guarantees termination, but not good grading. It is possible to salvage a
weakened proof of good grading; see the biographical notes for details.

In a practical implementation, it is wise to use an inter-segment angle smaller than 60◦ to
define seditious edges, so that Delaunay refinement is less tolerant about leaving skinny triangles
behind. This change breaks the termination proof, but in practice it threatens termination only if
the angle threshold for seditious edges is substantially smaller than 20◦. (The algorithm must still
decline to try to split triangles that are right in the corners of small domain angles, of course, as
these cannot be improved.)

6.7 Constrained Delaunay refinement

If software for constructing and updating constrained Delaunay triangulations is available, Rup-
pert’s algorithm is easily modified to construct and maintain a CDT instead of DelS, and it enjoys
several advantages by doing so. First, the algorithm stores no triangles outside the domain, even
if |P| is not convex, and therefore saves the costs of maintaining them and checking which tri-
angles are in the domain. Second, every subsegment is an edge of the CDT; whereas Ruppert’s
original algorithm sometimes must pay for point location to insert the midpoint of asubsegment
that is absent from DelS, constrained Delaunay refinement requires no point location, because
every newly inserted vertex is associated with a mesh edge or triangle. Third, and most important,
CDTs prevent overrefinement that can occur where geometric features are separated by small dis-
tances exterior to the domain, as illustrated in Figure 6.16. As the mesh at left shows, Ruppert’s
original algorithm with a bounding box can refine a mesh much more than necessary, because of
encroachments and skinny triangles exterior to the domain. A CDT prevents this overrefinement,
as the mesh at right illustrates.

143

Figure 6.16: Two variations of Ruppert’s Delaunay refinement algorithm with a 20◦ minimum
angle. Left: Overrefinement with a Delaunay triangulation in a box. Right: Refinement with a
constrained Delaunay triangulation.

A nuisance in Section 6.5 is that the proof of size optimality holds only if|P| is convex.
Figure 6.16 shows that this is not merely a technical flaw in the proofs; Ruppert’s algorithm does
not always generate size-optimal meshes of nonconvex domains. The local feature size does
not distinguish exterior distances from interior distances, so it correctly predicts the behavior of
Ruppert’s algorithm, but it is not an accurate estimate of the longest possibleedge lengths.

Once modified to maintain a CDT, Ruppert’s algorithm is size-optimal even for nonconvex
domains. We can prove this by replacing the Euclidean distance with theintrinsic distancebe-
tween two points—the length of the shortest path connecting the points that lies entirely in |P|.
An intrinsic path must go around holes and concavities. Redefine the local feature sizef (x) at a
point x to be the smallest value such that there are two disjoint linear cells inP within an intrinsic
distance off (x) from x. The edge lengths in the mesh at right in Figure 6.16 are locally propor-
tional to this modified local feature size. It is a tedious but straightforward exercise to show that
the proofs in Sections 6.4 and 6.5 all hold for Ruppert’s algorithm with a CDT and the intrinsic
local feature size, without the assumption that|P| is convex.

Consider a different meshing problem: to produce a triangular mesh of a piecewise linear
complex in three-dimensional space with no 3-cells, composed of polygons meeting at shared
segments. The polygon triangulations must conform to each other—that is, match triangle edge
to triangle edge—along their shared boundaries. This problem arises in boundary element meth-
ods for solving partial differential equations and in global illumination methods for computer
graphics.

The constrained Delaunay refinement algorithm can solve this problem, with no conceptual
changes, by meshing all the surfaces simultaneously. Again, the key is to define the local feature
size in terms of intrinsic distances in the underlying space of the PLC. Where polygons meet at
shared segments, features in one polygon may affect the local feature size in another, reflecting
the fact that the refinement of one polygon can propagate into an adjoining polygon by splitting
their shared segments.

144

6.8 Notes and exercises

For the sake of establishing precedence, we note that Ruppert’s 1995 article [180] is his fullest
presentation of his algorithm and its analysis, but earlier versions appeared in 1992 and 1993 [178,
179]. In 1993, Chew [61] independently discovered a very similar Delaunay refinement algorithm
that guarantees a minimum angle of 30◦. Unlike his 1989 algorithm described in Section 1.2, his
1993 algorithm offers optimal grading and size optimality for any angle bound less than 26.5◦—
compared to 20.7◦ for Ruppert’s algorithm—although this property was proven not by Chew,but
subsequently by Shewchuk [201]. The improved angle bounds are obtained by using a constrained
Delaunay triangulation and a more conservative procedure for treating encroached subsegments.
Miller, Pav, and Walkington [147] reanalyze Ruppert’s original algorithmand extend its angle
guarantee to 26.4◦, with size optimality and optimal grading intact. The same techniques show
that Chew’s algorithm guarantees size optimality and optimal grading up to an angle guarantee of
28.6◦. For angle bounds between 28.6◦ and 30◦, Chew’s algorithm is guaranteed to terminate but
is not guaranteed to produce a graded or size-optimal mesh.

Most of the analysis in this chapter is taken from Ruppert’s article, but the proof of Propo-
sition 6.10 is adapted from Mitchell [150] and the proof of Proposition 6.9 is new. The idea to
analyze Delaunay meshing algorithms in terms of the radius-edge ratio comes from Miller, Tal-
mor, Teng, and Walkington [148]. The first size-optimality proof for a meshgeneration algorithm
was given by Bern, Eppstein, and Gilbert [18] for their provably goodquadtree mesher, and their
quadtree box sizes are a forerunner of Ruppert’s local feature size. Mitchell [150] gives a stronger
lower bound on the number of triangles in a high-quality triangulation that shrinks proportionally
to θmin asθmin approaches zero, whereas the bound given here shrinks proportionally to 2−O(1/θmin).

The idea to place new vertices at triangle circumcenters originates in a 1987 paper by William
Frey [100], who appears to be the first to suggest using the Delaunay triangulation to guide vertex
placement, rather than generating all the vertices before triangulating them. Circumcenters are
not always the optimal locations to place new vertices. If a skinny triangle’scircumcircle is sub-
stantially larger than its shortest edge, it is often better to place the new vertexcloser to the short
edge, so they form an acceptable new triangle. The effect is to make Delaunay refinement behave
like an advancing front method. Frey [100] and Üngör [219] report that theseoff-centersgive
an excellent compromise between the quality and the number of triangles, and Üngör also shows
that Ruppert’s theoretical results remain true for properly chosen off-centers. A more aggressive
algorithm of Erten and Üngör [94] optimizes the placement of a new vertex in acircumcircle; it
often generates triangular meshes that have no angle smaller than 41◦.

The idea to recover a boundary in a Delaunay triangulation by repeatedly inserting vertices
at missing portions of the boundary originates in a 1988 paper by Schroeder and Shephard [188],
who named this processstitching.

The suggestion to use concentric circular shells for segment splitting comes from Ruppert’s
original paper. The idea to decline to split triangles with seditious edges, as described in Sec-
tion 6.6, is a slight variation of an algorithm of Miller, Pav, and Walkington [147]. Pav [167]
proves that their algorithm offers good grading. The software T1 implements Ruppert’s
algorithm, Chew’s 1993 algorithm, Üngör’s off-centers, and the modifications for domains with
small angles discussed in Section 6.6. Chapters 9 and 15 address the difficulty of meshing three-

1http://www.cs.cmu.edu/∼quake/triangle.html

145

dimensional domains with small angles.
Another important extension of Ruppert’s algorithm is to domains with curved boundaries.

The first such extension, by Boivin and Ollivier-Gooch [32], uses CDTs to aid the recovery of
curved ridges in triangular meshes. A more recent algorithm by Pav and Walkington [166] can
handle cusps—curved ridges that meet at an angle of zero. This algorithm maintains and returns
a true Delaunay triangulation.

Yet another important extension is to generate anisotropic meshes. Practical Delaunay mesh
generators adapt easily to anisotropy; for instance, George and Borouchaki [103] modify the
Bowyer–Watson algorithm to use circumellipses instead of circumspheres. However, if the aniso-
tropy field varies over space, the newly created elements might not have empty circumellipses, and
the quality of the mesh cannot be guaranteed. Labelle and Shewchuk [127] propose a provably
good algorithm for anisotropic triangular mesh generation that introduces anisotropic Voronoi
diagrams to provide a foundation for the mathematical guarantees.

The fact that Ruppert’s algorithm might perform work quadratic in the sizeof the final mesh
was first noted by Ruppert in an unpublished manuscript. Barbič and Miller [15] work out an ex-
ample in detail. Har-Peled and Üngör [109] describe a Delaunay refinement algorithm, essentially
Ruppert’s algorithm with off-centers, that uses a quadtree to help it run in optimalO(n logn+ N)
time, wheren is the number of input vertices andN is the number of output vertices. See also the
discussion ofsparse Voronoi refinementby Hudson, Miller, and Phillips [115] in the Chapter 8
notes, which achieves virtually the same running time without the need for a quadtree.

Exercises

1. Show that an edgee ∈ DelS is encroached if and only if DelS contains a triangle that
hase for an edge and a nonacute angle (≥ 90◦) oppositee. Therefore, a subsegment’s
encroachment can be diagnosed inO(1) time.

2. Suppose DTPLC takes as input a PLC in which some segments meet each other at
angles less than 90◦, but never less than 60◦. Then Proposition 6.4 no longer suffices, be-
cause a vertex inserted on one segment might encroach upon a subsegment on an adjoining
segment. Show that nonetheless, DTPLC must terminate.

3. Suppose DTPLC enforces a stricter standard of quality for triangles that do not intersect
the relative interior of a segment: a triangle that does not intersect a segment interior is split
if its radius-edge ratio exceeds 1. A triangle that intersects a segment interior is split if its
radius-edge ratio exceeds

√
2. Given a PLC in which no two segments meet at an angle

less than 90◦, show that DTPLC still must terminate.

4. Ruppert’s algorithm splits encroached subsegments at their midpoints. Wesometimes
achieve smaller meshes if we use off-center splits when the encroaching vertex is not a
rejected circumcenter. For example, if an input vertexv encroaches upon a subsegmente,
andv is very close toe but not toe’s midpoint, then splittinge off-center might reduce the
number of triangles in the final mesh. One idea is to projectv orthogonally ontoe. Unfortu-
nately, this idea might create an unreasonably short edge, as Figure 6.17illustrates. Explain

146

v
e

Figure 6.17: Projecting an encroaching vertex onto an encroached subsegment can create a dan-
gerously short edge.

how to modify this idea so that Proposition 6.4 still holds, while still splitting subsegments
as close to the projected point as possible.

5. If two segments meet each other at an angle of 45◦ or less, DTPLC may fail to terminate
because of ping-pong encroachment, illustrated in Figure 6.12. However, suppose we mod-
ify DTPLC by eliminating step 4 so skinny triangles are ignored and changing step 3 so
that only subsegments missing from DelS are considered encroached:

3. While some subsegmente ∈ E is missing from DelS, call SS(e,S,E),
update DelS, and repeat step 3.

Let P be a PLC in which no four segments meet at a single vertex. Show that this modified
DTPLC always produces a Steiner Delaunay triangulation ofP, no matter how many
small angles it has.

6. Suppose that we modify step 3 of DTPLC as described in the previous exercise, but
instead of eliminating step 4, we replace it with the following.

4. While DelS contains a triangleτ for which ρ(τ) > ρ̄ and the circumcenterc of τ
does not encroach upon any subsegment inE, insertc into S, update DelS, and go to
step 3.

In this modified algorithm, skinny triangles may survive, but only near the domain bound-
aries. Quantify the minimum quality of the triangles relative to their proximity to the do-
main segments in terms of their edge lengths and ¯ρ.

7. Show that if the local feature size function is modified to use intrinsic distances, it is still
1-Lipschitz, i.e. it still satisfies Proposition 6.3.

8. Show that ifθmin ≤ 30◦, the inequality in Proposition 6.10 can be improved so thatη =

(2 cosθmin)180◦/θmin/ sinθmin. Hint: This expression follows immediately if the longest edge
of τ adjoinsv. If τ’s longest edge does not adjoinv, what is the angle separating the two
edges ofτ that do adjoinv?

9. Consider the problem of meshing the PLCP illustrated in Figure 1.5, which includes two
adjoining segments that are separated by a very small angleφ. Clearly, it is impossible to
avoid placing a triangle with angleφ or less at the small domain angle. But ideally, the
mesh would have no other angle less than 30◦. With help from Proposition 6.10, show that
for sufficiently smallφ, no such Steiner triangulation ofP exists.

147

10. Prove that Ruppert’s algorithm with “modified segment splitting using concentric circular
shells” always terminates for domains that are simple polygons with no internalboundaries,
even if it splits skinny triangles whose shortest edges are seditious, so long as it declines to
split triangles nestled right in the corners of small domain angles.

11. Prove that DTPLC maintains a quarantined complex (see Chapter 7) when it inserts a
circumcenter of a triangle.

