Chapter 6

Delaunay refinement in the plane

Delaunay refinement algorithms generate high-quality meshes by inserttigpsénto a Delau-
nay or constrained Delaunay triangulation. The vertices are placeduceetiemain conformity
and to eliminate elements that are badly shaped or too large. Delaunay refinegsemany
virtues: the optimality of Delaunay triangulations with respect to criteria relat@degoolation
and the smallest angles; our rich inheritance of theory and algorithms fauy triangulations;
the fast, local nature of vertex insertion; and most importantly, the guidaatth#Delaunay tri-
angulation provides in finding locations to place new vertices that arediar tihhe other vertices,
so that short edges do not appear.

This chapter describes an enormously influential Delaunay refinememithig for triangu-
lar mesh generation invented by Jim Ruppert—arguably the first provably mesh generation
algorithm to be truly satisfying in practice. Ruppert’s algorithm was inspire@€hbew’s algo-
rithm, discussed in Section 1.2, but it has the advantage that it constradidgmeshes and it
offers mathematical guarantees on triangle grading and size optimality. Figuteo@4 & mesh
produced by Ruppert’s algorithm.

We use Ruppert’s algorithm to introduce ideas that recur throughout thle bd/e begin
by introducing a generic template that summarizes most Delaunay refinemerithaig. Then
we describe Ruppert’s algorithm and show that, under the right condiitossmathematically
guaranteed to produce high-quality triangular meshes. Ruppert’s wstaklished the theoretical
strength of the generic algorithm, which we extend to tetrahedral meshingseguent chapters.

One guarantee is that the triangles in these meshes have high quality. Agadnantee is
that the edges are not unduly short: there is a lower bound on the edgkdemoportional to
a space-varying function called thacal feature sizewhich roughly quantifies the longest edge
lengths possible in any high-quality mesh of a specified piecewise linear campleighlight
of the theory of mesh generation is that one can estimate both the maximum egtes land
the minimum number of triangles in a high-quality mesh. Ruppert’s algorithm coritbis \a
constant factor of optimizing both these quantities, and so we say that thesrnieploduces are
size-optimala notion we define formally in Section 6.5.

119

120

<

Figure 6.1: Meshing the Columbus skyline: a PLC and a Delaunay mesh thétemo angle
less than 28 produced by Ruppert’'s Delaunay refinement algorithm.

6.1 A generic Delaunay refinement algorithm

The following generic Delaunay refinement method meshes a corfiplex

DeLAUNAY REFINEMENT(P)

1. Choose a vertex s8tc |P|.

2. Compute DeS.

3. If Del S fails to satisfy a property guaranteeing its geometric or topological
conformity toP, choose a point € |P| at or near the violation, insectinto S,
update DeB, and repeat step 3.

4. If an element € Del S is poorly shaped or too large, choose a pairt|P| in
or nearr’s circumball, insert into S, update De§, and go to step 3.

121

/ /

Figure 6.2: Inserting the circumcenter of a triangle whose radius-etigeexaeeds 1. Every new
edge adjoins the circumcenter and is at least as long as the circumradiassgirthy triangle,
which is at least as long as the shortest edge of the skinny triangle.

5. Return the mesfr € DelS : o C |P|}.

The first step depends on the type of complex. For a piecewise linear dddiaithe set of
vertices in?. For a smooth or piecewise smooth domain, points are chosen carefullyttieom
surfaces to form an initial vertex set. Step 2 constructs an initial Delauizagtiation. Some
algorithms maintain a constrained Delaunay triangulation instead; see Secti@te¢pg 3 and 4
refine the triangulation by calling a vertex insertion algorithm such as the 8ewyatson algo-
rithm. The properties enforced by Step 3 can encompass conforming tommardboundary,
capturing the domain topology, and approximating curved domain geometry wffitbient ac-
curacy. Step 5 obtains a mesh®by deleting the extraneous simplices that are not included in
|P).

DeLaunayRerINEMENT terminates only when the mesh has the desired geometric properties and
element shapes and sizes. The algorithm designer’s burden is to ¢hegseperties to enforce,
choose vertices to insert, and prove that the mesh will eventually satisfydperges, so the
algorithm will terminate. Counterintuitive as it may seem, the proof usually pax®y first
showing that the algorithm must terminate, and hence the properties mudidiiegand the
elements must have high quality.

The main insight behind all Delaunay refinement algorithms is that they conkta close
together two vertices can be, and thus constrain how short an edge cabobsider inserting
a new vertex at the circumcenter of an element whose radius-edge ratie israreater, as
illustrated in Figure 6.2. Because a Delaunay simplex has an empty circumbadlilstduece from
the new vertex to any other vertex is at least as great as the circumbdilis ravhich is at least
as great as the simplex’s shortest edge. Theretbeenew vertex cannot participate in an edge
shorter than the shortest edge already existifidhis explains why circumcenters are excellent
places to put new vertices, why the radius-edge ratio is the quality measturalty optimized
by Delaunay refinement algorithms, and why these algorithms must terminayeevibetually
run out of places to put new vertices. The following lemma formalizes the leat id

Lemma 6.1(Packing Lemma)Let D c RY be a bounded domain. Let& D be a point set and
A > 0 a scalar constant such that for every two distinct points u and v in(8 vil > 1. Then
there is a constant depending solely on D antlsuch thafS| < &.

122

Proor. Consider the point séd,,» = {x € RY : d(x, D) < 1/2}, known as theMinkowski sunof
D with a ball of radiust/2. D,/ is bounded, a® is bounded. Every Euclideaitball having a
center inS and radiust/2 is included inD,,,. Because every pair of points $is separated by a
distance of at least, these balls have disjoint interiors, and we call this set-balls apacking
Therefore|S| < vqume@A/z)/((/l/Z)dVd), whereVy is the volume of a unitl-ball. O

The Delaunay refinement algorithms we study in this book place a lower bbondnter-
vertex distances that is proportional to the aforementidoeal feature sizéunction, which lo-
cally estimates the longest edge lengths possible in a high-quality mesh. Hghadgral domain,
the local feature size is related to the distances between disjoint linear cels.déemain whose
boundary is a smooth surface, it is related to the distance from that bgquiodiés medial axis.
We give formal definitions for the local feature size in the sections whesedte first used.

6.2 Ruppert’'s Delaunay refinement algorithm

The input to Ruppert’s algorithm is a piecewise linear comgtefrecall Definition 2.8) and a
positive constanp that specifies the maximum permitted radius-edge ratio for triangles in the
output mesh. Recall from Section 1.7 that this equates to a minimum permitted amgle e
arcsin% and a maximum permitted angle@fax = 180° — 20m,in. The output is a mesh gi—that
is, a Steiner triangulation @? (recall Definition 2.12)—whose triangles all meet the standard of
quality. The algorithm is guaranteed to terminatp i& V2 and no two edges it meet at an
acute angle. (We remove the latter restriction in Section 6.6).

Ruppert’s algorithm begins by settiigjto be the set of vertices A and constructing De3.
Let p(r) denote the radius-edge ratio of a triangleSuppose that step 4 ofeDxunay REFINEMENT
is elaborated as:

If there is a triangler € DelS with p(7) > p, insert the circumcentar of 7 into S,
update DeB, and go to step 3.

Let A be the shortest distance between any two pointS imeforec is inserted. Let ber's
circumradius, and lgtbe the length of's shortest edge. Recall the main insight from the previous
section: becausegs open circumdisk is empty(c,S) > r = p(r)¢ > pA. If we choosep > 1,
then step 4 maintains a lower bound.dn inter-point distances and we can apply the Packing
Lemma (Lemma 6.1). If we chooge= 1, every triangle whose smallest angle is less than 30
will be split by the algorithm. Therefore, if the algorithm terminates, every giemas all its
angles between 3@nd 120.

Unfortunately, this simple refinement rule has a serious flaw, becausex$timeaenew vertices
might lie outside the domaifP|. Moreover, recall from Figure 2.12 that D®ldoes not always
respect the domain boundaries. We fix both problems by incorporatimjpsfreatment of the
domain boundaries into step 3 of the algorithm.

A goal of the algorithm is to force eadegment-each edge iP—to be represented by a
sequence of edges in C&l During refinement, the algorithm maintains a Eatf subsegments
edges that should ideally appear in the mesh. Initiddyis the set of segments {R; but as
the algorithm adds new vertices & these vertices subdivide segments into subsegments, and

123

Figure 6.3: Segments (bold) are split until no subsegment is encroached.

subsegments into shorter subsegments. The algorithm explicitly maintains thi¢yidérhe
subsegments, whether or not they appear as edges B. Del

Consider a subsegmeatthat is absent from D&, as at upper right in Figure 2.12. By
Proposition 2.10, D&b contains every strongly Delaunay edge,esis not strongly Delaunay,
and some vertex € S must lie ine's closed diametric disk besides vertices.

Definition 6.1 (encroachment)A vertexv that lies in the closed diametric ball of a subsegment
e but is not a vertex oé is said toencroach upon e

The following procedure &@irSuBseGMENT treats an encroached subsegment by inserting a
new vertex at its midpoint, thereby dividing it into two subsegments of half thgtherAll en-
croached subsegments are treated this way, whether they are prd3elfior not, as illustrated
in Figure 6.3. The recovery of a boundary segment by repeatedlytiiigsgertices on its missing
subsegments is sometimes calgitiching

SpLITSUBSEGMENT(E, S, E)

1. Insert the midpoint o into S.
2. Removee from E and add its two halves t&.

We will see at the end of this section that if no subsegment is encroackedy,tdangle’s
circumcenter lies in the domajft|, so we can remove any skinny triangle by inserting a vertex at
its circumcenter. However, this triangle refinement rule still has a serious dlaertex inserted
at a circumcenter can lie arbitrarily close to a segment, thereby forcing ey refinement
algorithm to generate extremely small triangles in the region between the vedesegment.
We sidestep this hazard with a more complicated rule for treating skinny triatigieprevents
vertices from getting dangerously close to segments, at the cost of miegkbe angle bounds
from 30° and 120 to approximately 20° and 138°. If a triangler has a radius-edge ratio
greater tham, we consider inserting its circumcentras before. But it encroaches upon a
subsegmend, we rejectc and splite instead.

SPLITTRIANGLE(T, S, E)

1. Letc be the circumcenter af.

2. If c encroaches upon some subsegmeeat E, call SuirSusseament(e, S, E).
Otherwise, insert into S.

124

If SpLiTTRIANGLE elects not to insert and instead calls EBirSuBseGMENT, We say that is
rejected Although rejected vertices do not appear in the final mesh, they play #icigi role
in the algorithm’s analysis. The new vertex inserted at the midpoi lmf SeLiTSUBSEGMENT
might or might not lie inc’s open circumdisk. If notr survives the call to SiTTrIANGLE, but the
Delaunay refinement algorithm can subsequently attempt torsadjain.

The following pseudocode implements Ruppert’'s Delaunay refinemenitaigor

DecTRIPLC(P, o)

1. LetS be the set of vertices ifi. Let E be the set of edges ih.
2. Compute DeS§.

3. While some subsegmeat E is encroached upon by a vertex3n call Sruit-
SusseGMENT(€, S, E), update De§, and repeat step 3.

4. If Del S contains a triangle C |P| for whichp(z) > p, call SLiTTrIANGLE(T, S, E),
update DeB, and go to step 3.

5. Return the mesfr € DelS : o C |P|}.

Figure 6.4 illustrates the algorithmeD'rRiPLC with a sequence of snapshots of the triangu-
lation. The theoretical minimum angle of 20 is quite pessimistic compared to the algorithm’s
observed performance; it is almost always possible to obtain a minimum drgfé io practice.

Observe that step 4 ignores skinny triangles that lie outside the domaifriIBLC gives
priority to encroached subsegments, and splits a triangle only if no subsegrencroached.
This policy guarantees that every new vertex lies in the dorin

Proposition 6.2. Let T be a Steiner triangulation of a PLQ in the plane. If no subsegment
in T (i.e. edge inT included in a segment if?) is encroached, then every triangle Thhas its
circumcenter in?P|.

Proor. Suppose for the sake of contradiction that some triangld has a circumcentar¢ |P).
Let p be a point in the interior of. As Figure 6.5 shows, the line segmeguttcrosses from the
interior of |P| to its exterior, and therefore must cross a subsegmmentthe boundary off|. We
will show thate is encroached.

Let B, be the closed circumdisk af let Be be the closed diametric disk ef and letH be
the closed halfplane containimgwhose boundary line igs affine hull, soBe N H is a half-disk.
The interior of B, must intersece, aspc c B;, but note’s vertices, as is Delaunay. Because the
centerc of B, lies outsideH, it follows thatB. > B, " H > 7. Therefore,Be contains all three
vertices ofr. Two of r’s vertices might be vertices ef but the third vertex encroaches enrhis
contradicts the assumption that no subsegment is encroached. O

In Chapter 7, we describe a generalization of Proposition 6.2 called thederiter Contain-
ment Lemma (Lemma 7.7), which provides an an alternative proof of the gitapo

6.3 Implementation and running time

We dofer some recommendations on how to implement Ruppert’s algorithoreatly.

125

(@) (b) ()

[— b
(d) (e) ®

Figure 6.4: The algorithm BTrIPLC in action. (a) The input PLC. (b) The Delaunay triangu-
lation of the input vertices. (c) The bottom edge is encroached, so it isasptg midpointp.

(d) After all the encroached subsegments are split, the shaded triarggfobeaquality, so the
algorithm considers inserting its circumcentele) Because encroaches upon the segmabt
the algorithm does not insestinstead it splitab. (f) The final mesh.

Figure 6.5:B¢ includes the portion of’s circumdiskB, on the same side &asp.

126

First, an implementation should maintain a queue of skinny and oversized tdaanylea
queue of encroached subsegments, which help steps 3 and 4 to ruly.gbiewly created tri-
angles and subsegments are added to these queues if they ought to lbeitsgéiteted triangles
and subsegments are not removed from the queues until they reacbritheffa queue and are
discovered to be no longer in the mesh. Second, there is an easy, |latstlrtetime test for
whether a subsegmeais encroached: either ¢ DelS, or DelS contains a triangle that has
for an edge and an angle of 90r greater opposite—see Exercise 1. Therefore, after the initial
Delaunay triangulation is computed, the queues can be initialized in time linear initiigen of
triangles.

Third, when a new vertex is inserted, only the newly created triangles meethecked to
see if they are skinny, and only the edges of those triangles need bieedhtecsee if they are
encroached subsegments. Recall that the dictionary data structuretionS22 maps each edge
of the mesh to the two triangles that have it for an edge in expected constantensame
data structure can record which edges of the mesh are subsegments.nénthvertex splits a
subsegment, the two new subsegments must be tested; recall Figure 6.3.

Fourth, the easiest way to discover whether a triangle circumcenterashe® upon a sub-
segment and should be rejected is to insert it, then check the edges oppdisisaise to store
the deleted triangles so they can be rapidly restored if the circumcenterdterkjé triangle that
is deleted then restored should be in the queue of bad triangles if and onlyai§ iin the queue
before the vertex insertiotncluding the triangle that the circumcenter was meant to sgliie
rejected circumcenter might be successfully inserted later.

Fifth, if the boundo on triangle quality is strict, prioritizing the skinny triangles so that those
with the largest radius-edge ratios (the smallest angles) are split fityuseduces the number
of triangles in the final mesh by as much as 35%. (If the bound is not stri¢riog seems
to make little diference.) Circumcenters of very skinny triangles tend to eliminate more skinny
triangles than circumcenters of mildly skinny triangles. Although one can bseaay heap to
prioritize triangles, experiments show that it is much faster, and equfiigtie, to maintain
multiple queues representingiiirent quality ranges.

Sixth, if the domain®| is not convex, the triangulation D8lcontains triangles that lie out-
side the domain but in its convex hull. If a tiny angle forms between the boyrudd®| and
the boundary of con\?|, DeLTrIPLC could perpetually add new vertices, trying to get rid of the
skinny triangle in vain. To avoid this fate, step 4 of the algorithm declines totgplitgles that are
not in|P|. Unfortunately, identifying these triangles can be costly. A simple alternaindact,
Ruppert’s original algorithm—is to enclogin a large square bounding box and mesh the entire
box. The advantage is that no small angle can form betWesmd the bounding box. The disad-
vantages are that time is spent creating triangles that will be discarded indharal that small
exteriorangles ofiP| can still put the algorithm into an infinite loop of refinement. Section 6.7
discusses another alternative that works better but requires an impléimenfeconstrained De-
launay triangulations.

There is a notable discrepancy between the running time of Ruppert’'staigan practice
and its running time in the theoretical worst case. et the number of vertices in the PLIC
and letN > n be the number of vertices in the final mesh. With a careful implementation, Rup-
pert’s algorithm is observed to consistently tal@logn + N) time in practice. The termlogn
covers the construction of the initial triangulation. The té¥noovers the cost of refinement, be-

127

cause most vertex insertions during Delaunay refinement take constanitimie is little need
for point location during the refinement stage, as almost every new thg&elaunay refinement
algorithm generates is associated with a known subsegment that contaimskhown triangle
whose open circumball contains it. The exception is when the algorithm itisentsidpoint of a
subsegment that is missing from the mesh, in which case the algorithm mugt #eatriangles
adjoining a vertex of the subsegment to find one whose open circumbadlicenthe midpoint.
The use of a CDT eliminates this small cost.

However, recall from Section 3.5 that an unlucky vertex insertion cdetel@nd create a
linear number of triangles. PLCs are known for which refinement t&k&&) time, but such
examples are contrived and do not arise in practice. Delaunay refihéenels to rapidly even
out the distribution of vertices so that most new vertices have constarealagd take constant
time to insert.

6.4 A proof of termination

DecTriIPLC has two possible outcomes: either it will eventually delete the last skinmgkeia
or encroached subsegment and succeed, or it will run foreveatimgenew skinny triangles and
encroached subsegments as fast as it deletes old ones. If we proasihot run forever, we
prove it succeeds.

If » > V2 and no two edges ift meet at an acute angle, we can prove thaflfRiPLC ter-
minates by showing that it maintains a lower bound on the distances betweenenists, then
invoking the Packing Lemma. The lengths of the edges in a mesh producedppeiRs algo-
rithm are roughly proportional to a space-varying function that ctiaraes the local distances
between the geometric features of a PLC.

Definition 6.2 (local feature size)Thelocal feature sizéLFS) of a PLCP, where|P| c RY, is a
function f : RY — R such thatf (x) is the radius of the smallest ball centerechat intersects
two disjoint linear cells irfP.

Figure 6.6 shows local feature sizes for a PLC at three ppirdsandr. A useful intuition is
to imagine an inflating ball centered at a point; the ball stops growing wheastitritersects two
mutually disjoint features. For example, the ball growing outward fpoim the figure does not
stop growing when it first intersects two segments, because they adjbitest; it continues to
grow until it touches a vertex that is disjoint from the upper segment, agrshithenf (p) is the
radius of the ball.

For every pointp € RY, there is a linear cell at a distanéép) from p. Moreover, there is a
linear cell with dimension less thahat a distancd (p), because the boundary of evelcell in
P is a union of lower-dimensional cells ih Omitting thed-cells from a PLC does not chande

An important property of the local feature size is that it is 1-Lipschitz.

Definition 6.3 (k-Lipschitz). A real-valued functiorp is k-Lipschitz if for any two pointsx and
3
e(X) < @(y) + kd(x.y).
The 1-Lipschitz property implies thdtis continuous and its gradient, where it exists, has magni-
tude no greater than 1; bfitis not diferentiable everywhere.

128

Figure 6.6: Examples of local features size®&fn At each pointp, g, andr, the local feature size
f(p), f(qg), or f(r) is the radius of the smallest disk that intersects two mutually disjoint linear
cells.

Proposition 6.3. The local feature size f ikLipschitz—that is, x) < f(y) + d(x, y) for any two
points xy € R?.

Proor. By the definition of local feature siz&(y, f(y)) intersects two mutually disjoint cells in
P. The ballB(x, f(y) + d(x,y)) includesB(y, f(y)), and therefore intersects the same two cells. It
follows thatf(x) < f(y) + d(x, y).]

We assign every mesh vertexan insertion radius ¢ = d(x, S), the distance fronx to the
nearest distinct vertex in the sebf mesh vertices the instant beforés added td&. Observe that
immediately aftex is added t@, ry is the length of the shortest edge adjoininigp Del S. Every
vertex that SLiTTrIANGLE rejects for encroaching upon a subsegment has an insertion radius too,
equal to its distance to the nearest vertexSiat the moment it is considered and rejected. To
show that RLTrIPLC does not run forever, we will prove that the insertion radii do reatine
much smaller than the local feature size.

We say that a vertex is ¢fpe iif it lies on a lineari-cell in P but not on a lower-dimensional
cell. Every vertex inserted or rejected byilDerPLC, except vertices of type 0, hagarent
vertex that, loosely speaking, is blamed for generating the child vertexpditeat might be ir5,
or it might be a rejected vertex.

e Type 0 verticeare input vertices ifP. A type 0 vertex has no parent. The insertion radius
ry of atype 0 vertex is the distance fromx to the nearest distinct vertex f

e Type 1 verticesre those inserted at the midpoints of encroached subsegmentsiby S
SuBseGMENT. For a type 1 vertex generated on an encroached subsegragetitere are
two possibilities. If the point encroaching upetis a vertex inS, definex’s parentp to
be the vertex irS nearestx; then the insertion radius ofis ry = d(x, p). Otherwise, the
encroaching poinp is a rejected circumcenter, which we define toxdseparent, and’s
insertion radiusy is the radius of's diametric ball. Becausp s in that ball,d(x, p) < ry.

e Type 2 verticesre those inserted or rejected at triangle circumcentersPhy TRIANGLE.
For a type 2 vertex generated at the circumcenter of a triangleefinex’s parentp to be
the most recently inserted vertex of the shortest edge ibboth vertices are i, choose
one arbitrarily. Becauses circumdisk is empty, the insertion radiusfs ry = d(x, p),
the circumradius of.

129

(@) (b)

Figure 6.7: (a) The insertion radiug of the circumcentek of a triangler is at leasip(r) times
the insertion radius, of the most recently inserted vert@xof 7’s shortest edge. (b) The inser-
tion radiusr, of an encroaching circumcentprof a Delaunay triangle is at most?2 times the
insertion radiugy of the midpointx of the encroached subsegment.

The following proposition proves a lower bound on the insertion radiusaoh ezertex in
terms of either its parent’s insertion radius or the local feature size. Timsg®ls will lead to
lower bounds on the edge lengths in the final mesh.

Proposition 6.4. Let? be a PLC in which no two edges meet at an acute angle. Let x be a vertex
inserted into S or rejected MYeLTrRIPLC. Let p be the parent of x, if one exists.

(i) If xis of type O, theny > f(X).

(i) If xis of type 1, and its parent p is of type O or 1, therer f(X).
(i) If xis of type 1, and its parent p is of type 2, thererry/ V2.
(iv) If xis of type 2, theny > prp.

Proor. If xis of type 0, then the disB(x, rx) containsx € P and another vertex i, hence
f(X) < ry by the definition of local feature size.

If xis of type 2, therxis the circumcenter of a Delaunay triangleith p(r) > p, as illustrated
in Figure 6.7(a). The paretis the most recently inserted vertexwad shortest edgeq, or both
p andq are vertices ir; it follows from the definition of insertion radius thgt < d(p,g). The
insertion radius ok (and the circumradius af) is rx = d(x, p) = p(7) d(p, q) > prp as claimed.

If xis of type 1, it is the midpoint of a subsegmendf a segmens € P, andx’'s parentp
encroaches upoa There are three cases to consider, depending on the type of

e If pis of type 0, therp € P, and the diskB(x, d(x, p)) intersects two disjoint linear cells in
P, namelyp ands. By the definition of local feature sizé(x) < d(x, p) = ry.

e If pis of type 1, thermp was previously inserted on some segm&nt P. The segments
ands’ cannot share a vertex, because the presenpdaro€'s diametric disk would imply
thatsmeetss’ at an angle less than Q0ThusB(x, d(x, p)) intersects two disjoint segments
andf(x) < d(x, p) = rx.

130

triangle ¢ subsegmen

factorp |circumcenters factor \/% midpoints

Figure 6.8: Flow graph illustrating the worst-case relation between a vertesértion radius and
the insertion radii of the children it begets. If no cycle has a product srtbB@ one, Ruppert’s
algorithm will terminate.

e If pis of type 2, therp is a circumcenter rejected for encroaching uppso it lies in the
diametric disk ofe, whose center ig, as illustrated in Figure 6.7(b). Létbe the vertex
of e nearestp; thenzpxb < 90° andd(p, b) < V2d(x, b). DELTRIPLC calls SLITTRIANGLE
only when no subsegment is encroached;se d(x, b). The parenp is the center of the
circumdisk of a Delaunay triangle, spis the radius of the circumdisk. The triangle’s open
circumdisk does not contals sor, < d(p, b) < V2d(x,b) = V2ry, as claimed.

O

The flow graph in Figure 6.8 depicts the relationship between the insertiarsraida vertex
and the smallest possible insertion radii of its children, from PropositioriTtid boxes represent
type 2 and type 1 vertices, respectively. Type 0 vertices are omitteddettery cannot contribute
to cycles in the flow graph. We can prove thattDriPLC terminates by showing that it cannot
produce sequences of vertices with ever-diminishing insertion radii—thidieise is no cycle in
the flow graph whose product is less than one. This is true if we chotuske at leastV2. When
arejected circumcenter splits a subsegment, the newly created edgesadactoe of V2 shorter
than the circumradius of the skinny triangle; we compensate for that by tryisglit a triangle
only if its circumradius is at least a factor of2 greater than the length of its shortest edge. If
p = V2, the final mesh has no angle less than arﬁizni 20.7°.

From this reasoning, it follows that if > V2, DeLTriIPLC creates no edge shorter than the
shortest distance between two disjoint linear cell®irProposition 6.5 below makes a stronger
statement: BLTrRIPLC spaces vertices proportionally to the local feature size. If a usssels
p < V2, the algorithm will try to obtain the quality requested, but it might fail to terminat,
might generate a mesh that is not properly graded.

Proposition 6.5. Suppose that > V2 and no two segments ihmeet at an angle less th&e°.

Define the constants

(\/Q +1)p p+1

— Cr==
p— V2 p-

Let x be a vertex inserted or rejected By, TRIPLC(P, p).

Cs =

S

131

() If xis of type 1, theny> f(x)/Cs.
(i) If xis of type 2, theny> f(x)/Cr.

Proor. The expressions f@s andCy above arise as the solution of the equatiGgs= V2CT+1
andCt = 1+ Cs/p, which are both used below. Observe tGat> Ct > 1. The proof proceeds
by induction on the sequence of points that are inserted or rejectediigiPLC. Letx be one
such point, and suppose for the sake of induction that the claim holdgdor previously inserted
or rejected point.

If xis of type 1 and its parengis of type O or 1, themy > f(x) > f(X)/Cs by Proposition 6.4,
confirming property (i). Ifx is of type 1 andp is of type 2, themy > rp/ V2 by Proposition 6.4
andd(x, p) < rx. Inductive application of property (ii) gives, > f(p)/Cr. By the Lipschitz
property off (Proposition 6.3),

f(3) < f(p) +d(x p) < Crrp+rx < (V2CT + 1)1y = Csry,

confirming property (i).
If xis of type 2, then by the inductive hypothesis its pargsatisfiesr, > f(p)/Cs. By
Proposition 6.4ty > prp. The Lipschitz property implie$(x) < f(p) + d(x, p) = f(p) +rx, SO

f > plp > Cisf(p) > é(f(x) -1,

Rearranging terms gives
B {CO N (€
" 1+Cs/p Cr’

confirming property (ii). O

Proposition 6.5 gives a lower bound on the distance between a newly thsertex and all
the preceding vertices. We want a more general bound on the distamesebea vertex and all
the other vertices, including those that are inserted later. The Lipschipepymf f allows us to
derive the latter bound from the former.

Proposition 6.6. Suppose that > V2 and no two segments fAimeet at an angle less th&t®.
For any two vertices p and g th&zLTriPLCinserts, dp,q) > f(p)/(Cs + 1).

Proor. If pisinserted afteq, Proposition 6.5 states thdfp, q) > f(p)/Cs. If qis inserted after
p, d(p,q) > f(q)/Cs. Becausef is 1-Lipschitz,f(p) < f(g) + d(p,q) < (Cs + 1)d(p,q). Either
way, the result follows. O

Proposition 6.6 establishes a lower bound on the distances between vertipestional to
the local feature size, which implies thatiDriPLC is guaranteed to produce graded meshes if
the local feature size function is strongly graded, as Figure 6.9 illustrdtesall this guarantee
provably good gradingbecause it implies that small geometric features of the domain do not
cause the algorithm to produce unduly short edges far from thosedsatu

To make the proposition concrete, consider choopirg 1.93 to guarantee that no angle is
smaller than roughly 15 ThenCgs = 9.01, so the spacing of vertices is at worst about ten times

132

PR
KNS
RN
INSEERA

vavi|

CEOER

4'5%%3
AL
"AA'A"em“
S0
DRAER
e

Figure 6.9: A domain with two polygons, the top one being extremely thin comparéuke
bottom one. Four meshes generated by Ruppert’s algorithm, with no andlerstiinan 5, 20°,
30°, and 342°, respectively.

smaller than the local feature size. This worst theoretical outcome newersoo practice; for
example, the edges of the2@esh in Figure 6.9 are at least one third as long as their local feature
sizes. The bound permits us to apply the Packing Lemma to prove that the atgda#s not run
forever.

Theorem 6.7. Suppose thgh > V2 and no two segments [meet at an angle less th&’.
ThenDecTrRIPLC(P, p) terminates and returns a Steiner Delaunay triangulatiorPafhose tri-
angles have radius-edge ratios at mpst

Proor. Let fmin = minygp f(X). BecauseP is finite and any two disjoint linear cells A are
separated by a positive distandg,, > 0. By Proposition 6.6, ELTrRIPLC maintains an inter-
vertex distance of leadf,in/(Cs + 1) > 0. By the Packing Lemma (Lemma 6.1), there is an upper
bound on the number of vertices in the triangulation, soTRIPLC must terminate. The algo-
rithm terminates only if no subsegment is encroached and no skinny triargia liee domain,

so it returns a high-quality mesh Bfas stated. O

Figure 6.9 shows that the algorithm often succeeds for angle boundsweeliess of 20°,
failing to terminate on the depicted domain only for angle bounds ovef 3%he meshes illus-
trate the expected traddfdetween mesh size and quality, albeit with longer edges than the lower
bounds suggest.

For simplicity, we have not discussed thigeets of refining triangles for being too large. In
practice, it is usual for a user to specifgiae fieldl : R? — R that dictates space-varying upper
bounds on the edge lengths or triangle circumradii in the mesh. Trianglesdlzdé these bounds
are split, just like skinny triangles. See Section 14.4 for an example of dysenmethod that
can extend the termination guarantee and derive lower bounds on théeedges in the mesh
when refinement is driven by both a size field and the geometry of the domain.

133

6.5 A proof of size optimality and optimal grading

An algorithm is said to generagize-optimameshes if the number of triangles in every mesh it
produces is within a constant factor of the minimum possible number.

Definition 6.4 (size optimality) Let P be a class of piecewise linear complexes—that is, a set
containing all PLCs that satisfy some criterion. For every PLE P, let T(P, p) be the trian-
gulation with the fewest triangles among all possible Steiner triangulaticdRsufose triangles’
radius-edge ratios do not exceed_et M(P, p) be the Steiner triangulation 6f generated by an
algorithm that guarantees that no triangle in the mesh has a radius-edggreatier thap. The
triangulations this algorithm generates aize-optimalf for every P € P, the number of triangles

in M(P, p) is at most times the number of triangles i(P, p), wherec is a constant that depends
solely onp.

Ruppert’s algorithm generates size-optimal meshes of the class of PL&ewimderlying
spaces are convex and in which no two segments meet at an angle les@’tHfan®e (V2, «).
The inclusion is strict: the constaopproaches infinity gs approachesv2 from above or in-
finity from below, so the guarantee is most meaningful for moderate dencandisingle quality.

Size optimality does not mean that we can find the perfectly optimal fMiedlikely a futile
guest—but we can still reason about its size and prove that the Siésdisymptotically optimal.
The reader might ask, asymptotic in relation to what? One of the most interestiogetical
discoveries about mesh generation is that there is a natural measune afdiy elements are
required in any high-quality simplicial mesh: the integral over the domain of tre¥se squared
local feature size.

The following proposition shows that this integral is an asymptotic upperdonthe number
of triangles in a mesb generated by Ruppert’s algorithm. Subsequent propositions show that
it is an asymptotic lower bound on the number of triangles in any high-quality nresbding
T, soM is size-optimal. Unfortunately, the lower bound is contingent®jrbeing convex; in
its original form, Ruppert’s algorithm does noffer a size-optimality guarantee for nonconvex
domains. In Section 6.7, we discuss how a variant of Ruppert’s algoritatruties constrained
Delaunay triangulations doester size-optimality for nonconvex domains, with the insight that
the analysis method must redefine the local feature size function to usesthtistances if¥|.

Proposition 6.8. Let P be a PLC in the plane in which no two segments meet at an angle less
than90°. LetM be a mesh dP generated bDerTRIPLC(P, p) with p > V2. Then the number of
triangles inM is less than

8(3+ 2Cs)? f dx
T |P) f(X)z’
where G is a constant that depends solely @rdefined in Proposition 6.5, and dx represents an
infinitesimal measure of area in the plane.

Proor. LetS be the set of vertices iiv(, and let|S| denote the number of verticesvi. For each
vertexv € S, consider the Euclidean digk, = B(v, ry) wherer, = f(v)/(2 + 2Cs). The interiors
of these disks are pairwise disjoint by Proposition 6.6. As no two segmefitmieet each other

134

at an acute angle, at least one quarter of each disk is includ@d ifherefore,

ff}’l f(x)? Z mem f(x)2

veS

g Zf m|:p.(f(v)+rv)2

veS

>
4 zslf (f(v) + rv)2
_ Z 7Tr2
4 Ves (3+ 2Cs)2r?
= —————IS
43+ 203)2 .
Recall from Section 2.1 that d8|-vertex triangulation has at mogi&2 - 5 triangles. The result
follows. O

The matching lower bound on the number of triangles in a high-quality mesmdgma
several observations that seem unsurprising, but require carewe: @mall domain features are
surrounded by proportionally small triangles; triangles that adjoin eadr gdnnot have arbi-
trarily different sizes; and triangles that are distant from each other canrealsxe dierence
far greater than the distance between them. Together, these obseriapbnthat the local fea-
ture size function places an upper bound on the local edge lengths irdarggsh. None of these
observations is true if arbitrarily skinny triangles are allowed; all of thepedd on having an
upper bound on the radius-edge ratio, or equivalently, a lower boarideosmallest angle. They
also require thatP| be convex.

The following series of propositions formalizes these observations tapdpr the lower
bound proof. A triangler has three altitudes—the distance from a vertex td the dfine hull
of the opposite edge; ldi(r) denote its shortest altitude. The following proposition shows that
between any two disjoint simplices in a triangulation, there is a triangle whosteshaltitude
does not exceed the distance between the simplices. The propositiondradahy triangulation,
of good quality or not. But note that good quality implies that the triangle with athed altitude
also has bounded edge lengths.

Proposition 6.9. Let T be a triangulation in the plane. Let p and g be two points such that
pg € |T]. Letop andoq be the unique simplices i whose relative interiors contain p and q,
respectively. I, andoq are disjoint, there is a triangle € T that intersects both pq ane,
such that lfr) < d(p, g).

Proor. Consider three casesy, is a vertex, an edge, or a triangle.

If op is a vertex, namely the poirg, let r € T be a triangle adjoining that intersects
pag\ {p}—there are either one or two such triangles. Becauardo are disjoint, the edge af
oppositep intersectspq. Thereforeh(r) < d(p, g) and the proposition holds.

If o is an edge, consider several possibilitiesq I collinear withop, replacep with the
vertex ofop nearest and apply the reasoning above. Otherwiserjet T be the triangle that
hasop, for an edge and intersecps \ {p}. If h(rp) < d(p,), the proposition holds. Otherwise,

135

p v

Figure 6.10: Betweemp andg, at least one triangle adjoininguv has an altitude ofl(p, g) or
less.

let u, v, andw be the vertices of, with u andv being the vertices af,. Assume without loss
of generality that the plane is rotated so thgtis horizontal withr, above it, that the plane is
reflected so thav lies to the left ofpg, and that the vertices are labeledwslies to the left ofv,
as illustrated in Figure 6.10.

Consider the fan of triangles i that adjoinv and have interiors that intersept), starting
with 7, and proceeding in clockwise order, as illustrated. None of these triamgfiesors can
containg, because thetrq would not be disjoint fronarp. Therefore, the chain of edges opposite
v in the fan starts with the edgew and ends with an edge that intersepty these edges are
bold in Figure 6.10. Becaud®rp) > d(p,q), the apexw is higher than the poing—that is,
it is further above the féine hull of op. But the last edge in the chain intersegig and so
must have at least one vertex as lowcasr lower. Therefore, the chain includes at least one
down edgevhose clockwise vertex is lower than its counterclockwise vertex.elbet the most
clockwise down edge in the chain, lebe €'s affine hull, and letr € T be the triangle joining
edgee with vertexv. Becausee is the last down edge, all subsequent edges and the goint
must lie above or of. Becausee is a down edgep is further from¢ thanv. It follows that
h(r) < d(v,¢) < d(p,¢) < d(p,q).

In the third and final caser is a triangle. Lefp’” be the point wher@qintersects the bound-
ary of op, and leto, be the face ot whose relative interior containg. Replacep with p/,
replaceo, with o, and apply the reasoning above. O

Any bound on the smallest angle of a triangulation imposes a limit on the gradingrajle
sizes. The next proposition bounds théalience in sizes between two triangles that share a
vertex. In the following propositions, lét,ax(7) denote the length af's longest edge.

Proposition 6.10. Let T be a triangulation in the plane witfy] convex. Lep = max,cy p(c) be
the maximum radius-edge ratio among the triangleS;ithus, Omin = arcsin% is the minimum
angle. Letr and v’ be two triangles irnJ that share a vertex v. Thefjad(7) < nh(r’), where
n= (2 Cosgmin)1+180’/9min/ Singmin — 2@4 _ 1/52)0.5+90°/arcsin]/(2@_

Proor. Let a be the length of the longest edge adjoining the vevtdet b be the length of the
shortest, and lep < 180 be the angle separating the two edges. We claim that the a#tio
cannot exceed (2 c@alin)‘ﬁ/@min. This bound is tight if$/0min is an integer; Figure 6.11fl@rs an

example where the bound is obtained.

136

le a » ble

Figure 6.11: In a triangulation with no angle smaller thah, 3@e ratioa/b cannot exceed 27.

We prove this claim by induction on the sequence of edges aretirmin the longest edge
to the shortest. For the base case, suppose the longest and sh@éssbeldng to a common
triangle. Leta andp be the angles opposite the edges of lengtlad b, respectively; then
a+ B+ ¢ = 180 and sim = sin@@ + ¢) = sinBcosy + sing cosB. By the Law of Sines,
a/b = sina/sinB = cos¢ + sing/tang, soa/b is maximized wherg = 6nin. Observe that
if ¢ also equal®min, thena/b = 2 co9nin. It is straightforward to verify that ip > 6nin, then
a/b < (2 cosmin)?/min, because the former grows more slowly than the latterinsreases above
Omin. This establishes the base case.

If the longest and shortest edges adjoimirgye not edges of a common triangle, ddie the
length of an intermediate edge adjoinmglhen by the inductive hypothesas,b = (a/c)(c/b) <
(2 COSmin)“2%/Imin (2 COSOpmin) 2%/ fmin = (2 cOHpmin)?/?min, and the claim holds.

Becauser has two edges no longer tharand no angle smaller thai,,, its longest edge
satisfiesmax(t) < 2acostnin. Because’ has two edges no shorter themnd no angle smaller
than nmin, its shortest altitude satisfiégr’) > bsindmin. The result follows by combining in-
equalities. O

The constany in Proposition 6.10 can be improved; see Exercise 8.

The next proposition shows that in a high-quality triangulation, every tléspngest edge
has an upper bound proportional to the local feature size at any pdime iiniangle. Recall that
Proposition 6.6 gives a proportional lower bound for the edges peatloy DeL TrRiIPLC. Together,
the two propositions show that Ruppert's algorithm generates meshe® whgs lengths are
within a constant factor of the longest possible. We call this guaraqté®al grading

Proposition 6.11. Let P be a PLC in the plane wit{®| convex. Lefl be a Steiner triangulation
of P. Letp = max,<yp(0). Letr be a triangle inT. Let x be a pointinr. Thenfmax(r) < 25 f(X),
wheren is a constant that depends solely @rspecified in Proposition 6.10.

Proor. By the definition of local feature size, the diBKx, f(x)) intersects two disjoint linear
cells inP, each a vertex or edge, at two poimgsandq, respectively. Because andq lie on
disjoint edges or vertices ifi, they lie on disjoint edges or verticesh BecausdP| is convex,
pg € |P| and we can apply Proposition 6.9 to show there is a triangke T that intersectq
such that(z’) < d(p, 9).

If T adjoinst’, thenfmax(t) < nh(7’) by Proposition 6.10. It follows thdthax(7) < nd(p,q) <
2n f(x), and the claim holds.

137

Otherwise, leti be a point int” N pg. By a second application of Proposition 6.9 to the points
x andu, there is a triangle” € T that adjoinsr and satisfief(r””) < d(x, u). Becausau lies on
pg, it lies in B(x, f(x)) andd(x, u) < f(X). Thereforefmax(t) < nh(r”") < nd(x,u) < n f(x), and
the claim holds. m|

We can now prove a lower bound on the size of a high-quality mesh.

Proposition 6.12. Let? be a PLC in the plane witlP| convex. Lefl be a Steiner triangulation
of P. Letp = max,<yp(c). The number of triangles ifi is at least

1 f dx
Va2 Jig 1%
wheren is a constant that depends solely @rspecified in Proposition 6.10.

Proor. Let fmax(X) be a function that maps each poing |P| to the length of the longest edge of
the triangle inJ that containg, taking the greatest value if more than one triangle contaiy
Proposition 6.11{max(X) < 21 f(X), so

dx - 42f dx
o 1002 = T Sy a2
dx
4n? f
7 ; rfmax("')2

4 areaf)
;r max(7)?

\/énz Z 1,

TeT

IA

because area)/fmax(1)? = h()/(2¢max(7)) attains its maximum possible value &f3/4 for an
equilateral triangle. The summation is the number of trianglé&s Bo the claim follows. O

Propositions 6.8 and 6.12 together establish the size optimality of meshes guidmubeL-
TrIPLC, formally stated in the following theorem.

Theorem 6.13.Let P be a PLC in the plane such thfR| is convex and no two segmentsiin
meet at an angle less th@®°. Letp be a real number greater thay2. DecTriIPLC produces

a meshM of P whose triangles’ radius-edge ratios do not excgeduch that the number of
triangles inM is at most a constant factor greater than the number of triangles in any othe
Steiner triangulation of® whose radius-edge ratios do not exceed

6.6 Meshing domains with small angles

Ruppert’s algorithm requires that no two segments meet at an acute ahiglés & severe restric-
tion. In practice, the algorithm often succeeds despite acute angless Hotain angles drop
below about 45, it becomes increasingly likely to fail to terminate.

138

Figure 6.12: Ping-pong encroachment caused by a small input angtex Veencroaches upon
au, which is split atw. Vertexw encroaches upoav, which is split atx, which encroaches upon
aw, and so on.

Figure 6.12 demonstrates ondfdiulty caused by small input angles. If two adjoining seg-
ments have unequal lengths, an endless cycle of mutual encroachmeptadage ever-shorter
subsegments incident to the apex of the small angle. This phenomenon, srelitedping-
pong encroachmenis observed only with angles of 46r less.

Sometimes itis impossible to obtain good element quality. If two segments of a don@im ad
each other at a®langle, some triangle of the final mesh will have an angl€ @frless. Moreover,

a small domain angle sometimes necessitates generating elements with new smathatglee
not inherited from the domain (recall Figure 1.5). Given a domain with smajlleana mesh
generator must diagnose where it is necessary to give up and acoeppsor-quality elements.

This section discusses two modifications to Ruppert's algorithm that extendititwgrks
remarkably well with domains that have small angles. The first modificationpn@sosed by
Ruppert himself; he calls it “modified segment splitting using concentric cir@llalls.” The
second modification is a simple observation about which skinny triangles thie geesrator
should not try to split. Together, these two modifications yield a variant opRutis algorithm
that always terminates and has some impressive properties. Most impgritacdly guarantee
that no triangle has an angle greater than.@38lt also guarantees that skinny triangles appear
only between segments separated by small angles. Recall that for mdicatiqps, bounding
the largest angles is more important than bounding the smallest anglessédcadormer are
related to the discretization and interpolation errors.

The first modification is to split some encroached subsegmditenter, rather than at their
midpoints. Imagine that each input vertex is enclosed by concentric cirtlesexadii are all the
powers of two—that is, '2for all integersi, as illustrated in Figure 6.13. When an encroached
subsegment adjoins another segment at an angle less thasplif the subsegment not at its
midpoint, but at one of the circular shells centered at the shared veot¢éxatsone of new sub-
segments has a power-of-two length. Choose the shell that gives thiab@sced split, so the
two new subsegments produced by the split are between one-third arttlitds®the length of
the split subsegment.

If both vertices of a segment adjoin other segments, the segment may angetg two
unbalanced splits—one for each end. Choose one vertex arbitradlgpdihthe segment so the

139

midpoint

" new vertex

Figure 6.13: Concentric circular shells appear at left. If an encrabshigssegment meets another
segment at an acute angle, the subsegment is split at its intersection withlarcsfeell whose
radius is 2for some integer. The illustrations at right are a sample input and output of Ruppert's
algorithm with concentric shell segment splitting.

subsegment adjoining that vertex has a power-of-two length betweequamter and one-half
the length of the split subsegment. The other subsegment produced bylithisight undergo

a subsequentfBcenter split, in which case all three subsegments will be at least one-fifth th
length of the original segment. All subsequent subsegment splits ar¢idnmsec

Concentric shell segment splitting prevents the runaway cycle of eeeteslsubsegments
portrayed in Figure 6.12, because adjoining subsegments of equal lmgiht encroach upon
each other. Ruppert also suggests changing his algorithm so that indbatempt to split a
skinny triangle nestled in the corner of a small input angle. These chamgesften &ective,
as the mesh at right in Figure 6.13 shows, and they alwafji€sidor simple polygons with no
internal boundaries.

However, Figure 6.14 illustrates a more treacherous way by which small amgles and
internal boundaries can cause Delaunay refinement to fail to terminatall e key idea that
Delaunay refinement should create no new edge that is shorter tharottessledge previously
existing. If two subsegments that adjoin each other at a very small anghésacted, the new
edge connecting their two midpoints can starkly violate this rule. The newgslealge can cause
subsequent refinement as the algorithm removes skinny triangles, agitdstvhich can cause
the subsegments to be split again, creating a yet shorter edge, andltheayaontinue forever.

An idea that breaks this cycle is to deny these new, unduly short edgesuitege of causing
further refinement. Specifically, call an edggditiousf its vertices lie on two distinct segments
that meet each other at an angle less thah 6@ two vertices lie on the same concentric shell,
and the two vertices are true midpoints (nétcenter splits), as illustrated in Figure 6.14.

The second modification is to simply decline to try to split any skinny triangle whlosgest
edge is seditious. This precaution prevents the short lengths of seditiges fFom propagating
through the mesh. Triangles with small angles can survive, but only betseggnents adjoining
each other at small angles. Figure 6.14 depicts a mesh generated by thednaldiirithm for a
PLC that requires both modifications to stop the algorithm from refining ésrev

The observation behind why this modified algorithm terminates is that unduly etiges—
edges shorter than those predicted by Proposition 6.4—can be creatdyd two circumstances.
Off-center subsegment splits can create them, but only twice per PLC segmuashtly $hort

140

/N

encroachmenl seditious edge

refinemeni

/N

Figure 6.14: At left, a demonstration of how segments separated by smédsarrgate short,
seditious edges as they are split; the refinement of skinny triangles csa tteusubsegments to
be split again. At right, a mesh generated by Ruppert’s algorithm with otricashells when it
declines to split triangles whose shortest edges are seditious. No angteriretth is greater than
127.1°, and no triangle has an angle less tham26unless its shortest edge is seditious.

edges are also created by cascading bisections of adjoining segmdhistrased in Figure 6.14,
but these edges are all seditious, and are prevented from caudimgy fiafinement.

Proposition 6.14. Letp > V2 be the maximum permitted radius-edge ratio of a triangle whose
shortest edge is not seditious. If Ruppert’s algorithm is modified to useeotric shells for seg-
ment splitting and to decline to try to split any triangle whose shortest edgdiisoses, it is guar-
anteed to terminate for any two-dimensional PPCwith no restrictions on the angles at which
segments meet. Moreover, no triangle of the final mesh has an angteigilean180° -2 arcsin%

nor an angle less thagingmin/ v/5 — 4 COSpmin, Wheregmin is the smallest angle separating two
adjoining segments iff.

Proor. Let?P’ be a copy of the PLE modified to include everyfb-center vertex the algorithm
inserts on a segment; i.e. each vertex that is not the true midpoint of thegsutrstebeing split.
The segments if?’ are subdivided accordingly. At most twdf-aenter splits occur for each
segment ir?, soP’ has only finitely many extra vertices. L&{-) denote the local feature size
with respect tdP’, and letfyin = minygp f(X).

Consider a group of segments that meet at a common veite®’, with consecutive seg-
ments in the group separated by angles less thanTétese segments have power-of-two lengths
(possibly excepting some segments that will never be split, which we carelgghen they are
refined, they are split at their true midpoints, so their subsegments haes-pbiwo lengths. At
any time during refinement, if the shortest subsegment of the segments imthehgs length'2
then all the vertices on the segments lie on circular shells centersaf aadii j - 2' for positive

141

integersj, and two vertices can be separated by a distance less thamy2if they lie on the
same shell. If a vertex on one segment encroaches upon a subsega@rgnother subsegment
in the group, there crosses the shell thatlies on, and the two subsegments created waisn
split cannot be shorter than the two subsegments adjoinirgfollows that a cascading chain
of mutual encroachments solely within the group does not create a sub#egmoeter than the
shortest subsegment already in the group.

Say that a pair of vertices/,(x) is seditiousif they lie on two distinct segments i’ that
meet each other at an angle less thah&®ome vertex, and they lie on the same shell; that is,
d(z v) = d(z X). Thusvxis a seditious edge if the mesh contains it. We claim that the modified
algorithm never generates two vertices separated by a distance lesg.thanless they are a
seditious pair. Suppose for the sake of contradictionthsthe first vertex inserted that breaks
this invariant. Then there is a vert@such thaty, x) is not seditious bud(v, X) < fin. Letw be
the vertex nearestat the moment is inserted. Thew(v,w) < d(v, X) < fmin. It is possible that
w andx are the same vertex.

We claim thatv is neither a circumcenter nor a type 1 vertex whose parent is a rejected
circumcenter. Ifv is the circumcenter of a skinny triangte thent’s shortest edge has length
at leastfm,in because the algorithm does not split a triangle whose shortest edgdisusednd
by the inductive hypothesis, all the nonseditious edges had |eqgttor greater before was
inserted. Butr’s radius-edge ratio exceegsso its circumradius is greater thafinin > V2fmin
and thusd(v,w) > V2fmin, @ contradiction. livis a type 1 vertex whose pareptis a rejected
circumcenter, then, > V2 fmin by the same reasoning, so Proposition 6.4(iii) implies that
ro/ V2> fmin. Thend(v,w) > ry > fmin, @ contradiction.

Therefore v is a type 1 vertex inserted on an encroached subsegered segmens, and
the diametric disk o€ contains some encroaching vertex, and hence contaifiiusw is not a
circumcenter (which would have been rejected). The factdbatv) < fmin implies thatw is not
a vertex in?” and does not lie on a segment disjoint freamThe same is true fox. Therefore,

w lies on a segment if?’ that adjoinss at a shared vertex By our reasoning above, the two
subsegments created wheis split are not shorter than the two subsegments adjoinjrnvghich
have lengths of at least,i, by the inductive hypothesis. Bd{v, X) < fmin, SOXis in €'s diametric
disk. Thusx, like w, lies on a segmerd that adjoinss at z, and adjoins two subsegments whose
lengths are at leastin. The fact thatl(v, X) < fmin implies thatv andx lie on a common circular
shell. The radius of that shell is at ledgtn, SOsands meet at an angle less than°60T his
contradicts our assumption that X) is not seditious. It follows that only seditious pairs can be
separated by a distance less tHaRp.

Because every subsegment has a length of at fegstevery seditious edge has a length of at
least ZXmin sin‘ﬁmT"‘. It follows from the Packing Lemma (Lemma 6.1) that the modified algorithm
terminates.

When the algorithm terminates, every triangle whose shortest edge isditibise has no
angle less than arcsia, and thus no angle greater than 18@ arcsin%;. To bound the angles of
the other triangles, consider the seditious edgen Figure 6.15. Its vertices lie on two distinct
segments that meet at a vertexat an anglep < 60°, and the vertex is a true midpoint of
vy. If a triangle whose shortest edgenws respects the segments, its largest angle cannot exceed
/wxy= 90 + ¢/2 < 12C°, which establishes our claim about the largest angles.

Lety = zxyw, and observe that < ¢. No Delaunay triangle with shortest edgex can

142

Figure 6.15: If a triangle’s shortest edge is seditious and subtends an input angléhe triangle
has no angle greater than°99¢/2 nor less thaw.

have an angle less than because by the Inscribed Angle Theorem, any such triangle would have
eithery or vinside its circumdisk. By the Law of Sines, gind(v, w) = sinzvwy/d(v, y), hence

2 siny = sinzvwy = sin(180 — ¢ —) = sin(@ + ¢) = Sing COSY + COS¢ Siny.

Therefore, (2- cosg)?sify = siP¢cofy = sirP¢ (1 — sify). Rearranging terms gives
siny = sing/ /5 — 4 cosp, which establishes our claim about the smallest angles. O

Proposition 6.14 guarantees termination, but not good grading. It ishp@ss salvage a
weakened proof of good grading; see the biographical notes fatsleta

In a practical implementation, it is wise to use an inter-segment angle smaller @hao 6
define seditious edges, so that Delaunay refinement is less tolerantedang skinny triangles
behind. This change breaks the termination proof, but in practice it tmettemination only if
the angle threshold for seditious edges is substantially smaller tha2@ algorithm must still
decline to try to split triangles that are right in the corners of small domain shgleourse, as
these cannot be improved.)

6.7 Constrained Delaunay refinement

If software for constructing and updating constrained Delaunay trlatigos is available, Rup-
pert’s algorithm is easily modified to construct and maintain a CDT instead & eld it enjoys
several advantages by doing so. First, the algorithm stores no trianggdethe domain, even
if |P] is not convex, and therefore saves the costs of maintaining them ankirdn&dich tri-
angles are in the domain. Second, every subsegment is an edge of thevb®&as Ruppert’s
original algorithm sometimes must pay for point location to insert the midpoinisobaegment
that is absent from D&, constrained Delaunay refinement requires no point location, because
every newly inserted vertex is associated with a mesh edge or triangle, ahitdnost important,
CDTs prevent overrefinement that can occur where geometric feateeseparated by small dis-
tances exterior to the domain, as illustrated in Figure 6.16. As the mesh atdefs sRuppert’s
original algorithm with a bounding box can refine a mesh much more thansagebecause of
encroachments and skinny triangles exterior to the domain. A CDT prevénts/grrefinement,
as the mesh at right illustrates.

143

Figure 6.16: Two variations of Ruppert’'s Delaunay refinement algorittitin &20 minimum
angle. Left: Overrefinement with a Delaunay triangulation in a box. RighfinB@ent with a
constrained Delaunay triangulation.

A nuisance in Section 6.5 is that the proof of size optimality holds onl||ifis convex.
Figure 6.16 shows that this is not merely a technical flaw in the proofs; &tipjplgorithm does
not always generate size-optimal meshes of nonconvex domains. Tdiefdature size does
not distinguish exterior distances from interior distances, so it corremigigts the behavior of
Ruppert’s algorithm, but it is not an accurate estimate of the longest possigdelengths.

Once modified to maintain a CDT, Ruppert’s algorithm is size-optimal even focanvex
domains. We can prove this by replacing the Euclidean distance witintiiiresic distancebe-
tween two points—the length of the shortest path connecting the points thabtiesyein |P|.

An intrinsic path must go around holes and concavities. Redefine the &mtalé sizef (x) at a
point x to be the smallest value such that there are two disjoint linear célsvithin an intrinsic
distance off (x) from x. The edge lengths in the mesh at right in Figure 6.16 are locally propor-
tional to this modified local feature size. It is a tedious but straightforweedcése to show that
the proofs in Sections 6.4 and 6.5 all hold for Ruppert’s algorithm with a Cilthe intrinsic
local feature size, without the assumption tff4is convex.

Consider a dferent meshing problem: to produce a triangular mesh of a piecewise linear
complex in three-dimensional space with no 3-cells, composed of polygortinget shared
segments. The polygon triangulations must conform to each other—thattih tmangle edge
to triangle edge—along their shared boundaries. This problem arisesiiléy element meth-
ods for solving partial dferential equations and in global illumination methods for computer
graphics.

The constrained Delaunay refinement algorithm can solve this problem, avitbnceptual
changes, by meshing all the surfaces simultaneously. Again, the key ifirte thee local feature
size in terms of intrinsic distances in the underlying space of the PLC. Winéyggms meet at
shared segments, features in one polygon niBgchthe local feature size in another, reflecting
the fact that the refinement of one polygon can propagate into an adjoioiypgom by splitting
their shared segments.

144

6.8 Notes and exercises

For the sake of establishing precedence, we note that Ruppert's 1898 |80] is his fullest
presentation of his algorithm and its analysis, but earlier versions agabieet992 and 1993 [178,
179]. In 1993, Chew [61] independently discovered a very similar Delguefinement algorithm
that guarantees a minimum angle of 30nlike his 1989 algorithm described in Section 1.2, his
1993 algorithm &ers optimal grading and size optimality for any angle bound less th&f-26
compared to 20° for Ruppert’s algorithm—although this property was proven not by Chaty,
subsequently by Shewchuk [201]. The improved angle bounds alieettay using a constrained
Delaunay triangulation and a more conservative procedure for treatorgached subsegments.
Miller, Pav, and Walkington [147] reanalyze Ruppert’s original algorithmad extend its angle
guarantee to 28°, with size optimality and optimal grading intact. The same techniques show
that Chew’s algorithm guarantees size optimality and optimal grading up toghe @urarantee of
28.6°. For angle bounds between.@8and 30, Chew’s algorithm is guaranteed to terminate but
is not guaranteed to produce a graded or size-optimal mesh.

Most of the analysis in this chapter is taken from Ruppert’s article, but thef pf Propo-
sition 6.10 is adapted from Mitchell [150] and the proof of Proposition 6.%i8.nThe idea to
analyze Delaunay meshing algorithms in terms of the radius-edge ratio camesfitler, Tal-
mor, Teng, and Walkington [148]. The first size-optimality proof for a mgsferation algorithm
was given by Bern, Eppstein, and Gilbert [18] for their provably gqoddtree mesher, and their
guadtree box sizes are a forerunner of Ruppert’s local featureMitehell [150] gives a stronger
lower bound on the number of triangles in a high-quality triangulation thatlshgroportionally
t0 Bmin @SHmin @approaches zero, whereas the bound given here shrinks prowdigtit 2-C(/tmin),

The idea to place new vertices at triangle circumcenters originates in a 2987 gy William
Frey [100], who appears to be the first to suggest using the Delauaagtation to guide vertex
placement, rather than generating all the vertices before triangulating theounCenters are
not always the optimal locations to place new vertices. If a skinny triangieamcircle is sub-
stantially larger than its shortest edge, it is often better to place the new etotex to the short
edge, so they form an acceptable new triangle. Tfexkis to make Delaunay refinement behave
like an advancing front method. Frey [100] and Ungor [219] repaat theseoff-centersgive
an excellent compromise between the quality and the number of triangles ngyid &lso shows
that Ruppert’s theoretical results remain true for properly choffecemters. A more aggressive
algorithm of Erten and Ungor [94] optimizes the placement of a new vertexircamcircle; it
often generates triangular meshes that have no angle smaller than 41

The idea to recover a boundary in a Delaunay triangulation by repeatesdsting vertices
at missing portions of the boundary originates in a 1988 paper by Samwaad Shephard [188],
who named this procesgitching

The suggestion to use concentric circular shells for segment splitting ceomeRfuppert’s
original paper. The idea to decline to split triangles with seditious edgessasiloed in Sec-
tion 6.6, is a slight variation of an algorithm of Miller, Pav, and Walkington [147av [167]
proves that their algorithmffers good grading. The softwaraikncLe! implements Ruppert’s
algorithm, Chew’s 1993 algorithm, Ungor'stecenters, and the modifications for domains with
small angles discussed in Section 6.6. Chapters 9 and 15 addresSitdtyliof meshing three-

Ihttpy//www.cs.cmu.edi+quakétriangle.html

145

dimensional domains with small angles.

Another important extension of Ruppert’s algorithm is to domains with cureechdaries.
The first such extension, by Boivin and Ollivier-Gooch [32], usesT€b aid the recovery of
curved ridges in triangular meshes. A more recent algorithm by Pav aildngi@an [166] can
handle cusps—curved ridges that meet at an angle of zero. This algani#tintains and returns
a true Delaunay triangulation.

Yet another important extension is to generate anisotropic meshes. Rrel@anay mesh
generators adapt easily to anisotropy; for instance, George andi®wki [103] modify the
Bowyer—Watson algorithm to use circumellipses instead of circumspheogge\dr, if the aniso-
tropy field varies over space, the newly created elements might not havg @napmellipses, and
the quality of the mesh cannot be guaranteed. Labelle and ShewchUykpfbpose a provably
good algorithm for anisotropic triangular mesh generation that introdudestaipic Voronoi
diagrams to provide a foundation for the mathematical guarantees.

The fact that Ruppert’s algorithm might perform work quadratic in the sfzbe final mesh
was first noted by Ruppert in an unpublished manuscript. Baabd Miller [15] work out an ex-
ample in detail. Har-Peled and Ungor [109] describe a Delaunay refinexgenithm, essentially
Ruppert’s algorithm with fi-centers, that uses a quadtree to help it run in opt@falogn + N)
time, wheren is the number of input vertices amdis the number of output vertices. See also the
discussion okparse Voronoi refinemebly Hudson, Miller, and Phillips [115] in the Chapter 8
notes, which achieves virtually the same running time without the need forcirgaa

Exercises

1. Show that an edge € DelS is encroached if and only if D& contains a triangle that
hase for an edge and a nonacute angte 90°) oppositee. Therefore, a subsegment’s
encroachment can be diagnose®ifi) time.

2. Suppose BLTrIPLC takes as input a PLC in which some segments meet each other at

angles less than 90but never less than 60Then Proposition 6.4 no longerfiges, be-
cause a vertex inserted on one segment might encroach upon a subsegrae adjoining
segment. Show that nonethelessiTkRiIPLC must terminate.

3. Suppose ELTrRIPLC enforces a stricter standard of quality for triangles that do not eters
the relative interior of a segment: a triangle that does not intersect a stigreeior is split
if its radius-edge ratio exceeds 1. A triangle that intersects a segment linsesit if its
radius-edge ratio exceedé2. Given a PLC in which no two segments meet at an angle
less than 99 show that BrTrIPLC still must terminate.

4. Ruppert's algorithm splits encroached subsegments at their midpointssolivetimes
achieve smaller meshes if we usf-center splits when the encroaching vertex is not a
rejected circumcenter. For example, if an input verencroaches upon a subsegment
andv is very close tee but not toe's midpoint, then splittinge off-center might reduce the
number of triangles in the final mesh. One idea is to projecthogonally ontee. Unfortu-
nately, this idea might create an unreasonably short edge, as Figuit&ttadtes. Explain

146

Figure 6.17: Projecting an encroaching vertex onto an encroachsdgubnt can create a dan-
gerously short edge.

how to modify this idea so that Proposition 6.4 still holds, while still splitting subsatgne
as close to the projected point as possible.

. Iftwo segments meet each other at an angle db4tess, RLTrIPLC may fail to terminate

because of ping-pong encroachment, illustrated in Figure 6.12. Hoygeygrose we mod-
ify DeLTRIPLC by eliminating step 4 so skinny triangles are ignored and changing step 3 s
that only subsegments missing from [3ehre considered encroached:

3. While some subsegmeet E is missing from DeB, call SLitSussecment(e, S, E),
update DeB, and repeat step 3.

Let P be a PLC in which no four segments meet at a single vertex. Show that this exdodifi
DecTriIPLC always produces a Steiner Delaunay triangulatioft,aio matter how many
small angles it has.

. Suppose that we modify step 3 ofiDrIPLC as described in the previous exercise, but

instead of eliminating step 4, we replace it with the following.

4. While DelS contains a triangle for which p(r) > p and the circumcenter of
does not encroach upon any subsegmet,imsertc into S, update De§, and go to
step 3.

In this modified algorithm, skinny triangles may survive, but only near the dobwund-
aries. Quantify the minimum quality of the triangles relative to their proximity to the do-
main segments in terms of their edge lengths@and —

. Show that if the local feature size function is modified to use intrinsic diegntis still

1-Lipschitz, i.e. it still satisfies Proposition 6.3.

. Show that ifomi, < 30°, the inequality in Proposition 6.10 can be improved so that

(2 COSOpmin) 8% /fmin / sinGpmin. Hint: This expression follows immediately if the longest edge
of T adjoinsv. If 7’s longest edge does not adjomwhat is the angle separating the two
edges ofr that do adjoirv?

. Consider the problem of meshing the P®dllustrated in Figure 1.5, which includes two

adjoining segments that are separated by a very small @ndgldearly, it is impossible to
avoid placing a triangle with angle or less at the small domain angle. But ideally, the
mesh would have no other angle less thah 3With help from Proposition 6.10, show that
for suficiently smallg, no such Steiner triangulation ffexists.

147

10. Prove that Ruppert’s algorithm with “modified segment splitting using exatnic circular
shells” always terminates for domains that are simple polygons with no intesnabaries,
even if it splits skinny triangles whose shortest edges are seditious,gaddhdeclines to

split triangles nestled right in the corners of small domain angles.
11. Prove that BLTrRIPLC maintains a quarantined complex (see Chapter 7) when it inserts a

circumcenter of a triangle.

