Chapter 3

Surface Samples

In this chapter we introduce some of the properties of surfaces and their
samples in three dimensions. The results developed in this chapter are used
in later chapters to design algorithms for surface reconstruction and prove
their guarantees. Before we talk about these results, let us explain what we
mean by smooth surfaces.

Consider a map 7: U — V where U and V are the open sets in R?
and R? respectively. The map 7 has three components, namely 7(z) =
(m1 (), ma(x), m3(x)) where x = (z1,22) is a point in R?. The three by two

matrix of first order partial derivatives (ag;(j) )i,;j is called the Jacobian of 7

at . We say 7 is reqular if its Jacobian at each point of U has rank 2. The
map 7 is C’-continuous if the ith order (i > 0) partial derivatives of 7 are
continuous.

For i > 0, a subset ¥ C R? is a C%-smooth surface if each point z € ¥
satisfies the following condition. There is a neighborhood W C R? of 2 and
amap m: U — W N X of an open set U C R? onto W N ¥ so that

(i) 7 is C’-continuous,
(ii) 7 is a homeomorphism, and
(iii) 7 is regular.

The first condition says that 7 is continuously differentiable at least up
to ith order. The second condition imposes one-to-one property which elim-
inates self intersections of Y. The third condition together with the first
actually enforce the smoothness. It makes sure that the tangent plane at
each point in 3 is well defined. All of these three conditions together im-
ply that the functions like 7 defined in the neighborhood of each point of
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> overlap smoothly. There are two extremes of smoothness. If the partial
derivatives of 7 of all orders are continuous, we say ¥ is C°°-smooth. On
the other hand if ¥ is not C'-smooth but is at least a 2-manifold, we say it
is C%-smooth or nonsmooth.

In this chapter and the chapters to follow, we assume that ¥ is a C?-
smooth surface. Notice that, by the definition of smoothness (condition (ii))
Y is a 2-manifold without boundary. We also assume that > is compact
since we are interested in approximating > with a finite simplicial complex.
We need one more assumption. Just like the curves, for a finite point set to
be an e-sample for some ¢ > 0, we need that f(z) > 0 for any point x in
Y. Tt is known that C2-smooth surfaces necessarily have positive feature size
everywhere. The example in Chapter 2 for curves can be extended to surfaces
to claim that a C''-smooth surface may not have positive local feature sizes
everywhere.

As a C%-smooth surface ¥ has a tangent plane 7, and a normal n,, defined
at each point z € ¥. We assume that the normals are oriented outward.
More precisely, n, points locally to the unbounded component of R?\ ¥. If
Y is not connected, n, points locally to the unbounded component of R?\ ¥/
where z is in ¥/, a connected component of X.

An important fact used in surface reconstruction is that, disregarding
the orientation, the direction of the surface normals can be approximated
from the sample. An illustration in R? is helpful here. See Figure 2.4 in
Chapter 2 which shows the Voronoi diagram of a dense sample on a smooth
curve. This Voronoi diagram has a specific structure. Each Voronoi cell
is elongated along the normal direction at the sample points. Fortunately,
the same holds in three dimensions. The three dimensional Voronoi cells
are long, thin, and the direction of the elongation matches with the normal
direction at the sample points when the sample is dense, see Figure 3.1.

3.1 Normals

Let P C R? be an e-sample of ¥. If P is all we know about ¥, it is impossible
to know the line of direction of n, exactly at a point p € P. However, it is
conceivable that as P gets denser, we should have more accurate idea about
the direction of n,, by looking at the adjacent points. This is what is done
using the Voronoi cells in Vor P.

For further developments we will often need to talk about how one vector
approximates another one in terms of the angles between them. We denote
the angle between two vectors u and v as Z(u,v). For vector approximations
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(a) (b)

Figure 3.1: (a) Tangent plane and the normal at a point on a smooth surface,
(b) a long thin Voronoi cell elongated along the normal direction.

that disregard the orientation, we use a slightly different notation. This
approximation measures the acute angle between the line containing the
vectors. We use Z,(u,v) to denote this acute angle between two vectors
u and v. Since any such angle is acute, we have the triangular inequality
Zo(u,v) < Zy(u,w) + £, (v, w) for any three vectors u, v and w.

3.1.1 Approximation of normals

It turns out that the structure of the Voronoi cells contains information about
normals. Indeed, if the sample is sufficiently dense, the Voronoi cells become
long and thin along the direction of the normals at the sample points. One
reason for this structural property is that a Voronoi cell V,, must contain the
medial axis points that are the centers of the medial balls tangent to X at p,
see Figure 3.2.

Lemma 3.1 (Medial.) Let m; and mgy be the centers of the two medial
balls tangent to X at p. The Voronoi cell V,, contains mi and ma.

PROOF. Denote the medial ball with center m; as B. The ball B meets the
surface ¥ only tangentially at points, one of which is p. Thus, B is empty
of any point from > and P in particular. Therefore, the center m; has p as
the nearest point in P. By definition of Voronoi cells, m; is in V. A similar
argument applies to the other medial axis point ms. O
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Figure 3.2: Medial axis points m and my are in the Voronoi cell V/,.

We have already mentioned that the Voronoi cells are long and thin and
they are elongated along the direction of the normals. The next lemma
formalizes this statement by asserting that as we go further from p within
Vp, the direction to p becomes closer to the normal direction.

Lemma 3.2 (Normal.) Forp > 0letv & X be a point in V), with ||v—p| >

pf(p). Fore <1, Z,(vp,mnp) < arcsinﬁ + arcsin 1=

ProOOF. Let my and mso be the two centers of the medial balls tangent to
> at p where my is on the same side of X as v is. Both my and my are in
Vp by the Medial Lemma 3.1. The line joining m; and p is normal to X at p
by the definition of medial balls. Similarly, the line joining ms and p is also
normal to 3 at p. Therefore, mi, mo, and p are co-linear. See Figure 3.3.
Consider the triangle pvms. We are interested in the angle Z/mjpv which is
equal to Z,(pv,n,). From the triangle pvms we have

Zmipv = Lpvmg + Lymap.

To measure the two angles on the righthand side, drop the perpendicular
px from p onto the segment vms. The line segment vmo intersects Y, say
at y, since m1; and mo and hence v and mo lie on opposite sides of X.
Furthermore, y must lie inside V), since any point on the segment joining two
points v and mg in a convex set V), must lie within the same convex set. This
means ¥y has p as the nearest sample point and thus

llz —p|l < |ly —pl|l <ef(y) by the e-sampling condition.



Figure 3.3: Illustration for the Normal Lemma 3.2.

Using the Feature Translation Lemma 1.3 we get

£
— <
lz = pll < =2 f(p)
when ¢ < 1. We have
|z —p L€
Zpvms = arcsin < arcsin ———— as |[v — p|| > uf(p).
[lo—pll p(l—e)
Similarly,
— £
Zvmgp = arcsin = pll < arcsin as [[mz —pl| = f(p).
[ma2 — pl| G

The assertion of the lemma follows immediately.

3.1.2 Normal variation

o7

The directions of the normals at nearby points on X cannot vary too abruptly.
In other words, the surface looks flat locally. This fact is used later in many

proofs.

Lemma 3.3 (Normal Variation.) If z,y € X are any two points with

lz —yll < pf(x) for p < 5, Z(ng,my) < o5
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PROOF. Let £(t) denote any point on the segment xy parameterized by its
distance ¢ from z. Let z(t) be the nearest point on ¥ from ¢(¢). The rate of

dnx(t)
dt

change of normal n, ) at z(t) is n; = as t changes. The total variation

in normals between x and y is

Zngim,) < [ it < [l ~ ol e .
zy

Figure 3.4: Nllustration for the Normal Variation Lemma 3.3.

The surface ¥ is squeezed locally inbetween two medial balls that are
tangent to ¥ at x(¢). The radius of the smaller medial ball cannot be larger
than the radius of curvature of ¥ at x(¢). This means ¥ cannot turn faster
than the larger of the two medial balls at z(¢). Referring to Figure 3.4 we
have

dt = (mz— x| = [l=(t) — £(@)]) tan do

> (f(alt) = () — 02)])) tan do.
As tandf 1
b0 do
and
[z(t) = L) < flz =L@ < [z =yl < pf(x)
we get
Inj| = lim ﬁ' ! < !
U d—o | dt| T (f(x(t) — [la(t) — L)) T (Fa(t) — pf(x))
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provided f(z(t)) — pf(x) > 0. Also,

() — || < [la(t) — @) + [z — @) < 2pf (2)-

By the Lipschitz Continuity Lemma 1.2 f(z(t)) > (1 — 2p)f(x). Therefore,

’ 1 P
|nt| S W and é(nw,ny) S 1_ 3p
provided
fx) = pf(x) > 0
or, (1=3p)f(z) > 0
or, p < %

3.1.3 Edge and triangle normals

In Section 2.1, we saw that edges joining nearby points on a curve are almost
parallel to the tangents at the endpoints of the edge. Similar results also
hold for triangles connecting points on surfaces. But, the size is measured
by circumradius. In fact, a triangle connecting three nearby points on a
surface but with a large circumradius may lie almost perpendicular to the
surface. However, if its circumradius is small compared to the local feature
sizes at its vertices, it has to lie almost parallel to the surface. For an edge,
half of its length is the same as its circumradius. Therefore, a small edge
lies almost parallel to the surface. In essence if an edge or a triangle has a
small circumradius, it must lie flat to the surface. We quantify these claims
in the next two lemmas.

Lemma 3.4 (Edge Normal.) For an edge pq with ||p — q|| < 2f(p), the
llp—all

angle Z4(pd; my) is at least 5 — arcsin .

PrROOF.  Consider the two medial balls sandwiching the surface ¥ at p.
The point ¢ cannot lie inside any of these two balls as they are empty of
points from Y. So, the smallest angle pg makes with n, cannot be smaller
than the angle pg makes with n, when ¢ is on the boundary of any of these
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Figure 3.5: Illustration for the Edge Normal Lemma 3.4.

two balls. In this case let 6 be the angle between pq and the tangent plane
at p. Clearly, (see Figure 3.5)

sind lp — qll
2[lm — p||
< lp —all
2f(p)
Therefore,
T
4(1(@71’11)) = 5 —0
™ . lp — 4l
> — —arcsin
2 2f(p)

O

It follows immediately from the Edge Normal Lemma 3.4 that small edges
make a large angle with the surface normals at the vertices. For example, if
pq has a length less than pf(p) for p < 2, the angle /,(pg, n,) is more than
T — arcsin £.

Next consider a triangle ¢ = pgr where p is the vertex subtending a
maximal angle in pgr. Let R,, denote the circumradius of pgr.

Lemma 3.5 (Triangle Normal.) If R, < L\/%),

R 2 R
Za(Npgr,ny,) < arcsin —PI 4 arcsin (— sin (2 arcsin pqr>>
(par ) 7(v) V3 7(v)
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where 1,4, is the normal of pqr.

PROOF. Consider the medial balls B = B, , and B = B, ¢ that are
tangent to ¥ at p. Let D be the diametric ball of ¢ (smallest circumscribing
ball); refer to Figure 3.6. The radius of D is Rpg. Let C and C’ be the
circles in which the boundary of D intersects the boundaries of B and B’
respectively. The line normal to 3 at p passes through m, the center of B.
Let a be the larger of the two angles this normal line makes with the normals
to the planes containing C' and C’. Since the radii of C and C’ are at most
Ry,qr we have

I e
< arcsin —par

f(p)

It follows from the definition of o that the planes containing C' and C’ make
a wedge, say W, with an acute dihedral angle no more than 2a.

RPQT

a < arcsin
lp —ml|

Figure 3.6: Illustration for the Triangle Normal Lemma 3.5. The two great
arcs on the right picture are the intersections of the unit sphere with the
planes containing C' and C’.

The other two vertices ¢, r of ¢ cannot lie inside B or B’. This implies
that t lies completely in the wedge W. Let m;, m, and 7’ denote the planes
containing ¢, C, and C’ respectively. Consider a unit sphere centered at p.
This sphere intersects the line 7 N7’ at two points, say v and »/. Within W
let the lines m;N7 and m; N7’ intersect the unit sphere at v and w respectively.
See the picture on the right in Figure 3.6. Without loss of generality, assume
that the angle Zuvw < Zuwv. Consider the spherical triangle uvw. We are
interested in the spherical angle § = Zuvw which is also the acute dihedral
angle between the planes containing ¢ and C'. We have the following facts.
The arc length of wv, denoted |wv|, is at least 7/3 since p subtends the
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largest angle in ¢ and ¢ is in the wedge W . The spherical angle Zvuw is less
than or equal to 2a. By standard sine laws in spherical geometry, we have

sin Zvuw sin 2

sin = sin |uw)| < sin |uw|

sin |wv| sin [wo|’

If m/3 < |wv| < 27/3, we have
sin |wo| > V/3/2

and hence

0 < arcsi <2 - 2>
arcsin [ —=sin 2« | .
- V3

For the range 27/3 < |wv| < 7, we use the fact that |uw| + |wv| < 7. The
arc length |wv| cannot be longer than both |wu'| and |vu/| since Zvu'w <
2a < /2 for Rygr < L\/’%). If |wo| < |wu'|, we have

luw| + |wv| < |u| = 7.
Otherwise, |wv| < |vu/|. Then, we use the fact that |uw| < |uv| as Zuvw <

Zuwv. So, again
luw| + |wo| < |uu'| = .

Therefore, when |wv| > %“, we get

sin juw|

- < 1.
sin |wv|
Thus, 6 < arcsin (% sin 2a>.
The normals to t and 3 at p make an acute angle at most a + 6 proving
the lemma. a

3.2 Topology

The sample P as a set of discrete points does not have the topology of X.
A connection between the topology of > and P can be established through
the restricted Voronoi and Delaunay diagrams. In particular, one can show
that the underlying space of the restricted Delaunay triangulation Del Py
is homeomorphic to X if the sample P is sufficiently dense. Although we will
not be able to compute Del Ply, the fact that it is homeomorphic to ¥ will
be useful in the surface reconstruction later.
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3.2.1 Topological ball property

The underlying space of Del P|y, becomes homeomorphic to ¥ when the
Voronoi diagram Vor P intersects > nicely. This condition is formalized by
the topological ball property which says that the restricted Voronoi cells in
each dimension is a ball.

Definition 3.1 Let F' denote any Voronoi face of dimension k, 0 < k < 3,
in Vor P which intersects > and F|y, = FNX be the corresponding restricted
Voronoi face. The face F satisfies the topological ball property if Flx is a
(i) (k — 1)-ball and (i) Int F N'YX = Int F|x. The pair (P,X) satisfies the
topological ball property if all Voronoi faces F' € Vor P satisfy the topological
ball property.

Condition (i) means that ¥ intersects a Voronoi cell in a single topological
disk, a Voronoi facet in a single curve segment, a Voronoi edge in a single
point, and does not intersect any Voronoi vertex; see Figure 3.7. Condition
(ii) avoids any tangential intersection between a Voronoi face and X.

The following theorem is an important result relating the topology of a
surface to a point sample.

Theorem 3.1 The underlying space of Del Py, is homeomorphic to X if the
pair (P, X)) satisfies the topological ball property.

Our aim is to show that, when P is a dense sample, the topology of ¥ can
be captured from P. Specifically, we prove that the pair (P, X) satisfies the
topological ball property when ¢ is sufficiently small. The proof frequently
uses the next two lemmas to reach a contradiction. The first one says that
the points in a restricted Voronoi cell, that is, the points of X in a Voronoi
cell, cannot be far apart. The second one says that any line almost normal
to the surface cannot intersect it twice within a small distance.

Lemma 3.6 (Short Distance.) Let x and y be any two points in a re-
stricted Voronoi cell Vp|s,. For e < 1, we have

(i) ||z —pll < = f(p) and
(ii) |z —yll < £ f ().

PROOF.  Since x has p as the nearest sample point, ||z — p|| < ef(x) for
e < 1. Apply the Feature Translation Lemma 1.3 to claim (i). For (ii),
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(b) (©)

Figure 3.7: (a) A surface ¥ intersects a Voronoi cell and its faces with the
topological ball property, (b) a surface does not intersect a Voronoi facet in
a 1-ball, (c) a surface does not intersect a Voronoi edge in a 0-ball.

observe that

lz =yl < llz—pll +lly - pl
< e(f(@) + f(y)
By the Lipschitz Continuity Lemma 1.2
fly) < f@)+lz—yl
< fla) +e(f(e) + fy), or
(1=e)fly) < (+e)f(w).

Therefore, for ¢ < 1,

oyl <e (14 155) f0) < 2o f (o)

— &

O

A restricted Delaunay edge pq is dual to a Voronoi facet that intersects
Y. Any such intersection point, say z, is within = f(p) distance from p by

the Short Distance Lemma 3.6. The length of pq cannot be more than twice
the distance between z and p. Hence |[p—q|| < £2= f(p). We can extend this
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argument to the restricted Delaunay triangles too. A restricted Delaunay
triangle t is dual to a Voronoi edge e that intersects >. The intersection
point, say x, belongs to the Voronoi cells adjacent to e. Let V, be any such
cell. The point x is the center of a circumscribing ball of the triangle dual
to e. By the Short Distance Lemma 3.6, z is within 1= f(p) distance from
p. The ball B, ,_p circumscribes ¢. The circumradius of ¢ is no more
than ||z — p|| as the circumradius of a triangle cannot be more than any
of its circumscribing ball (see Figure 3.8). Thus, the following corollary is

immediate from the Short Distance Lemma 3.6.

Figure 3.8: The circumradius of a triangle which is also the radius of its
diamteric ball (shown with solid circle) is no more than the radius of a
circumscribing ball (shown with dotted circle).

Corollary 3.6.1 For e < 1, we have

(i) the length of a restricted Delaunay edge e is at most 22 f(p) where p
is any vertex of e and

(i) the circumradius of any restricted Delaunay triangle t is at most 1= f(p)
where p is a verter of t.

Lemma 3.7 (Long Distance.) Suppose a line intersects ¥ in two points
x and y and makes an angle no more than & with n,. One has ||x — y|| >

2f(x) cos€.

ProOOF.  Consider the two medial balls at = as in Figure 3.9. The line
meets the boundaries of these two balls at « and at points that must be at
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least 2r cos & distance away from z where r is the radius of the smaller of
the two balls. Since r > f(z), the result follows as y cannot lie inside any of
the two medial balls. O

Figure 3.9: Hlustration for the Long Distance Lemma 3.7.

3.2.2 Voronoi faces

Next we consider in turn the Voronoi edges, Voronoi facets, and Voronoi cells
and show that they indeed satisfy the topological ball property if ¢ satisfies
Condition A as stated below. For ¢ < %, let

£
ale) = 1—3¢
B(e) = arcsin + arcsin 2 sin ( 2 arcsin —
N —e V3 1—-¢/))
Condition A. £ < % and cos (a(e) + B(g)) > 1 i -

Figure 3.10 shows that, in the range 0 < ¢ < %, Condition A holds for € a
little less than 0.2. So, for example, € < 0.18 is a safe choice. Since Condition
A stipulates ¢ < % lemmas such as Normal Variation, Long Distance, Short
Distance and Corollary 3.6.1 can be applied under Condition A.

Lemma 3.8 (Voronoi Edge.) A Voronoi edge intersects ¥ transversally
in a single point if Condition A holds.
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cos(a(e) + f(e)

Figure 3.10: The graphs of the two functions on the left and right hand sides
of the inequality in Condition A.

PROOF. Suppose for the sake of contradiction there is a Voronoi edge
e in a Voronoi cell V), intersecting ¥ at two points = and y, or at a single
point tangentially, see Figure 3.11. The dual Delaunay triangle, say pqr, is a
restricted Delaunay triangle. By Corollary 3.6.1, its circumradius is no more
than = f(p). By the Triangle Normal Lemma 3.5, Z4(npgr, np) < B(e) if

1 S €
V2§ 1-¢
a restriction satisfied by Condition A.
The Normal Variation Lemma 3.3 puts an upper bound of «a(e) on the

angle between the normals at p and z as ||z — p|| < ef(x). Let £ denote the
angle between n, and the Voronoi edge e. We have

§ = Zo(ng, ny,r) < Za(ng,ny) + 4a(npvnpqr)

; ale) + B(e). (3.1)

If e intersects ¥ tangentially at =, we have £ = 7 requiring a(e) + 5(e) > 7.
Condition A requires € < 0.2 which gives a(e) + 8(e) < 5. Therefore, when
Condition A is satisfied, e cannot intersect > tangentially. So, assume that
e intersects 3 at two points x and y.

By the Short Distance Lemma 3.6, ||z — y|| < % f(z) and by the Long
Distance Lemma 3.7, ||z —y|| > 2f(x) cos&. A contradiction is reached when
2cosé > %, or

£
1—¢

cos(a(e) + B(e)) > (3.2)
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Figure 3.11: Tllustration for the Voronoi Edge Lemma 3.8. A Voronoi edge
intersecting the surface (a) at two points, (b) tangentially in a single point.

Condition A satisfies Inequality 3.2 giving the required contradiction. O

Lemma 3.9 (Voronoi Facet.) A Voronoi facet F intersects ¥ transver-
sally in a 1-ball if Condition A is satisfied.

PROOF. The intersection of F' with > may contradict the assertion of
the lemma if (i) ¥ touches F' tangentially at a point, (ii) ¥ intersects F' in a
1-sphere, that is, a cycle, or (iii) 3 intersects F' in more than one component.

The dual Delaunay edge, say pq, of F is in the restricted Delaunay tri-
angulation. Let ny denote the normal to F. Its direction is the same as
that of pg up to orientation. We have ||p — ¢|| < {2 f(p) by Corollary 3.6.1.
Therefore, the Edge Normal Lemma 3.4 gives

7 €
/,(n, nr) > — — arcsin
oty nr) 2 5 1—¢

as long as € < 1.
If ¥ meets F' tangentially at a point x, we have Z,(n;,np) = 0 and by
the Normal Variation Lemma 3.3 Zn,,n, < 155 when € < % This means,

for e < %, we have

9 9

7T .
— — arcsin
2
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Figure 3.12: A Voronoi facet intersecting ¥ (a) in a cycle, (b) in two seg-
ments.

The above inequality contradicts the upper bound for € given by Condition
A.

If ¥ meets F' in a cycle, let x be any point on it and L be the line on F'
intersecting the cycle at x orthogonally, see Figure 3.12(a). This line must
meet the cycle in another point, say y. The angle between L and n, satisfies
Zao(Lyn,) < Zo(L',n,) for any other line L' on F passing through z. Choose
L’ that minimizes the angle with n,. The line L’ being on the Voronoi facet
F makes exactly 5 angle with the dual restricted Delaunay edge, say pg. We
know by the Edge Normal Lemma 3.4

— m .
Za(pg,mp) > 5 —aresin o——

Therefore, for € < 1,

Zo(L')ny) = T_ Za(pg,n,) < arcsin <
2 1—=¢
These facts with the Normal Variation Lemma 3.3 give
Zo(L'\n,) < Zo(L',m,) + Z(np,n,) < arcsin . i + a(e) (3.3)

for e < %
The right hand side of Inequality 3.3 is less than the upper bound for &
in the proof of the Voronoi Edge Lemma 3.8. Thus, we reach a contradiction
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between distances implied by the Short Distance Lemma 3.6 and the Long
Distance Lemma 3.7 when Condition A holds.

In the case ¥ meets F' in two or more components as in Figure 3.12(b),
consider any point x in one of the components. Let y be the closest point
to x on any other component, say C. If the line L joining x and y meets
C orthogonally at y we have the situation as in the previous case with only
z and y interchanged. In the other case, y lies on the boundary of C on a
Voronoi edge. The angle between L and n, is less than the angle between
the Voronoi edge and n, which is no more than a(e) + 8(e) as proved in the
Voronoi Edge Lemma 3.8 (Inequality 3.1). We reach a contradiction again
between two distances using the same argument. O

Lemma 3.10 (Voronoi Cell.) A Voronoi cell V, intersects ¥ in a 2-ball
if Condition A holds.

PRrROOF. ~ We have W = V,, N ¥ contained in a ball B of radius = f(p)
by the Short Distance Lemma 3.6. If W is a manifold without boundary, B
contains a medial axis point m by the Feature Ball Lemma 1.1. Then the
radius of B is at least
lm —pll  f(p)
2 - 2

We reach a contradiction if ¢ < % which is satisfied by Condition A. So,
assume that W is a manifold with boundary. It may not be a 2-ball only if
it is non-orientable, has a handle, or has more than one boundary cycle. If
W were non-orientable, so would be ¥, which is impossible. In case W has a
handle, B N % is not a 2-ball. By the Feature Ball Lemma 1.1, it contains a
medial axis point reaching a contradiction again for ¢ < % which is satisfied
by Condition A.

The only possibility left is that W has more than one boundary cycles.
Let L be the line of the normal at p. Consider a plane that contains L and
intersects at least two boundary cycles. Such a plane exists since otherwise
L must intersect W at a point other than p and we reach a contradiction
between two distance lemmas. The plane intersects V), in a convex polygon
and W in at least two curves. We can argue as in the proof of the Voronoi
Facet Lemma 3.9 to reach a contradiction between two distance lemmas. O

Condition A holds for € < 0.18. Therefore, the Voronoi Edge Lemma,
Facet Lemma, and Cell Lemma hold for £ < 0.18. Then, Theorem 3.1 leads
to the following result.



71

Theorem 3.2 (Topological Ball.) Let P be an e-sample of a smooth sur-
face X For e < 0.18, (P, X)) satisfies the topological ball property and hence
the underlying space of Del P|yx, is homeomorphic to 3.

3.3 Notes and exercises

The remarkable connection between e-samples of a smooth surface and the
Voronoi diagram of the sample points was first discovered by Amenta and
Bern [AB99]. The Normal Lemma 3.2 and the Normal Variation Lemma 3.3
are two key observations made in this paper. The topological ball property
that ensures the homeomorphism between the restricted Delaunay triangu-
lation and the surface was discovered by Edelsbrunner and Shah [ES97].
Amenta and Bern showed that the Voronoi diagram of a sufficiently dense
sample satisfies the topological ball property though the proof was not as
rigorous as presented here. The proof presented here is adapted from Cheng,
Dey, Edelsbrunner, and Sullivan [CDES01].

Exercises

1. Let the restricted Voronoi cell V,|s: be adjacent to the restricted Voronoi
cell V,|y; in the restricted Voronoi diagram Vor P|s;. Show that the dis-
tance between any two points x and y from the union of V|, and V|5
is O(e) f(x) when ¢ is sufficiently small.

2. A version of the Edge Normal Lemma 3.4 can be derived from the
Triangle Normal Lemma 3.5, albeit with a slightly worse angle bound.
Derive this angle bound and carry out the proof of the topological ball
property with this bound. Find out an upper bound on ¢ for the proof.

3. The Topological Ball Property is a sufficient but not a necessary con-
dition for the homeomorphism between a sampled surface and a re-
stricted Delaunay triangulation of it. Establish this fact by an exam-
ple.

4. Show an example where

(i) all Voronoi edges satisfy the topological ball property, but the
Voronoi cell does not,

(ii) all Voronoi facets satisfy the topological ball property, but the
Voronoi cell does not.
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6".

8.

Show that for any n > 0, there exists a C'?-smooth surface for which a
sample with n points has the Voronoi diagram where no Voronoi edge
intersects the surface.

Let F' be a Voronoi facet in the Voronoi diagram Vor P where P is
an e-sample of a C?-smooth surface ¥. Let ¥ intersect F' in a single
interval and the intersection points with the Voronoi edges lie within
ef(p) away from p where F' C V,,. Show that all points of F' NX lie
within e f(p) distance when ¢ is sufficiently small.

Let F' and X be as described in exercise 6 but F' N ¥ contains two
or more topological intervals. Show that there exists a Voronoi edge
e € F so that e N X is at least Af(p) away from p where A > 0 is an
appropriate constant.

Let the pair (P, ) satisfy the topological ball property. We know that
the underlying space of Del P|y, and ¥ are homeomorphic. Prove or
disprove that they are isotopic.



Chapter 4

Surface Reconstruction

In the previous chapter we learned that the restricted Delaunay triangulation
is a good approximation of a densely sampled surface ¥ from both topological
and geometric view point. Unfortunately, we cannot compute this triangula-
tion as the restricted Voronoi diagram Vor P|y, cannot be computed without
knowing Y. As a remedy we approximate the restricted Voronoi diagram
and compute a set of triangles that is a superset of all restricted Delaunay
triangles. This set is pruned to extract a manifold surface which is output
as an approximation to the sampled surface X.

4.1 Algorithm

First we observe that each restricted Voronoi cell V, |y is almost flat if
the sample is sufficiently dense. This follows from the Normal Variation
Lemma 3.3 as the points in V, |y cannot be far apart if ¢ is small. In par-
ticular, V, |y lies within a thin neighborhood of the tangent plane 7, at p.
So we need two approximations, (i) an approximation to 7, or equivalently
to n, and (ii) an approximation to V, |y based on the approximation to n,,.
The following definitions of poles and cocones are used for these two approx-
imations.

4.1.1 Poles and Cocones

Definition 4.1 (Poles.) The farthest Voronoi vertez, denoted p™, in V, is
called the positive pole of p. The negative pole of p is the farthest point
p~ €V, from p so that the two vectors from p to p™ and p~ make an angle
more than 5. We call v, = p* —p, the pole vector for p. If V,, is unbounded,
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pT is taken at infinity and the direction of v, is taken as the average of all
directions given by the unbounded Voronoi edges.

The following lemma is a direct consequence of the Normal Lemma 3.2.
It says that the pole vectors approximate the true normals at the sample
points.

Lemma 4.1 (Pole.) For ¢ < 1, the angle between the normal n, at p and
the pole vector v, satisfies the inequality

€
ZLa(np,vy) < 2arcsin T

PrROOF. First, consider the case where V), is bounded. Since the Voronoi
cell V, contains the centers of the medial balls at p, we have |[p*t — p| >
f(p). Thus, plugging u = 1 in the Normal Lemma 3.2 we obtain the result
immediately.

Next, consider the case where V), is unbounded. In this case v, is com-
puted as the average of the directions of the infinite Voronoi edges. The
angle Z,(vp,n,) in this case cannot be more than the worst angle made by
an infinite Voronoi edge with n,. An infinite Voronoi edge e makes the same
angle with n,, as the vector pp does, where the infinite endpoint of e is
taken at po. Again we have ||p — po|| > f(p) and the Normal Lemma 3.2
can be applied with u = 1 to give the result. O

The Pole Lemma 4.1 says that the pole vector approximates the nor-
mal n,. Thus, the plane 7, passing through p with the pole vector as normal
approximates the tangent plane 7,,. The following definition of cocone accom-
modates a thin neighborhood around 7, to account for the small uncertainty
in the estimation of n,,.

Definition 4.2 (Cocone.) The set C, = {y € V,, : Zo(py,vp) > 3} is
called the cocone of p. In words, C, is the complement of a double cone that
is clipped within V,,. This double cone has p as the apez, the pole vector v,
as the axis, and an opening angle of %” with the axis. See Figure 4.1 for an
example of a cocone.

As an approximation to Vj|x, cocones meet all Voronoi edges that are
intersected by Y. So, if we compute all triangles dual to the Voronoi edges
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Figure 4.1: The positive pole p™ helps estimating the normal. The double
cone forming the cocone has the apex at p and axis pp™. The Voronoi edge
ab intersects the cocone. Its dual Delaunay triangle is a cocone triangle.

intersected by cocones, we obtain all restricted Delaunay triangles and pos-
sibly a few others. We call this set of triangles cocone triangles. We will
see later that all cocone triangles lie very close to Y. A cleaning step is
necessary to weed out some triangles from the set of cocone triangles so that
a 2-manifold is computed as output. This is accomplished by a manifold
extraction step.

COCONE(P)
1 compute Vor P;
2 T =10
3 for each Voronoi edge e € Vor P do
4 if COCONETRIANGLES(e)
) T =T Uduale;
6 endfor
7 E :=EXTRACTMANIFOLD(T);
8 output E.

Let us now look into the details of the two steps COCONETRIANGLES
and EXTRACTMANIFOLD.

In order to check if a Voronoi edge e = (a,b) intersects C},, we consider

the three vectors v, a = pa, b= ]7), and three conditions I, II, and III:
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T

via 3 vlb 3
I. |—2 — Scos—ﬂor — P SCOS—F,
[vpllllall 8 [vpllIIbll 8
vga —ng
II. ———— <0and ———— <0,
[vpllllall [vplllbll
vga —vgb
17, ———— >0and ———— > 0.
[vpllllall [vplllIbll

Condition I checks if any of the vertices a and b of the Voronoi edge e
lies inside C),. Conditions II and III check if both a and b lie outside C),, but
the edge e crosses it. The triangle ¢ = duale is marked as a cocone triangle
only if e intersects cocones of all three vertices of ¢.

COCONETRIANGLES(e)
1 t:=duale;
2 flag := TRUE;
3 for each vertex p of ¢t do
4 if none of Conditions I, II, and III holds
5 flag:=FALSE;
6 endfor
7 return flag.

The set T of cocone triangles enjoys some interesting geometric properties
which we exploit in the manifold extraction step as well as in the proofs of
geometric and topological guarantees of COCONE. Of course, the sample has
to be sufficiently dense for these properties to hold. In the rest of the chapter
we assume that ¢ < 0.05 which satisfies Condition A stated in Chapter 3,
enabling us to apply the results therein.

4.1.2 Cocone triangles

First we show that each triangle in 7" has a small empty ball circumscribing
it, i.e., the radius of this ball is small compared to the local feature sizes
at their vertices. Notice that the diametric ball of a triangle may not be
empty. Hence, the smallest empty ball circumscribing a triangle may not
be its diametric ball. Nevertheless, a small empty circumscribing ball also
means that the circumradius of the triangle is small. This fact together with
the Triangle Normal Lemma 3.5 implies that all cocone triangles lie almost
flat to the surface.
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Lemma 4.2 (Small Triangle.) Let t be any cocone triangle and r denote
the radius of the smallest empty ball circumscribing t. For each vertex p of t
and € < 0.05, one has

(i) r < %= f(p) and

)

(i) circumradius of t is at most 115 f(p).

PROOF. Let z be any point in V), so that

3
Za(ny, p2) > g — 2arcsin T (4.1)

First we claim that for any such point z, we have ||z — p| < XEEf(p) if
€ <0.05.

If Zy(np,p2) > 0 = arcsinﬁ + arcsin =, then ||z — p|| < uf(p)
according to the Normal Lemma 3.2. With u = % and € < 0.05 we have

3T

1
6 = arcsin 11s + arcsin 1 i <73~ 2 arcsin T i . (4.2)
Thus, from Inequalities 4.1 and 4.2 we have
3
Zao(ny,p2) > g — 2arcsin ] s (4.3)
—€

Therefore, any point z € V), satisfying Inequality 4.1 also satisfies

1.18
EEE——
1—¢

f(p).

Now let ¢ be any cocone triangle with p being any of its vertices and
e = dual? being its dual Voronoi edge. For ¢ to be a cocone triangle, it is
necessary that there is a point y € e so that Z,(v,,py) > %’T. Taking into
account the angle Z,(vy, n,), this necessary condition implies

3 €
Za(np, py) > g — 2arcsin T

which satisfies Inequality 4.1. Hence, we have

1.18
— jf(p) for & < 0.05.

ly —pll <

The ball By |,—p is empty and circumscribes ¢ proving (i). The claim in
(ii) follows immediately from (i) as the circumradius of ¢ cannot be larger
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than the radius of any ball circumscribing it. O

The next lemma proves that all cocone triangles lie almost parallel to the
surface. The angle bounds are expressed in terms of «(e) and 3(e) that are
defined in Chapter 3.

Lemma 4.3 (Cocone Triangle Normal.) Lett be any cocone triangle and
n; be its normal. For any vertez p of t ome has Z,(n,,n;) < o(222) +
(3 (1.18¢) when £ < 0.05.

PRrROOF. Let g be a vertex of t with a maximal angle of {. The circumradius
of t is at most 1 185 (¢) by the Small Triangle Lemma 4.2. Then, by the
Triangle Normal Lemma 3.5,

1.18¢ n . 2 9 . 1.18e
arcsin | —= sin ( 2 arcsin
l—¢ V3 l—¢

< _ 1.18¢ n : 2 9 . 1.18¢
arcsin ————— 4 arcsin | —=sin | 2arcsin ——————
- 1—-1.18¢ V3 1-1.18¢

= [(1.18¢) for ¢ < 0.05.

Zq(ng,ng) < arcsin

The distance between p and ¢ is no more than the diameter of the circle
circumscribing ¢, i.e., ||p — ¢/ < 213655 (p) (Small Triangle Lemma 4.2). By
the Normal Var1at10n Lemma 3.3, Z(n,,n,) < a(%2%). The desired bound
for Z4(nyp, n;) follows since it is no more than the sum Z(ny, ny)+2Z,(ng, ng).

a

4.1.3 Pruning

Prior to the extraction of a 2-manifold from the set of cocone triangles,
some of them are pruned. An edge e is sharp if any two consecutive cocone
triangles around it form an angle more than ; see Figure 4.2. Edges with a
single triangle incident to them are also sharp by default. We will show later
that the cocone triangles include all restricted Delaunay triangles when a
sample is sufficiently dense. The set of restricted Delaunay triangles cannot
be incident to sharp edges. This implies that we can prune triangles incident
to sharp edges and still retain the set of restricted Delaunay triangles. In
fact, we can carry out this pruning in a cascaded manner. By deleting one
triangle incident to a sharp edge, we may create other sharp edges. Since
no restricted Delaunay triangle is pruned, none of their edges become sharp.



79

A A

Figure 4.2: The edge e is not sharp in the left picture; it is sharp in the right
picture.

Therefore, it is safe to delete the new sharp edges with all of their incident
triangles.

This pruning step weeds out all triangles incident to sharp edges, but the
remaining triangles still may not form a surface. They may form layers of
thin pockets creating a non-manifold. A manifold surface is extracted from
this possibly layered set by walking outside the space covered by them, see
Figure 4.3. The manifold extraction step depends on the fact that cocone
triangles contain all restricted Delaunay triangles none of whose edges is
sharp. We prove this fact below.

Figure 4.3: Thin pockets left after pruning, a manifold is obtained by walking
on the outside indicated by the dotted curve.

Theorem 4.1 (Restricted Delaunay.) For ¢ < 0.05, the following con-
ditions hold:

(i) cocone triangles contain all restricted Delaunay triangles and

(ii) no restricted Delaunay triangle has a sharp edge.

PrROOF.  Consider (i). Let y be any point in any restricted Voronoi cell
Vpls. We claim that Z,(n,,py) is larger than 5 — arcsin ﬁ We have
lly — pll < ef(y) since y € Vp|s and P is an e-sample of 3. By the Feature
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Translation Lemma 1.3, |ly — p|| < 1= f(p). We can therefore apply the

proof of the Edge Normal Lemma 3.4 to establish that

™ ) €
Za(np, py) > 5 — arcsin =9
Let t be any restricted Delaunay triangle and e = dualt be the dual
Voronoi edge. Consider the point y = e N X. We have y € V|y, for each of
the three points p € P determining e. For each such p, the angle Z,(n,, py)
g

is larger than 7/2 — arcsin =5y Therefore,

éa(p_3/>7vp) > Za(py, ny) — Za(ny, vp)
™ . 9
> 5 — arcsin m — Za(np, Vp). (44)

By the Pole Lemma 4.1 we have

éa(nlh Vp) + arcsin ﬁ < 2arcsin - i - + arcsin 2(187_5)

< g for £ < 0.05.

So, by Inequality 4.4, éa(p_g},vp) > %’r. Therefore, the point y is in the
cocone C), by definition. Hence ¢ is a cocone triangle.

Consider (ii). Let ¢; and ¢ be adjacent triangles in the restricted Delau-
nay triangulation with e as their shared edge and let p € e be any of their
shared vertices. Since #; and t5 belong to the restricted Delaunay triangula-
tion, they have circumscribing empty balls By and Bs, respectively, centered
at points, say v; and v of X.

The boundaries of By and B, intersect in a circle C contained in a plane
H, with e C H. The plane H separates t; and ts, since the third vertex of
each triangle lies on the boundary of its circumscribing ball, and By C Bs
on one side of H, while Bo C Bj on the other. See Figure 4.4. The line
through v1, vy is perpendicular to H. Both v; and vy belong to the Voronoi
facet dual to e. This means v; and v belong to a restricted Voronoi cell and
the distance [|v; — vo| < %f(vl) by the Short Distance Lemma 3.6. So
the segment v1vy forms an angle of at least 7/2 — arcsin = with n,, (Edge
Normal Lemma 3.4). This normal differs, in turn, from n, by an angle of at
most 1=z (Normal Variation Lemma 3.3). So, the angle between H and n,, is
at most ;== +arcsin t==. For small ¢, they are nearly parallel. In particular,
if € < 0.05, H makes at most 7° with n,. Similarly, plugging ¢ < 0.05 in
the angle upper bound of the Cocone Triangle Normal Lemma 4.3, one gets
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Figure 4.4: Tllustration for the Restricted Delaunay Theorem 4.1.

that the normals of both ¢; and ¢9 differ from the surface normal at p by at
most 24°.

Thus we have t; on one side of H, t3 on the other and the smaller angle
between H and either triangle is at least 59°. Hence the smaller angle be-
tween t; and t, is at least 118° and e is not sharp. O

4.1.4 Manifold extraction

A simplicial complex with an underlying space of a 2-manifold is extracted
out of the pruned set of cocone triangles. Let X C ¥ be any connected
component of the sampled surface. Since cocone triangles are small (Small
Triangle Lemma 4.2), they cannot join points from different components of
Y. Let 7" be the pruned set of cocone triangles with vertices in ¥/. Consider
the medial axis of ¥/. The triangles of 7" lie much closer to ¥’ than to its
medial axis. Furthermore, 7" includes the restricted Delaunay triangulation
Del Plyv (Restricted Delaunay Theorem 4.1). Therefore, if |7”| denotes the
underlying space of T, the space R?\ |T"| has precisely two disjoint open sets
O;n and O,y containing the inner and outer medial axis of ¥’ respectively.
The manifold extraction step computes the boundary of the closure of Oy,
which we simply refer to as the boundary of O,y;.

Let E' be the boundary of O,,;. We claim that E’ is a 2-manifold. Let
p be any vertex of E’. Orient the normal n, so that it points toward Ogy:.
Consider a sufficiently small ball B centering p. Call the point where the ray
of n, intersects the boundary of B the north pole. Obviously the north pole
is in Ogys. Let T, denote the set of triangles in 7" which are visible from the
north pole within B. The triangles of 7}, are in the boundary of O,,;. Since
there is no sharp edge in 7", the set of triangles 7}, makes a topological disk.
We argue that 7, is the only set of triangles in the boundary of O,,; which
are incident to p.
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Let g # p be a vertex of a triangle ¢ € T),. The triangle ¢ is also in T;,. If
not, the line of the normal n,, when moved parallelly through the edge pq
toward ¢, must hit an edge in T” that is sharp. The assumption to this claim
is that the normals n, and n, are almost parallel and hence the visibility
directions at p and ¢ are almost parallel. Since 7" does not have any sharp
edge, t is in Tj. This means that all topological disks at the vertices of E’
are compatible and they form a 2-manifold. This 2-manifold separates O,y
from 7" implying that £’ cannot have any other triangles from 7" other than
the ones in the topological disks described above.

We compute E’ from T” as a collection of triangles by a depth first walk
in the Delaunay triangulation Del P. Recall that 7" is disjoint from any
other triangles on a component of ¥ different from Y’. The walk starts with
a seed triangle in 7”. The routine SEED computes this seed triangle for each
component 7" of the pruned set by another depth first walk in the Delaunay
triangulation. At any generic step, SEED comes to a triangle ¢ via a tetra-
hedron ¢ and performs the following steps. First, it checks if ¢ is a cocone
triangle. If so, it checks if it belongs to a component 7’ for which a seed has
not yet been picked. If so, the pair (o, t), also called the seed pair, is put into
the seed set. Then, it marks all triangles of 7" so that any subsequent check
can identify that a seed for 7" has been picked. The walk continues through
the triangles and their adjacent tetrahedra in a depth first manner till a seed
pair for each component such as 7" of T is found. In a seed pair (o,t) for a
component T’ the tetrahedron o and the triangle ¢ should be in O,,; and
on its boundary E’ respectively. To ensure it SEED starts the walk from
any convex hull triangle in Del P and continue till it hits a cocone triangle.
The initiation of the walk from a convex hull triangle ensures that the first
triangle encountered in a component is on the outside of that component or
equivalently on the boundary of O, defined for that component. Assuming
the function SEED, a high level description of EXTRACTMANIFOLD is given
below.

EXTRACTMANIFOLD(T)
1 7T := pruned T}
2 SD := SEED(T);
3 for each tuple (0,t) € SD do
4  F' := SURFTRIANGLES(0,t);
5 E:= FEUF;
6 endfor
7 return the simplicial complex of F.
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The main task in EXTRACTMANIFOLD is done by SURFTRIANGLES which
takes a seed pair (o,t) as input. First, we initialize the surface E’ with the
seed triangle ¢ which is definitely in E’ (line 1). Next, we initialize a stack
Pending with the triple (o,t,e) where e is an edge of ¢ (lines 3 and 4). As
long as the stack Pending is not empty, we pop its top element (o,¢,e). If
the edge e is not already processed we call the function SURFACENEIGHBOR
to compute a tetrahedron-triangle pair (o’,t’) (line 9). The tetrahedron o’ is
adjacent to ¢’ and intersects O,,; where t' is in F’ and is adjacent to t via e.
The triangle ¢’ is inserted in E’. Then two new triples (¢/,¢',¢’) are pushed
on the stack pending for each edge e’ # e of ' (lines 11 to 13). Finally we
return E’ (line 16).

SURFTRIANGLES(0,t)

1 B :={t};

2  Pending := 0;

3 pick any edge e of ¢;

4 push (0,t,e) on Pending;

5 while Pending # () do

6 pop (o,t,e) from Pending;

7 if e is not marked processed

8 mark e processed;

9 (¢’,t") := SURFACENEIGHBOR (0, t, €);
10 E =F U{t'};
11 for each edge ¢ # e of ' do
12 push (o', €) on Pending;
13 endfor
14 endif

15 endwhile
16 return E'.

The question is how to implement the function SURFACENEIGHBOR. It
has to output a tuple (¢’,t') where ¢’ is the neighbor of ¢ on the surface given
by E’ and ¢’ is an adjacent tetrahedron intersecting O,,;. One can compute
the surface neighbor t' of ¢ using some numerical computations involving
some dot product computations of vectors. However, these computations of-
ten run into trouble due to numerical errors with finite precision arithmetics.
In particular, triangles of certain types of flat tetrahedra called slivers tend
to contribute to these numerical errors and slivers are not uncommon in the
Delaunay triangulation of a sample from a surface.

A robust and faster implementation of the function SURFACENEIGHBOR
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avoids numerical computations by exploiting the combinatorial structure of
the Delaunay triangulation. Every triangle in the Delaunay triangulation
has two incident tetrahedra if we account for the infinite ones incident to
the convex hull triangles. SURFACENEIGHBOR is called with a triple (o,t, e).
It circles over the tetrahedra and triangles incident to the edge e starting
from ¢ and going towards the other triangle of ¢ incident to e. This circular
walk stops when another cocone triangle ¢’ is reached. If ¢’ is reached via
the tetrahedron o, we output the pair (¢/,%). Assuming inductively that
o intersects Oy, the tetrahedron o’ also intersects O,,:. For example, in
Figure 4.5, SURFACENEIGHBOR is passed on the triple (01,t,¢e) and then it
circles through the tetrahedra o1, 09,03 and their triangles till it reaches t'.
At this point it returns (o3, ¢') where both o1 and og lie outside, i.e., in Oyy.
SURFTRIANGLES with this implementation of SURFACENEIGHBOR is robust
since no numerical decisions are involved, see Figure 4.5. Combinatorial
computations instead of numerical ones make SURFTRIANGLES fast provided
the Delaunay triangulation is given in a form which allows to answer queries
for neighboring tetrahedra quickly.

Figure 4.5: A stable computation of SURFACENEIGHBOR. (left), a zoom on a
reconstruction after an unstable computation with numerical errors (middle)
and a stable computation without any numerical error (right).

4.2 Geometric guarantees

In this section we establish more properties of the cocone triangles which
are eventually used to prove the geometric and topological guarantees of the
output of COCONE. We introduce a map v that takes each point x € R3 to
its closest point in ¥.. Notice that v is well defined everywhere in R? except
at the medial axis M of ¥. Mathematically, v : R3\ M — ¥ where v(z) € ©
is closest to . Observe that the line containing = and v(x) is normal to ¥ at
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x. The map v will be used at many places in this chapter and the chapters
to follow. Let

¥ = v(x) for any point x € R\ M and

U = {2:2cU) foranyset U C R3\ M.

See Figure 4.6 for an illustration.

M-

(-]

2
Figure 4.6: Illustration for the map v.

First, we show that all points of the cocone triangles lie close to the
surface. This, in turn, allows us to extend the Cocone Triangle Normal
Lemma 4.3 to the interior points of the cocone triangles. The restriction of
v to the underlying space |T| of the set of cocone triangles 7" is a well defined
function; refer to Figure 4.7. For if some point  had more than one closest
point on the surface when ¢ < 0.05, x would be a point of the medial axis
giving ||p — z|| > f(p) for any vertex p of a triangle in T'; but by the Small
Triangle Lemma 4.2 every point ¢ € |T'| is within $12€ f(p) distance of a
triangle vertex p € 3 for € < 0.05.

In the next two lemmas and also later we use the notation O(e) defined
in Section 1.2.3.

Lemma 4.4 Let q be any point in a cocone triangle ¢t € T. The distance
between q and the point ¢ is O(g) f(q) and is at most 0.08f(q) for e < 0.05.

PRrROOF. By the Small Triangle Lemma 4.2 the circumradius of ¢ is at most
wf(p) where p = % < .07 and p is any of its vertices. Let p be a vertex of
t subtending a maximal angle of ¢. Since there is a sample point, namely a
vertex of ¢, within pf(p) distance from ¢, we have ||¢ — || < puf(p). We are
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Figure 4.7: The map v restricted to |7|.

interested in expressing this bound in terms of f(§), so we need an upper
bound on ||p — 4||.

The triangle vertex p has to lie outside the medial balls at ¢, while, since
G is the nearest surface point to ¢, ¢ must lie on the segment between ¢
and the center of one of these medial balls. For any fixed |[p — ¢||, these
facts imply that ||p — ¢|| is maximized when the angle Zpqq is a right an-
gle. Thus, ||p — q|| < VBuf(p) < 0.14f(p) for e < 0.05. This implies that
f(p) = O(e)f(§) and in particular f(p) < 1.17f(q) by Lipschitz property of
f- Wehave [lg—q[| < nf(p) = O(¢)f(q) and [[¢g—q|| < 0.08f(¢) in particular.
O

With a little more work, we can also show that the triangle normal agrees
with the surface normal at q.

Lemma 4.5 Let q be a point on triangle t € T. The angle Z(ng,ny,) is at
most 14° where p is a vertez of ¢ with a mazimal angle. Also, the angle
ZLa(ng,ny) is O(e) and is at most 38° for ¢ < 0.05.

PROOF. We have already seen in the proof of Lemma 4.4 that ||p — || =
O(e)f(p). In particular, ||p — g|| < 0.14f(p) when & < 0.05. Applying the
Normal Variation Lemma 3.3, and taking p = O(e) (p = 0.14 in particular),
shows that the angle between nz and n,, is O(¢) and is less than 14°. The
angle between n; and n,, is O(e) and is less than 24° for ¢ < 0.05 by the
Cocone Triangle Normal Lemma 4.3. Thus, the triangle normal and nz make

O(e) angle which is at most 38° for £ < 0.05. O

Lemma 4.2, Lemma 4.4, and Lemma 4.5 imply that the output surface
|E| of COCONE is close to X both point-wise and normal-wise. The following
theorem states this precisely.



87

Theorem 4.2 The surface |E| output by COCONE satisfies the following
geometric properties for € < 0.05.

(i) Each point p € |E| is within O(s)f(x) distance of a point x € X.
Conwversely, each point x € ¥ is within O(e) f(x) distance of a point in
|E].

(i) Each point p in a triangle t € E satisfies Z4(nz,n;) = O(e).

4.2.1 Additional properties

We argued in Section 4.1.4 that the underlying space of the simplicial com-
plex output by COCONE is a 2-manifold. Let E be this simplicial complex
output by COCONE. A pair of triangles t1,ts € E are adjacent if they share
at least one common vertex p. Since the normals to all triangles sharing p
differ from the surface normal at p by at most 24° (apply the Cocone Tri-
angle Normal Lemma 4.3), and that normal in turn differs from the pole
vector at p by less than 7° (apply the Pole Lemma 4.1), we can orient the
triangles sharing p, arbitrarily but consistently. We call the normal facing
the positive pole the inside normal and the normal facing away from it the
outside normal. Let 6 be the angle between the two inside normals of t1, o.
We define the angle at which the two triangles meet at p to be 7 — 6.

PROPERTY I: Every two adjacent triangles in ' meet at their common ver-
tex at an angle greater than /2.

Requiring this property excludes manifolds which contain sharp folds and,
for instance, flat tunnels. Since the cocone triangles are all nearly perpen-
dicular to the surface normals at their vertices (Cocone Triangle Normal
Lemma 4.3) and the manifold extraction step eliminates triangles adjacent
to sharp edges, ' has this property.

PROPERTY II: Every point in P is a vertex of F.

The Restricted Delaunay Theorem 4.1 ensures that the set T" of cocone trian-
gles contains all restricted Delaunay triangles even after the pruning. There-
fore at this point 7' contains a triangle adjacent to every sample point in
P. Lemma 4.6 below says that each sample point is exposed to the outside
for the component of T to which it belongs. This ensures that at least one
triangle is selected for each sample point by the manifold extraction step.
This implies that F has the second property as well.
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Lemma 4.6 (Exposed.) Let p be a sample point and let m be the center of
a medial ball B tangent to X at p. No cocone triangle intersects the interior
of the segment pm for ¢ < 0.05.

PROOF. In order to intersect the segment pm, a cocone triangle ¢ would
have to intersect B and so would the smallest empty ball circumscribing ¢.
Call it D. Let H be the plane of the circle where the boundaries of B and
D intersect. See Figure 4.8. We argue that H separates the interior of pm
and t.

H

NI

p

Figure 4.8: Illustration for the Exposed Lemma.

On one side of H, B is contained in D and on the other, D is contained
in B. Since the vertices of ¢ lie on 3 and hence not in the interior of B, t has
to lie in the open halfspace, call it H ™, in which D is outside B. Since D is
empty, p cannot lie in the interior of D; but since p lies on the boundary of
B, it therefore cannot lie in H™. We claim that m ¢ H™ either.

Since m € B, if it lay in H", m would be contained in D. Since m is
a point of the medial axis, the radius of D would be at least @ for any
vertex p’ of t. For € < 0.05, this contradicts the Small Triangle Lemma, 4.2.
Therefore p, m, and hence the segment pm cannot lie in H T and H separates

t and pm.

4.3 'Topological guarantee

Recall that a function h : X — Y defines a homeomorphism between two
compact FEuclidean subspaces X and Y if A is continuous, one-to-one, and
onto. In this section, we will show a homeomorphism between > and any
piecewise-linear 2-manifold made up of cocone triangles from 7T'. The piecewise-
linear manifold F selected by the manifold extraction step is such a space
thus completing the proof of homeomorphism.
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4.3.1 The map v

We define the homeomorphism explicitly, using the function v : R3\ M — ¥,
as defined earlier. We will consider the restriction v/ of v to the underlying
space |E| of E, i.e., v : |[E| — X. Our approach will be first to show that
V' is well-behaved on the sample points themselves and then show that this
property extends in the interior of each triangle in F.

Lemma 4.7 For e < 0.05, V' : |E| — X is a well defined continuous func-
tion.

PROOF. By the Small Triangle Lemma 4.2, every point ¢ € |E| is within
118 £(p) of a triangle vertex p € ¥ when € < 0.05. Therefore, |E| C R3\ M
for € < 0.05. It follows that v’ is well defined. It is continuous since it is a

restriction of a continuous function. O

Let g be any point such that ¢ is a sample point p. By the Exposed
Lemma 4.6, ¢ lies on the segment pm where m is the center of a medial ball
touching ¥ at p. We have the following.

Corollary 4.7.1 For ¢ < 0.05, the function v’ is one-to-one from |E| to
every sample point p.

In what follows, we will show that v/ is indeed one-to-one on all of |E)|.
The proof proceeds in three short steps. We show that v/ induces a homeo-
morphism on each triangle, then on each pair of adjacent triangles and finally
on |E| as a whole.

Lemma 4.8 Let U be a region contained within one triangle t € E or in ad-
jacent triangles of E. For e < 0.05, the function V' defines a homeomorphism
between U and U C .

PrOOF. We know that v/ is well defined and continuous on U, so it only
remains to show that it is one-to-one. First, we prove that if U is in one
triangle ¢, v/ is one-to-one. For a point ¢ € ¢, the vector n, from ¢ to ¢
is perpendicular to the surface at ¢; since X is smooth, the direction of n,
is unique and well defined. If there were some y € t with § = ¢, then gq,
G, and y would all be collinear and ¢t itself would have to contain the line
segment between ¢ and y, see Figure 4.9. This implies that the normal n,
is parallel to the plane of ¢. In other words, n, is orthogonal to the normal
of ¢, contradicting the Cocone Triangle Normal Lemma 4.3 which says that
the normal of ¢ is nearly parallel to n,.
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Figure 4.9: v/ maps y and ¢ to the same point which is impossible.

Now, we consider the case in which U is contained in more than one
triangle. Let ¢ and y be two points in U such that § = ¢ = x and let v be a
common vertex of the triangles that contain U. Since v’ is one-to-one in one
triangle, ¢ and y must lie in the two distinct triangles ¢, and ¢,,. The line [
through x with direction n, pierces the patch U at least twice; if y and q are
not adjacent intersections along [, redefine ¢ so that this is true (§ = = for
any intersection ¢ of [ with U). Now consider the orientation of the patch
U according to the direction to the positive pole at v. Either [ passes from
inside to outside and back to inside when crossing y and ¢, or from outside
to inside and back to outside.

The acute angles between the triangle normals of ¢4,t, and n, are less
than 38° (Lemma 4.5), that is, the triangles are stabbed nearly perpendicu-
larly by n,. But since the orientation of U is opposite at the two intersec-
tions, the angle between the two oriented triangle normals is greater than
104°, meaning that ¢, and ¢, must meet at v at an acute angle. This would
contradict PROPERTY I, which is that ¢, and ¢, meet at v at an obtuse angle.
Hence there are no two points y,q in U with ¢ = g. O

4.3.2 Homeomorphism proof

We finish the proof for homeomorphism guarantee using a theorem from
topology.

Theorem 4.3 (Homeomorphism.) The map V' defines a homeomorphism
from the surface |E| computed by COCONE to the surface ¥ for e < 0.05.

PrOOF. Let ¥ C X be V/(|E|). We first show that (|E|,v') is a covering
space of ¥'. Informally, (|E|,v') is a covering space for ¥ if v/ maps |E|
smoothly onto X/, with no folds or other singularities. Showing that (| E|, )
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Figure 4.10: Proof of the Homeomorphism Theorem 4.3; 7(x) = {q1, g2, q3}

is a covering space is weaker than showing that v/ defines a homeomorphism,
since, for instance, it does not preclude several connected components of |E|
mapping onto the same component of X', or more interesting behavior, such
as a torus wrapping twice around another torus to form a double covering.

For a set X C ¥/, let 7(X) denote the set in |E| so that v/(7(X)) = X.
Formally, the (|E|,v') is a covering space of ¥/ if, for every x € 3/, there
is a path-connected elementary neighborhood V, around x such that each
path-connected component of 7(V,,) is mapped homeomorphically onto V,
by v/

To construct such an elementary neighborhood, note that the set of points
7(z) corresponding to a point x € ¥/ is non-zero and finite, since v/ is one-to-
one on each triangle of F and there are only a finite number of triangles. For
each point ¢ € 7(x), we choose an open neighborhood U, of ¢, homeomorphic
to a disk and small enough so that U, is contained only in triangles that
contain ¢g. See Figure 4.10.

We claim that ©/ maps each U, homeomorphically onto ﬁq. This is
because it is continuous, it is onto Uq by definition, and, since any two points
x and y in U, are in adjacent triangles, it is one-to-one by Lemma 4.8.

Let U'(z) = Nyer(z) V' (Uy), the intersection of the maps of each of the
U,. U'(z) is the intersection of a finite number of open neighborhoods, each
containing x, so we can find an open disk V,, around z. V, is path connected
and each component of 7(V,) is a subset of some U, and hence is mapped
homeomorphically onto V,, by /. Thus (|E|,v’) is a covering space for X'.

We now show that v/ defines a homeomorphism between |E| and X'
Since v/: |E| — X' is onto by definition, we need only that v/ is one-to-one.
Consider one connected component G of ¥'. A theorem of algebraic topology
says that when (|E|,7’) is a covering space of ¥/, the sets 7(x) for all z € G
have the same cardinality. We now use Corollary 4.7.1, that v/ is one-to-one
at every sample point. Since each connected component of ¥ contains some
sample points, it must be the case that v/ is everywhere one-to-one and |E|
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and Y’ are homeomorphic.

Finally, we show that ¥’ = X. Since |E| is a 2-manifold without bound-
ary and is compact, ¥’ must be as well. So Y’ cannot include part of a
connected component of Y, and hence ¥’ must consist of a subset of the
connected components of >.. Since every connected component of 3 contains
a sample p (actually many sample points) and /(p) = p, all components of
Y. belong to ¥'. Therefore, ¥’ = ¥ and |E| and ¥ are homeomorphic. O

It can also be shown that |E| and ¥ are isotopic (Exercise 7). We will
show a technique to prove isotopy in Section 6.1.3.

4.4 Notes and exercises

The problem of reconstructing surfaces from samples dates back to the early
1980s. First, the problem appeared in the form of contour surface recon-
struction in medical imaging. A set of cross sections obtained via CAT scan
or MRI need to be joined with a surface in this application. The points on
the boundary of the cross sections are already joined by a polygonal curve.
The problem is to connect these curves in consecutive cross sections. A
dynamic programming based solution for two such consecutive curves was
first proposed by Fuchs, Kedem, and Uselton [FKU77|. A result by Gitlin,
O’Rourke, and Subramanian [GOS96] shows that, in general, two polygo-
nal curves cannot be joined by non-self intersecting surface with only those
vertices; even deciding its possibility is NP-hard. Several solutions with the
addition of Steiner points have been proposed to overcome the problem, see
Meyers, Skinner, and Sloan [MSS92]. A Delaunay based solution for the
problem was proposed by Boissonnat [Boi84| which is the first Delaunay
based algorithm proposed for a surface reconstruction problem. Later the
Delaunay based method was refined by Boissonnat and Geiger [BG93| and
Cheng and Dey [CD99].

The most general version of surface reconstruction where no input infor-
mation other than the point co-ordinates is used became popular to han-
dle the data from range and laser scanners. In the context of computer
graphics and vision, this problem has been investigated intensely in the past
decade with emphasis on practical performance. The early work by Hoppe
et al. [HDDMS92|, Curless and Levoy [CL96] and the recent works by Alexa
et al. [ABCFLS01|, Carr et al. [CB*01|, and Ohtake et al. [OBATS03] are
a few such examples. The a-shape by Edelsbrunner and Miicke [EM94] is
the first popular Delaunay based surface reconstruction method. It is the
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generalization of the a-shape concept described in Section 2.4 of Chapter 2.
Depending on an input parameter «, Delaunay simplices are filtered based on
their circumscribing Delaunay ball sizes. The main drawback of this method
is that it is not suitable for non-uniform samples. Also, with the uniform
samples, the user is burdened with the selection of an appropriate «.

The first algorithm for surface reconstruction with proved guarantees was
devised by Amenta and Bern [AB99]. They generalized the CRUST algorithm
for curve reconstruction to the surface reconstruction problem. The idea of
poles and approximating the normals with the pole vector was a significant
breakthrough. The crust triangles (Exercise 2) enjoy some nice properties
that help the reconstruction. The COCONE algorithm as described here is a
successor of CRUST. Devised by Amenta, Choi, Dey, and Leekha [ACDL02],
this algorithm simplified the CRUST algorithm and its proof of correctness.
COCONE eliminated one of the two Voronoi diagram computations of CRUST
and also a normal filtering step. The homeomorphism between the recon-
structed surface and the original sampled surface was first established in
[ACDLO02|. Boissonnat and Cazals [BC00]| devised another algorithm for sur-
face reconstruction using the natural neighbor co-ordinates (see Section 9.7)
and proved its correctness using the framework of CRUST. Since the Delua-
nay triangulations of n points in three dimensions take O(n?) time and space
in the worst-case, the complexity of all these algorithms is O(n?). Funke and
Ramos [FR02| showed how the COCONE algorithm can be adapted to run in
O(nlogn) time. Unfortunately, the modified algorithm is not very practical.

Although the Delaunay triangulation of n points in three dimensions may
produce §2(n?) simplices in the worst case, such complexities are rarely ob-
served for point samples of surfaces in practice. Erickson [Eric03] started
the investigation of determining the complexity of the Delaunay triangula-
tions for points on surfaces under some given conditions. Attali, Boissonnat,
and Lieutier [ABLO3] proved that indeed the Delaunay triangulation has
O(nlogn) complexity if the point sample is locally uniform for a certain
class of smooth surfaces.

Exercises

1. We know that Voronoi vertices for a dense sample from a curve in the
plane lie near the medial axis. The same is not true for surfaces in
three dimensions. Show an example where a Voronoi vertex for an
arbitrarily dense sample lies arbitrarily close to the surface.

2" Let P be a sample from a C?-smooth surface ¥ and V be the set of
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poles in Vor P. Consider the following generalization of the CRUST. A
triangle in the Del (P U V) is a crust triangle if all of its vertices are in
P. Show the following when P is an e-sample for a sufficiently small
€.

(i) All restricted Delaunay triangles in Del (P UV)|y are crust trian-
gles.

(ii) All crust triangles have circumradius O(e) f(p) where p is a vertex
of the triangle.

Let ¢ be a triangle in Del P where B = B,, and B’ = B!, , are two
Delaunay balls circumscribing ¢. Let x be any point on the circle where
the boundaries of B and B’ intersect. Show that, if Zvzv’ > F, the
triangle normal of ¢ makes an angle of O(e) with the normals to X at
its vertices when P is an e-sample of ¥ for a sufficiently small €.

. Recall that P is a locally (g,0)-uniform sample of a smooth surface ¥

if P is an e-sample of ¥ and each sample point p € P is at least f(p)
distance away from all other points in P where § > 1 is a constant.
Show that each triangle in the surface output by COCONE for such
a sample has a bounded aspect ratio (circumradius to edge length
ratio). Also prove that each vertex has no more than a constant number
(determined by e and 0) of triangles on the surface.

. Let ¢ be a cocone triangle. We showed that any point z € t is O(¢) f(Z)

away from its closest point # in ¥. Prove that the bound can be
improved to O(e?)f(%).

We defined a Delaunay triangle ¢ as a cocone triangle if dual ¢ intersects
cocones of all of its three vertices. Relax the condition by defining ¢ as
a cocone triangle if dualt intersects the cocone of any of its vertices.
Carry out the proofs of different properties of cocone triangles with
this modified definition.

We showed that the surface |E| computed by COCONE is homeomor-
phic to 3 when ¢ is sufficiently small. Prove that |E| is indeed isotopic
to 2.



