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Abstract. We present a type-based program analysis capable of infer-
ring expressive invariants over array programs. Our system combines
dependent types with two additional key elements. First, we associate
dependent types with effects and precisely track effectful array updates,
yielding a sound flow-sensitive dependent type system that can capture
invariants associated with side-effecting array programs. Second, without
imposing an annotation burden for quantified invariants on array indices,
we automatically infer useful array invariants by initially guessing very
coarse invariant templates, using test suites to exercise the functionality
of the program to faithfully instantiate these templates with more precise
(likely) invariants. These inferred invariants are subsequently encoded
as dependent types for validation. Experimental results demonstrate the
utility of our approach, with respect to both expressivity of the invariants
inferred, and the time necessary to converge to a result.

1 Introduction

A program invariant describes valid behaviors a program is expected to produce,
and can often be derived by a fixpoint construction over an over-approximation
of program states [4]. However, applying such a strategy to discover useful prop-
erties of values stored in unbounded collections of heap cells is nontrivial.

Dependent type systems [22,17] have been proven to be successful in auto-
mated verification of complex invariants for data structures, even when there
are an unbounded number of heap locations under consideration [23]. In these
systems, decidability is achieved, however, at the loss of flow-sensitivity, i.e., a
strong update to a concrete location (e.g. a single array cell) must be subsumed
by the whole data structure (e.g. the whole array). As a result, it is not obvious
how existing dependent type systems can be extended to verify useful functional
properties (e.g. a sorting procedure will sort only a part of the elements in an in-
put array) that are beyond the scope of global invariants (e.g. a general memory
safety properties).

In this paper, we address these issues by introducing a new dependent type
system for array programs that can discharge complex flow-sensitive array in-
variants naturally characterized in terms of quantifiers on array indices. The
dependent type system is effectful because it can tolerate side-effecting array
updates. Built on top of a standard type system, our system refines basic type
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with a type refinement predicate that captures precise properties of the values
defined by the type. Importantly, to verify flow-sensitive invariants, type refine-
ments may be quantified. This is crucial, as strong updates in a procedure may
only update a subset of the array.

Rather than requiring users to annotate types with refinements, our approach
attempts to learn quantified array invariants. Although significant advances have
been made in recent years to allow useful array invariants to be inferred auto-
matically, prior approaches either (a) require a predefined fixed or parameterized
partition of array indices [10,14], (b) entail sophisticated reasoning over quan-
tified abstract domains [12], or (c) rely on powerful theorem provers to provide
predicates [1,2,15,18,20,24] (as interpolants) that may hold on the program in
general. We consider the problem from a different perspective, based on the ex-
pectation that useful array invariants should be observable from test runs. By
summarizing or generalizing the properties that hold in all such runs, we can
construct a set of candidates or likely invariants. We then lift these presumed
invariants to our dependent type system for validation.
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Fig. 1. Framework

The framework of our approach is
outlined in Figure 1 : (I) a Deducer
initially guesses coarse templates for
the invariants; (II) a Runner then runs
the subject program through simple
random test suites; (III) a Miner gen-
erates a constraint system by substi-
tuting the variables in the template
with concrete values from test runs;
(IV) a Verifier validates the likely de-

pendent types derived from the solution of the constraint system.
Our technique is compositional—invariants are inferred for each procedure

without the need for additional context information about callers and callees. It
is lightweight because the constraint system from which program invariants are
inferred is obtained from concrete program states and not limited by a specific
abstract domain construction; experimental results also indicate that the ap-
proach allows fast convergence from a likely to a provable invariant. Our paper
thus makes the following contributions:

1. We propose a novel data driven algorithm to infer array invariants that
leverages observations from test cases to guide inference.

– Avoiding the high cost of inferring exact array invariants, our approach
initially guesses coarse invariant templates, at the expense of precision.

– We train the template with concrete program states collected from test
runs to instantiate it to likely invariants, recovering precision.

2. We integrate our technique within a new effectful dependent type system that
can be used to automatically validate the correctness of the likely invariants.
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2 Overview

We use the inner loop of the classic insertion-sort program shown in Figure 2
to illustrate and motivate our approach. Figure 2 visualizes the execution of
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Fig. 2. Inner array insertion-sort program

the recursive function insert : (1) initially parameter i is set to the index of
the left adjacent element of a[j]; (2) function insert then accesses the array
elements with indices less than j iteratively; (3) it terminates when it finds an
element that is no greater than a[j]. Our approach can automatically infer a
useful dependent type for insert , capturing the behaviors described above.

Instead of directly inferring an exact invariant, Deducer (in Figure 1) guesses
the invariant’s template based on a backward symbolic execution. Assume we
infer that the postcondition of insert is ϕpost. We focus on the first branch (L1)
and unwind the recursion only once, deriving the following precondition,

ϕpre ≡ ∃a′. [a′/a]ϕpost ∧ ((i >= 0 ∧ a[i] > a[j]∧
∀a0.((a0 = i+ 1 ⇒ a′[i+ 1] = a[i]) ∧ (a0 �= i+ 1 ⇒ a′[a0] = a[a0])) ∧ ...) ∨ ...)

where a0 is a special universal variable and we use a′ to refer to a in the state
after the update. Note that the precondition provides information about how
array elements are manipulated by a procedure. In particular, ϕpre reflects the
fact that the (i)th element of a is moved to its right position if it is greater
than the (j)th element in insert. It is unclear, however, how to generalize this
condition, which defines only an under-approximation of the desired invariant.

Nonetheless, it is possible to guess that a general invariant may be in the
shape of the predicate a[i] > a[j] from ϕpre. Based on the assumption that
array invariants are typically universally quantified on array indices, we infer
the following form for a valid invariant:

∀a0. 0 ≤ a0 < χ1(x̄) ⇒ a[a0;χ2(x̄)] > a[χ3(x̄)]}
where x̄ = {i, j} is used to denote all the scalar parameters of insert and
χ(x̄) = c̄ ∗ x̄ represents a parameterized linear expression over x̄ (c̄ are unknown
coefficients). This predicate abstracts a relation to describe how insert (iterat-
ing over i) might maintain an invariant over array a. In this formula, a[a0;χ2(x̄)]
is universally quantified on the special variable a0 which is bounded by χ1(x̄).
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Obviously, concrete program states collected from test runs must satisfy the
guessed invariant template in terms of insert ’s preconditions (and postcondi-
tions). To generate such states, Runner calls the array insertion-sort program
with a randomly generated array. We dump the input/output values of insert

as its concrete pre- and post-states. For each pre-state, we substitutes the vari-
ables in the template with their values in this concrete state, deriving some
constraints. Thus we obtain a linear constraint system over the unknown coef-
ficients. Using an SMT solver, Miner is able to instantiate the template to the
following likely invariant (precondition):

∀a0. 0 ≤ a0 < j− i− 1 ⇒ a[a0 + i+ 1] > a[j]

Note that this likely invariant is obtained by exploiting the local states of insert
solely. Not all instantiations are real invariants; spurious instantiations coincide
with properties exposed by particular test cases but do not hold in general. Veri-
fier validates whether a likely invariant generalizes by encoding the invariant into
a dependent type system (covered in Section 4). Dependent type constraints are
solved via an abstract interpretation to yield valid types (whose type refinements
are a conjunction of the predicates from the likely invariants) for the program.
We delay details of how the above invariant can be validated to Example 2.

Applying all these steps (with a similar inference step for deriving the post-
condition), we are able to associate the following non-trivial type to insert :

i : int → j : int → a : {array|∀ν0. 0 ≤ ν0 < j− i− 1 ⇒ ν[ν0 + i+ 1] > ν[j]}
→ ret : int/[a : {array|∀ν0. 0 ≤ ν0 < j− ret ⇒ ν[ν0 + ret] > ν[j]}]

where the special variable ν is used to denote the value of term a in its corre-
sponding type refinement predicate (we ignore the dependent type for i and j for
simplicity). If ν refers to an array, then ν0 denotes its first subscript. This type
specifies that, in insert , the array elements in a[i+ 1, · · · , j− 1] are greater
than a[j]; and produces as a side-effect that, the elements in a[ret, · · · , j− 1]
are greater than a[j] where ret denotes the return value (in Section 7, we discuss
how the predicates over a and a′ in ϕpre are also exploited to deduce a universally
existentially quantified (∀∃) invariant capable of proving preservation property).

3 Language

In the rest of the paper, we focus on single-dimensional arrays for simplicity; our
approach can be naturally extended to handle multi-dimensional cases.

We formalize our ideas in the context of a call-by-value variant of the λ-
calculus with support for dependent types. The syntax of the language is shown
in Figure 3. Typically a is only bound to arrays and x and y are usually bound to
both scalar variables, drawn from some non-array base type, and arrays. Pred-
icates (p) are Boolean expressions built from a predefined set (Q) of first-order
relational operators (functions); the arguments to these operators are restricted
to simple expressions - variables, constants, or array expressions and arithmetic
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x, y ∈ Var a ∈ Arr c ∈ Constant ::= 0, . . ., true, false B ∈ Base ::= int | bool | array
τ ∈ Monotype ::= B | τ → τ P ∈ DepType ::= {ν : B | r}/T | {x : P → P}

r ∈ Refinement ::= κ | p T ∈ EffType ::= (x : {ν : B | r}/[ ]);T | [ ]
p ∈ Predicate ::= p and p | p or p | Q(s, . . . , s) Q ∈ {>=, >, · · · }
s ∈ SimpleExp ::= ν0 | ν | x | a | c | s op s | a[s] op ∈ {+,−, · · · }
e ::= s | a[s] := s | λ x. e | if p then e else e | let x = e in e | e x

Fig. 3. Syntax

compositions of such expressions; a type refinement (r) is either a type refinement
variable (κ) that represents an unknown type refinement or a concrete predicate
(p). Instantiation of the type refinement variables to concrete predicates takes
place through the type refinement algorithm described in Section 5.

Our language supports a small set of base types (B), monotypes (τ) and
dependent types (P ) that include dependent base types and dependent function
types. A dependent base type is written {ν : B| r}/ T . B is a base type, such as
int or bool, and r is called a type refinement that constrains the value defined
by the type. Effect type T is a sequence of dependent types binding to side-
effecting arrays, conservatively approximating the side-effects an expression may
produce. These bindings have no further effect, i.e., effect types are not nested.
In the following, we will often omit the declaration of ν or T if it is empty for
simplicity. For example, the expression (let = a[x] := 1 in 0) where x is an
integer, has type {{int | ν = 0}/Tex} where

Tex ≡ {a : {array|∀ν0. (ν0 = x ⇒ ν [ν0] = 1) ∧ (ν0 �= x ⇒ ν [ν0] = a [ν0])}}

This type reflects that the expression yields 0, but additionally has a side-effect
that updates the x th element of array a to 1. When this effect is merged with
the type environment of this expression (detailed in Section 4), the array a inside
the type refinement will be modified to refer to the old array before the update.

A dependent function type is written {x : Px → P}1 where the argument x
is constrained by the dependent type Px, and the result type is specified by P .
For instance, {a : array → x : {ν : int | ν > 0} → {ν : int | ν > x}/Tex} specifies
the function that given a positive integer returns an integer greater than x, that
also raises a side-effect captured by Tex.

Unknown type refinements for array type parameters and return value (ā) of a
function are instantiations from a general template that is created for each array
ai (ai ∈ ā and the syntactic sugar ā[ai0; x̄] denotes an arbitrary array expression
whose array indices are arithmetic compostions from variables in [|ai0; x̄|]):

I ≡ ∀ai0.0 ≤ ai0 < ϕi(x̄) ⇒ (
∧

aj∈{ā/ai}
ϕj(x̄) ≤ ψj(x̄) < ϕ′

j(x̄)) ⇒ Q(ā[ai0; x̄], x̄)

1 Although side-effects can be associated to closures (function typed), we disallow it
in the paper to keep simplicity but implement it in our tool (Section 8).
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where ai0 represents the single subscript of array ai, ϕi(x̄) is an arithmetic ex-
pression over non-array base type parameters, serving as an upper bound for ai0,
and Q(ā[ai0; x̄], x̄) is a predicate (drawn from the language of linear arithmetic
and uninterpreted functions) over array expressions ā[ai0; x̄] and all scalars pa-
rameters x̄ of the function. The second implication condition naturally bounds
the array index for arrays other than ai. To translate an instantiation of the tem-
plate into a type refinement, we simply perform the substitution [ν/ai][ν0/ai0]I,
which can be embedded into the dependent type of ai (e.g., see the type of
insert in Section 2).

4 Dependent Type System for Arrays

Figure 4 defines dependent type inference rules; these rules are adapted from
[22], generalized to deal with array update effects. Syntactically, Γ 
 e : P states
that expression e has dependent type P under type environment Γ , which is a
sequence of type bindings x : P and guard predicates p. The former are standard;
the latter capture path-sensitivity of program branches, following [22].

As in [22], the built-in units of function such as +,− are encoded as constants
which have predefined dependent types that capture their semantics. In this pa-
per we are particularly interested in array updates as side-effects and we encode
array update function a[x] := y as primitive constant. Its type is given as:

Γ 
 (a[x] := y) : {a : array → x : int → y : int →
unit/[a : {array|∀ν0. (ν0 = x ⇒ ν[ν0] = y) ∧ (ν0 �= x ⇒ ν[ν0] = a[ν0])}]}

Before describing the key components of the type system, we introduce some
auxiliary functions. We define mod (Γ, e) as the function that returns all the
arrays bound in Γ that have array updates inside e. Firstly, mod (Γ, a[x] := y) =
a. The other cases are simply recursively defined. Additionally, function Eff (P )
returns the effect of dependent type P (a function definition given as a lambda
expression does not produce side-effects). Function Ty (P ) erases the effects for
base dependent types. We use dom(T ) to return the keys of the bindings of effect
T .

Eff ({ν : B | p} / T ) = T Eff ({x : P → P}) = [ ]

Ty ({ν : B | p} / T ) = {ν : B | p} / [ ] Ty ({x : P → P}) = {x : P → P}

Well-Formedness Judgement. These rules are of the form Γ@ modset 
 P ,
and check if dependent type P is well defined under type environment Γ , which
is extended with a set of arrays(modset) that may be updated by this type’s
underlying expression. Rule WF Base firstly checks that the type refinement p of
a dependent base type does not refer to program variables that escape from its
type environment Γ , i.e, p is a well defined predicate. Secondly we enforce that all
the side-effects raised by an expression must be captured by its type by checking
that the keys of the binding in its effect T must contain modset and that T
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Γ ; ν : B � p : bool modset ⊆ dom(T ) Γ � T

Γ@ modset � {ν : B|p}/T WF Base

Γ ;x : Px@ modset � P

Γ@ modset � x : Px → P
WF Fun

∀{a : P} ∈ T. Γ@[ ] � P

Γ � T
WF Eff

Γ ;x : Px � e : Pe Γ ;x : Px � Pe <: P

Γ � λx.e : {x : Px → P} Fun

Γ � e : {x : Px → P} Γ � y : P ′
x Γ � P ′

x <: Px

Γ � e y : [y/x]P
App

Γ � e1 : P ′ Γ@{mod (Γ, e1) ∪ mod (Γ, e2)} � P
θ = {[ỹ/y] | y ∈ dom( Eff (P ′))}

θ(Γ ;x : Ty (P ′); Eff (P ′);∀y ∈ dom( Eff (P ′)).ỹ : Γ (y)) � e2 : P

Γ � let x = e1 in e2 : P
Let

Γ � p : bool Γ ; p � e2 : P Γ ;¬p � e3 : P Γ@{ mod (Γ, e1) ∪ mod (Γ, e2)} � P

Γ � if p then e1 else e2 : P
If

〈Γ 〉 ∧ 〈ν : r1〉 ⇒ 〈ν : r2〉 Γ � T1 <: T2

Γ � {ν : B|r1}/T1 <: {ν : B|r2}/T2
Sub Base

Γ � P ′
x <: Px Γ ;x : P ′

x � P <: P ′

Γ � {x : Px → P} <: {x : P ′
x → P ′} Sub Fun

dom(T1) ⊆ dom(T2) ∀{a : P} ∈ T2. Γ ;T1 � a : P

Γ � T1 <: T2
Sub Eff

Fig. 4. Typing rules

is well-formed. Rule WF Fun and WF Eff define well-formedness conditions for
functions and effects, resp.

Type Judgements. The typing rules state how an expression e can be depen-
dently typed. Rules Fun and App are standard. As in [22], our approach requires
the need for pending substitutions because the dependent type of a function ap-
plication is derived by substituting all the formal argument x in the output by
the actual y. It is formally defined as θ ::= [y/x]; θ | [ ]. Pending substitution for
base dependent type is defined as θ({ν : B | p} / T ) = {ν : B | θp} / θT . where
θT = {θx : θP | x : P ∈ T }. Note that we push pending substitution to effects.
Pending substitution for functional types are trivially recursively defined.

In rule Let , the well-formedness condition checks that the effect of the entire
Let -expression subsumes all the effects produced by e1 and e2. When typing ex-
pression e2, we require that the side-effects of e1 must refresh e2’s typing environ-
ment for soundness ( Ty (P ′) resets P ′’s effects to empty). Note that Γ ;T means Γ
is merged with the effects T : for each binding x : P ∈ T , we substitute the original
binding to x in Γ with P . However, the original binding is not simply discarded.
If y is an array which could be updated by e1 (witnessed by its type’s effect), its
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original dependent type recorded in Γ is re-associated to a ỹ. Intuitively, we use
ỹ to refer to y in the state before the update. This relieves typing burden because
now the array y after the update can refer to its original version ỹ for the elements
that are not changed. To retain soundness, the appearance of y in the type refine-
ment predicates of the dependent types bound to Γ must be substituted with ỹ.
This is achieved by performing environment substitution θ as defined in the rule.
Formally, θΓ = {x : θP |x : P ∈ Γ}. Rule If is standard except we require that
all the effects made by its subexpressions must be subsumed by the effect of the
entire If -expression.

Subtype Judgement. This class of rules checks at each call site that the ac-
tual arguments satisfy the precondition of the called function and verify, at each
definition site, that the return value establishes the desired postcondition. Rule
Sub Base checks whether a dependent type subtypes another dependent type
for based typed expression. The premise check requires the conjunction of en-
vironment formula 〈Γ 〉 and 〈ν : r1〉 implies 〈ν : r2〉. Our encoding of 〈Γ 〉 (or
〈ν : r1〉 and 〈ν : r2〉) as a first order logic formula is inspired by [22]:

∧
{p | p ∈ Γ} ∧

∧
{[x/ν][x0/ν0]r | x : {ν : B | r}/T ∈ Γ} (�)

For example, consider typing an expression e when it is enclosed in a statement
let = A[x] := y in e. According to rule App and Let, the type environment of e

is [Ã/A](A : {∀ν0. (ν0 = x ⇒ ν[ν0] = y)∧(ν0 �= x ⇒ ν[ν0] = A[ν0])}; Ã : {Γ (a)})
where Ã is a copy of the original array. The encoding for A according to (�) is

A : [A/ν][A0/ν0]{array|∀ν0. (ν0 = x ⇒ ν[ν0] = y) ∧ (ν0 �= x ⇒ ν[ν0] = Ã[ν0])}

This illustrates the fact the array update application A[x] := y produces as
a side-effect, an update to the x th element of the array; the other elements
of the array are not changed and hence refer to the original array which is
remembered by the type system as Ã. This kind of embedding aims to strengthen
the antecedent of the implication and is conservative [22]. Rule Sub Fun is again
standard, and rule Sub Eff checks wether two effects are subtyped. Arrays
bound in T1 should be subsumed by that in T2; subtype checking is reduced
to dependent type checking Γ ;T1 
 a : P for each array a bound in T2.

Features. Our analysis has several notable characteristics. First, by piggyback-
ing type refinements (which are inferred using the techniques described in Sec-
tion 5) on top of standard type inference, we can use abstract interpretation
(in the form of liquid type inference [22]) to verify array properties. Thus, our
technique reduces static analysis for arrays to a Boolean fixpoint computation.
Unlike a theorem prover based approach which must generate suitable predicates
on the fly, our type system ensures termination. A detailed comparison with re-
lated work is summarized in Section 9. Our type system maintains precision in
the face of array updates by using case splits on array indices; to avoid case
explosion, we exploit the natural function summarization that is expressed by a
function type signature.
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5 Array Type Refinements Inference

In this section we show how type refinements in dependent types can be auto-
matically inferred from tests. Specifically, we infer a dependent function type for
each function by inferring the function’s precondition and postcondition. Our
type refinement inference is compositional, i.e., we generate likely array invari-
ants for a function, independent of its caller and callee.

5.1 Template Generation

As we have discussed in Section 2, our inference starts from a symbolic analysis
analogous to weakest precondition generation wp. We guess invariant templates
for each function according to its wp. Our wp algorithm simply pushes postcon-
ditions backward, substituting terms for values in the presumed postcondition
based on the structure of the predicate used to generate the precondition.

wp(e, φ) = case e of

| if p then e1 else e2 → (p ∧ wp(e1, φ) ∨ (¬p ∧ wp(e2, φ)))

| let x = e1 in e2 → wp(e1, [ν/x]wp(e2, φ)))

| (λx.e) y → [y/x]wp(e, φ)

| e y → wp((λx.e′) y, φ) (where e can be deferred to λx.e′)
| a[s1] := s2 → ∃a′. φ[a′/a]∧

{∀a0. (a0 = s1 ⇒ a′[s1] {≥, ≤} s2) ∧ (a0 �= s1 ⇒ a′[a0] = a[a0])}
| s → [s/ν]φ

To invoke wp, we initially supply true as the φ argument. Notably, during the
process, it is refined to capture all the array reads and updates through if

cases and array update cases of the rules. However this wp definition does not
terminate for recursive functions. Since our aim is to guess coarse templates
of array invariants, we simply bound the number of times a recursive function
call is unrolled (at most 2 in our experiments). When wp has just traversed a
function f , our system remembers the immediate result as f ’s weakest precon-
dition and can later retrieve it using wp(f). As stated in Section 2, wp reflects
under-approximative information about how array elements are manipulated by
a procedure. Our inference principle is that, while information implied in wp is
under-approximate, if encoded into a template, can nonetheless be potentially
generalized by running tests for instantiation.

We supply the weakest precondition wp(f) of a function f to our template
generation algorithm, guessT in Figure 5, which outputs a set of invariant tem-
plates for f . We define scalar(f) as the scalar parameters and return value of
function f , and scalar(p) as the scalar variables used in a predicate p. Simi-
larly, scalar(s) returns the scalar variables used in a simple expression s. For
readability, we define that notation s �≡ si is true if and only if scalar(s) ∩
scalar(si) = ∅.
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let guessT f wp =

foreach atomic predicate (p as Q(ā[ ]; x̄)) in wp
L: foreach ai[si] in p

let ai0 = create var "ai0" in

let b = χ(scalar(f)) in

output "

∀ai0 . 0 ≤ ai0 < b ⇒
{∧ a[s]∈p

a �=ai∧s�≡si

χ(scalar(f)/scalar(p)) ≤ χ(scalar(f) ∪ scalar(p))
< χ(scalar(f)/scalar(p))

} ⇒

Q(ai[ai0 ; scalar(f)]; (a[χ(ai0 ; scalar(f))] | a[s]∈p∧a�=ai ∧ ¬(s �≡ si));
(a[χ(scalar(f))] | a[s]∈p∧a�=ai ∧ (s �≡ si)); x̄)"

Fig. 5. Array Invariant Template Inference

In guessT , our algorithm traverses wp and generates invariant templates
(defined in Section 3) for each of its simple relational predicates Q(ā[ ]; x̄)),
denoted as p, if it ranges over some array expression ā[ ]. Inside the loop at
location L, for each array expression ai[si], we create a universal variable ai0
and its upper bound as χ(scalar(f)) for array ai. Suppose v̄ is a set of scalar
variables. χ(v̄) is an arithmetic template over v̄: c1 ∗ v1 + · · · + cn ∗ vn + c0,
with coefficients ci(0 ≤ i < n) as integer variables. Arrays other than ai are also
required to be accordingly bounded (intuitively corresponding to an array index
partition) as the algorithm shows (the set minus operation used in these lower-
and upper-bounds simply helps avoid considering uninteresting invariants).

Our algorithm then infers appropriate index templates over f ’s scalar variables
for each array expression a[s] in p, while it maintains the main shape of p. If an
array expression a[s] is exactly ai[si] or it happens to share some scalar variables
with ai[si] in their subscripts, we create its index template, applying χ over the
special universal variable ai0 and the scalar parameters defined in scalar(f).
Otherwise, s and si have disjoint scalar variables; the index of a is transformed
to an index template over scalar(f) only.

Example 1. Consider the insert procedure in Figure 2. The weakest precondi-
tion of insert , wp (insert), defines a simple predicate: p1 ≡ a[i] > a[j]. Inside
the loop at L, assume array expression a[i] is picked. To infer a precondition,
the type signature of insert reveals that scalar(insert) = {i, j}. So p1 is
parameterized to a[χ2(a0, i, j)] ≤ a[χ3(i, j)] as a template and the universal
variable a0 is accordingly bounded by χ1(i, j). The final template is:

∀a0. 0 ≤ a0 < χ1(i, j) ⇒ {a[χ2(a0, i, j)] ≤ a[χ3(i, j)]}

5.2 Program Sampling

We train the invariant templates of a function using its concrete program states
collected from test runs. To this end we instrument the entry and exit of function
bodies to dump values of function parameters and returns into a log-file, as pre-
and post-states of the corresponding function resp. The format of a concrete
program state is as follows.
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V x =

{
u ← type(x) = int or bool

[|0 : u0, 1 : u1, · · · |] ← type(x) = Array

If a variable x is scalar, V maps it to the corresponding scalar value, u, sampled
in the log file. Otherwise if x is of array type, V maps it to a record where each
array element is indexed by its corresponding array subscript. We can use V x j
to retrieve the jth element (uj) of the array x. The program may be run with
multiple tests so we collect a set of pre- or post-states V s.

5.3 Template Instantiation

With an invariant template and a set of program states V s, we build a constraint
system to find all valid template instantiations that fit the concrete states. For
each state V ∈ V s, four constraints are generated. The first one constrains the
array content for all array ā, which is encoded as

∧

0≤i<|ā|

∧

0≤k< Array.length (ai)

ai[k] = V ai k

The second constraint enforces that the requirement that an instantiation should
be invariant for all the elements in array ai:

∧

0≤k< Array.length (ai)

[k/ai0][V x̄/x̄]
(0 ≤ ai0 < ϕi(x̄)) ⇒ (

∧

aj∈{ā/ai}(ϕj(x̄) ≤ ψj(x̄)

< ϕ′
j(x̄))) ⇒ Q(ā[ai0; x̄], x̄)

In the first substitution, since ai0 is bounded by Array.length(ai) and must be
no less than 0, we instantiate it to each possible value k ∈ [0, Array.length A).
In the second substitution, we replace scalar variables x̄ by V x̄. As an im-
plication with a false premise is always an invariant, albeit useless, the third
constraint guarantees the integrity of instantiated invariants:

0 ≤ ϕi(x̄) ≤ Array.length (ai) ∧
∧

aj∈{ā/ai}
0 ≤ ϕj(x̄) ≤ ϕ′

j(x̄) ≤ Array.length (aj)

The fourth constraint aims to rule out array bound exceptions. Index expres-
sions, after instantiation, must respect array length and be positive.

∧

a[χ]∈Q(ā[ai0;x̄],x̄)

0 ≤ χ < Array.length(a)

These rules help to shrink the search space for likely invariants into a subset of
those syntactically restricted by the template. To avoid over-fitting, we further
require that all the coefficients must fall into the interval [−d, d] where d is the
maximum known constant in the function where the template is inferred. We
feed all 4|V s| constraints to a decision procedure to find all the valid assignments
for the unknown coefficients.
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6 Array Type Refinements Checking

Inferred invariants are not guaranteed to generalize. We lift likely invariants into
dependent types, which are subsequently validated through the type system
introduced in Section 4. Initially we represent dependent base type as standard
base type extended with a type refinement variable κ indicating an unknown type
refinement. The dependent type P for an expression e must over-approximate e’s
side-effects. To generate the effect T for e, for all the arrays x ∈ mod (Γ, e) where
Γ is the type environment for e, we call an auxiliary function Push (P, x : Px)
where Px is a dependent type for x with unknown type refinement. This function
pushes the effect to the right position in P ; its definition is given as

Push ({{ν : B | p} / T }, T ′) = {{ν : B | p} / T ;T ′}
Push ({x : P1 → P2}, T ′) = {x : P1 → Push (P2, T

′)}
This process is performed before the generation of type constraints.

Type constraints over unknown type refinement variables that capture the
subtyping relations between the types of various subexpressions are generated
by traversing the program expression in a syntax-directed manner, applying the
typing rules in Figure 4. We prove (see [30]) that the generated type constraints
are solvable if and only if a valid type derivation exists. In our system, the
type refinements for arrays are automatically inferred from test runs and are
initially associated to all the unknown type refinement variables for array types.
The type checker enumerates all possible solutions following the strategy in [22].
Notably, the type inference is abstracted into an abstract interpretation infras-
tructure [4]. Specifically, we solve these type constraints by iteratively removing
the type refinements for unknown type refinement variables that prevent a type
constraint from being satisfied using a decision procedure (an SMT solver) for
the implication check in the subtyping rule shown in Figure 4.

Example 2. Consider the insert function in Figure 2. Refining insert’s stan-
dard type, we initially generate its dependent type with unknown type refine-
ment variables: {i : {int|κi} → j : {int|κj} → a : {array|κa} → ret :
{int|κret}/[a : {array|κEff

a }]}. The variable κEff
a represents the effect this func-

tion makes; syntactic sugar ret represents the return value. According to type
checking rule Let, the effect of the let expression in if branch must be merged
with the type environment for the locally-bound subexpressions. Thus, we gen-
erate a constraint:

· · · ; ã : κa; i >= 0; ã[i] > ã[j] 
 {∀a0.((a0 = i+ 1 ⇒ a[i+ 1] = ã[i])

∧ (a0 �= i+ 1 ⇒ a[a0] = ã[a0]))} <: [i− 1/i]κa

from the call to insert that forces the actual array a passed in at the callsite to
be a subtype of the formal of insert , according to rule App. Note that ã denotes
the old array before the update operation, in the type environment. Instantiating
κa to the likely invariant inferred in Section 2 and executing the implication
check in rule Sub Base for subtyping would yield a verification condition, whose
validity implies the invariant’s correctness.
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However, such implication checks are quantified formulae which are generally un-
decidable. The reason is that SMT solvers do not support quantifier instantiation
for formulae of arbitrary structure. Our approach provides a heuristic wrapper
to SMT solvers, similar to [28]. For a formula given as an universally quantified
array invariant, we instantiate its universal variable with all the array accessing
indices collected from the program. This mechanism is conservative because all
such formulae are quantified over array indices, and is also sound. If a formula
is also existentially quantified, we instantiate its existential with a fresh variable
which is again matched to other corresponding universally quantified formulae.

7 Extensions

The template (over array and scalar variables) produced from Figure 5 covers
a fairly general family of properties and is expressive enough to infer array
invariants over an unbounded number of array elements. A natural question
to ask is how we might judge the quality or usefulness of the invariants?

To show usefulness, we propose to use the inferred invariants to prove two
important classes of program specifications: those that reflect sorting properties,
and those that preserve the elements of the input. However, specifying suit-
able sorting and preservation invariants within a proper array bound requires
array-specific domain knowledge. Instead, we equip our system with two built-in
very simple templates for capturing sorting and preservation and use tests to
instantiate such two specifications.

Array Sorting Invariants. The following template allows our system to infer an
array sorting invariant for an arbitrary array a:

∀a0. χ(x̄) ≤ a0 < χ′(x̄) ⇒ a[a0] {≤,≥} a[a0 + 1]

Array Preservation Invariants. We are also interested in discovering and veri-
fying properties like: “After sorting, the output array ai preserves all the set of
elements from the input array aj”. To this end, the postcondition of a function
must be both universally and existentially quantified, and be able to refer to the
state of the array aj at the beginning of the function, which we denote as ãj:

∀aj0.∃ai0. 0 ≤ aj0 < χj(x̄) ⇒ 0 ≤ ai0 < χi(x̄) ∧ (ãj [χ
′
j(aj0; x̄)] = ai[χ

′
i(ai0; x̄)])

where ai0 in this case is existentially quantified while another special variable aj0
for ãj (aj may or may not equal to ai) is universally quantified. An instantiation
of this template yields a preservation invariant: for all the set of array elements
(in some scope) in ãj , they are preserved in ai. Such templates can be created
when we detect an array update involving two arrays during the process of
generating the weakest precondition.

To deal with this extension, our template instantiation algorithm in Section 5
needs to be sightly extended. A concrete state logged in a file must include both
ā and ¯̃a (the array at the beginning of the function) when trying to infer a
function’s post-condition. Specifically, for a ∀∃ template and a set of program



422 H. Zhu, A.V. Nori, and S. Jagannathan

state V s, for each state V ∈ V s, we again generate four similar constraints.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1.
∧

0≤k< Array.length (ai)
ai[k] = V ai k ∧∧

0≤k< Array.length (ãj)
ãj [k] = V ãj k

2. 0 ≤ χj(x) ≤ Array.length(ãj) ∧ 0 ≤ χi(x) ≤ Array.length(ai)

3. 0 ≤ χ′
j(aj0; x̄) < Array.length(ãj) ∧ 0 ≤ χ′

i(ai0; x̄) < Array.length(ai)

4.
∧

0≤k< Array.length (aj)
[k/aj0][ex/ai0][V x̄/x̄]

0 ≤ aj0 < χj(x̄) ⇒ 0 ≤ ai0 < χi(x̄) ∧ (ãj [χ
′
j(aj0; x̄)] = ai[χ

′
i(ai0; x̄)])

The first three constraints are self-explanatory. The fourth constraint enforces
that an (instantiated) invariant must hold for all the possible values of the univer-
sal variable aj0. It also requires the solver to present a witness for the existential
variable ai0 for each possible value of aj0 (ex is always a fresh variable).

8 Experimental Results

We have implemented our method 2 and evaluated it using benchmarks from
recent related work [7,19]. We additionally infer invariants for binarysearch,
quicksort-inner and the complete mergesort (see a detailed case study in [30])
and insertionsort programs. The results are summarized in Table 1. For the
sorting programs, we try to infer and prove the sorted-ness of the result. For
each of these benchmarks, our system successfully finds the desired pre- and
post-conditions. In the table, we record the number of likely invariants and the
time spent in invariant generation as gen inv and inv time, resp.; columns inv
and vc time represents the number of validated invariants and the time for val-
idation. Columns tests refers to the number of tests (array input are randomly
generated) needed to converge. In the experiment, we keep the size of input
arrays to be a small value, either 4 or 5, to refute over-fitting invariants and
achieve efficiencies. Notably, we use exactly the same test suites for the classic
array sorting benchmarks. Compared to [7,19], our primary point of distinction
is the use of test runs to infer array invariants and the absence of any requirement
to annotate post-conditions, which are now inferred; the overall execution time
of our implementation just slightly increases compared to [7], although we re-
quire much less annotations. A subset of our benchmarks can be verified via the
system presented in [12], that extends abstract interpretation with a quantified
abstract domain; like our technique, [12] also does not assume predefined pred-
icates and annotated post-conditions. With the invariants inferred from a small
set of tests, our approach can (significantly) more quickly converge to a solution
compared to [12], which only relies on static semantics. Subsequent work [28]
improves on [12], achieving results similar to ours, but at the cost of requiring
programmers to explicitly specify a set of predicates and templates from which
invariants are composed.

We also evaluated how increasing tests can affect the performance of our
tool by tuning the number of test cases for insertion-sort-full in Table 2. It

2 webpage: https://www.cs.purdue.edu/homes/zhu103/asolve/index.html

https://www.cs.purdue.edu/homes/zhu103/asolve/index.html
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Table 1. ∀ invariant results

Benchmarks gen inv inv tests inv time vc time total time

parlindrome[19] 4 4 1 1.22s 0.13s 1.50s

seq-init [19] 2 2 1 0.33s 0.22s 0.71s

max-and-min[19] 4 4 1 0.27s 0.94s 1.78s

first-occur [19] 5 5 2 0.54s 0.59s 1.59s

sum-pair [19] 23 5 2 9.02s 1.63s 11.22s

array-init [7] 7 7 1 0.16s 0.25s 0.61s

array-reverse[7] 4 4 1 0.80s 0.36s 1.40s

array-copy [7] 7 7 1 0.46s 0.36s 1.05s

array-find [7] 2 2 1 0.10s 0.22s 0.45s

array-difference[7] 7 7 2 1.32s 0.76s 2.52s

binarysearch 8 5 2 0.95s 1.00s 2.46s

bubblesort-inner [7] 7 3 3 2.68s 1.40s 4.61s

selection-sort-inner [7] 6 4 3 3.03s 0.84s 4.36s

quick-sort-inner 12 8 2 2.58s 3.86s 7.26s

insert-sort-inner 8 3 2 0.66s 0.78s 1.76s

merge-sort-full 36 32 1 26.66s 22.66s 52.12s

Table 2. Increasing the number of tests for verifying insertion-sort-full

Benchmarks gen inv inv tests inv time vc time total time

insert-sort-full 20 9 1 3.57s 2.20s 6.43s

insert-sort-full 14 9 2 4.07s 1.83s 6.60s

insert-sort-full 12 9 3 4.34s 1.74s 6.83s

insert-sort-full ≤12 9 ≥4 ≥6.37s ≤1.79s ≥8.96s

can be seen that although increasing tests could reduce the number of false
invariants generated (the verification time reduces correspondingly), the time
spent in inference grows. Based on our experience, the number of tests never
needs to be greater than a small number (2 or 3 in our experiments). Indeed,
our experiments provide evidence to our claim that a simple random test suite
suffices to infer very complex array invariants. Finally we show the result of
applying our tool to infer preservation (∀∃) properties in Table 3.

Limitations. We briefly comment some limitations of our approach. First, the
search space for array invariant is restricted by the shape of the general templates
defined in Section 3, and can only discover program invariants that reside within
this space. For example, our technique cannot find array invariants that express
properties related to non-contiguous partitions of the array. Secondly, invariants
discovered from the general template may sometimes be redundant. The reason
is that discovered array invariants are all universally quantified. Adjusting the
bound for universally quantified variables and the array indices computed from
these variables accordingly may generate array invariants with different surface-
level descriptions that have the same intension. Our approach bounds the value
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Table 3. ∀∃ invariant results

Benchmarks gen inv inv tests inv time vc time total time

selection-sort 3 3 1 0.27s 1.41s 2.44s

bubble-sort 3 3 1 0.27s 1.68s 2.76s

quick-sort 9 8 1 1.31s 5.89s 9.05s

constants used by the general template to reduce the likelihood of redundant
invariants. In future work, we plan to exploit deeper semantic approaches to
filter redundant invariants.

9 Related Work and Conclusion

The idea of using a dependent type system to verify data structures is well stud-
ied. LiquidType [22] infers sound dependent types whose type refinements are
conjunctions over atomic predicates presented from programmers. This approach
can prove complex invariants over data structures [16], and has been extended
to support abstract type refinements [29], which allows dependent types to be
parametrized over type refinements. The ability to infer and verify flow-sensitive
properties (for array programs) distinguishes our approach from these efforts.

Abstract interpretation [4] has long been used to infer array invariants. In [10]
and its subsequent work [14], invariants are discovered based on an abstract in-
terpretation over abstract values associated with each symbolic array partition.
To overcome the problem that array indices can only be quantified over inter-
vals from a fixed partition, [12] introduces quantified abstract domains and infers
more general array properties of the form ∀l.ϕ(l) ⇒ ψ(a[l] · · · ). However, ab-
stract interpretation becomes difficult because ϕ must be under-approximated
and it also requires programmers to provide templates for the invariants to be
inferred. To overcome these difficulties, a similar but more scalable framework
for array programs is presented in [5]. With parameterized bound expressions,
arrays are automatically divided and each segment can be uniformly abstracted;
such analyses are then combined via a reduced product with existing analyses
for scalars. Our approach, in contrast, does not require array divisions and a
fixed set of predicates in advance. Another dedicated array program analysis,
fluid update [8], also avoids explicit array index partition. It also models array
as an abstract location quantified by its index. To avoid the need for explicit
array partitions, it retains both over- and under-approximative information of
array updates, blurring the boundary of strong and weak updates. In contrast
to our approach (dedicated to discovering complex invariants about unbounded
array elements), their focus is on unified pointer, scalar and array reasoning.

Theorem provers have also been used for discovering invariants for array pro-
grams. Some approaches follow a counterexample guided abstraction refinement
paradigm to extract information from spurious error paths about the range of
array indices over which a universally quantified property may hold, or derive
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array entries that violate an assertion from which predicates that may hold in
unbounded intervals are then inferred [1,15,18,20,24]. Similar to our technique,
these approaches are flexible because they do not assume a finite set of abstrac-
tions fixed in advance but generate suitable assertions on the fly. In contrast, our
technique does not rely on program assertions or spurious program paths, and
can infer likely program invariants before verification. Other techniques attempt
to solve for unknown relations such as loop invariants that occur in verification
conditions. This line of work has also been applied to array program in [2] by
extending Horn solver to handle quantified predicates. Constraint-based invari-
ant generation [3] is similarly adopted for discovering and verifying universally
quantified properties over array variables. For example, a CLP program trans-
formation [11] has been extended to handle array manipulating program in [7].
This work generates a set of verification conditions expressed as CLP (Array)
program whose satisfiability implies that the program specification is proved.
In [19], by means of Farkas’ Lemma, the problem of discovering loop invariants
is transformed into a satisfiability problem over the constraints generated from
array programs. In contrast to these efforts, our approach builds simple con-
straints over concrete program states and hence is agnostic to specific program
instructions so that it does not rely on the power of specialized theorem provers.

Our approach is inspired by the idea of using tests to improve the precision
and efficiency of program analysis. Daikon [9] uses conjunctive template to find
invariants, from configurations recorded along test runs. One of its extension
in [21] uses equation solving to find array invariant but does not support im-
plication and quantification. In contrast, we search quantified array invariants
that allows implication (disjunction). In [6], since invariants are produced from
symbolic execution of program paths that the concrete tests satisfy during their
executions, the relevance of the generated invariants is increased compared to
Daikon. In [13], the information obtained from static abstract interpretation is
combined with that from tests to strengthen the ability of invariant generators
but it does not consider quantified invariants. We are also inspired by recent
interest in using machine learning to infer loop invariants. Compared to learn-
ing algorithms that synthesize program invariants in terms of classifiers distin-
guishing good and bad program samples [27,26,25], we search invariants from
a broader program space since the typical learning techniques only search for
invariants bounded by annotated assertions; we are unaware of prior learning
based approaches capable of handling array programs as complex as the ones we
have considered.

Conclusion. This paper presents a compositional and lightweight invariant
inference technique that uses test runs to infer quantified array invariants. Our
technique builds a constraint system for inferring array invariants on top of con-
crete program states. All likely flow-sensitive invariants inferred are validated
by our dependent type system that allows side-effecting array updates. Exper-
imental results demonstrate the practicality and expressivity of our approach.
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