
A

Verifying Custom Synchronisation Constructs
Using Higher-Order Separation Logic

MIKE DODDS, University of York, UK

SURESH JAGANNATHAN, Purdue University, Indiana

MATTHEW J. PARKINSON, Microsoft Research, UK

KASPER SVENDSEN, Aarhus University, Denmark

LARS BIRKEDAL, Aarhus University, Denmark

Synchronisation constructs lie at the heart of any reliable concurrent program. Many such constructs

are standard – e.g., locks, queues, stacks, and hash-tables. However, many concurrent applications require
custom synchronisation constructs with special-purpose behaviour. These constructs present a significant

challenge for verification. Like standard constructs, they rely on subtle racy behaviour, but unlike standard

constructs, they may not have well-understood abstract interfaces. As they are custom-built, such constructs
are also far more likely to be unreliable.

This paper examines the formal specification and verification of custom synchronisation constructs. Our

target is a library of channels used in automated parallelization to enforce sequential behaviour between
program statements. Our high-level specification captures the conditions necessary for correct execution;

these conditions reflect program dependencies necessary to ensure sequential behaviour. We connect the

high-level specification with the low-level library implementation, to prove that a client’s requirements are
satisfied. Significantly, we can reason about program and library correctness without breaking abstraction

boundaries.

To achieve this, we use a program logic called iCAP (impredicative Concurrent Abstract Predicates) based
on separation logic. iCAP supports both high-level abstraction and low-level reasoning about races. We use

this to show that our high-level channel specification abstracts three different, increasingly complex low-
level implementations of the library. iCAP’s support for higher-order reasoning lets us prove that sequential

dependencies are respected, while iCAP’s next-generation semantic model lets us avoid ugly problems with

cyclic dependencies.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Program Verification—Correctness

proofs; D.3.3 [Programming Languages]: Language Constructs and Features—Concurrent programming

structures

General Terms: Languages, Theory, Verification

Additional Key Words and Phrases: Separation Logic, Concurrent Abstract Predicates, Concurrency

1. INTRODUCTION

Concurrent programming is challenging because it requires programmers to parcel work
into useful units, and weave suitable concurrency control to coordinate access to shared
data. Coordination is generally performed by synchronisation constructs. In order that pro-
grammers can build and reason about concurrent programs, it is essential that these syn-
chronisation constructs hide implementation details behind specifications, allowing clients
to reason about correctness in terms of abstract, rather than concrete, behaviour.

This work is supported TODO.
Author’s addresses: TODO
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 0000-0000/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

For standard synchronisation constructs – e.g. locks, queues, stacks – abstract specifi-
cations are well-studied. However, many concurrent applications depend on non-standard,
custom synchronisation constructs. These may have poorly-defined abstract interfaces, while
at the same time depending on complex racy implementation behaviour. Verifying these con-
structs requires a technique that can build up strong abstractions, reason about the logical
distribution of data between threads, and at the same time deal with the intricacies of
low-level concurrency. This is our objective in this paper.

Our target is to verify one such custom concurrency construct: barriers used for automated
parallelisation. In deterministic parallelisation, code regions in a sequential program are
executed concurrently. While the parallelized program is internally nondeterministic, control
constructs are used to ensure that it exhibits the same deterministic observable behaviour
as its sequential counterpart. Automatic parallelisation of this kind has been well-studied
for loop-intensive numerical computations. However, it is also possible to extract parallelism
from irregularly structured sequential programs [?; ?; ?].

One way to implement deterministic parallelism is through compiler-injected barriers [?].
We can think of these barriers as enforcing the original sequential program dependencies
on shared resources. A resource could be any program variable, data structure, memory
region, lock, etc. for which resource ownership guarantees are essential in order to enforce
deterministic semantics. While the intuition behind using such barriers is quite simple,
there are many possible implementations, and verifying that an implementation enforces
the correct behaviour is challenging for several reasons:

— Custom data-structures. To enable the maximum level of parallelism, barriers are imple-
mented using custom data-structures that collect and summarise signals.

— Non-local signalling. The patterns of signalling in a barrier implementation are highly
non-local. To access a resource, a barrier must wait until all logically preceding threads
have indicated that it is safe to do so. However, threads are locally unaware of this context.

— Out-of-order signalling. The parallelisation process will strive to identify the earliest point
in a thread’s execution path from where a resource is no longer required. In some cases,
this means threads can release resources without ever acquiring them, so that subsequent
signalling of this resource by its predecessor can bypass it altogether.

— Shared read access. Barriers may treat reads and writes differently to ensure preservation
of sequential behaviour. Although many reads can be performed concurrently, they must
be sequentialized with respect to writes. Moreover, reads must be sequentialized with
respect to other reads, if there is an intervening write.

— Higher-order specifications. Abstractly, channels can be used to control access to any kind
of resource for which ownership is important. Thus, the natural specification is higher-
order: the resource is a parameter to the specification. Channels may control access to
other channels, or even later stages of the same channel.

In this paper, we show how to tackle these verification challenges. We use impredicative
concurrent abstract predicates (iCAP), a recent program logic that enables abstract, higher-
order reasoning about concurrent libraries [?]. This allows us to reason about both high-
level properties and low-level implementation details. iCAP supports fine-grained reasoning
about concurrent behaviour, meaning that each thread can be permitted exactly the be-
haviour it needs. Furthermore, reasoning in iCAP is local, meaning even shared state can
be encapsulated and abstracted.

The result of our work is a verified high-level specification for barriers, independent of
their low-level implementation. Using iCAP, we have proved that three very different low-
level implementations satisfy the same high-level specification. In the presence of runtime
thread creation and dynamic (heap-allocated) data, our specification must be both generic
and dynamic, since it must be possible to construct barriers at runtime that control access
to arbitrary resources. To allow this, we use iCAP’s higher-order quantification mechanism

to encode complex patterns of resource redistribution. It is worth emphasising that the
barriers we look at were not designed with verification in mind; we have developed the
specification to suit the application, not vice versa.

In this paper we focus on just the verification problem for barriers, but in a companion
paper, we define a parallelising program analysis which injects appropriate barriers [?].
Our work here contributes to the eventual goal of a fully specified and verified system for
deterministic parallelism. More generally, access to concurrent data is often controlled by
custom synchronisation constructs, and our work in this paper demonstrates how to reason
soundly about such bespoke concurrency constructs.

Contribution

This paper substantially revises and expands our conference paper [?]. Our main contribu-
tions relative to [?] are as follows:

— A revised higher-order abstract specification for the custom synchronisation barriers used
in deterministic parallelism. Our new specification is cleaner and more general.

— New proofs of this specification for simplified, out-of-order and summarising barrier im-
plementations, written using the iCAP proof system [?]. The first two implementations
were proved correct in [?], while the proof of the summarising version is entirely novel.

— A self-contained presentation of the formal iCAP proof system and a tutorial on how to
use iCAP to verify concurrent software. The formal iCAP proof system is not presented
nor explained in the iCAP conference paper [?].

— An encoding in iCAP of constructs we call saved propositions. These serve some of the
functions of auxiliary variables capable of storing propositions, and allow us to reason
about resource transfer and splitting without altering the proof system.

— A new application of explicit stabilization [?] to reason about the stability of complex
separation logic assertions.

This paper also corrects a subtle logical problem in [?], discovered by Svendsen a year after
publication. As is often true in logic, this problem arose as a result of self-reference – in
this case, a circularity in the model of higher-order propositions rendered several important
reasoning steps unsound. The details are discussed in §8, but we emphasise that this problem
could not have been solved by the higher-order separation logics available in 2011. The
development of iCAP was in part motivated by resolving this kind of problem; in this
paper, we show that iCAP can be used to verify tricky practical algorithms.

Paper Structure

§2 discusses related work. §3 introduces the behaviour of barriers informally, and defines our
abstract specification. It also discusses an example application, a tree-based key-value store.
§4 gives a very simple barrier implementation, and shows how it can be verified with respect
to the core of the specification. This section also serves as a tutorial introduction to iCAP,
the logic we use for verification. §5 discusses how the specification can be extended to cover
the splitting of resources offered by a channel. §6 gives a more complicated implementation
where channels are arranged into chains, and verifies the full abstract specification. §7 gives
an optimised implementation where signals between channels are summarised, and verifies
it. §8 explores the problems with our conference paper [?], and how we have addressed them.
Some of the subsidiary lemmas are proved in full in the appendices.

2. RELATED WORK

iCAP is a new logic for verifying complicated concurrent algorithms [?; ?]. Although we
have focussed in this paper on barriers used for deterministic parallelism [?; ?; ?; ?], our
intention is to illustrate how iCAP can be used to specify and verify novel concurrency
constructs in general.

Prior to 2011, most work on concurrent separation logic considered concurrency constructs
as primitive in the logic. This begins with O’Hearn’s work on concurrent separation logic [?],
which takes statically allocated locks as a primitive. CSL has been extended to deal with
dynamically-allocated locks [?; ?; ?] and re-entrant locks [?]. Others have extended separa-
tion logic or similar logics with primitive channels [?; ?; ?; ?], and event driven programs [?].
There are important disadvantages to handling each distinct concurrency construct with a
new custom logic:

— Developing a custom logic might be acceptable for standard synchronisation constructs
such as locks, but it is infeasible for every domain-specific construct.

— Embedding each construct as primitive in the logic provides no means for verifying im-
plementations of the construct.

— Each custom logic handles one fixed kind of construct, with no means of verifying programs
that use multiple concurrency constructs.

iCAP solves all three problems. New synchronisation constructs can be introduced as li-
braries and given abstract specifications that abstract over the internal data representation
and state through abstract predicates. Implementations can be verified against these ab-
stract specifications by giving these predicates concrete definitions (our paper does precisely
this for barriers). As new constructs can be freely introduced as libraries, clients are free
to combine multiple concurrency constructs as needed. Furthermore, using iCAP’s higher-
order quantification, specifications can abstract over arbitrary predicates, including those
defined by other concurrency constructs. This allows us to support separate reasoning about
each construct, while still allowing them to interact cleanly. For instance, abstract lock pred-
icates defined by a lock library can freely be transferred through our channels. (See [?] for
an example of such a lock specification).

iCAP descends from our earlier Concurrent Abstract Predicates (CAP) logic [?]. CAP
combined the explicit treatment of concurrent interference from rely-guarantee [?; ?; ?]
and abstraction through abstract predicates [?], with a rich system of protocols based on
capabilities [?]. iCAP extends CAP with higher-order propositions and an improved system
of concurrent protocols [?]. iCAP’s step-indexed semantics is supported by an underlying
theory called the topos of trees [?].

Recent years have seen a great deal of work on concurrent logics, many of which take
inspiration from CAP. Complex concurrency constructs have been verified before in CAP-
like logics, e.g. concurrent B-trees in [?]. The proof in [?] is mostly concerned with complex
manipulations of the B-tree structure. In comparison, our barrier implementations are rela-
tively simple, and a large proportion of our proof concerns changes in ownership to support
our higher-order specification. The verification of the Joins library in [?] has similarities
to our work. Both papers deal with barriers using higher-order separation logic. However,
the implementations and specifications are substantially different – for example our imple-
mentation permits chains of channels, and our specification deals with resource-splitting.
The authors of [?] are also co-authors on this paper, and iCAP was largely developed as a
improvement on the HOCAP logic introduced there.

Two significant alternative logics to iCAP are CaReSL [?] and TaDA [?]. Like iCAP,
both extend CAP with richer protocols. Unlike iCAP, both are primarily aimed at proving
atomicity / linearizability, and confine themselves to second-order logic only. This makes
them less suitable for our purposes. It is plausible that many of the proofs in this paper could
be recast into these logics. However, we would have to constrain the higher-order parameters
from our specification with some kind of explicit stratification. We would expect proofs to be
significantly more complex as a result of the bookkeeping needed to track this stratification.

Another logic aimed at fine-grained concurrent data-structures is FSCL [?]. This is defined
through a shallow embedding into Coq’s Calculus of Inductive Constructions, and thus
supports definition of higher-order specifications. However, FCSLs reasoning principles for

higher-order specifications are weaker than those of iCAP. In particular, FCSL lacks support
for impredicative protocols and assertions in the heap, both of which result in circularities
that would manifest as universe inconsistency errors in Coq. These reasoning principles are
fundamental to the generic higher-order specifications that we verify. Thus, while FCSL can
define our proposed barrier specification, we believe that FCSL would be unable to verify
an implementation against it.

3. A SPECIFICATION FOR DETERMINISTIC PARALLELISM

In this section, we describe the intuitive behaviour of a library of barriers for enforcing
deterministic parallelism that forms our case study. Based on this, we define a high-level
specification for barriers – the full abstract specification is given in §3.4. These barriers
are based on the ones used for deterministic parallelism in [?]. In [?] we use our abstract
specification in a proof-based parallelizing analysis that is guaranteed to preserve sequential
behaviour.

We assume that code sections believed to be amenable for parallelization have been
identified, and the program split accordingly into threads. We assume a total logical ordering
on threads, such that executing the threads serially in the logical order gives the same result
as the original (unparallelized) program.

Barriers are associated with resources (e.g., program variables, data structures, etc.) that
are to be shared between concurrently-executing program segments. There are two sorts
of barriers. A signal barrier notifies logically later threads that the current thread will no
longer use the resource. A wait barrier blocks until all logically prior threads have signalled
that they will no longer use the resource (i.e., have issued signals).

We assume barriers are injected by an analysis which ensures that all salient data depen-
dencies in the sequential program are respected. For example, suppose we run two instances
of the function f in sequence (here sleep(rand()) waits for an unknown period of time).

void f(int *x, int *y, int v) {
if(*x < 10) {
*y = *y + v;
*x = *x + v;
sleep(rand());

} else {
sleep(rand());

}
}

*x = 0;
*y = 0;

f(x,y,5);
f(x,y,11);

When this program terminates, location x and y will both hold 16.
The second call to f will wait for the first call to finish its arbitrarily long sleep, even

though the first call will do nothing more once it wakes. An analysis could parallelize this
function by passing control between the two earlier. The parallelized functions f1 and f2
are given below. We run both concurrently, but require that f1 passes control of x and y to
f2 before sleeping, allowing f2 to continue executing.

Function definitions: Program body:

f1(x,y,v,i) {
if(*x < 10) {
*y = *y + v;
*x = *x + v;
signal(i);
sleep(rand());

} else {
signal(i);
sleep(rand());

}
}

f2(x,y,v,i) {
wait(i);
if(*x < 10) {
*y = *y + v;
*x = *x + v;
sleep(rand());

} else {
sleep(rand());

}
}

*x = 0; *y = 0;
chan *i = newchan();

f1(x,y,5,i) || f2(x,y,11,i);

The barriers in f1 and f2 ensure that the two threads wait exactly until the resources
they require can be safely modified, without violating sequential program dependencies.
The correct ordering is enforced by barriers that communicate through a channel; in the
example, newchan creates the channel i. Assuming the barriers are correctly implemented,
the resulting behaviour is equivalent to the original sequential program, with x and y both
holding 16.

3.1. Verifying a Client Program

How can we verify that our parallelized program based on f1 and f2 satisfies the same
specification as the original sequential program? Typically (e.g. in [?]) one would incorpo-
rate signalling machinery as part of a parallelization program analysis. Clients would then
reason about program behaviour using the operational semantics of the barrier implemen-
tation. Validating the correctness of parallelization with respect to the sequential program
semantics would therefore require a detailed knowledge of the barrier implementation. Any
changes to the implementation could entail reproving the correctness of the parallelization
analysis.

In contrast, we reason about program behaviour in terms of abstract specifications for
signal, wait and newchan. Such an approach has the advantages that (1) implementors
can modify their underlying implementation and be sure that relevant program properties
are preserved by the implementation, and (2) client proofs (in this case, proofs involving
compiler correctness) can be completed without knowledge of the underlying implementa-
tion.

We will reason about f1 and f2 using separation logic, which lets us precisely control the
allocation of resources to threads over time. Assertions in separation logic denote resources:
heap cells and data-structures, but also abstract resources like channel ends. For example,
we write the following assertion to denote that x points to value v and y to value v′:
x 7→ v ∗ y 7→ v′ The separating conjunction ∗ asserts that x and y are distinct. As well as
capturing information about the current state of resources, assertions in separation logic
also capture ownership. Thus the assertion x 7→ v ∗ y 7→ v′ in an invariant for a thread
implicitly states that the thread has exclusive access to x and y.

To reason about the parallel composition of threads, we can use the Par rule of concurrent
separation logic [?]:

{P1} C1 {Q1} {P2} C2 {Q2}
{P1 ∗ P2} C1 ‖C2 {Q1 ∗Q2}

Par

To verify f1 and f2, we must encode the fact that f1 gives up access to x and y by calling
signal(i), while f2 retrieves access to them by calling wait(i). We encode these two facts
with two predicates, recv and send, corresponding to the promised resource, the resource

that can be acquired from logically earlier threads, and the required resource, the resource
that must be supplied to logically later threads. We read these as follows:

recv(i, P) – By calling wait on i, the thread will acquire a resource satisfying
the assertion P .

send(i, P) – By calling signal on i when holding a resource satisfying P , the
thread will lose the resource P .

These predicates are abstract ; each instantiation of the library will define them differently.
The client only depends on an abstract specification that captures their intuitive meaning:

{emp} i = newchan() {send(i, P) ∗ recv(i, P)}
{send(i, P) ∗ stable(P) ∗ P} signal(i) {emp}
{recv(i, P) ∗ stable(P)} wait(i) {P}

The assigned variable i stands for newchan’s return value – i.e. the address of the new
channel. We also use this notation in the specification of extend, below.

This specification of newchan is implicitly universally quantified for all assertions P ,
meaning that we can construct a channel for any iCAP assertion. The same is true for
other operation specifications: unless otherwise stated, predicates are universally quantified
and thus can be chosen freely.

In general, the universally quantified P can be instantiated with assertions about shared
resources. In this case we need to establish that these assertions are stable, i.e., invariant
under changes potentially performed by other threads. This is expressed by the stability
assertion, stable(P), in the preconditions of signal and wait. Stability will be explained in
§4.1. For the moment, note that if P is a thread-local assertion, such as x 7→ v, then P is
trivially stable, as these assertions assert exclusive ownership of the underlying resource.

New recv and send predicates can be constructed at run-time using newchan, meaning we
can construct an arbitrarily large number of channels for use in the program. Given these
two predicates, we can give the following specifications for f1 and f2. (Here we specialise
to the particular parameter values of 5 / 11; it would be easy to generalise).

{x 7→ 0 ∗ y 7→ 0 ∗ send(i, x 7→ 5 ∗ y 7→ 5)} f1(x, y, 5, i) {emp}
{recv(i, x 7→ 5 ∗ y 7→ 5)} f2(x, y, 11, i) {x 7→ 16 ∗ y 7→ 16}

The send predicate in the specification for f1 says that the thread must supply the resources
x and y such that they both contain the value 5. The specification for f2 says that the
thread can receive x and y containing the value 5. Fig. 1 gives sketch-proofs for these two
specifications.

Given this specification, the proof for the main program goes through as follows:¶
x 7→ ∗ y 7→

©
*x = 0; *y = 0; chan *i = newchan();¶
x 7→ 0 ∗ y 7→ 0 ∗ send(i, x 7→ 5 ∗ y 7→ 5) ∗ recv(i, x 7→ 5 ∗ y 7→ 5)

©¶
x 7→ 0 ∗ y 7→ 0 ∗ send(i, x 7→ 5 ∗ y 7→ 5)

© ¶
recv(i, x 7→ 5 ∗ y 7→ 5)

©
f1(x,y,5,i) f2(x,y,11,i)¶

emp
© ¶

x 7→ 16 ∗ y 7→ 16
© Par rule

application.¶
x 7→ 16 ∗ y 7→ 16

©

¶
x 7→ 0 ∗ y 7→ 0 ∗ send (i, x 7→ 5 ∗ y 7→ 5)

©
f1(x,y,5,i) {
if(*x < 10) {
*y = *y + 5; *x = *x + 5;¶
x 7→ 5 ∗ y 7→ 5 ∗ send (i, x 7→ 5 ∗ y 7→ 5)

©
signal(i); // Channel spec.¶
emp
©

sleep(rand());
} else ... // Contradicts x<10.
}¶

emp
©

¶
recv (i, x 7→ 5 ∗ y 7→ 5)

©
f2(x,y,11,i)
wait(i); // Channel spec.¶
x 7→ 5 ∗ y 7→ 5

©
if(*x < 10) {
*y = *y + 11; *x = *x + 11;¶
x 7→ 16 ∗ y 7→ 16

©
sleep(rand());

} else ... // Contradicts x<10.
}¶
x 7→ 16 ∗ y 7→ 16

©
Fig. 1. Proofs for f1 (left) and f2 (right).

This proof establishes that the parallelized version of the program satisfies the same speci-
fication as the sequential original.

3.2. Splitting Waiters

It is often useful for several threads to receive resources via the same channel. This kind of
sharing is safe as long as the promised resources are split disjointly. It would be unsafe for
two threads to both gain access to x at the same time, but it is safe for one thread to access
x while another accesses y. Consider the following three threads:

*x = *y + 1;
signal(i)

wait(i);
z = *x

wait(i);
*y = 4

The first thread signals on i to indicate that it has finished with both x and y. The other two
threads both wait on this signal, and each use a different aspect of the promised resource.

To support splitting, we add a property to the specification allowing threads to divide
promised resources:

{recv(a, P ∗Q) ∗ stable(P ∗Q)} 〈skip〉 {recv(a, P) ∗ recv(a,Q)}

This axiom states that when a thread has been promised a resource that consists of two
parts, access can be split between two threads, potentially before the resource is available.
This is achieved by splitting a single promise for a resource consisting of two disjoint parts
into two promises, one for each part.

Note that the splitting property is not a logical entailment – applying it requires an
operational step, skip. This is because the property manipulates a shared higher-order
resource: recv(a, P). To avoid problems with self-reference, iCAP requires that such manip-
ulations correspond with operational steps – this anomaly is discussed when we introduce
iCAP in §4.1. Thus we have to assume that every application of the splitting specification
is associated with a skip. We discuss whether this assumption is justified in §4.1.

3.3. Chains and renunciation

To allow many threads to access related resources in sequence, we can construct a chain
of channels. A wait barrier called on a channel waits for signal barriers on all preceding
channels. We use the ordering in a chain to model the logical ordering between a sequence
of parallelized threads. A chain initially consists of a singleton channel constructed using
newchan. We introduce an operation extend which takes as its argument an existing channel,
and creates a new channel immediately preceding it in the chain.

Connecting channels into chains creates a new opportunity for parallelism: the ability to
renounce access to a resource without acquiring it first. In the simple specification given
above, a thread can only call signal if it has acquired the required resource from its
predecessors. However, this is often unnecessary. For example, consider the following three
threads:

*x = *x + a;
signal(i)

if (b != 0) {
wait(i);
*x = *x + b;

}
signal(j);

wait(j);
r = *x

Here i and j are channels arranged in a chain. The second thread waits on i only if it needs
to access x. Otherwise it signals immediately, even if the first thread has not signalled.
Without renunciation the thread would have to insert a wait confirming that the first
thread had signalled.

Chains. To support chains, we introduce an order predicate ‘ ≺ ’ which represents the
order between links in the chain. x ≺ y asserts that the channel x is earlier in the chain
than channel y. We use two axioms about the ordering of channels:

x ≺ y =⇒ x ≺ y ∗ x ≺ y (duplication)

x ≺ y ∗ y ≺ z =⇒ x ≺ z (transitivity)

The abstract specification of extend takes a send predicate and a set of order predicates
about earlier channels E, and a set of order predicates about later channels L. The function
returns a pair of channels (a,b), that are later than all the channels before x and before
all the channels after x, and a is before b in the chain. It also creates recv, send, and order
predicates representing the new channel.®

send(x, P) ∗
�e∈E e ≺ x ∗�l∈L x ≺ l

´
(a,b)=extend(x)

®
send(a, Q) ∗ recv(a, Q) ∗ send(b, P)

∗ a ≺ b ∗�e∈E e ≺ a ∗�l∈L b ≺ l

´
Renunciation. To support renunciation, we add an axiom allowing threads to satisfy re-

quired resources using earlier promised resources:

{recv(x, P) ∗ send(y, P ∗Q) ∗ x ≺ y} 〈skip〉 {send(y,Q)}

By giving up the ability to acquire the P resource on the x channel, we can forward the P
resource to partially discharge our send obligation on a subsequent channel y. If the initial
send obligation on y requires us to supply a resource with two disjoint parts P and Q, after
renouncing P to y, the obligation on y reduces to Q.

3.4. Full abstract specification

Figure 2 shows our client-facing abstract specification for deterministic parallelism. It in-
troduces the extra predicates and axioms to support chains, renunciation and splitting.

Note that in §5 we define a more general specification which is more convenient when
verifying channel implementations. Specifically, it uses explicit stabilization rather than
stable assertions (see §4.1). The client-facing specification given in Figure 2 is less general,
but also less complex, and sufficient to verify all our examples.

3.5. Adding Forward Extension

The specification in Fig. 2 allows chain extension ‘backwards’, by inserting a channel imme-
diately before an existing send. However, in order to impose a sequential order, it is often
useful to allows extension in the other direction, at the end of the chain. Fortunately, it is

Specifications:
{emp} i = newchan() {recv(i, P) ∗ send(i, P)}

{send(i, P) ∗ stable(P) ∗ P} signal(i) {emp}

{recv(i, P) ∗ stable(P)} wait(i) {P}®
send(x, P) ∗
�e∈E e ≺ x ∗�l∈L x ≺ l

´
(b,a)=extend(x)

®
send(b, Q) ∗ recv(b, Q) ∗ send(a, P)

∗ b ≺ a ∗�e∈E e ≺ b ∗�l∈L a ≺ l

´
Axioms: x ≺ y =⇒ x ≺ y ∗ x ≺ y

x ≺ y ∗ y ≺ z =⇒ x ≺ z

{recv(x, P) ∗ send(y, P ∗Q) ∗ x ≺ y} 〈skip〉 {send(y,Q)}

{recv(a, P ∗Q) ∗ stable(P ∗Q)} 〈skip〉 {recv(a, P) ∗ recv(a,Q)}
Fig. 2. Abstract specification for deterministic parallelism.

simple to implement a wrapper library with this behaviour on top of our abstract specifica-
tion. We use an object called seqChan to represent the end of the chain, with specification
as follows:

{seqChan(x, P)} cw,cs = extendSC(x) {recv(cw, P) ∗ send(cs, Q) ∗ cw ≺ cs ∗ seqChan(x, Q)}
{P} sc = newSeqChan() {seqChan(sc, P)}

To implement a seqChan object, we store a pair of channels. The first, cWait, is the recv
point for the resource P . The second, cEnd is a dummy send channel used to allow extension.
In order to extend, the wrapper library calls extend(cEnd) – this yields in a new channel
that can replace cWait. The seqChan object is thus defined as follows:

seqChan(x, P) , ∃cw, ce. x.cWait 7→ cw ∗ x.cEnd 7→ ce ∗ recv(cw, P) ∗ send(ce,) ∗ cw ≺ ce

The details of the implementation and verification of the wrapper library are given in Fig. 3.
Note that all the reasoning in this proof uses the abstract specification in Fig. 2 – we can
use this specification to build and verify richer families of synchronisation constructs.

3.6. Example: Concurrent Key-value Store

We will now use our channels to implement a simple tree-based key-value store. This data-
structure permits concurrent updates and lookups, but our channels enforce the illusion of
sequential behaviour. We will focus on two methods: an add/update method which inserts
a key-value pair, and a reverse lookup method which returns the key associated with a
particular value, if it exists. These have the following specification:

{Tree(x,m)} add(x, k, v); {Tree(x,m[k 7→ v])}
{Tree(x,m)} k = revlookup(x, v); {Tree(x,m) ∗ (m(k) = v ∨ (k = −1 ∧ v /∈ img(m)))}

The second parameter of the Tree predicate represents the contents of the key-value store,
i.e. it is a partial function m : Key ⇀ Val. Note this specification make it appear that the
each method runs sequentially. For example, the postcondition of add(x,k,v) is a Tree
updated so that the store maps key k to value v. However, internally the add operation
forks a new thread to apply the update, then immediately returns. In other words, add and
revlookup operations run concurrently, but our channels enforce the illusion of sequential
access.

1 struct seqChan {
2 chan * cWait;
3 chan * cEnd;
4 }
5

6 seqChan * newSeqChan() {
7 chan c1,c2;

8

¶
P
©

9 seqChan * sc = new(seqChan);

10

¶
sc.cWait 7→ ∗ sc.cEnd 7→ ∗ P

©
11 c2 = newchan();

12

¶
sc.cWait 7→ ∗ sc.cEnd 7→ ∗ P ∗ recv(c1, Q) ∗ send(c1, Q)

©
13 c1,c2 = extend(c2);

14

¶
sc.cWait 7→ ∗ sc.cEnd 7→ ∗ P ∗ recv(, Q) ∗ send(c1, P) ∗ recv(c1, P) ∗ send(c2, Q)∗

©
15 signal(c1);

16

¶
sc.cWait 7→ ∗ sc.cEnd 7→ ∗ recv(, Q) ∗ recv(c1, P) ∗ send(c2, Q)∗

©
17 sc->cWait = c1;
18 sc->cEnd = c2;

19

¶
sc.cWait 7→ c1 ∗ sc.cEnd 7→ c2 ∗ recv(, Q) ∗ recv(c1, P) ∗ send(c2, Q)∗

©
20 // Drop useless recv predicate for end of the channel

21

¶
seqChan(sc, P)

©
22 return sc;
23 }
24

25 (chan *,chan *) extendSC(seqChan* sc) {
26 chan ce,cs,cw;

27

¶
seqChan(sc, P)

©
28

¶
∃cw, ce. sc.cWait 7→ cw ∗ sc.cEnd 7→ ce ∗ recv(cw, P) ∗ send(ce,) ∗ cw ≺ ce

©
29 cw = sc->cWait;

30

¶
∃ce. sc.cWait 7→ cw ∗ sc.cEnd 7→ ce ∗ recv(cw, P) ∗ send(ce,) ∗ cw ≺ ce

©
31 cs,ce = extend(sc->cEnd);

32

®
sc.cWait 7→ cw ∗ sc.cEnd 7→ ∗ recv(cw, P) ∗ send(cs, Q) ∗ recv(cs, Q)

∗ send(ce,) ∗ cw ≺ cs ∗ cs ≺ ce

´
33 sc->cWait = cs;
34 sc->cEnd = ce;

35

®
sc.cWait 7→ cs ∗ sc.cEnd 7→ ce ∗ recv(cw, P) ∗ send(cs, Q) ∗ recv(cs, Q)

∗ send(ce,) ∗ cw ≺ cs ∗ cs ≺ ce

´
36

¶
recv(cw, P) ∗ send(cs, Q) ∗ cw ≺ cs ∗ seqChan(sc, Q)

©
37 return (cw,cs);
38 }

Fig. 3. Source code and proof outlines for seq channels

Algorithm. Keys and values are stored in a standard binary tree data-structure, with left
and right subtrees partitioned according to the value stored at a given node. Each subtree
stores a seqChan in field seqc, which is used to sequentialise concurrent access to it.

struct Node {
int key;
int val;
Tree * left;
Tree * right;

};

struct Tree {
Node * node;
seqChan * seqc;

}

Tree * newTree() {
Tree * t = new(Tree);
t->node = null;
t->seqc = newSeqChan();

}

Node * mkNode(int k, int v) {
Node * n = new(Node);
n->val = v;
n->key = k;
n->left = newTree();
n->right = newTree();

}

The two main methods are defined as follows. Both call extendSC to register the current
operation in the chain, then call a concurrent helper method which uses the channels to
synchronise. In the case of addNode, the helper method is forked into another thread. These
helper methods, addNode and revlookupNode, are defined in Fig. 4.

add(Tree* t, int k, int v) {
cw,cs = extendSC(t->seqc);
fork(addNode(&(t->node),k,v,cw,cs));

}

int revlookup(Tree* t, int v) {
cw,cs = extendSC(t->seqc);
k = revlookupNode(&(t->node), v, cw, cs);

}

Channel operations are highlighted red in Fig. 4. Both methods can be understood se-
quentially, if these operations are ignored1:

— addNode() searches from the root for the position of the chosen key – the order on nodes
allows it to locate a unique position. On finding the appropriate subtree, it either creates
a new node if one is absent, or updates the value if a node exists.

— revLookupNode() searches the entire tree for a key associated with the value. It checks
the current node, and then calls itself recursively on the left and right subtrees. Finding
an appropriate value causes the function to return and the search to end.

The channel operations enforce sequential access for both operations when searching down
the tree. Before accessing a subtree, an operation must register its presence using extendSC,
and then wait for all preceding threads using wait.

For example, addNode first waits for any preceding operations accessing this subtree (line
4). After taking a step left or right down the tree, the method registers its presence in the
new subtree by extending the chain (line 19). It then signals it has left the parent node,
allowing other operations to access it (line 20).

1We might imagine the program being parallelised by injecting these constructs, either by an expert or a
sufficiently clever automated analysis.

1 addNode(Tree * curr, int k, int v, chan *cw, chan *cs) {
2 chan c1,c2;
3 while(true) {
4 wait(cw);
5 if(curr->node == null) {
6 Node * n = mkNode(k,v);
7 curr->node = n;
8 signal(cs);
9 return;

10 } else if (curr->node->key < k) {
11 curr = curr->node->left;
12 } else if (curr->node->key > k) {
13 curr = curr->node->right;
14 } else {
15 curr->node->val = v;
16 signal(cs);
17 return;
18 }
19 c1,c2 = extendSC(curr->seqc);
20 signal(cs);
21 cw = c1;
22 cs = c2;
23 }
24 }
25

26

27 int revlookupNode(Tree * curr, int v, chan cw, chan cs) {
28 wait(cw);
29 if(curr->node == null) {
30 signal(cs);
31 return -1;
32 } else {
33 if (curr->node->val == v) {
34 signal(cs);
35 return k;
36 }
37 cl = curr->left;
38 cr = curr->right;
39 c1,c2 = extendSC(cl->seqc);
40 c3,c4 = extendSC(cr->seqc);
41 signal(cs);
42 r = revlookupNode(cl, v, c1, c2)
43 if(r == -1) {
44 return revlookupNode(cr, v, c3, c4)
45 } else {
46 signal(c4); //Renunciation
47 return r;
48 }
49 }
50 }

Fig. 4. Concurrent helper methods for the key-value store.

revlookupNode follows a similar pattern, but an operation registers its presence in both
left and right subtrees, because it may need to search both (lines 22–23). If the value is
located in the left subtree, then the right subtree will never be searched, and can be signalled
without waiting (line 42) – in other words, this is an example of renunciation.

Note that the need to wait for a return value sequentialises calls to revlookup. However,
with a little more work we could return this value through a channel, allowing further
parallelism with largely identical reasoning.

Verifying the key-value store. The predicate Tree representing the store data-structure is
defined as follows:

Tree(x,m) , ∃c. seqChan(c,∃r. x.node 7→ r ∗ Node(r,m)) ∗ x.seqc 7→ c

Node(x,m) , ∃l, r, k. x.key 7→ k ∗ x.val 7→ v ∗ x.left 7→ l ∗ x.right 7→ r ∗
Tree(l,ml) ∗ Tree(r,mr) ∗ml; [k : v];mr = m ∗ keys(ml) < k < keys(mr)

Node(null,m) , m = ∅

The Tree predicate consists of a pointer to a seqChan predicate, which promises the rest of
the tree. Thus, by using extendSC and wait, a thread can gain access to the remainder of
the tree. The Node predicate splits the map m between its key/value, and the left and right
subtrees. Each subtree is represented recursively by a Tree predicate.

The key step in the proof lifts the specification of extendSC to the Tree predicate. The
correctness of this step follows trivially from the definition of Tree.¶

Tree(t,m)
©

cw,cs = extendSC(t->seqc);®
Tree(t,m′) ∗ recv (cw,∃x. curr.node 7→ x ∗ Node(x,m))

∗ send (cs,∃x. curr.node 7→ x ∗ Node(x,m′)) ∗ cw ≺ cs

´
In the precondition, the current thread is promised a tree containing map m. This proof
step promises that m will then be updated to some other map m′. This m′ can be chosen
as needed to represent the correct update; however, before the channel can be signalled, the
chosen map must be established. This step also gives a handle to the old promise, cw, and
a handle used to establish the new promise, cs.

This proof step is used in the add and addNode functions. For example, in add, the
promised map is updated to m[k : v] as follows. This guarantees a correctly-updated data-
structure to the next thread accessing the store, but defers the actual data-structure mod-
ification.¶

Tree(t,m)
©

add(Tree* t, int k, int v) {
cw,cs = extendSC(t->seqc);®
Tree(t,m[k : v]) ∗ recv (cw,∃x. t.node 7→ x ∗ Node(x,m))

∗ send (cs,∃x. t.node 7→ x ∗ Node(x,m[k : v]))

´
fork(addNode(t, k, v, cw, cs));

}¶
Tree(t,m[k : v])

©
The proof outline for addNode can be found in Fig. 5. Each iteration of the main loop

updates one subtree. The loop invariant (line 6) consists of a recv predicate for the previous
version of the subtree, and a send predicate for the subtree updated with the key/value
pair. Calling wait grants access to the previous version of the subtree. The algorithm then
examines the node contents and branches on the results.

If the current node is null, then the map m must be empty. Therefore, send can be
satisfied by just creating a single node containing the key/value pair (line 14). The case
where the node already exists is similar.

In the recursive case, the algorithm first promises to update the tree by calling extendSC
on the appropriate subtree (line 19). It then uses signal to indicate it has finished with
the current node, and then recurses to the appropriate subtree.

More specifically, suppose the algorithm takes the left branch. In order to signal, it must
first satisfy the send on cs, which requires a Node predicate with the key/value pair inserted.
It is easy to prove that the map can be partitioned into subtrees less-than and greater-than
the current key – these two maps are written ml and mr (line 22). As the required key
must be added to the left subtree, the right subtree need not be updated. Calling extendSC
promises to updates the left subtree with the key/value pair, which in turn satisfies the
Node predicate required by send. This means the algorithm can call signal (line 23).

The proof structure for revlookup is similar to the one for add: by extending the chain
with extendSC, the program gains the right to access the tree structure, while still permit-
ting other threads to work on the tree at the same time.¶

Tree(t,m)
©

int revlookup(Tree* t, int v) {
cw,cs = extendSC(t->seqc);®
Tree(x,m) ∗ recv (cw,∃x. t.node 7→ x ∗ Node(x,m))

∗ send (cs,∃x. t.node 7→ x ∗ Node(x,m))

´
k = revlookupNode(&(t->node), v, cw, cs);

}¶
Tree(x,m) ∗ (m(k) = v ∨ (k = −1 ∧ v /∈ img(m)))

©
The proof outline for the revlookupNode helper function can be found in Figures 6 and 7.

The broad structure of the reasoning is similar to addNode, albeit expressed inductively
rather than iteratively. Each step down the tree retrieves a subtree by calling wait, and
then releases the portion of the tree it has already searched using signal. Because subtrees
are associated with channels, the algorithm only accesses the portion of the tree it needs,
leaving the remainder of the tree available to other threads.

One significant step is the renunciation that takes place on line 40. Here the algorithm
takes requirement to supply a subtree to c4 and satisfies it using the recv predicate for c3.
In other words, the resource is released without ever being acquired by the thread.

Summary. Thus, using our abstract specification for channels, we have verified the be-
haviour of the parallelised key-value store. Crucially, even though this program features
many threads running at once, with complex communication between threads, each indi-
vidual thread is able to reason locally, without dealing with other threads or the imple-
mentation of the barriers. Furthermore, we are able to verify a function specification which
hides the existence of internal concurrency. In [?] we use the same abstract specification as
the basis for a general parallelisation analysis.

4. PROOF STRATEGY

This section provides an intuitive introduction to our general proof approach, and to iCAP,
the reasoning system our proofs are based on. We introduce iCAP using a tutorial-style
presentation by verifying a simple channel implementation against a simplified barrier spec-
ification consisting of strengthened versions of the first three axioms of our abstract speci-

1

¶
recv (cw,∃x. curr.node 7→ x ∗ Node(x,m)) ∗ send (cs,∃x. curr.node 7→ x ∗ Node(x,m[k : v]))

©
2 addNode(Tree * curr, int k, int v, chan *cw, chan *cs) {
3 Tree * t;
4 chan c1,c2;
5 while(true) {

6

¶
recv (cw,∃x. curr.node 7→ x ∗ Node(x,m)) ∗ send (cs,∃x. curr.node 7→ x ∗ Node(x,m[k : v]))

©
7 wait(cw);

8

¶
∃x. curr.node 7→ x ∗ Node(x,m) ∗ send (cs,∃x. curr.node 7→ x ∗ Node(x,m[k : v]))

©
9 if(curr->node == null) {

10

¶
curr.node 7→ null ∗m = ∅ ∗ send (cs,∃x. curr.node 7→ x ∗ Node(x,m[k : v]))

©
11 Node * n = mkNode(k,v);
12 curr->node = n;

13

¶
∃x. curr.node 7→ x ∗ Node(x, [k : v]) ∗ send (cs,∃x. curr.node 7→ x ∗ Node(x, [k : v]))

©
14 signal(cs);
15 return;
16 } else if (curr->node->key < k) {
17 curr = curr->node->left;

18

∃c, x. c.node 7→ x ∗ ∃r, k′, v′. x.key 7→ k′ ∗ x.val 7→ v′ ∗ x.left 7→ curr ∗ x.right 7→ r

∗ Tree(curr,ml) ∗ Tree(r,mr) ∗ml; [k′ : v′];mr = m ∗ keys(ml) < k′ < keys(mr)

∗ k < k′ ∗ send (cs,∃x. c.node 7→ x ∗ Node(x,m[k : v]))

19 c1,c2 = extendSC(curr->seqc);

20

∃c, x. c.node 7→ x ∗ ∃r, k′, v′. x.key 7→ k′ ∗ x.val 7→ v′ ∗ x.left 7→ curr ∗ x.right 7→ r

∗ Tree(curr,ml[k : v]) ∗ Tree(r,mr) ∗ml[k : v]; [k′ : v′];mr = m ∗ keys(ml) < k′ < keys(mr)

∗ send (cs,∃x. c.node 7→ x ∗ Node(x,m[k : v]))

∗ recv (c1,∃x. curr.node 7→ x ∗ Node(x,ml)) ∗ send (c2,∃x. curr.node 7→ x ∗ Node(x,ml[k : v]))

21 // definition of Node predicate

22

®
∃c, x. c.node 7→ x ∗ Node(x,m[k : v]) ∗ send (cs,∃x. c.node 7→ x ∗ Node(x,m[k : v]))

∗ recv (c1,∃x. curr.node 7→ x ∗ Node(x,ml)) ∗ send (c2,∃x. curr.node 7→ x ∗ Node(x,ml[k : v]))

´
23 signal(cs);

24

¶
recv (c1,∃x. curr.node 7→ x ∗ Node(x,ml)) ∗ send (c2,∃x. curr.node 7→ x ∗ Node(x,ml[k : v]))

©
25 cw = c1;
26 cs = c2;

27

¶
recv (cw,∃x. curr.node 7→ x ∗ Node(x,ml)) ∗ send (cs,∃x. curr.node 7→ x ∗ Node(x,ml[k : v]))

©
28 } else if (curr->node->key > k) {
29 // Similar to left side
30 ...
31 } else {
32 curr->node->val = v;
33 signal(cs);
34 return;
35 }
36 }
37 }

Fig. 5. Proof outline for addNode.

1

¶
recv (cw,∃x. curr.node 7→ x ∗ Node(x,m)) ∗ send (cs,∃x. curr.node 7→ x ∗ Node(x,m))

©
2 int revlookupNode(Tree * curr, int v, chan cw, chan cs) {
3 wait(cw);

4

¶
∃x. curr.node 7→ x ∗ Node(x,m) ∗ send (cs,∃x. curr.node 7→ x ∗ Node(x,m))

©
5 if(curr->node == null) {

6

¶
∃x. curr.node 7→ x ∗ Node(x,m) ∗ send (cs,∃x. curr.node 7→ x ∗ Node(x,m)) ∧m = ∅

©
7 signal(cs);

8

¶
v /∈ img(m)

©
9 return -1;

10 } else {

11

¶
∃x. curr.node 7→ x ∗ Node(x,m) ∗ send (cs,∃x. curr.node 7→ x ∗ Node(x,m))

©
12 if (curr->node->val == v) {
13 k = curr->node->key;

14

¶
∃x. curr.node 7→ x ∗ Node(x,m) ∗ send (cs,∃x. curr.node 7→ x ∗ Node(x,m)) ∧m = [k : v]

©
15 signal(cs);

16

¶
m(k) = v

©
17 return k;
18 }

19

¶
∃x. curr.node 7→ x ∗ Node(x,m) ∗ send (cs,∃x. curr.node 7→ x ∗ Node(x,m))

©
20 cl = curr->left;
21 cr = curr->right;
22 c1,c2 = extendSC(cl->seqc);
23 c3,c4 = extendSC(cr->seqc);

24

∃x. curr.node 7→ x ∗ Node(x,m) ∗ send (cs,∃x. curr.node 7→ x ∗ Node(x,m))

∗ recv (c1,∃x. cl.node 7→ x ∗ Node(x,ml)) ∗ send (c2,∃x. cl.node 7→ x ∗ Node(x,ml))

∗ recv (c3,∃x. cr.node 7→ x ∗ Node(x,mr)) ∗ send (c4,∃x. cr.node 7→ x ∗ Node(x,mr))

∗ ∃k′, v′.m = ml; [k′ : v′];mr ∗ v 6= v′

25 signal(cs);

26

recv (c1,∃x. cl.node 7→ x ∗ Node(x,ml)) ∗ send (c2,∃x. cl.node 7→ x ∗ Node(x,ml))

∗ recv (c3,∃x. cr.node 7→ x ∗ Node(x,mr)) ∗ send (c4,∃x. cr.node 7→ x ∗ Node(x,mr))

∗ ∃k′, v′.m = ml; [k′ : v′];mr

27 r = revlookupNode(cl, v, c1, c2)

28

®
recv (c3,∃x. cr.node 7→ x ∗ Node(x,mr)) ∗ send (c4,∃x. cr.node 7→ x ∗ Node(x,mr))

∗ ∃k′, v′.m = ml; [k′ : v′];mr ∗ v 6= v′ ∗ (ml(r) = v ∨ (v /∈ img(ml) ∧ r = −1)

´
29 }
30 }

Fig. 6. Proof outline for revlookupNode (completed in Fig. 7)

31

®
recv (c3,∃x. cr.node 7→ x ∗ Node(x,mr)) ∗ send (c4,∃x. cr.node 7→ x ∗ Node(x,mr))

∗ ∃k′, v′.m = ml; [k′ : v′];mr ∗ v 6= v′ ∗ (ml(r) = v ∨ (v /∈ img(ml) ∧ r = −1)

´
32 if(r == -1) {

33

®
recv (c3,∃x. cr.node 7→ x ∗ Node(x,mr)) ∗ send (c4,∃x. cr.node 7→ x ∗ Node(x,mr))

∗ ∃k′, v′.m = ml; [k′ : v′];mr ∗ v 6= v′ ∗ (ml(−1) = v ∨ (v /∈ img(ml))

´
34 r = revlookupNode(cr, v, c3, c4)

35

®
∃k′, v′.m = ml; [k′ : v′];mr ∗ v 6= v′ ∗ (ml(−1) = v ∨ (v /∈ img(ml))

∗ (mr(r) = v ∨ (v /∈ img(mr) ∧ r = −1)

´
36

¶
(m(−1) = v ∨ (v /∈ img(m) ∧ r = −1)) ∨ (m(r) = v)

©
37 return r;
38 } else {

39

®
recv (c3,∃x. cr.node 7→ x ∗ Node(x,mr)) ∗ send (c4,∃x. cr.node 7→ x ∗ Node(x,mr))

∗ ∃k′, v′.m = ml; [k′ : v′];mr ∗ v 6= v′ ∗ml(r) = v

´
40 <skip> // Renunciation

41

¶
send (c4, true) ∗ ∃k′, v′.m = ml; [k′ : v′];mr ∗ v 6= v′ ∗ml(r) = v

©
42 signal(c4);

43

¶
∃k′, v′.m = ml; [k′ : v′];mr ∗ v 6= v′ ∗ml(r) = v

©
44

¶
m(r) = v

©
45 return r;
46 }
47 }
48 }

Fig. 7. Proof outline for revlookupNode (continued from Fig. 6)

fication:

{emp} i = newchan() {recv(i, P) ∗ send(i, P)}

{send(i, P) ∗ stable(P) ∗ P} signal(i) {emp}

{recv(i, P) ∗ stable(P)} wait(i) {P}

By avoiding splitting, chain extension, and renunciation, we can illustrate the basic features
of iCAP in a straightforward manner.

Figure 8 gives a simple barrier implementation. Each channel has a flag field representing
the current state of the channel. Each send / recv pair is associated with one such structure
in the heap. The signal simply sets the flag, while the wait loops until the flag is set. In §5
and §6 we reintroduce the necessary extra reasoning to verify our full abstract specification.

4.1. iCAP tutorial

Impredicative Concurrent Abstract Predicates (iCAP) is a separation logic variant intended
for verifying concurrent higher-order programs [?; ?]. In this section we introduce the iCAP
concepts and proof rules needed to understand the proofs in this paper. The full iCAP proof
system is included in Appendix C.

We do not present iCAP’s step-indexed semantics in this paper. Instead we reason entirely
using iCAP’s proof rules, and treat the semantics as a black box. Soundness of these proof

struct chan {
int flag;

}

chan *newchan() {
chan *x := new(chan);
x->flag := 0;
return x;

}

signal(chan *x) {
x->flag := 1;

}

wait(chan *x) {
while(x->flag == 0)
skip;

}

Fig. 8. Implementation of the barrier library.

rules is proved in the iCAP article [?] with some auxiliary lemmas proved in the associated
Technical Report [?].

In this section, we employ a tutorial-style presentation, using the verification of the sim-
plified barrier to motivate and illustrate concepts and proof rules as they are introduced.
When presenting proof rules we will elide typing contexts and logical contexts.

Regions. To handle concurrency, iCAP extends separation logic with regions containing
resources shared between threads. Conceptually, the state in iCAP consists of a local com-
ponent and a finite number of shared regions, each governed by a protocol, as illustrated
below.

P s1 s2

α1

α2

· · · s1

s2

s3

β1

β1

local state shared regions

In the state illustrated above, we own the local resource P exclusively and can thus access
it non-atomically. Resources owned by regions are shared between every thread and must
therefore be accessed atomically and updated according to the protocol of the given region.

Protocols require that threads sharing a region behave as expected: for example, only
releasing a lock once it has been acquired. They are expressed as a labelled transition system
and an interpretation function. The labelled transition system defines the abstract states of
the given region and describes how the abstract state may evolve, while the interpretation
function maps each abstract state to a corresponding concrete heap resource. An assertion
about a region has the following form:

region(R, T, I, r)

In this assertion, R is the set of abstract states which the region could currently occupy.
These possible states are taken from a larger set, fixed when the region is created. I maps
from abstract states to invariants, also written in iCAP’s assertion language. Intuitively,
I(x) describes the resources contained in the region when it is in abstract state x ∈ R. To
allow multiple distinct regions, r is a unique identifier for this region.

The remaining field, T , is a transition relation over abstract states, with transitions la-
belled with actions. T and I express the protocol that all threads must adhere to when
accessing the region. Threads are only allowed to move a region from one abstract state

to another if there exists a path in the labelled transition system T labelled with actions
permitted to the thread. Permitted actions are tracked using tokens. These are linear ob-
jects created at the same time as a region. By issuing threads different tokens, we grant
them different abilities over the shared region. For instance, the following assertion asserts
ownership of a set and change token: [set]r1i ∗ [change]r2j . Here r1 and r2 are the identifiers
for the associated regions, while i and j are fractional parameters tracking how ownership
of each token is shared.

A token with full permission (i = 1) asserts exclusive ownership of the action and thus
ensures that no other thread can use the given action to change the abstract state of the
shared region. Partial permission (i < 1) allows the owner to use the action, but does not
exclude other currently executing threads from also using the action. Tokens can be split if
the permission value is preserved: [α]ri+j ⇔ [α]ri ∗ [α]rj . In contrast, region assertions can be
duplicated arbitrarily:

region(R, T, I, r) =⇒ region(R, T, I, r) ∗ region(R, T, I, r)

This allows arbitrarily many threads to access a shared region, but the ability to modify
the region is restricted to threads holding the appropriate tokens.

Defining send and recv. To verify the implementation shown in Figure 8 with respect to
the abstract specification we must first give concrete definitions to the abstract predicates
send and recv.

The idea is to introduce a shared region for each channel, governing the internal state of
that channel (the flag field) and ownership of the promised resource P . The shared region
will have three possible abstract states: Low, High and Done. In the Low state the flag is low
and the promised resource has yet to be provided. In the High state the flag is high and the
promised resource has been sent, but not yet received and is thus conceptually owned by
the channel. Lastly, in the Done state the flag is high and the promised resource has been
sent and received. Each abstract state is associated with an invariant by the interpretation
function Ib, defined as follows:

Ib(x, P)(Low) , x.flag 7→ 0

Ib(x, P)(High) , x.flag 7→ 1 ∗ stable(P) ∗ P
Ib(x, P)(Done) , x.flag 7→ 1

Here x is the location of the channel, while P is the resource controlled by the channel. Note
that to move from the Low to the High abstract state the client must transfer ownership of
P to the shared region, in addition to setting the flag. Likewise, to move from the High to
the Done abstract state the client may transfer P out of the shared region and into its local
state.

We want to ensure that only the sender (i.e., the owner of the send resource) is allowed
to transition the abstract state from Low to High and only the receiver from High to Done.
This will force the sender to transfer P to the shared region upon setting the flag and allow
the receiver to take ownership of P once the flag has been set. In iCAP, we express this
by labelling the Low to High transition with a set action and giving the sender exclusive
ownership of the set action. The transition relation Tb thus has the following form. Each
transition corresponds to an operation that can be performed on the channel.

Low High Done

set get

Using these definitions, we can give the predicates send and recv an interpretation:

send(x, P) , ∃r. region({Low}, Tb, Ib(x, P), r) ∗ [set]r1

recv(x, P) , ∃r. region({Low,High}, Tb, Ib(x, P), r) ∗ [get]r1

The send predicate asserts that the abstract state is Low, since the promised resource has
not been sent yet. On the other hand, recv asserts that the abstract state is either Low
or High, but not Done, as the receiver does not know whether the promised resource has
been sent yet, only that it has not been received yet. [set]r1 and [get]r1 are tokens allowing
the thread to take particular transitions in Tb. The send predicate allows the sender to set
the flag and supply the promised resource, while recv allows the receiver to retrieve the
promised resource.

Stability. Region assertions allow us to describe our knowledge about the current abstract
state of a region. However, since regions are shared, concurrently executing threads may
update the abstract state of regions, invalidating our region assertions in the process. An
assertion is said to be stable if it is invariant under possible interference from the environ-
ment. Since the concrete send resource defined above asserts exclusive ownership of the set
action, the environment cannot use this transition to update the abstract state. Hence, if we
own the send resource, the environment cannot invalidate our knowledge that the current
abstract state is Low; thus, the send resource is stable.

More generally, a region assertion, region(R, T, I, r), is stable if R is closed under all
transitions in T labelled with actions potentially owned by the environment. This is captured
by the following iCAP proof rule.

(∀α 6∈ A. ∀x ∈ X. T (α)(x) ⊆ X) =⇒ stable(region(X,T, I, r) ∗~α∈A[α]r1)

Since the assertion asserts exclusive ownership of all the action in A (~α∈A[α]r1), the envi-
ronment cannot own any actions in A. Hence, the region assertion is stable if X is closed
under any transitions α not in A, as expressed by the assumption.

Stability is closed under several of the usual connectives of higher-order separation logic
(⊥,>,∨,∧,∀,∃,=τ , emp, ∗), but generally not under implication and separating implication.
To avoid reasoning about stability of separating implication, we use Wickerson et al’s explicit
stabilisation operators, b−c and d−e, instead of requiring P to be stable [?]. We explicitly
stabilise using bP c and dP e which are stable by construction for any assertion P . bP c stands
for the weakest assertion stronger than P that is stable and dP e for the strongest assertion
weaker than P that is stable. Thus, if P is already stable, explicitly stabilising P does
nothing:

stable(P) =⇒ (bP c ⇐⇒ P ⇐⇒ dP e)

However, in general, only the right implications hold: bP c ⇒ P ⇒ dP e. Explicit stabilisation
operators are semi-distributive over separating conjunction:

bP c ∗ bQc =⇒ bP ∗Qc dP ∗Qe =⇒ dP e ∗ dQe

As a result, they are easy to move around in proofs.
The concrete recv resource defined above is thus also easily shown to be stable, as

{Low,High} is closed under the set transition, which is the only transition potentially owned
by the environment.

When reasoning about non-atomic statements, iCAP requires that the pre- and postcon-
dition is stable, to account for possible interference from the environment. We use standard
Hoare triples, written {P} C {Q}, when reasoning about non-atomic statements and angled
triples, written 〈P 〉 C 〈Q〉, when reasoning about atomic statements. For every standard
Hoare triple, {P} C {Q}, we implicitly have to prove stability of P and Q. For the majority

of the proof outlines in this article, these stability proofs are trivial and will be omitted.
The following structural rule allows us to switch from atomic to non-atomic triples:

atomic(C) ∧ stable(P) ∧ stable(Q) ∧ 〈P 〉 C 〈Q〉 =⇒ {P} C {Q}
The predicate atomic holds for any command which is assumed to be atomic by iCAP: these
are CAS, field read, field assignment and stack assignment.

Higher-order shared resources. The idea of shared resources that must satisfy an invariant
or evolve following a protocol could equally be expressed in prior logics such as CAP or
RGSep [?; ?]. The distinction with iCAP is that it is based on a higher-order separation logic
and supports shared higher-order resources – i.e., shared regions containing shared resources.
For instance, the send resource defined above is parametric in the promised resource P , which
the client is free to instantiate with a shared resource (for example, another synchronisation
construct).

It is well-known that reasoning about shared higher-order resources is difficult (for exam-
ple, see the problems with our previous paper, discussed in §8). Intuitively, this is because
the semantics of protocols is defined in terms of the semantics of assertions, but asser-
tions are defined in terms of protocols. To avoid this problematic circularity, iCAP stratifies
the construction of the semantic domain of protocols using step-indexing. To capture this
stratification in the logic, iCAP introduces a ‘later’ modality, written . . Intuitively, .P ex-
presses that the assertion P cannot be accessed immediately, but only holds after one step
of execution. To ensure that protocols defined in iCAP are well-defined they are implicitly
interpreted one step later. The region assertion region({x}, T, I, r) thus expresses that the
shared region r currently owns the resources described by .I(x).

If an assertion P holds now, then it also holds after one step of execution (assuming
no interference from other threads). This is expressed by the (SMono) rule given below. In
general, if .P holds now, it is not the case that P also holds now. Instead, . operators can be
eliminated by taking an execution step, as expressed by the frame rule for atomic commands
(AFrame). Using (SMono) and the rule of consequence, one can derive the standard CAP
frame rule.

P =⇒ .P (SMono)

stable(R) ∧ 〈P 〉 C 〈Q〉 =⇒ 〈P ∗ .R〉 C 〈Q ∗R〉 (AFrame)

The effect of this is that accesses to shared resources in regions coincide with operational
steps in the program. This breaks the circularity and gives iCAP a well-defined semantics.
However, it also means that splitting and renunciation must be associated with an explicit
skip instruction to justify the transfer of shared resources in and out of regions. While
these skip instructions are crucial to the well-definedness of protocols, they can typically
be eliminated once we consider a whole program. In particular, for pre- and postcondi-
tions expressible in first-order separation logic, iCAP is adequate with respect to first-order
separation logic [?, Theorem 1] and in first-order separation logic skip instructions can
freely be eliminated. Hence, if P and Q are expressible in first-order separation logic and
`iCAP {P} C {Q}, then `SL {P} C̃ {Q}, where C̃ is C stripped of skip instructions.

The later operator commutes over conjunction, disjunction, separating conjunction, stabi-
lization brackets and semi-commutes over implication and separating implication. Later also
commutes over existential and universal quantification over non-empty types. See Appendix
C.2.2 for proof rules. In proof outlines we often apply these properties silently.

Reasoning about shared regions. All statements that access resources owned by shared
regions must be atomic and obey the protocols of the regions involved. This is achieved
using structural rules that allow shared resources to be treated as local resources for the
duration of an atomic statement. We refer to these rules as “region opening” rules and as
“entering” and “exiting” a shared region, when applying these rules in proof outlines.

Conceptually, these rules require us to prove 1) that we own sufficient action permissions
to justify any potential updates of the abstract state and 2) that we transfer the appropri-
ate resources back to the shared region after the atomic statement. To illustrate, consider
verifying the signal method of the simplified barrier implementation:

{send(i, P) ∗ stable(P) ∗ P} i->flag := 1 {emp}
Since raising the flag is an atomic statement and both the pre- and postcondition is stable,
we can switch to atomic triples. This frees us from reasoning about stability and possible
interference during the execution of the atomic statement. After unfolding the send resource
we are thus left with the following proof obligation:

〈region({Low}, Tb, Ib(x, P), r) ∗ [set]r1 ∗ stable(P) ∗ P 〉 x->flag := 1 〈emp〉
The precondition asserts that the flag field is owned by the shared region r. To update the
field we are thus forced to open the shared region governing the given channel and thus to
respect its protocol. Intuitively, upon raising the flag the abstract state changes from Low
to High. We can thus strengthen the proof obligation:

〈region({Low}, Tb, Ib(x, P), r) ∗ [set]r1 ∗ stable(P) ∗ P 〉
x->flag := 1

〈region({High}, Tb, Ib(x, P), r)〉

Note that this postcondition is not stable under get transitions. However, since we are
reasoning about an atomic statement, the postcondition is not required to be stable.

To discharge the above proof obligation we first have to prove that we are allowed to
update the abstract state from Low to High. Since the precondition asserts exclusive owner-
ship of the set transition, this reduces to proving that there exists a set-labelled path from
Low to High in Tb, which is true by definition. Secondly, we must prove that x->flag := 1
does indeed transform the resources associated with abstract state Low to those associated
with abstract state High, according to Ib(x, P). We are thus left with the following proof
obligation:

〈.Ib(x, P)(Low) ∗ [set]r1 ∗ stable(P) ∗ P 〉 x->flag := 1 〈.Ib(x, P)(High)〉
Given local ownership of the shared resources for the abstract state Low we must trans-
fer back resources corresponding to abstract state High after the execution of the atomic
statement. Since protocols are implicitly interpreted one step later, the shared resources
are only available one step later in the precondition and only have to be provided one step
later in the postcondition. After unfolding Ib(x, P) and applying SMono we are left with
the following proof obligation:

〈(.x.flag 7→ 0) ∗ [set]r1 ∗ stable(P) ∗ P 〉 x->flag := 1 〈x.flag 7→ 1 ∗ stable(P) ∗ P 〉
Conceptually, this is provable because step-indexing only affects assertions that can generate
problematic circularities in the domain. Primitive points-to assertions such as x.f 7→ v only
affect addresses and values, and are thus independent of the step-indexing. This is captured
by the structural (LPoints) rule given below, which allows us to remove a . from the
pre-condition of a points-to assertion.

〈x.f 7→ y〉 C 〈Q〉 =⇒ 〈.x.f 7→ y〉 C 〈Q〉 (LPoints)

The general iCAP proof rule for accessing shared regions is given below:

∀x ∈ X. (x, f(x)) ∈ T (A)
∀x ∈ X. 〈P ∗~α∈A[α]rg(α) ∗ .I(x)〉 C 〈Q(x) ∗ .I(f(x))〉E

〈P ∗~α∈A[α]rg(α) ∗ region(X,T, I, r)〉 C 〈∃x. Q(x) ∗ region({f(x)}, T, I, r)〉E]{r}
(AOpen)

It generalizes the above example by considering a set of possible initial abstract states X
and allowing the client to transfer ownership of resources in and out of the shared region
using P and Q. To apply the rule we must define a function f that for every possible initial
abstract state x ∈ X defines the desired terminal abstract state f(x). The first premise
asserts that for every possible initial abstract state x there exists a path from x to f(x)
labelled with actions from the set A (we use R as notation for the reflexive, transitive
closure of the relation R). Since the precondition asserts non-exclusive ownership of every
action in A, this ensures that we are allowed to update the abstract state from x to f(x) for
every possible initial state x ∈ X. The g function, which records the fractional ownership
of each action α ∈ A, ensures that we own the same action fractions in the assumption
and conclusion of the rule. We implicitly require that g(α) 6= 0 for all α ∈ A. The second
premise ensures that C does indeed transform the resources associated with the abstract
state x to f(x) for every possible initial abstract state x ∈ X.

Since opening a shared region grants local ownership of the region’s current resources,
in general it would be unsound to have two nested openings of the same region in the
proof tree, as this would duplicate the region’s resources. To avoid this, we annotate the
postcondition of atomic triples with a region mask, E , of regions that may be opened. To
open the region r, the above proof rule requires that r is in the region mask and removes it
from the region mask in the premise, to ensure r is not opened again.

Verifying signal and wait. Figures 10 and 11 sketch proofs for signal() and wait()
respectively. The proof of wait (Fig. 11) uses similar reasoning to signal. The main differ-
ence is that the region has two initial abstract states, Low and High, and that the thread
holds the token get, allowing it to transition from High to Done. We deal with the Low and
High cases separately – see bottom left and right of Fig. 11. In the Low case, the resource
has not been sent yet and we close the region in the Low state again. In the High case, the
resource has been sent and we use the thread’s get token to take ownership of P and close
the region in the Done state.

iCAP is an intuitionistic separation logic, meaning it admits weakening, and in particular
that P∗Q =⇒ Q. We often use this property to dispose of unwanted predicates – intuitively,
we can forget they exist. For example, we delete a redundant set token on line 11 of Figure 10.

View-shifts. The region opening rule given above allows a region to be opened for the
duration of an atomic statement. It is also possible to open a shared region and close it
immediately before the next statement is executed. This is for instance useful to abstractly
describe transfer of resources in and out of shared regions. iCAP expresses such updates of
the abstract state that do not affect the concrete state using the view-shift operator, v.

For instance, the following view-shift expresses that if the channel is in the abstract state
High and we own the get action, then we can change the abstract state to Done and take
ownership of .P .

region({High}, Tb, Ib(x, P), r) ∗ [get]r1 v region({Done}, Tb, Ib(x, P), r) ∗ [get]r1 ∗ .P

View-shifts generalize standard implication and satisfy a generalized rule of consequence:

P1 v P2 ∧ {P2} C {Q2} ∧Q2 v Q1 =⇒ {P1} C {Q1} (AConsq)

We can thus use view-shifts to factor manipulations of shared resources that do not affect
the concrete state. The view-shift region opening rule is very similar to the region opening
rule for atomic statements and also requires proving that any updates of the abstract state
are permitted and that resources are transformed correctly:

∀x ∈ X. (x, f(x)) ∈ T (A) ∀x ∈ X. P ∗~α∈A[α]rg(α) ∗ .I(x)〉 vE Q ∗ .I(f(x))

P ∗~α∈A[α]rg(α) ∗ region(X,T, I, r)〉 vE]{r} Q ∗ region({f(x)}, T, I, r)
(VOpen)

1

¶
emp
©

2 newchan() {
3 chan *x := new(chan);
4 x->flag := 0;

5

¶
x.flag 7→ 0

©
6 // introduce a later using SMono

7

¨
.Ib(x, P)(Low)

∂
8 // allocate new channel region in the Low state

9

¨
∃r. region({Low}, Tb, Ib(x, P), r) ∗ [set]r1 ∗ [get]r1

∂
10 // duplicate and weaken region assertion

11

¨
∃r. region({Low}, Tb, Ib(x, P), r) ∗ [set]r1 ∗ region({Low,High}, Tb, Ib(x, P), r) ∗ [get]r1

∂
12 // definition of recv and send predicates

13

¶
recv(x, P) ∗ send(x, P)

©
14 return x;
15 }

16

¶
recv(ret, P) ∗ send(ret, P)

©
Fig. 9. Proof of newchan() using simple predicate definitions.

Allocation of shared regions is also described using view shifts. To allocate a shared region
in initial abstract state x with interpretation map I we must transfer the resource I(x) to
the shared region. This is expressed by the following view-shift axiom:

(∀x. stable(I(x))) =⇒ I(x) v ∃r. region({x}, T, I, r) ∗~α∈A[α]r1 (VAlloc)

The resources owned by a shared region must always be stable. This is enforced upon
allocation of the region, as expressed by the above axiom. Upon allocating a shared region,
we can take exclusive ownership of any set of actions A on r.

While iCAP supports recursively-defined higher-order shared resources, soundness of
iCAP depends crucially on the fact that the transition systems associated with each re-
gion are not recursively-defined. This is enforced when allocating a new region. Formally,
the VAlloc rule includes a side-condition on the labelled transition system, T , which is
given as relation on abstract states indexed by an action identifier, to enforce this. This
side-condition is trivially satisfied by every labelled transition system expressible in first-
order logic with equality. Since this is the case for all the transition systems employed in this
article, we will not go into details about this technical side-condition. We refer the reader
to the iCAP article for details [?].

Verifying newchan. Figure 9 shows a sketch proof of newchan. First the concrete channel
data structure is allocated. This allows ownership of the flag field to be transferred to a
newly allocated channel region, using the VAlloc and AConsq rule.

5. SPLITTING CHANNELS

In this section, we extend our proof of the simple implementation to cover splitting – in-
tuitively, promised resources can be divided between threads before they are sent. As the
simple implementation sequentialises signalling, we leave extension and renunciation to §6.

Strengthened abstract specification. To manage promised split resources inside the proof,
we use separating implication, −∗. However, the stability assertion stable is difficult to reason
about because it is does not distribute with respect to ∗. Explicit stabilization operators,

1

¶
send(x, P) ∗ stable(P) ∗ P

©
2 signal(chan *x) {
3 // definition of send.

4

¨
region({Low}, Tb, Ib(x, P), r) ∗ [set]r1 ∗ stable(P) ∗ P

∂
5 // enter the region.

6

¨
.(x.flag 7→ 0) ∗ [set]r1 ∗ stable(P) ∗ P

∂
7 // drop . using LPoints

8

¨
x.flag 7→ 0 ∗ [set]r1 ∗ stable(P) ∗ P

∂
9 x->flag := 1;

10

¨
x.flag 7→ 1 ∗ [set]r1 ∗ stable(P) ∗ P

∂
11 // Close region, perform set transition. Delete set token using weakening.

12

¨
region({High}, Tb, Ib(x, P), r)

∂
13 // stabilise the region’s abstract state.

14

¶
region({High,Done}, Tb, Ib(x, P), r)

©
15 }

16

¶
emp
©

Fig. 10. Proof of signal() using simple predicate definitions.

d−e and b−c are easier to reason about, and we therefore define a channel specification
written in terms of explicit stabilization, from which our client-facing abstract specification
can be derived. This strengthened specification is given in Figure 12.

To derive the weaker specification given in §3.4 from this stronger one, we define
sendw(x, P) in the weaker specification as ∃P ′. sends(x, P

′) ∧ valid(P ⇒ P ′), using the
sends predicate from the stronger specification. Other predicates are lifted without modifi-
cation. Function specifications then follow directly from stable(P) =⇒ (bP c ⇔ P ⇔ dP e).

To derive the weakened renunciation axiom, we reason as follows:

{sendw(x, P ∗Q) ∗ recv(y, P) ∗ x ≺ y}
⇐⇒ {∃P ′. sends(x, P

′) ∗ valid((P ∗Q)⇒ P ′) ∗ recv(y, P) ∗ x ≺ y} (Definition)

⇐⇒ {∃P ′. sends(x, P
′) ∗ valid(Q⇒ (P −∗ P ′)) ∗ recv(y, P) ∗ x ≺ y} (Adjoint)

〈skip〉 (Renunciation spec)

{∃P ′. sends(x, P −∗ P ′) ∗ valid(Q⇒ (P −∗ P ′))} (Definition)

⇐⇒ {sendw(Q)}

In our strengthened specification, splitting is expressed by the following axiom:

{recv(a, P) ∗ bdP e −∗ (P1 ∗ P2)c} 〈skip〉 {recv(a, P1) ∗ recv(a, P2)}

To derive the weaker splitting axiom note that if stable(P ∗Q) then:

> ⇒ b>c ⇒ bP ∗Q−∗ P ∗Qc ⇒ bdP ∗Qe −∗ P ∗Qc

In the remainder of the paper, we verify our implementations against the more general
specification given in Figure 12.

Abstract state. To begin the proof, we first define the set of abstract states. In the absence
of splitting, the entire promised resource is transferred to a single recipient. For each channel,

Proof body:

1

¶
recv(x, P) ∗ stable(P)

©
2 wait(chan *x) {
3 int b;
4 do {

5

¶
region({Low,High}, Tb, Ib(x, P), r) ∗ [get]r1 ∗ stable(P)

©
6 // case-split on Low / High.

7

¨
(region({Low}, Tb, Ib(x, P), r) ∨ region({High}, Tb, Ib(x, P), r)) ∗ [get]r1 ∗ stable(P)

∂
8 b = x->flag; // Low & High cases given below.

9

Æ
(region({Low,High}, Tb, Ib(x, P), r) ∗ [get]r1 ∧ b = 0) ∨
(region({Done}, Tb, Ib(x, P), r) ∗ [get]r1 ∗ stable(P) ∗ P ∧ b = 1)

∏
10 } while (b == 0)
11 } // Delete region assertions using weakening.

12

¶
P
©

Low case: High case:

1

¨
region({Low}, Tb, Ib(x, P), r) ∗ [get]r1

∂
2 // open region

3

¨
.(x.flag 7→ 0) ∗ [get]r1

∂
4 // drop . and read value.
5 b = x->flag;

6

¨
x.flag 7→ 0 ∗ [get]r1 ∧ b = 0

∂
7 // Close region with get transition.
8 // Stabilise region state.

9

Æ
region({Low,High}, Tb, Ib(x, P), r)

∗ [get]r1 ∧ b = 0

∏
1

¨
region({High}, Tb, Ib(x, P), r) ∗ [get]r1

∂
2 // open region

3

¨
.(x.flag 7→ 1 ∗ stable(P) ∗ P) ∗ [get]r1

∂
4 // drop ., and read value.
5 b = x->flag;

6

¨
x.flag 7→ 1 ∗ stable(P) ∗ P ∗ [get]r1 ∧ b = 1

∂
7 // close region with get transition.

8

Æ
region({Done}, Tb, Ib(x, P), r) ∗

stable(P) ∗ P ∗ [get]r1 ∧ b = 1

∏
Fig. 11. Proof of wait() using simple predicate definitions.

Specifications:
{emp} i = newchan() {recv(i, P) ∗ send(i, P)}

{send(i, P) ∗ bP c} signal(i) {emp}

{recv(i, P)} wait(i) {dP e}®
send(x, P) ∗
�e∈E e ≺ x ∗�l∈L x ≺ l

´
(b,a)=extend(x)

®
send(b, Q) ∗ recv(b, Q) ∗ send(a, P)

∗ b ≺ a ∗�e∈E e ≺ b ∗�l∈L a ≺ l

´
Axioms: x ≺ y =⇒ x ≺ y ∗ x ≺ y

x ≺ y ∗ y ≺ z =⇒ x ≺ z

{recv(x, P) ∗ send(y,Q) ∗ x ≺ y} 〈skip〉 {send(y, P −∗Q)}

{recv(a, P) ∗ bdP e −∗ (P1 ∗ P2)c} 〈skip〉 {recv(a, P1) ∗ recv(a, P2)}
Fig. 12. Full specification with explicit stabilisation.

the resource can therefore be either unsent, sent but not received, or received. In Section
4 we thus introduced three abstract states (Low,High and Done) to represent these three
situations.

Splitting means that promised resources can be logically divided between recipients. The
abstract state must therefore also track how the promised resource has been split and
(if it has been sent) which recipients have taken ownership. Intuitively, we parameterise
the abstract state with sets of propositions describing the splitting. We would then have
abstract states Low(I) and High(I), with I ∈ Pfin(Prop). Each P ∈ I represents a promise
to a recipient. In the abstract state Low(I), the whole resource, which has yet to be sent,
has been split into a set of promised resources I. In the abstract state High(I), the entire
promised resource has been sent, and the portions still in I have yet to be received.

In the presence of splitting, recv(a, P) only confers the right to receive and take ownership
of the portion of the resource represented by P . We capture this by indexing the split and
receive transition with a proposition describing the associated resource. We thus have two
transitions: send for sending the entire propised resource and changeP for splitting the
resource P or taking ownership of P .

send : Low(I) ; High(I)

changeP : Low(I] {P}) ; Low(I] {P1, P2})
changeP : High(I] {P}) ; High(I] {P1, P2})
changeP : High(I] {P}) ; High(I)

Note that when splitting P using the changeP transition, the transition system does not
enforce that P −∗ P1 ∗ P2. Rather, this will be enforced by the interpretation function for
the abstract states.

The transition system described in this section unfortunately cannot be expressed directly
in iCAP. This is because iCAP’s abstract states and transitions cannot be directly indexed
by propositions. It is unclear how this restriction could be lifted in iCAP’s step-indexing
framework.

Instead, iCAP supports saved propositions, an encoding which allows propositions to
be associated with identifiers and stored. To formalize the above transition system, we
index states and transitions with these identifiers. This skirts the restrictions imposed by
step-indexing, and allows the reasoning we want. In the following section we introduce the
necessary logical machinery.

5.1. Saved Propositions

A saved proposition, written r
πZ=⇒ P , associates an identifier r with a proposition P . By

introducing the indirection from identifiers to propositions we lose some properties. Most

importantly, we cannot easily unify saved propositions: given r
π1Z==⇒ P and r

π2Z==⇒ Q, in
general it does not hold that P = Q. However, saved propositions still satisfy enough
properties that we can verify the splitting axiom.

In addition to the identifier r and proposition P , we also have a fractional parameter
π ∈ (0, 1] which records how the saved proposition has been shared between threads. In
other words, it serves the same role as fractional permissions for heap cells in standard
separation logic [?].

We require that saved propositions satisfy the following four properties:

emp =⇒ ∃r. r 1Z=⇒ P (1)

r
π1Z==⇒ P ∗ r π2Z==⇒ P ⇐⇒

®
r
π1+π2Z====⇒ P if (π1 + π2) ≤ 1

false otherwise
(2)

r
π1Z==⇒ P ∗ r π2Z==⇒ Q =⇒ r

π1Z==⇒ P ∗ r π2Z==⇒ Q ∗ (.P ⇒ .Q) (3)Ç
r
π1Z==⇒ P ∗ r π2Z==⇒ Q ∗

(X −∗ .(Q ∗ Y)) ∗ (P −∗ Z)

å
=⇒ r

π1Z==⇒ P ∗ r π2Z==⇒ Q ∗ (X −∗ .(Z ∗ Y)) (4)

Property (1) allows us to create a saved proposition for an arbitrary proposition P . Property
(2) says that saved propositions are linear, meaning we can split and join them without
worrying about unwanted duplication. Observe that the fractions π1 and π2 are used to track
splitting. Property (3) says that holding two saved propositions on the same region allow us
to convert from one to another. This is a fixed version of the unification property discussed
above. The iCAP later operator . is needed because we use shared regions internally in the
definition of saved propositions. Property (4) says that we can apply property (3) inside
separating implications. This is useful in the proof when modifying a resource embedded
into a larger assertion.

We can encode and verify saved propositions as predicates in iCAP – they do not require
any extension of the logic. Our encoding is given in Appendix A. In our encoding, region
identifiers are used as identifiers for saved propositions – this is because internally saved
propositions are encoded by regions.

5.2. Predicate Definitions for send and recv

Once again, we begin by defining the structure of a region. Abstract states are now terms of
the form Low(I) and High(I), where I is a finite set of identifiers in Pfin(RId). We use LoHi to
stand for either Low or High. The I parameter represents the set of outstanding obligations,
i.e. the resources that other threads expect to be supplied. As described above, we use
saved propositions to give an interpretation to these sets of region identifiers. If we have
the abstract state Low(I) or High(I), then each i ∈ I corresponds to a resource promised
to some thread. To find out what resource P is expected, we examine the associated saved

proposition i
πZ=⇒ P .

Actions in the transition relation Tm are of the form send and change(i), where i is the
identifier for a saved proposition. The first action, send, sets the flag, and simply moves from
Low to High. The second, change(i), is both the action of taking the resource associated to
region i when the flag is high, and splitting the resource associated with identifier i to the
resource required by i1 and i2. These new identifiers i1/i2 can be chosen arbitrarily: however,
the invariant mapping Im ensures they are properly associated with saved propositions.

Tm(send) , {(Low(I),High(I))}

Tm(change(i)) , {(High(I] {i}),High(I))} ∪ {(Low(I] {i}), Low(I] {i1, i2}))}
∪ {(High(I] {i}),High(I] {i1, i2}))}

The invariants associated with Low and High are defined as follows:

Im(x, r, P)(Low(I)) , x.flag 7→ 0 ∗ waiting(P, I) ∗ changesr(I)

Im(x, r, P)(High(I)) , x.flag 7→ 1 ∗ ress(I) ∗ changesr(I)

where

waiting(P, I) , ∃Q : I → Prop. b(.P)−∗ .�
i∈I

. Q(i)c ∗�
i∈I

. i
1/2
Z==⇒ Q(i)

ress(I) , �
i∈I
∃R. (i

1/2
Z==⇒ R) ∗ d.Re

changesr(I) , �
i/∈I

. [change(i)]r1

The definitions here use three auxiliary predicates: waiting, standing for resources that have
been promised but not supplied; ress, standing for resources once they have been supplied;
and changes, standing for change tokens for unused identifiers. The set changes can be
seen as a ‘library’ of tokens which are not currently in use, and are currently not used by
any thread. Having this library of tokens allows new saved propositions to be added when
splitting.

The representation of Low consists of the flag, change tokens, and the waiting predicate.
waiting(P, I) requires the existence of a mapping Q from region identifiers, to propositions
representing obligations to other threads. The obligations for different threads are tied

together using fractional saved propositions i
1/2
Z==⇒ Q(i). The assertion b(.P)−∗.�i∈I . Q(i)c

means that supplying the resource P will satisfy each obligation Q(i).
The representation of the High state consists of the flag and change tokens, and the ress

predicate. ress(I) pairs together fractional saved propositions, i
1/2
Z==⇒ R with resources d.Re.

The other half of each saved proposition is held by the thread that has been promised the
resource through the recv predicate (see below). This ensures that all threads that have
been promised resources can claim them.

We use a shorthand for the region assertion in our definitions and proofs:

creg(x, r, P, S) , region(S, Tm, Im(x, r, P), r)

The definition of the send predicate is now straightforward. It asserts that the region is
in a Low state, and holds the unique permission to perform the send action.

send(x, P) , ∃r. creg(x, r, P, {Low(I) | true}) ∗ [send]r1

The definition of recv(x,Q) predicate is more complex. It includes r′
1/2
Z==⇒ Q, half the

permission on the saved proposition Q. It also asserts that r′ is one of identifiers recorded
in the region. This ensures that the resource retrieved from the shared region is the correct
one, i.e. the one that was promised (see the next section for the reasoning steps involved).

recv(x,Q) , ∃R, r, r′. creg(x, r,R, {LoHi(I) | r′ ∈ I}) ∗ r′
1/2
Z==⇒ Q ∗ [change(r′)]r1

5.3. Proofs of newchan(), signal(), wait(), and the Splitting Axiom

Proving newchan. The proof of newchan (Fig. 13) allocates a region containing the con-
crete channel state. Most steps in the proof are straightforward. The challenging ones are
line 6 – creating the stabilised assertion – and line 10 – the view-shift which creates the
region itself. In line 6, we need the following implication:

emp =⇒ b(.P)−∗ (.P)c

1

¶
emp
©

2 chan *newchan() {
3 chan *x := new(chan);
4 x->flag := 0;

5

¶
x.flag 7→ 0

©
6 // Create floor assertion

7

¶
x.flag 7→ 0 ∗ b(.P)−∗ (.P)c

©
8 skip; // Create saved proposition

9

¶
∃r1. r1

1Z=⇒ P ∗ x.flag 7→ 0 ∗ b(.P)−∗ (.P)c
©

10 // Create channel region

11

{
∃r1, r2. r1

1/2
Z==⇒ P ∗ creg(x, r2, P, {Low({r1})}) ∗ [send]r21 ∗ [change(r1)]r21

}
12 // Satisfy the send predicate

13

{
∃r1, r2. send(x, P) ∗ r1

1/2
Z==⇒ P ∗ creg(x, r2, P, {Low({r1})}) ∗ [change(r1)]r21

}
14 } // Satisfy the recv predicate

15

¶
send(x, P) ∗ recv(x, P)

©
Fig. 13. Proof of newchan() w.r.t. the full specification.

To show this holds, we observe that for any X, emp =⇒ X −∗ X, and that emp is always
stable. The implication then follows by monotonicity of explicit stabilisation brackets, (A⇒
B) =⇒ (bAc ⇒ bBc).

Line 10 requires us to prove the following view-shift:

r1
1/2
Z==⇒ P ∗ x 7→ 0 ∗ b(.P)−∗ (.P)c
v ∃r2. creg(x, r2, P, {Low({r1}, ∅)}) ∗ [send]r21 ∗ [change(r1)]r21

To prove this, we appeal to iCAP’s VAlloc rule, which controls construction of new regions
(see §4.1 for its definition). Intuitively, this requires that the resources available satisfy the
initial abstract state, defined by Im. Note that all the change tokens apart from change(r1)
are stored in the token library predicate changes, held inside the new region.

Proving signal. The proof of signal (Fig. 14) works by opening the channel region
(line 4), merging in the supplied resource bP c to give the promised resources (line 12), and
closing the region again (line 16). When we close the region we also need to confirm that
the transition from Low(I) to High(I) is allowed, but this is simple: it’s the only transition
associated to send by Tm. The trickiest step is the merging of the resource into the region
(line 12), embodied by the following lemma.

Lemma 5.1. bP c ∗ waiting(P, I) v ress(I)

Proof. bP c ∗ waiting(P, I)

v b.P c ∗ ∃Q : I → Prop. b.P −∗ .�i∈I . Q(i)c ∗ (�i∈I . i
1/2
Z==⇒ Q(i))

v ∃Q : I → Prop. b.�i∈I . Q(i)c ∗ (�i∈I . i
1/2
Z==⇒ Q(i))

v ∃Q : I → Prop. (�i∈I . d.Q(i)e) ∗ (�i∈I . i
1/2
Z==⇒ Q(i))

v (�i∈I .∃R. i
1/2
Z==⇒ R ∗ d.Re)

v ress(I)

1

¶
send(x, P) ∗ bP c

©
2 signal(chan *x) {

3

¶
creg(x, r, P, {Low(I ′) | true}) ∗ [send]r1 ∗ bP c

©
4 // open the region. Low(I) is an arbitrary member of {Low(I ′) | true}.
5

¨
.Im(x, r, P)(Low(I)) ∗ [send]r1 ∗ bP c

∂
6 // invariant definition.

7

¨
[send]r1 ∗ bP c ∗ . (x.flag 7→ 0 ∗ waiting(P, I) ∗ changesr(I))

∂
8 // pull out points-to using LBin and LPoints.

9

¨
[send]r1 ∗ bP c ∗ x.flag 7→ 0 ∗ . (waiting(P, I) ∗ changesr(I))

∂
10 x->flag := 1; // rewrite flag, drop . using AFrame

11

¨
[send]r1 ∗ bP c ∗ x.flag 7→ 1 ∗ waiting(P, I) ∗ changesr(I)

∂
12 // Lemma 5.1, add a . using SMono.

13

¨
[send]r1 ∗ .(x.flag 7→ 1 ∗ ress(I) ∗ changesr(I))

∂
14 // Invariant definition.

15

¨
[send]r1 ∗ .Im(x, r, P)(High(I))

∂
16 // close the region using send transition.

17

¶
[send]r1 ∗ creg(x, r, P, {High(I ′) | true})

©
18 } // delete redundant assertions using weakening.

19

¶
emp
©

Fig. 14. Proof of signal() w.r.t. the full specification.

To prove the second step, we appeal to the fact that b−c is semi-distributitive over sepa-
rating conjunction, bAc ∗ bBc =⇒ bA ∗Bc, and modus ponens for separating implication,
A ∗ (A−∗B) =⇒ B. The third step follows from the fact that d−e is weaker than b−c, and
d−e is semi-distributitive over separating conjunction, dA ∗Be =⇒ dAe ∗ dBe. 2

Proving wait. In the proof of wait (Fig. 15) we open the shared region (line 4), extract
the required resource (line 11) and close the region again (line 15). For simplicity, we assume
that the abstract state is High; if not, the algorithm spins doing nothing until it is the case.
Each promised resource is associated with a region identifier i in the set I; removing the
resource is modelled abstractly by removing i. This abstract transition is allowed by the
[change] permission. The key step in the proof is extracting the resource (line 11), embodied
by the following lemma.

Lemma 5.2. r
1/2
Z==⇒ P ∗ ress(I) ∧ r ∈ I v ress(I \ {r}) ∗ .dP e

Proof. r
1/2
Z==⇒ P ∗ ress(I] {r})
v r

1/2
Z==⇒ P ∗ ress(I) ∗ ∃R. r

1/2
Z==⇒ R ∗ d.Re (Definition of ress)

v r
1/2
Z==⇒ P ∗ ress(I) ∗ ∃R. r

1/2
Z==⇒ R ∗ d.P e (Property 3, mono of d−e)

v ress(I) ∗ .dP e (d.P e =⇒ .dP e)
2

Proving the Splitting Axiom. In our specification, splitting must always be associated with
a skip step. It should now be clear why we need this: a skip step allows us to enter the

1

¶
recv(x, P)

©
2 wait(chan *x) {

3

{
∃R, r, r′. r′

1/2
Z==⇒ P ∗ [change(r′)]r1 ∗ creg(x, r, R, {LoHi(I ′) | r′ ∈ I ′})

}
4 // Open the region. Only consider the High case.

5

〈
r′ ∈ I ∧ r′

1/2
Z==⇒ P ∗ [change(r′)]r1 ∗ .Im(x, r, R)(High(I))

〉
6 // Apply invariant definition
7 // Pull out points-to using LBin and LPoints

8

〈
r′ ∈ I ∧ r′

1/2
Z==⇒ P ∗ [change(r′)]r1 ∗ x.flag 7→ 1 ∗ .(ress(I) ∗ changesr(I))

〉
9 assume(x->flag == 1) // drop . using AFrame, push in [change(r′)] perm.

10

〈
r′ ∈ I ∧ r′

1/2
Z==⇒ P ∗ x.flag 7→ 1 ∗ ress(I) ∗ changesr(I \ {r′})

〉
11 // Lemma 5.2, add . using SMono

12

¨
.dP e ∗ .(x.flag 7→ 1 ∗ ress(I \ {r′}) ∗ changesr(I \ {r′}))

∂
13 // Invariant definition

14

¨
.dP e ∗ .Im(x, r, R)(High(I \ {r′}))

∂
15 // close the region using change(r′) transition.

16

¶
.dP e ∗ ∃R, r. creg(x, r, R, {High(I) | true})

©
17 // Delete redundant assertions using weakening.

18

¶
.dP e

©
19 }

Fig. 15. Proof of wait() w.r.t. the full specification.

1

¶
recv(x, P) ∗ bdP e −∗ P1 ∗ P2c

©
2

{
∃R, r, r′. r′

1/2
Z==⇒ P ∗ [change(r′)]r1 ∗ creg(x, r, R, {LoHi(I ′) | r′ ∈ I ′}) ∗ bdP e −∗ P1 ∗ P2c

}
3 // Open the region using an arbitrary state containing r′

4

〈
∃R, r, r′. r′

1/2
Z==⇒ P ∗ [change(r′)]r1 ∗ .Im(x, r, R)(LoHi(I] {r′})) ∗ bdP e −∗ P1 ∗ P2c

〉
5 skip // Use AFrame to remove .

6

〈
∃R, r, r′. r′

1/2
Z==⇒ P ∗ [change(r′)]r1 ∗ Im(x, r, R)(LoHi(I] {r′})) ∗ bdP e −∗ P1 ∗ P2c

〉
7 // Lemma 5.5

8

〈
∃R, r, r1, r2. r1

1/2
Z==⇒ P1 ∗ r1

1/2
Z==⇒ P2 ∗ [change(r1)]r1 ∗ [change(r2)]r1

∗ Im(x, r, R)(LoHi(I] {r1, r2}))

〉
9 // Close the region using change(r′) transition.

10

{
∃R, r, r1, r2. r1

1/2
Z==⇒ P1 ∗ r1

1/2
Z==⇒ P2 ∗ [change(r1)]r1 ∗ [change(r2)]r1

∗ creg(x, r, R, {LoHi(I ′) | r1, r2 ∈ I ′})

}
11 // Definition of predicates.

12

¶
recv(x, P1) ∗ recv(x, P2)

©
Fig. 16. Proof outline for splitting axiom.

shared region and get rid of .. We present the proof outline in Figure 16. The core of the
proof is two lemmas which express splitting in the Low and High cases.

Lemma 5.3 (Low splitting).

r
1/2
Z==⇒ P ∗ bdP e −∗ P1 ∗ P2c ∗ waiting(R, I] r)
v ∃r1, r2. r1

1/2
Z==⇒ P1 ∗ r2

1/2
Z==⇒ P2 ∗ waiting(R, I] {r1, r2})

Proof.

r
1/2
Z==⇒ P ∗ bdP e −∗ P1 ∗ P2c ∗ waiting(R, I] r)

(Predicate definitions, extract saved propositions)

v ∃Q′. r
1/2
Z==⇒ P ∗ r

1/2
Z==⇒ Q′ ∗ bdP e −∗ P1 ∗ P2c ∗

∃Q : I → Prop. b(.R)−∗ .Q′ ∗ .�i∈I . Q(i)c ∗ (�i∈I . i
1/2
Z==⇒ Q(i))

(Unify P/Q′, apply P =⇒ dP e)
v bd.P e −∗ (.P1) ∗ (.P2)c ∗
∃Q : I → Prop. b(.R)−∗ d.P e ∗ .�i∈I . Q(i)c ∗ (�i∈I . i

1/2
Z==⇒ Q(i))

(Modus ponens, create saved props r1/r2)

v ∃r1, r2. r1
1Z=⇒ P1 ∗ r2

1Z=⇒ P2 ∧ r1, r2 /∈ I∗
∃Q : I → Prop. b(.R)−∗ (.P1) ∗ (.P2) ∗ .�i∈I . Q(i)c ∗ (�i∈I . i

1/2
Z==⇒ Q(i))

(Push saved props into I)

v ∃r1, r2. r1
1/2
Z==⇒ P1 ∗ r2

1/2
Z==⇒ P2∗

∃Q : I] {r1, r2} → Prop. b(.R)−∗ .�i∈I]{r1,r2}. Q(i)c ∗ (�i∈I]{r1,r2}. i
1/2
Z==⇒ Q(i))

(Predicate definitions)

v ∃r1, r2. r1
1/2
Z==⇒ P1 ∗ r2

1/2
Z==⇒ P2 ∗ waiting(R, I] {r1, r2})

2

Lemma 5.4 (High splitting).

r
1/2
Z==⇒ P ∗ bdP e −∗ P1 ∗ P2c ∗ ress(I] r)
v ∃r1, r2. r1

1/2
Z==⇒ P1 ∗ r2

1/2
Z==⇒ P2 ∗ ress(I] {r1, r2})

Proof.

r
1/2
Z==⇒ P ∗ bdP e −∗ P1 ∗ P2c ∗ ress(I] r)
v (dP e −∗ P1 ∗ P2) ∗ ress(I) ∗ .dP e (Lemma 5.2)

v ((.dP e)−∗ (.P1) ∗ (.P2)) ∗ ress(I) ∗ .dP e (SMono, dist . over −∗)
v ress(I) ∗ (.P1) ∗ (.P2) (Modus ponens)

v ress(I) ∗ (.P1) ∗ (.P2) ∗ ∃r1, r2. r1
1Z=⇒ P1 ∗ r2

1Z=⇒ P2 (Property 1)

v ress(I] {r1, r2}) ∗ ∃r1, r2. r1
1/2
Z==⇒ P1 ∗ r2

1/2
Z==⇒ P2 (Sub-lemma)

The last step in building the new ress predicate consists of two applications of the following
sub-lemma:

ress(I) ∗ .P ∗ r 1Z=⇒ P

v (�i∈I ∃Q. i
1/2
Z==⇒ Q ∗ d.Qe) ∗ d.P e ∗ r 1Z=⇒ P

v (�i∈I]{r} ∃Q. i
1/2
Z==⇒ Q ∗ d.Qe) ∗ r

1/2
Z==⇒ P

v ress(I] {r}) ∗ r
1/2
Z==⇒ P

2

These two lemmas are combined as follows.

Lemma 5.5. r′
1/2
Z==⇒ P ∗ Im(x, r,R)(LoHi(I] {r′})) ∗ [change(r′)]1r ∗ bdP e −∗ P1 ∗ P2c
v

∃r1, r2. [change(r1)]1r ∗ r1
1/2
Z==⇒ P1 ∗ [change(r2)]1r ∗ r2

1/2
Z==⇒ P2 ∗

. Im(x, r,R)(LoHi(I] {r1, r2}))

Proof. We case-split on whether LoHi is Low or High. The two proofs are given by
Lemma 5.3 and 5.4 and some rearrangement of the change permissions. 2

6. CHAINS AND RENUNCIATION

The simple barrier implementation verified in §4 and §5 does not consider an order of
channels. In this section, we verify an implementation that supports chains of channels and
early renunciation. Recall that renunciation is expressed by the following axiom:

{recv(x, P) ∗ send(y,Q) ∗ x ≺ y} 〈skip〉 {send(y, P −∗Q)}

In the chain of channels, x ≺ y states that x is earlier than y. This axiom states that the
required resource Q can be partially or totally satisfied using the earlier promised resource
P (if P ⇔ Q, then (P −∗Q)⇔ emp, i.e. the signal can be set without delay).

In our new implementation channels are arranged into a chain represented by a linked list.
Calls to signal do not block, and can complete in any order consistent with the specification.
However, renunciation means later channels may depend on resources promised earlier in
the chain. To ensure renounced resources are available, wait checks all predecessors in the
chain. The implementation is defined as follows:

struct chan {
int flag;
chan *prev;

}

signal(chan *x) {
x->flag = 1;

}

wait(chan *x) {
chan *c = x;
while(c != NULL) {
while(c->flag == 0) skip;
c = c->prev;

}
}

chan *newchan() {
chan *x = new(chan);
x->flag = 0;
x->prev = NULL;
return x;

}

extend(chan *x) {
chan *z = new(chan);
z->flag = 0;
z->prev = x->prev;
x->prev = z;
return (z,x);

}

Calling signal sets the current channel flag to 1, then exits immediately. When wait is
called, it blocks until every bit earlier in the chain is set. To do this, it follows prev fields,
waiting for each flag field before accessing the preceding location. To add extra nodes
to the chain, extend allocates a new channel and then inserts it immediately before the
channel passed as an argument.

6.1. Abstract State

Our fundamental approach remains the same as for the previous proof. That is, shared chan-
nels are represented by abstract states, e.g. High(I). Resource obligations are represented by
sets of identifiers which are tied to saved propositions, e.g. the members of I. Modifications
to the shared channel by the thread and environment are represented by transitions over
these abstract states. Predicates send, recv are defined as constraints on the abstract state.

The difference with the new implementation is that operations access multiple channels
along the chain. As a result, the abstract state cannot be a single channel: instead it is an
ordered sequence of channel nodes from the set CNode:

[node(x), node(y), node(z), . . .]

Here x, y, z are addresses, and channel nodes are ordered z ≺ y ≺ x. Note that the list is
reversed with respect to chain order: nodes closer to the tail precede than those closer to
the head. (We do this because pointers in the underlying list go in this direction).

Each CNode plays a similar role to an individual channel in the previous section. There-
fore, each has a state High / Low, and a set I representing splittings of the promised resource.
In addition, to handle renunciation each node records a set W of identifiers for resources
promised to it through renunciation. Formally, channel nodes have the following structure:

CNode , 〈
loc ∈ Addr, (physical address)

res ∈ RId, (region ID for sent resource)

I ∈ Pfin(RId), (region IDs for promised resources)

flg ∈ {High, Low}, (flag status)

W ∈ Pfin(RId), (region IDs for earlier renounced resources)

〉

Each CNode represents one channel in the chain, so the abstract state of the barrier is an
abstract chain consisting of a finite sequence in CNode+.

We assume that the CNode locations in any abstract chain are pairwise-distinct. Thus,
where convenient we sometimes treat an abstract chain as a function from locations to
tuples: i.e. rs(x) gives some tuple (r, I, f,W). Given a CNode s, we sometimes write s.flg ,
s.I etc. to identify the appropriate components of the tuple. We use 0 and 1 to represent
the Low and High flag state, respectively.

Most of the abstract transitions are just operations on individual channels in the chain:
these are liftings of the single-channel operations defined the previous section. For example,
the operation set just involves rewriting the flag field for some channel from Low to High,
leaving the state otherwise unchanged.

Renunciation is the most interesting case as it involves two channels in the chain. The
abstract specification for renunciation uses a resource from a recv predicate to satisfy a send
predicate – the former must be earlier in the chain than the latter. Correspondingly, the
renun abstract transition copies an identifier from the earlier channel’s promise set, to the

later channel’s renunciation set. For example:

[. . . 〈x, i, I, 0,W〉 . . . 〈y, i′, I ′] {r}, 0,W ′〉 . . .] ;

[. . . 〈x, i′′, I, 0,W] {r}〉 . . . 〈y, i′, I ′ ∪ {r}, 0,W ′〉 . . .]

In the proof, there will exist saved propositions r
1Z=⇒ P and i

1Z=⇒ Q – the former records
the promised resource from y, while the latter records the resource required to signal the
channel x. Intuitively, after this transition, the resource P can no longer be claimed: it will
be used to satisfy channel x. This corresponds to the send predicate disappearing in the
renunciation axiom. The identifier i also changes to i′′ – the associated saved proposition

will now be i′′
1Z=⇒ (P −∗Q), refecting the fact that P no longer needs to be supplied.

This transition is purely abstract in the same way that splitting is: nothing has changed
in the concrete representation. All that has changed is the way that the threads agree to
use resources.

Chain extension also involves multiple channels. The abstract specification takes as its
precondition a send and two sets E and L representing nodes earlier and later in the chain:®

send(x, P) ∗
�e∈E e ≺ x ∗�l∈L x ≺ l

´
(b,a)=extend(x)

®
send(b, Q) ∗ recv(b, Q) ∗ send(a, P)

∗ b ≺ a ∗�e∈E e ≺ b ∗�l∈L a ≺ l

´
In the abstract state, this corresponds to the following transition:

[. . .nodes in L . . . 〈x, i, I, 0,W〉 . . .nodes in E . . .] ;

[. . .nodes in L . . . 〈a, i, I, 0,W〉, 〈b, i′, I ′, 0, ∅〉 . . .nodes in E . . .]

The new node is inserted immediately preceding the parameter x, with the remaining struc-
ture of the abstract state remaining unchanged.

6.2. Definitions and predicates

Abstract state predicates. The introduction of renunciation makes it important that re-
sources used later in the chain are available as promised earlier in the chain. More concretely,
given an abstract chain x · xs, every identifier in the set x.W must be available from some
node in xs (i.e. in some set I):

available([]) , ∅, available(s · xs) , (available(xs) \ s.W)] s.I

wf([]) , true, wf(s · xs) , wf(xs) ∧ s.W ⊆ available(xs) ∧ s.I ∩ s.W = ∅ ∧
∀s′ ∈ xs. s.I ∩ s′.I = ∅ ∧ s.W ∩ s′.W = ∅

The predicate available constructs the set of identifiers that have been promised earlier in
the chain, and that have not been taken by some other earlier channel. Well-formedness,
wf, then requires that the set of identifiers available from earlier in the chain includes those
required by the current channel.

We also define two predicates over abstract chains, ctrue and cconf. The first asserts that
all the flags in the abstract chain have been set, while the second furthermore asserts that
all sets of waited-for renounced resources are empty. When the latter holds, any resources
promised by this node must be available for retrieval.

ctrue(rs) , ∀e ∈ rs. e.flg = 1

cconf(rs) , ∀e ∈ rs. e.flg = 1 ∧ e.W = ∅

Finally, we use rs1
pr→∗ rs2 to denote that the abstract chain rs2 can be derived from rs1

by cancelling out renounced resources with the corresponding promises. This is used in the

proof to show that renounced resources can eventually be satisfied with real resources, once

all the flags in the chain have been set.
pr→∗ is the transitive-reflexive closure of a relation

which cancels a single promise to a later node using a renounced resource from an earlier
node. For example:

[. . . 〈x, i, I, 1,W] {r}〉, . . . 〈y, i′, I ′] {r}, 1,W ′〉 . . .] pr−→
[. . . 〈x, i, I, 1,W〉, . . . 〈y, i′, I ′, 1,W ′〉 . . .]

We define the relation formally as follows:

rs
pr−→ rs′ , ∃x, y, r.

r ∈ rs(x).W ∧ r ∈ rs(y).I ∧ (x, y) ∈ ord(rs) ∧
rs′ = (rs JxJW (• \ {r})) JyJI (• \ {r})

We write (x, y) ∈ seq(rs) to say that the two addresses x and y appear adjacent in the
sequence rs, and (x, y) ∈ ord(rs) to say just that they are ordered in rs.

Lenses. The notation J is a lens allowing a single field of a chain to be updated without
modifying the remainder of the chain. We use lenses to make our definitions more compact.
Lenses are a notation borrowed from functional programming which we use to update one
field of an object, while preserving the remainder of it. By object, we mean either a tuple or
a map – we treat tuples as maps from field-names to values. Recall that we can also treat
abstract chains as maps from locations to tuples as convenient.

We define the lens notation as follows. In the following, let x be the tuple / map we
wish to update. Let i/j be values in the domain (i.e field names for a tuple). Let f be an
expression with • standing for the value to be updated. Then the lens notation is defined
as follows:

x Ji f , x[i 7→ (f [x(i)/•])] x JiJj f , x[i 7→ (x(i) Jj f)]

On the left, the value associated with index / field name f in object x is updated to f [x(i)/•].
On the right, we show we can stack lenses, allowing us to update fields deeper inside the
object – here we update field j of field i of object x.

To give an example, in the preceding section, we had the following lens expression:

(rs JxJW (• \ {r})) JyJI (• \ {r})

Note that here we are using W / I as identifiers for particular tuple components. This
expression denotes the chain rs, with identifier r removed from both the set of renounced
resources at CNode x and the set of promised resource at CNode y.

Predicate definitions. As usual, we begin by defining the structure of the shared region.
Abstract states have the form Chain(rs), where rs is an abstract chain. Actions have the
form send(x) and change(x, r), where x is an address, and r a region identifier. The transition
relation Tc is defined in Fig. 17. We assume that physical addresses are used uniquely, so
where convenient we use chains as finite functions of type

Addr
fin
⇀ (RId× P(RId)× {High, Low} × P(RId))

The transition relation defines six kinds of transitions in Fig. 17. For send we have renunci-
ation, which adds an element toW; setting the flag; and extending the chain, which creates
a new CNode b. For change we have splitting; satisfying the renounced resource set, which
setsW to ∅ and pulls the resources out of earlier chain elements; and pulling out a resource.

To translate from an abstract chain to a concrete invariant, we define three predicates:
chainds, chainres, and unused (defined in Fig. 18). The predicate chainds represents the linked

renunc(x, rs, rs
′) , rs(x).flg = 0 ∧ ∃r′, w. rs′ = (rs JxJres r

′) JxJW (•] w)

setc(x, rs, rs
′) , rs(x).flg = 0 ∧ rs′ = rs JxJflg (1)

extc(x, rs, rs
′) , rs = (rs1 · a · rs2) ∧ rs′ = (rs1 · a · b · rs2) ∧

a.loc = x ∧ a.flg = 0 ∧ b.flg = 0 ∧ b.W = ∅
splitc(x, r, rs, rs

′) , r ∈ rs(x).I ∧ ∃r2, r3. rs′ = rs JxJI ((• \ {r})] {r2, r3})
satc(rs, rs

′) , rs = (rs1 · rs2) ∧ rs′ = (rs1 · rs′2) ∧ cconf(rs′2) ∧ rs2
pr→∗ rs′2

getc(x, r, rs, rs
′) , rs = (rs1 · rs(x) · rs2) ∧ cconf(rs(x) · rs2) ∧ rs′ = rs JxJI (• \ {r})

Tc(send(x)) , {(a, b) | wf(b) ∧ (renunc(x, a, b) ∨ setc(x, a, b) ∨ extc(x, a, b))}
Tc(change(x, r)) , {(a, b) | wf(b) ∧ (splitc(x, r, a, b) ∨ satc(a, b) ∨ getc(x, r, a, b))}

Fig. 17. Definition of Tc, the transition relation for the chained channel implementation.

chainds(x · y · rs) , x.loc 7→ {prev = y.loc; flag = x.flg} ∗ chainds(y · rs)
chainds(x · null) , x.loc 7→ {prev = NULL; flag = x.flg}

resource(I,W) , ∃Q : I → Prop, R : W → Prop.

�i∈I . i
1/2
Z==⇒ Q(i) ∗�w∈W . w

1/2
Z==⇒ R(w)

∗ b(.�w∈W . R(w))−∗ .�i∈I . dQ(i)ec

chainres(x · rs) , resource(x.I, x.W] {x.res | ¬x.flg}) ∗ chainres(rs)

chainres(null) , emp

uS(rs) , {x | (x, , , 0,) ∈ rs}
uC(rs) , {(x, i) | (x, , I, ,) ∈ rs ∧ i ∈ I ∧ ¬∃(y, , , ,W) ∈ rs. i ∈ W}

unused(r, rs) , (�x /∈ uS(rs). [send(x)]r1) ∗ (�(x, r′) /∈ uC(rs). [change(x, r′)]r1)

Fig. 18. Predicates used in defining the state of a region.

list underpinning the implementation. Each link in the chain has the appropriate prev and
flag values set determined by the corresponding CNode in the chain.

The predicate chainres represents the resources that are communicated through the chain.
The key predicate is resource, which ties together a set of promised resources I and a
set of resources waited for W. Note that the set W of resources waited for includes both
renounced resources, and the resource supplied by the preceding channel – these are unioned
by chainres. The core of the resource predicate is the following assertion:

b(. �
w∈W

. R(w))−∗ .�
i∈I

. dQ(i)ec

Here Q and R map identifiers to propositions. Leaving aside explicit stabilization and .,
this assertion has a straightforward intuition: supplying all the resources waited for (those
with identifiers in W) results in the resources promised (those with identifiers in I).

When there are no resources waited for, i.e.W = ∅, the resource predicate can be simplified
to just the promised resources:

Lemma 6.1. resource(I, ∅) v �i∈I .∃Q : Prop. i
1/27−−→ Q(i) ∗ d.Q(i)e

The unused predicate stands for the set of unused permissions (similar to changes in the
previous proof). We define this using uS(rs), the set of used send permissions, and uC(rs),
the set of used change permissions.

The representation function for the region, Ic, is defined as follows:

Ic(r)(Chain(rs)) , chainds(rs) ∗ chainres(rs) ∗ unused(r, rs)

As before, we use a shorthand for the region assertion in our definitions and proofs:

oreg(r, S) , region(S, Tc, Ic(r), r)

We can now define the send, recv, and ordering predicates.

send(x, P) , ∃r1, r2. oreg (r1, {Chain(rs) | wf(rs) ∧ rs(x) = (r2, , 0,)})
∗ r2

1/2
Z==⇒ P ∗ [send(x)]r11

recv(x, P) , ∃r1, r2. oreg(r1, {Chain(rs) | rs(x) = (, I, ,) ∧ r2 ∈ I ∧ wf(rs)})
∗ r2

1/2
Z==⇒ P ∗ [change(x, r2)]r11

x ≺ y , ∃r. oreg(r, {Chain(rs) | (y, x) ∈ ord(rs)})
The structure of the send and recv predicates is similar to the un-chained proof. Both
send and recv contain saved propositions for their proposition parameter P . The predicate
definitions ensure the identifier for this saved proposition is embeddeded into the abstract
chain correctly. Meanwhile, the ≺ predicate is a straightforward lifting of the ord predicate
on abstract chains.

6.3. Proving signal, wait and extend

The majority of the proof concerns manipulations of resource obligations, rather than reads
and writes to the underlying data-structure. To help with proof clarity, as far as possible
we factor reads and writes into small, separate specifications.

Proving signal. The sketch-proof is shown in Fig. 19 – it is similar in structure to the
one in §5.3. The main additional challenge is to show that resources are supplied to the
appropriate point in the chain. To do this, we use the following lemma, which says that
supplying the resource bP c and an associated saved proposition removes the need to supply
r. This is then sufficient to allow the flag to be set.

Lemma 6.2. r
1/2
Z==⇒ P ∗ bP c ∗ resource(I,W] {r}) v resource(I,W)

Proof. Given in Appendix B. 2

In the proof of signal, this lemma is used to show that the appropriate resource has been
supplied (Fig. 19, line 12). By factoring logical resource transfer away from the physical
signalling, we simplify the proof structure considerably.

The rest of the proof consists of manipulating predicates. We pull out the node associated
with x and set the flag (lines 1–8). Once the resource has been supplied on line 12, the
remainder of the proof closes the region again.

Proving wait. The sketch-proof is given in Fig. 20. The three most important steps are
checking that all preceding flags in the chain are set (lines 5–12), checking that renounced
resources have been supplied (line 15), and retrieving the resource from the chain (line 20).
The last two of these require helper lemmas, given below.

1

¶
send(x, P) ∗ bP c

©
2 // Definition of send.

3

{
∃r1, r2. r2

1/2
Z==⇒ P ∗ [send(x)]r11 ∗ bP c ∗

oreg (r1, {Chain(rs) | wf(rs) ∧ rs(x) = (r2, I, 0,W)})

}
4 // Enter the region.

5

〈
∃r1, r2. r2

1/2
Z==⇒ P ∗ [send(x)]r11 ∗ bP c ∗

.
Ä

chainds(rs) ∗ chainres(rs) ∗ unused(r1, rs) ∧ wf(rs) ∧ rs(x) = (r2, I, 0,W)
ä〉

6 // Split up using chain axioms.

7

±
∃r1, r2. r2

1/2
Z==⇒ P ∗ [send(x)]r11 ∗ bP c ∗

.

Ç
∃rs1, rs2, a. chainds(rs1) ∗ x 7→ {prev = hd(rs2).loc; flag = 0} ∗ chainds(rs2) ∗
chainres(rs) ∗ unused(r1, rs) ∧ rs = rs1 · a · rs2 ∧ wf(rs) ∧ a = (x, r2, I, 0,W)

åª
8 x->flag = 1; // Set the flag, drop the . using Aframe.

9

±
∃r1, r2. r2

1/2
Z==⇒ P ∗ [send(x)]r11 ∗ bP c ∗

∃rs1, rs2, a. chainds(rs1) ∗ x 7→ {prev = hd(rs2).loc; flag = 1} ∗ chainds(rs2) ∗
chainres(rs) ∗ unused(r1, rs) ∧ rs = rs1 · a · rs2 ∧ wf(rs) ∧ a = (x, r2, I, 0,W)

ª
10 // Pull out resource predicate from chainres predicate.

11

¥
∃r1, r2. r2

1/2
Z==⇒ P ∗ [send(x)]r11 ∗ bP c ∗

∃rs1, rs2, a. chainds(rs1) ∗ x 7→ {prev = hd(rs2).loc; flag = 1} ∗ chainds(rs2)

∗ chainres(rs1) ∗ resource(I,W] {r2}) ∗ chainres(rs2)

∗ unused(r1, rs) ∧ rs = rs1 · a · rs2 ∧ wf(rs) ∧ a = (x, r2, I, 0,W)

æ
12 // Apply Lemma 6.2 -- use bP c to remove r2 from the second parameter of resource.

13

≥
∃r1, r2. [send(x)]r11 ∗
∃rs1, rs2, a. chainds(rs1) ∗ x 7→ {prev = hd(rs2).loc; flag = 1} ∗ chainds(rs2)

∗ chainres(rs1) ∗ resource(I,W) ∗ chainres(rs2)

∗ unused(r1, rs) ∧ rs = rs1 · a · rs2 ∧ wf(rs) ∧ a = (x, r2, I, 0,W)

Ω
14 // Collapse the chain, add ..

15

Æ
∃r1, r2.
. (chainds(rs′) ∗ chainres(rs′) ∗ unused(r1, rs

′) ∧ rs′ = rs[x 7→ (r2, I, 1,W)])

∏
16 // Close the region using transition set.
17 // Well-formed structure of chain hasn’t changed.

18

¶
∃r1, r2. oreg(r1, {Chain(rs) | wf(rs) ∧ rs(x) = (r2, I, 1,W)})

©
19 // Delete all assertions using weakening.

20

¶
emp
©

Fig. 19. Sketch-proof for signal with out-of-order signalling.

1

¶
recv(x, P)

©
2 wait(x){
3 chan *c = x;
4 // Definition of recv.

5

{
∃r1, r2. oreg (r1, {Chain(rs) | ∃I ′. rs(x) = (, I ′, ,) ∧ r2 ∈ I ′ ∧ wf(rs)})

∗ r2
1/2
Z==⇒ P ∗ [change(x, r2)]r11 ∧ c = x

}
6 while(c != NULL) {

7

∃r1, r2. r2

1/2
Z==⇒ P ∗ [change(x, r2)]r11 ∗

oreg

Ö
r1,

Chain(rs)

∃I ′.wf(rs) ∧ ∃i. rs[i] = (x, , I ′] r2, ,) ∧
∃m < len(rs). rs[m] = (c, , , ,) ∧
∀j. i ≤ j < m =⇒ rs[j] = (, , , 1,)

è

8 while(!c->flag) skip;
9 c = c->prev;

10 }
11 // Flags up to x are now set. Stable because flags cannot get unset.

12

∃r1, r2. r2

1/2
Z==⇒ P ∗ [change(x, r2)]r11 ∗

oreg

Ç
r1,

®
Chain(rs)

∃I ′.wf(rs) ∧ ∃i. rs[i] = (x, , I ′] r2, ,) ∧
∀j. i ≤ j < len(rs) =⇒ rs[j] = (, , , 1,)

ǻ
13 〈skip〉; // Enter the region and drop . using AFrame.

14

〈
∃rs1, rs2, a. r2

1/2
Z==⇒ P ∗ [change(x, r2)]r11 ∗ chainds(rs) ∗ chainres(rs) ∗ unused(r1, rs) ∧

wf(rs) ∧ rs = rs1 · a · rs2 ∧ a = (x, r, I ′] r2, ,W) ∧ ctrue(a · rs2)

〉
15 // Apply Lemma 6.3 to convert from ctrue to cconf, denoting that the
16 // resource P is now available to be claimed.

17

±
∃rs1, rs2, rs′2, a. r2

1/2
Z==⇒ P ∗ [change(x, r2)]r11 ∗

chainds(rs) ∗ chainres(rs1 · rs′2) ∗ unused(r1, rs) ∧ wf(rs) ∧ rs = rs1 · a · rs2 ∧
a = (x, r, I ′] r2, ,W) ∧ cconf(rs′2) ∧ a · rs2

pr→∗ rs′2

ª
18 // Pull out the resource predicate for chain node x.

19

±
∃rs1, rs2, rs′2, a. r2

1/2
Z==⇒ P ∗ [change(x, r2)]r11 ∗

chainds(rs) ∗ chainres(rs1) ∗ resource(I ′] r2, ∅) ∗ chainres(rs′2) ∗ unused(r1, rs) ∧
wf(rs) ∧ rs = rs1 · a · rs2 ∧ a = (x, r, I ′] r2, ,W) ∧ cconf(rs′2) ∧ a · rs2

pr→∗ rs′2

ª
20 // Apply Lemma 6.4 to retrieve the resource d.P e.

21

±
d.P e ∗ ∃rs1, rs2, rs′2, a. r2

1/2
Z==⇒ P ∗ [change(x, r2)]r11 ∗

chainds(rs) ∗ chainres(rs1) ∗ resource(I ′, ∅) ∗ chainres(rs′2) ∗ unused(r1, rs) ∧
wf(rs) ∧ rs = rs1 · a · rs2 ∧ a = (x, r, I ′] r2, ,W) ∧ cconf(rs′2) ∧ a · rs2

pr→∗ rs′2

ª
22 // Close the region, use transitions sat and get.

23

∃r1, r2. d.P e ∗

oreg

Ç
r1,

®
Chain(rs′)

wf(rs′) ∧ rs = rs1 · a · rs2 ∧ a · rs2
pr→∗ rs′2 ∧

cconf(rs′2) ∧ rs′ = (rs1 · rs′2) Jx JI (• \ {r2})

ǻ
24 }// Use d.P e ⇒ .dP e, and delete redundant assertions using weakening.

25

¶
.dP e

©
Fig. 20. Sketch-proof for wait with out-of-order signalling.

Resources that are renounced earlier in the chain can be used to satisfy required resources
later in the chain. These resources are represented by the set W in the abstract state of
a cnode. Renounced resources need not be supplied when signal is called, but they must
be available before wait returns. To ensure this, the implementation of wait checks all the
preceding flags in the chain. Once all preceding flags are set, all the resources should be
available. However, proving this is subtle, because renounced resources may themselves be
satisfied by resources renounced earlier in the chain.

To establish the required resources are available, we use the following lemma. This says
that a chainres predicate for a chain where all the flags are set can be transformed into one
where pending resources have been resolved (asserted by ctrue and cconf respectively).

Lemma 6.3. chainres(rs) ∧ wf(rs) ∧ ctrue(rs)

v ∃rs′. chainres(rs′) ∧ cconf(rs′) ∧ rs pr→∗ rs′ ∧ wf(rs′)

Proof. Given in Appendix B. 2

We apply this lemma on line 15 of the sketch-proof.
Once we’ve established that the resources are available, we use the following lemma to

extract the appropriate resource from the resource predicate:

Lemma 6.4. resource(I] r2, ∅) ∗ r2
1/2
Z==⇒ P v resource(I, ∅) ∗ d.P e

Proof. Given in Appendix B 2

This lemma says that, given resource and an identifier r2 in I such that all required
resources are available, the resource .P associated with r2 can be retrieved. We apply this
lemma on line 20 of the sketch-proof.

Proving extend. The sketch-proof is given in Fig. 21. The key steps in the proof are
creating a new node to add to the chain (lines 3–9), stitching the new node into the chain
itself (line 12), then satisfying the required invariants for the region (lines 18–22).

It is important that new saved propositions are fresh – that is, their identifiers have not
been used elsewhere in the chain. We use the following lemma to show new identifiers are
fresh:

Lemma 6.5.

{oreg(r, T) ∗ r′ 1Z=⇒ P} 〈skip〉 {oreg(r, T ∩ {Chain(rs) | r′ /∈ rs}) ∗ r′ 1Z=⇒ P}
Proof. Each identifier r′′ used in rs is associated with a fractional saved proposition

r′′
1/2
Z==⇒ P . We case-split on the finite set of possible equalities and appeal to the linearity

of saved propositions (Property 2). The skip is required by iCAP because we access the
internal state of the region r. 2

The following lemma uses this freshness property, along with the freshness of allocated
locations to show that we can we can retrieve the required permissions from unused (the
‘library’ of unused permissions). We use this lemma on line 16 of the sketch-proof.

Lemma 6.6.

rs = rs1 · (x, r2, I, 0,W) · rs2 ∧ unused(r1, rs) ∧ z, r′, r′′ /∈ rs
v unused(r1, rs1 · (x, r2, I, 0,W) · (z, r′, {r′′}, 0, ∅) · rs2) ∗ [send(z)]r11 ∗ [change(z, r′′)]r11

Proof. Appeal to the definition of unused. 2

On line 18, we close the region. The resulting chain is well-formed because the new region
has no elements in its renunciation set W, and the rest of the chain is preserved. The chain

1

¶
send(x, P) ∗�e∈E e ≺ x ∗�l∈L x ≺ l

©
2 extend(x){ // Frame off order predicates
3 chan *z = new(chan); z->flag = 0;
4 z->prev = x->prev; // Stable as thread holds exclusive [send(x)] permission.

5

{
∃r1, r2, x′. r2

1/2
Z==⇒ P ∗ [send(x)]r11 ∗ z 7→ {prev = x′; flag = 0} ∗

oreg (r1, {Chain(rs) | wf(rs) ∧ rs(x) = (r2, , 0,) ∧ (x, x′) ∈ seq(rs) ∧ z /∈ rs})

}
6 skip; skip; // Make saved props, use Lemma 6.5 to show they are fresh.

7

{
∃r1, r2, x′, r′, r′′. r2

1/2
Z==⇒ P ∗ [send(x)]r11 ∗ z 7→ {prev = x′; flag = 0} ∗ r′ 1Z=⇒ Q ∗ r′′ 1Z=⇒ Q ∗

oreg (r1, {Chain(rs) | wf(rs) ∧ rs(x) = (r2, , 0,) ∧ (x, x′) ∈ seq(rs) ∧ z, r′, r′′ /∈ rs})

}
8 // Create a node in the chain.

9

∃r1, r2, x′, r′, r′′. r2

1/2
Z==⇒ P ∗ [send(x)]r11 ∗

oreg (r1, {Chain(rs) | wf(rs) ∧ rs(x) = (r2, , 0,) ∧ (x, x′) ∈ seq(rs) ∧ z, r′, r′′ /∈ rs}) ∗
r′

1/2
Z==⇒ Q ∗ r′′

1/2
Z==⇒ Q ∗ z 7→ {prev = x′; flag = 0} ∗ resource({r′′}, {r′})

10 // Enter the region, split the chain up.

11

¥
∃r1, r2, x′, r′, r′′, h, rs1, rs2. r2

1/2
Z==⇒ P ∗ [send(x)]r11 ∗

.

Ç
chainds(rs1) ∗ x 7→ {prev = x′; flag = 0} ∗ chainds(rs2) ∗ chainres(rs) ∗
unused(r1, rs) ∧ rs = rs1 · e · rs2 ∧ wf(rs) ∧ e = (x, r2, I, 0,W) ∧ z, r′, r′′ /∈ rs

å
∗

r′
1/2
Z==⇒ Q ∗ r′′

1/2
Z==⇒ Q ∗ z 7→ {prev = hd(rs2).loc; flag = 0} ∗ resource({r′′}, {r′})

æ
12 x->prev = z; // Stitch the new cnode into the chain using LPoints / AFrame.

13

¥
∃r1, r2, x′, r′, r′′, h, rs1, rs2. r2

1/2
Z==⇒ P ∗ [send(x)]r11 ∗

chainds(rs1) ∗ x 7→ {prev = z; flag = 0} ∗ chainds(rs2) ∗ chainres(rs) ∗
unused(r1, rs) ∧ rs = rs1 · e · rs2 ∧ wf(rs) ∧ e = (x, r2, I, 0,W) ∧ z, r′, r′′ /∈ rs ∗
r′

1/2
Z==⇒ Q ∗ r′′

1/2
Z==⇒ Q ∗ z 7→ {prev = hd(rs2).loc; flag = 0} ∗ resource({r′′}, {r′})

æ
14 // Fold the chainds predicate back up.

15

±
∃r1, r2, x′, r′, r′′, h, rs1, rs2. r2

1/2
Z==⇒ P ∗ [send(x)]r11 ∗ r′

1/2
Z==⇒ Q ∗ r′′

1/2
Z==⇒ Q

chainds(rs1 · e · e′ · rs2) ∗ chainres(rs1 · e · e′ · rs2) ∗ unused(r1, rs) ∧
rs = rs1 · e · rs2 ∧ wf(rs) ∧ e = (x, r2, I, 0,W) ∧ e′ = (z, r′, {r′′}, 0, ∅) ∧ z, r′, r′′ /∈ rs

ª
16 // Get [send(z)] ∗ [change(z, r′′)] from unused(r1, rs) using Lemma 6.6.

17

¥
∃r1, r2, r′, r′′, h, rs1, rs2.
chainds(rs1 · e · e′ · rs2) ∗ chainres(rs1 · e · e′ · rs2) ∗ unused(r1, rs1 · e · e′ · rs2)

∧ rs = rs1 · e · rs2 ∧ wf(rs) ∧ e = (x, r2, I, 0,W) ∧ e′ = (z, r′, {r′′}, 0, ∅)
∧ r2

1/2
Z==⇒ P ∗ [send(x)]r11 ∗ r′

1/2
Z==⇒ Q ∗ r′′

1/2
Z==⇒ Q ∗ [send(z)]r11 ∗ [change(z, r′′)]r11

æ
18 // Close the region using the ext transition.

19

∃r1, r2, r′, r′′, h.
oreg
Ä
r1,
¶

Chain(rs′) rs′ = rs1 · (x, r2, , 0,) · (z, r′, I ′, 0,) · rs2 ∧ r′′ ∈ I ′ ∧ wf(rs′)
©ä

∧ r2
1/2
Z==⇒ P ∗ [send(x)]r11 ∗ r′

1/2
Z==⇒ Q ∗ r′′

1/2
Z==⇒ Q ∗ [send(z)]r11 ∗ [change(z, r′′)]r11

20 return (z,x);
21 } // Frame on order predicates. Fold invariant into predicates.

22

¶
send(z, Q) ∗ recv(z, Q) ∗ send(x, P) ∗ z ≺ x ∗�e∈E e ≺ z ∗�l∈L x ≺ l

©
Fig. 21. Sketch-proof of extend with out-of-order signalling.

is stable because we hold the send permission on x and z, meaning these channels cannot
be extended or renounced.

Proving newchan. Omitted: this proof is similar to extend. However it is simpler: we
only need to construct a new point in the chain, and not update the existing chain to take
account of it.

6.4. Proving Renunciation and Splitting Axioms

Renunciation. The axiom is defined as follows:

{recv(x, P) ∗ send(y,Q) ∗ x ≺ y} 〈skip〉 {send(y, P −∗Q)}
The sketch-proof is given in Fig. 22. Internally each predicate contains a view on the same
shared region, and the first step of the proof consists of conjoining these three views to give
a single stable view on the shared structure (line 3). The remaining steps are supplying the
renounced resource to the shared region (line 13), and closing the region to give a new send
predicate (line 15).

In order to conjoin the regions arising from the send, recv and the order predicates, they
need to operate over the same region. Although the predicates do not expose region names,
we know from order predicates that all of the regions share common elements in their chain
addresses. We therefore use an extra lemma to show that pairs of such regions must be the
same:

Lemma 6.7.

{oreg(r, {Chain(rs) | x ∈ rs}) ∗ oreg(r′, {Chain(rs′) | x ∈ rs′})} 〈skip〉 {r = r′}
Proof. Given in Appendix B. 2

We use this lemma on line 3, Fig. 22. The conjoined region that arises from this lemma
(line 6) is stable because elements cannot be reordered with respect to each other once they
are in the chain, and because exclusive [chain] and [send] permissions are held for x and y
respectively.

When we push the renounced resource into the resource predicate (line 13) we use the
following lemma to show that the renunciation set W is updated appropriately:

Lemma 6.8. resource(I,W] {r}) ∗ r
1/2
Z==⇒ Q ∗ r′

1/2
Z==⇒ P

v ∃r′′. resource(I,W] {r′, r′′}) ∗ r′′
1/2
Z==⇒ (P −∗Q)

Proof. Given in Appendix B. 2

Note that the identifier r used for sending resources is replaced with a fresh identifier r′′

because the associated invariant is changed from Q to P −∗ Q. Internally this corresponds
to deleting one saved proposition through weakening, and then creating another.

On line 15 we close the region. The resulting chain is well-formed because the identifier we
selected was previously unused for renunciation – we get this from the definition of unused.
Furthermore, the remainder of the chain stays the same. The resulting chain is trivially
stable because the exclusive [send] permission is held.

Splitting. The axiom is defined as follows:

{recv(a, P) ∗ bdP e −∗ (P1 ∗ P2)c} 〈skip〉 {recv(a, P1) ∗ recv(a, P2)}
A sketch-proof is given in Fig. 23. The key step is splitting one element of the promised
resource set I for a node (line 6). To do this, we use the following lemma, which states
that the saved proposition r2 can be exchanged for new saved propositions r3 and r4 if the
appropriate resource bdP e −∗ (P1 ∗ P2)c is supplied.

1

¶
recv(x, P) ∗ send(y,Q) ∗ x ≺ y

©
2 〈skip〉; // Definition of recv, send, ≺. Use Lemma 6.7 to establish
3 // that all three predicates refer to the same region.

4

∃r, r2, r3. oreg(r, {Chain(rs) | (y, x) ∈ ord(rs)}) ∗(
oreg(r, {Chain(rs) | rs(x) = (, I, ,) ∧ r2 ∈ I ∧ wf(rs)})

∗ r2
1/2
Z==⇒ P ∗ [change(x, r2)]r1

)
∗(

oreg (r, {Chain(rs) | wf(rs) ∧ rs(y) = (r3, , 0,)})
∗ r3

1/2
Z==⇒ Q ∗ [send(y)]r1

)

5 // Conjunction on regions. Stable because of the permissions held.

6

∃r, r2, r3. r2

1/2
Z==⇒ P ∗ [change(x, r2)]r1 ∗ r3

1/2
Z==⇒ Q ∗ [send(y)]r1 ∗

oreg

Ç
r,

®
Chain(rs)

rs = rs1 · e · rs2 · e′ · rs3 ∧ wf(rs) ∧
e = (y, r3, , 0,) ∧ e′ = (x, , I, ,) ∧ r2 ∈ I

´å
7 〈skip〉; // Open the region, drop . using AFrame.

8

±
∃r, r2, r3. r2

1/2
Z==⇒ P ∗ [change(x, r2)]r1 ∗ r3

1/2
Z==⇒ Q ∗ [send(y)]r1 ∗

chainds(rs) ∗ chainres(rs) ∗ unused(r, rs) ∧ rs = rs1 · e · rs2 · e′ · rs3 ∧
wf(rs) ∧ e = (y, r3, I ′, 0,W ′) ∧ e′ = (x, r′, I, f,W) ∧ r2 ∈ I

ª
9 // Pull out node.

10

±
∃r, r2, r3. r2

1/2
Z==⇒ P ∗ [change(x, r2)]r1 ∗ r3

1/2
Z==⇒ Q ∗ [send(y)]r1 ∗

chainds(rs) ∗ chainres(rs1) ∗ resource(I ′,W ′] {r3}) ∗ chainres(rs2 · e′ · rs3) ∗ unused(r, rs) ∧
rs = rs1 · e · rs2 · e′ · rs3 ∧ wf(rs) ∧ e = (y, r3, I ′, 0,W ′) ∧ e′ = (x, r′, I, f,W) ∧ r2 ∈ I

ª
11 // Apply Lemma 6.8 to supply the resource

12

±
∃r, r2, r3. [change(x, r2)]r1 ∗ r4

1/2
Z==⇒ (P −∗Q) ∗ [send(y)]r1 ∗

chainds(rs) ∗ chainres(rs1) ∗ resource(I ′,W ′] {r2, r4}) ∗ chainres(rs2 · e′ · rs3) ∗ unused(r, rs) ∧
rs = rs1 · e · rs2 · e′ · rs3 ∧ wf(rs) ∧ e = (y, r3, I ′, 0,W ′) ∧ e′ = (x, r′, I, f,W) ∧ r2 ∈ I

ª
13 // Close the chain.

14

±
∃r, r2, r4. r4

1/2
Z==⇒ (P −∗Q) ∗ [send(y)]r1 ∗ chainds(rs′) ∗ chainres(rs′) ∗ unused(r, rs′) ∧

rs = rs1 · e · rs2 · e′ · rs3 ∧ rs′ = rs1 · (y, r4, I ′, 0,W ′] {r2}) · rs2 · e′ · rs3 ∧
wf(rs) ∧ e = (y, , I ′, 0,W ′) ∧ e′ = (x, r′, I, f,W) ∧ r2 ∈ I

ª
15 // Close region using the renun transition.

16

{
∃r, r4. r4

1/2
Z==⇒ (P −∗Q) ∗ [send(y)]r1 ∗ oreg (r, {Chain(rs) | wf(rs) ∧ rs(y) = (r4, , 0,)})

}
17 // Definition of send.

18

¶
send(y, P −∗Q)

©
Fig. 22. Proof of the renunciation axiom for out-of-order implementation.

1

¶
recv(x, P) ∗ bdP e −∗ (P1 ∗ P2)c

©
2 // Definition of recv.

3

{
∃r1, r2. oreg (r1, {Chain(rs) | rs(x) = (, I, ,) ∧ r2 ∈ I ∧ wf(rs)})

∗ r2
1/2
Z==⇒ P ∗ [change(x, r2)]r11 ∗ bdP e −∗ (P1 ∗ P2)c

}
4 // Enter the region.

5

±
∃r1, r2. r2

1/2
Z==⇒ P ∗ [change(x, r2)]r11 ∗ bdP e −∗ (P1 ∗ P2)c ∗

.

Ç
chainds(rs) ∗ chainres(rs1) ∗ resource(I] {r2},W) ∗ chainres(rs2) ∧

rs = rs1 · (x, r, I] {r2}, f,W) · rs2 ∧ unused(r1, rs)

åª
6 〈skip〉 // AFrame to drop ., Lemma 6.9 to split the region.

7

±
∃r1, r2, r3, r4. r3, r4 /∈ rs ∧ r3

1/2
Z==⇒ P1 ∗ r4

1/2
Z==⇒ P2 ∗ [change(x, r2)]r11 ∗

chainds(rs) ∗ chainres(rs1) ∗ resource(I] {r3, r4},W) ∗ chainres(rs2) ∗
unused(r1, rs) ∧ rs = rs1 · (x, r, I] {r2}, f,W) · rs2

ª
8 // Close chain, pull [change] perms out of unused.

9

±
∃r1, r2, r3, r4. r3

1/2
Z==⇒ P1 ∗ r4

1/2
Z==⇒ P2 ∗ [change(x, r3)]r11 ∗ [change(x, r4)]r11 ∗

chainds(rs) ∗ chainres(rs1) ∗ resource(I] {r3, r4},W) ∗ chainres(rs2) ∗ unused(r1, rs
′)

∧ rs = rs1 · (x, r, I] {r2}, f,W) · rs2 ∧ rs′ = rs1 · (x, r, I] {r3, r4}, f,W) · rs2

ª
10 // Close region using the split transition.

11

{
∃r1, r2, r3, r4. r3

1/2
Z==⇒ P1 ∗ r4

1/2
Z==⇒ P2 ∗ [change(x, r3)]r11 ∗ [change(x, r4)]r11 ∗

oreg (r1, {Chain(rs) | rs(x) = (, I, ,) ∧ r3, r4 ∈ I ∧ wf(rs)})

}
12 // Definition of recv.

13

¶
recv(x, P1) ∗ recv(x, P2)

©
Fig. 23. Proof of the splitting axiom for the out-of-order implementation.

Lemma 6.9. r2 ∈ rs(x).I ∧ r2
1/2
Z==⇒ P ∗ bdP e −∗ (P1 ∗ P2)c ∗ chainres(rs)

v ∃rs′, r3, r4. r3, r4 /∈ rs ∧ rs′ = rs JxJI ((• \ r2)] {r3, r4}) ∧
r3

1/2
Z==⇒ P1 ∗ r4

1/2
Z==⇒ P2 ∗ chainres(rs′)

Proof. Given in Appendix B. This proof is very similar in structure to the proof without
chaining given in §5.3. 2

7. OUT-OF-ORDER SUMMARIZATION

In this section we consider our third, most complex, channel implementation. This imple-
mentation satisfies our abstract specification, but internally, signals propagate up a tree
structure towards a shared root rather than along a linear chain. This barrier implementa-
tion corresponds closely to the one in [?] – the summarisation process is how it achieves its
efficiency. Verifying this implementation demonstrates that our approach scales to custom
synchronisation constructs developed for performance-sensitive concurrency applications.

7.1. Implementation approach

Figure 24 shows the implementation. The data-structure is an inverted tree – that is, nodes
point upwards towards a single common root. An instance of the data-structure is illustrated
in Figure 25.

1 typedef struct chan_hdr chan_hdr;
2

3 typedef struct chan_addr {
4 chan_hdr *hdr;
5 int off;
6 } chan_addr;
7

8 typedef struct chan_hdr {
9 chan_addr up;

10 int loff;
11 bool flags[MAX];
12 } chan_hdr;
13

14 (chan_addr, chan_addr)
15 extend(chan_addr x){
16 chan_addr nx,r;
17 if(x.off == x.hdr->loff
18 && x.off < MAX){
19 x.hdr->flags[x.loff+1] = 0;
20 x.hdr->loff++;
21 r.hdr = x.hdr;
22 r.off = x.off + 1;
23 nx = x;
24 } else {
25 nh = malloc(chan_hdr);
26 nh->up = x;
27 nh->loff = 1;
28 nx.hdr = nh;
29 nx.off = 0;
30 r.hdr = nh;
31 r.off = 1;
32 }
33 return (r,nx);
34 }

35 signal(chan_addr x){
36 int i;
37 bool ret = FALSE;
38 chan_addr a = x;
39 while (a.hdr != NULL && !ret){
40 a.hdr->flags[a.off] = 1;
41 for(i=0; i<=a.hdr->loff; i++){
42 if (a.hdr->flags[i] != 1)
43 ret = TRUE;
44 }
45 a = a.hdr->up;
46 }
47 }
48

49

50

51

52

53

54

55

56

57 wait(chan_addr x){
58 chan_addr a = x;
59 while (a.hdr != NULL) {
60 for(skip; a.off<=a.hdr->loff;
61 a.off++){
62 while(a.hdr->flags[a.off] != 1)
63 skip;
64 }
65 a = a.hdr->up;
66 a.off++;
67 }
68 }

Fig. 24. Channel implementation with out-of-order signalling and summarization.

All of the nodes in the tree are of type chan_addr, and each contains a fixed-size boolean
array. Booleans in an array correspond to channel flags, either Low or High. Flags that are
leaves, i.e. that do not have a child subtree, represent the channels in the chain. Scanning
these leaf flags in order gives the sequence of flags in the abstract chain.

Non-leaf flags in the tree summarise the states of multiple flags in the chain. Nodes are
equipped with an up field containing an address and an offset – the address is the parent
node, while the offset refers to a particular ‘summary’ flag in its array. If all the flags in a
node are set, then its parent summary flag can also be set. This means that if a summary
flag is set, all the flags in the subtree must also be set. Thus wait only needs to read from
a single flag to know that all the flags in the child subtree are set.

To signal a channel, the function reads the array location from the array header, and
writes 1 into the flag at the appropriate offset (Fig. 24, line 40). signal then reads all the
sibling flags in the same array. If any of them are unset, it exits. Otherwise it retrieves the
address to the next level in the tree and loops if it is not at the root (lines 41–45). In this
way, if a flag’s siblings are all set, then signal will set the parent summary flag. If all the

hdr

loff MAX

0 1 0 1 1 0

upup

up

up

up

a:

b:

e: f:

d:

c:

Fig. 25. Example of the summarising channel structure.

siblings of the summary flag are also set, it will set its parent, and in this way iterate up
the tree.

The wait function exploits summaries to reduce the number of flags it must test. Rather
than examining all the preceding flags in the chain, wait just examines the summary closer
to the root. The function waits on each preceding flag in the current array (Fig. 24, lines 60–
64 – note that increasing the index moves logically earlier in the chain). It then reads the
up address stored in the array header and loops if it is not at the root. Because it only ever
climbs the tree, the function avoids the cost of iterating over the entire chain. The following
diagram shows the nodes accessed when traversing up from x:

x

Arrays are allocated with a fixed maximum size MAX, and are gradually filled when ex-
tending the chain. The current number of flags active in the array is stored in the header
field loff. Thus extend has two cases depending whether there is room in the current array
for another leaf (checked on line 17).

— If there is space, then the new leaf is inserted immediately following the current one in
the array (lines 20–22).

— If no space remains in the array, then a new array is allocated, and the current flag is used
as a summary. The first and second locations in the new array represent the current and
newly-created channels (lines 25–31).

As a result of extension, wait may be passed the address of a leaf flag, which is then silently
converted into a summary. However, this process is sound: if this summary is set, then the
appropriate child flag must also be set (this subtlety is what necessitates the predicate
finalleaf in the proof below).

7.2. Proof Strategy

Abstract state. At level of specification, the behaviour of the algorithm is unchanged from
§6 – as a result, we can reuse some of the reasoning from there. The algorithm’s abstract
state has two parts: an abstract chain and a heap map. The former dictates the resources
promised and renounced at each point in the chain, while the latter defines the underlying
inverted-tree pointer structure.

An abstract chain is a sequence in CNode+, defined exactly as in §6 (see p.36). The only
difference is that each node location loc is now a pair 〈h, o〉 consisting of a physical address
and an offset – this corresponds to the chan addr type. We reuse abstract chains so that
we can reuse reasoning about how resources move through the chain. However, for this
implementation an abstract chain alone is insufficient, because it does not represent the
underlying inverted tree data-structure.

A heap map represents the inverted-tree structure which controls signal propagation and
summarisation. Heap maps are finite, partial functions from physical addresses – each ad-
dress represents a chan hdr-typed object forming the tree.

d ∈ HMap : Addr
fin
⇀ {uhdr : Addr; uoff : Int; loff : Int; flags : {0..MAX} → Bool}

(To simplify the representation, we flatten the chan adr-typed field ‘up’ into the two sub-
fields uhdr and uoff.)

To ensure a heap map represents a correct inverted tree we require several well-formedness
properties:

— Each address-offset pair 〈x, i〉 has at most one child in d which points upward to it. This
ensures leaves are uniquely identified.

— Chains of upward pointers are non-cyclic and point towards a common root. This ensures
that the data-structure is tree-shaped.

— Flags are only set in non-leaf nodes if all the corresponding leaf nodes are set. This ensures
that signals are properly summarised and propagated up the tree.

Given a chain rs and heap map d, well-formedness also requires that the two portions of the
abstract state correspond. Loosely, this means that the leaves of the inverted tree defined
by d are exactly the addresses in the chain rs.

Abstract state well-formedness. In order to define formally that rs and d are well-formed
and correspond correctly, we require several auxiliary notions:

childd(x, i, y) , d(y).uhdr = x ∧ d(y).uoff = i ∧ 0 ≤ i ≤ d(x).loff

leafd(〈x, i〉) , 〈x, i〉 ∈ d ∧ @y. d(y).uhdr = x ∧ d(y).uoff = i

descendd(〈x, i〉, 〈y, j〉) , 〈x, i〉 = 〈y, j〉 ∨ descendd(〈x, i〉, 〈d(y).uhdr , d(y).uoff 〉)
issetd(〈x, i〉) , d(x).flags(i) = 1

allsetd(x) , ∀i. 0 ≤ i ≤ d(x).loff =⇒ issetd(〈x, i〉)

(Note we say that a location-offset pair 〈x, i〉 is in d if x ∈ dom(x)(d) ∧ i ≤ d.loff .)
The child, descend, and leaf predicates record corresponding structural facts about rela-

tionships in the tree. Well-formedness on d (defined below) requires that paths through uhdr
are finite, which suffices to ensure that descend is well-defined. isset and allset respectively
assert that a single address and a whole array have their flags set.

〈x, i〉 <d 〈y, j〉 , ∃z, ix, iy. descendd(〈z, ix〉, 〈x, i〉) ∧ descendd(〈z, iy〉, 〈y, j〉) ∧ ix > iy

a <��
d b , a <d b ∨ descendd(a, b) ∨ descendd(b, a)

finalleafd(x, y) , descendd(x, y) ∧ leafd(y) ∧ (∀z. descendd(x, z) ∧ leafd(z)⇒ z <��
d y)

The order predicate <d says that two addresses are ordered in the tree, meaning that they
share a common ancestor array in which they are also ordered. This defines a transitive and

irreflexive order. <��
d says that either two addresses are related by <d, or that one is the

descendant of the other (i.e. they are on the same path and one summarises the other).

finalleafd(x, y) indicates that y is the maximal leaf according to <��
d that is summarised by

x. This is useful because applications of extend may mean clients wait on x when the actual
leaf has been superceded by y. For each x there exists at most one y satisfying finalleaf, so
we generally use it as a partial function, i.e. finalleafd(x) stands for the unique y such that
finalleafd(x, y).

We can now define wf(rs, d), which requires that rs and d are independently well-formed,
and that they are correctly tied together. As abstract chains are unchanged from §6, we
can reuse the prior definition of wf(rs) (§6.2). For heap-maps, well-formedness is defined as
follows:

wf(d) , ∃r : Addr.∃τ : dom(d)→ N.
∀x, i, y, z. (〈x, i〉 ∈ d =⇒ ∃j. descend(〈r, j〉, 〈x, i〉)) ∧

((childd(x, i, y) ∧ childd(x, i, z)) =⇒ y = z) ∧
((childd(x, i, y) ∧ issetd(x, i)) =⇒ allsetd(y)) ∧
(d(x).uhdr = y ∧ y 6= NULL =⇒

d(y) defined ∧ d(x).uoff ≤ d(y).loff ∧ τ(y) < τ(x))

Here the address r is the location of the tree root, while the function τ records the distance
from the current node to the root – this enforces the absence of cycles. The first clause of
the definition ensures all elements in the tree share a common root. The second ensures
that children are uniquely identified by address and offset. The third ensures that setting
a flag summarises all descendants. The final clause guarantees the existence of non-NULL
parents to a node, and enforces the distance function τ .

wf(rs, d) , wf(rs) ∧ wf(d) ∧
∀r ∈ rs. r.loc = 〈l, o〉 =⇒ r.flg = d(l).flags[o] ∧
∀r ∈ rs. leafd(r.loc) ∧
∀r1, r2. (rs = · r1 · · r2 ·) =⇒ r2.loc <d r1.loc

As well as requiring that rs and d are well-formed on their own, this requires (1) that flags
in the chain are correctly set in the heap map; (2) locations in the chain are leaves in the
heap map; and (3) order in the chain is reflected in the heap-map order <d.

Transition map. We define a new transition map Ts to capture changes to the heap map
(Figure 26). Many of the transitions are inherited from Tc, the transition relation for the
chained implementation (§6.2).

set and ext alter the underlying inverted-tree data-structure, and so are defined to allow
this. set just updates the tree-map flag appropriately using our lens notation. ext has two
cases, reflecting the conditional in the implementation. Either there is enough space in the
array to fit another flag, or another array must be added to the heap map. In the latter
case, note that the address of the existing channel a is shifted into the new array.

Furthermore, signal can mark summary flags, i.e. flags that are not leaves in the tree;
this is allowed by the transition mark. Finally, note finalleaf in the definition of get: this is
needed because the real flag may shift its position due to extend, with wait left reading
from a summary. Here x is the original flag which has been superceded, and finalleafd(x) is
the current position of the flag. It is safe to pass an address to wait which may have been

renuns(x, (rs, d), (rs′, d′)) , d′ = d ∧ renunc(x, rs, rs
′)

sets(x, (rs, d), (rs′, d′)) , x = 〈h, o〉 ∧ d′ = d JhJflags[o] (1) ∧ setc(〈h, o〉, rs, rs′)
exts(x, (rs, d), (rs′, d′)) , rs = (rs1 · a · rs2) ∧ rs′ = (rs1 · b · c · rs2) ∧ a.flg = 0 ∧

∃y. b = a[loc 7→ y] ∧ c.flg = 0 ∧ c.W = ∅ ∧ x = 〈h, o〉 = a.loc ∧áÇ
b.off = 〈h′, 0〉 ∧ c.off = 〈h′, 1〉 ∧
d′ = d] h′ 7→ {uhdr = h; uoff = o; loff = 1; flags = λ . 0}

å
∨
Ç
o = d(h).loff ∧ b.loc = a.loc ∧ c.loc = 〈h, o+ 1〉 ∧
d′ = (d JhJloff (o+ 1)) JhJflags[o+1] (0))

å ë
splits(x, r, (rs, d), (rs′, d′)) , d = d′ ∧ splitc(finalleafd(x), r, rs, rs′)

sats((rs, d), (rs′, d′)) , d = d′ ∧ satc(rs, rs
′)

gets(x, r, (rs, d), (rs′, d′)) , d = d′ ∧ getc(finalleafd(x), r, rs, rs′)

Ts(send(x)) , {(a, b) | wf(b) ∧ (renuns(x, a, b) ∨ sets(x, a, b) ∨ exts(x, a, b))}
Ts(change(x, r)) , {(a, b) | wf(b) ∧ (splits(x, r, a, b) ∨ sats(a, b) ∨ gets(x, r, a, b))}

Ts(mark) ,

®
((rs, d), (rs, d′))

wf(rs, d′) ∧ d′ = d JhJflags[o] (1)

∧ ¬leafd(〈h, o〉))

´
Fig. 26. Definition of the transition relation Ts for the summarising implementation.

converted into a summary because extension ensures the original flag must be one of those
summarised by x.

Interpretation function. For a given map d, chainds maps down to the corresponding data-
structure definition. Heap maps are intentionally close to the underlying heap: each element
in the domain maps to a distinct chan addr object in memory.

chainds(d) , �x∈dom(d).

x.up 7 7→ {hdr = d(x).uhdr ; off = d(x).uoff } ∗ x.loff 7→ (d(x).loff)

∗�i∈{0..MAX}. x.flags[i] 7→ (d(x).flags(i))

Once a chan addr object has been allocated, its up-address cannot be modified. To represent
this in the definition, we write x 7 7→ v to indicate that x is immutable – shorthand for

∃f. x f7−→ v. This is useful as immutable locations can be freely shared between threads:
x 7 7→ v =⇒ x 7 7→ v ∗ x 7 7→ v.

The interpretation function Is converts an abstract state Chain(rs, d) into a data-
structure:

Is(r)(Chain(rs, d)) , chainds(d) ∗ chainres(rs) ∗ unused(r, rs, d)

As chainds defines the concrete heap structure, it only requires a heap-map d. Conversely,
chainres defines the pattern of splits, promises, and renunciations, and so only requires an
abstract chain rs. Indeed, chainres is defined identically to §6.

The predicate unused, representing the ‘library’ of unused permissions, requires both d
and rs. This is because the position of a flag may move as a result of extension. As a result,
wait may be passed a summary flag x – before extension, the passed node would have been
a leaf. The flag x will be represented in d, but not represented in the chain rs, and thus
unused requires both in order to keep track of permissions.

To define unused, the set C(rs, d) represents possible targets of wait; a permission is
missing from the set of unused change permissions, uC(rs, d), only if it targets one of these

nodes.

C(rs, d) , {〈y, i〉 | r ∈ rs ∧ finalleafd(〈y, i〉, r.loc) ∧ ¬finalleafd(〈d(y).uhdr , d(y).uoff 〉, r.loc)}
uC(rs, d) , {(x, r) | r ∈ rs(finalleafd(x)).I ∧ x ∈ C(rs, d) ∧ ¬∃y. r ∈ rs(y).W}

unused(r, rs, d) , (�x /∈ uS(rs). [send(x)]r1) ∗ (�(x, r′) /∈ uC(rs, d). [change(x, r′)]r1)

Predicate definitions. We can now define the send and recv predicates. These largely follow
the definitions in §6: the differences in underlying data-structures are abstracted by the
interpretation function and transition relation.

oreg(r, S) , region(S, Ts, Is(r), r)

send(x, P) , ∃r1, r2. r2
1/2
Z==⇒ P ∗ [send(x)]r11 ∗ [mark]r1 ∗

oreg(r1, {Chain(rs, d) | wf(rs, d) ∧ rs(x) = (r2, , 0,)})
recv(x, P) , ∃r1, r2. r2

1/2
Z==⇒ P ∗ [change(x, r2)]r11 ∗

oreg(r1, {Chain(rs, d) | wf(rs, d) ∧ r2 ∈ rs(finalleafd(x)).I})

x ≺ y , ∃r. oreg(r, {Chain(rs, d) | wf(rs, d) ∧ (finalleafd(y), finalleafd(x)) ∈ ord(rs)})

We use x to stand for 〈x.hdr, x.off〉 if x is a chan addr struct and we use [mark]r as notation
for ∃π. [mark]rπ to represent non-exclusive ownership of the mark action.

The stability of most of the predicates is obvious; however, the fact that finalleaf can
change means we prove stability explicitly for recv.

Lemma 7.1. recv(x, P) is stable.

Proof. Assume the initial abstract state of the chain is Chain(rs, d) and that ext takes
the step (x′, (rs, d), (rs′, d′)). The case where x 6= x′ is trivial, so assume x = x′. We now
need to show wf(rs′, d′) ∧ r2 ∈ rs′(finalleafd′(x)).I. Assume a, b and c are chain nodes as
used in the definition of ext.

The requirement wf(rs′, d′) holds as a constraint on the transition relation. It remains to
show the second clause. By the definition of ext, finalleafd(x) = a.loc and a.I = b.I. There
are now two cases: either ext generates a new array, or it adds an element to the existing
array. In the latter case, d′ only changes by adding an element at a higher index in the
array. Thus finalleafd′(x) = b.loc. In the former case, ext adds a new array which must also
descend from x. If finalleafd′(x) 6= b.loc, there must be leaf z such that b.loc <d z, but the
only new leaf c is at the next index in the new array, meaning c.loc <d b.loc. Thus the result
follows by contradiction. 2

7.3. Verifying wait, signal, extend

Proving signal. A sketch-proof for signal is given in Fig. 27. The algorithm begins by
setting the flag at the appropriate address (line 9). Abstractly the reasoning here is the
same as when setting a flag in the non-summarising implementation (§6.3) so we omit it.
The algorithm then climbs up the tree. If all the flags have been set in a given array, the
summary flag is also set (line 9). Well-formedness allows summary nodes to be set if all
their children are set. If a flag is discovered which is not set, or the loop climbs to the top
of the tree, the algorithm exits.

The assignment on line 9 applies the transition relation step set or mark, depending on
whether the node is a leaf or a summary. The following lemma ensures that the library of
unused permissions is preserved after each such transition relation step.

1

¶
send(x, P) ∗ bP c

©
2 signal(chan_addr x){
3 int i; ret = FALSE;
4 chan_addr a = x;

5

{
a = x ∧ bP c ∗ ∃r1, r2. r2

1/2
Z==⇒ P ∗ [send(x)]r11 ∗

oreg(r1, {Chain(rs, d) | wf(rs, d) ∧ leafd(x) ∧ d(x.hdr).flags[x.off] = 0})

}
6 while (a.hdr != NULL && !ret){
7 // Loop invariant.

8

(ret ∧ emp) ∨(
a = x ∧ bP c ∗ ∃r1, r2. r2

1/2
Z==⇒ P ∗ [send(x)]r11 ∗ [mark]r1 ∗

oreg(r1, {Chain(rs, d) | wf(rs, d) ∧ leafd(x) ∧ d(x.hdr).flags[x.off] = 0})

)
∨Ç

∃r1. [mark]r1 ∗
oreg(r1, {Chain(rs, d) | wf(rs, d) ∧ ¬leafd(a) ∧ (∀l. (descendd(a, l) ∧ a 6= l)⇒ issetd(l))})

å

9 a.hdr->flags[a.off] = 1; // Transition relation step set / mark.
10 for(i=0; i<=a.hdr->loff; i++){

11

Ö
∃r1. [mark]r1 ∗

oreg

Ç
r1,

®
Chain(rs, d)

wf(rs, d) ∧ (∀l. descendd(a, l)⇒ issetd(l))

∧ ∀0 ≤ n < i. issetd(〈a.hdr, n〉)

´åè
12 if (a.hdr->flags[i] != 1)
13 ret = TRUE;
14 }

15

(ret ∧ oreg(r1, {Chain(rs, d) | wf(rs, d) ∧ a ∈ dom(d)})) ∨Ç
∃r1. [mark]r1 ∗
oreg(r1, {Chain(rs, d) | wf(rs, d) ∧ (∀l. descendd(a, l)⇒ issetd(l)) ∧ allsetd(a.hdr)})

å
16 a = a.hdr->up; // If exit condition holds, delete assertions using weakening.
17 }
18 }

19

¶
emp
©

Fig. 27. Sketch-proof of signal with summarization.

Lemma 7.2.

sets(x, (rs, d), (rs′, d′)) ∧ unused(r, rs, d) ∗ [send(x)]r1 =⇒ unused(r, rs′, d′)

((rs, d), (rs′, d′)) ∈ Ts(mark) ∧ unused(r, rs, d) =⇒ unused(r, rs′, d′)

Proof. Trivial from the definition of Ts and unused. 2

Proving wait. A sketch-proof for wait is given in Fig. 28 / 29. This proof just deals
with the part of the code establishing that all the flags in the chain have been set. In
the proof, we use lastd(a) to stand for the last address in the array associated with a, i.e.
〈a.hdr, d(a.hdr).loff 〉.

The loop starting at line 5 checks the flags in the current array. In line 8 the algorithm
waits for the current node’s flag. This may not be a leaf – it may be a summary node
somewhere inside the tree. Once this passes, by the second clause of well-formedness (page
51) we can conclude that all the flags in the subsequence rs3 have been set. Then the
algorithm increments the offset – as a is not at the last offset for the array, there must exist
an adjacent channel address at this position.

To prove this algorithm correct, we need several sub-lemmas. The first states that once the
algorithm reaches the root of the tree, there are no locations in d that are earlier according
to <d. This ensures that searching the tree covers all the preceding channels in the chain.

Lemma 7.3. wf(d) ∧ d(a).loff = o ∧ d(a).uhdr = NULL =⇒ ¬∃x. x <d 〈a, o〉
Proof. Assume such an x exists. Then by the definition of <d, there must exist an

address y such that x and 〈a, o〉 are both descended from y. As the uhdr field is NULL, the
only possibility is that both addresses are in the object at a. By the definition of <d, x
must be further right in the flag array, but o is the right-most address. This contradicts the
assumption and completes the proof. 2

The second lemma states that examining the elements reachable through the heap map
suffices to show that the corresponding elements in the abstract chain have been set. This
lemma justifies our splitting of the invariant into a separate heap map and abstract chain
structure.

Lemma 7.4. wf(rs, d) ∧ z ∈ dom(rs) ∧ descendd(x, z) ∧ leafd(z) ∧
(∀l. l <��

d x ∧ leafd(l)⇒ issetd(l))

=⇒ ∃rs1, rs2. rs = rs1 · rs(z) · rs2 ∧ ctrue(rs(z) · rs2)

Proof. As z ∈ dom(rs), we can easily divide up rs into rs1 · rs(z) · rs2. Now pick
an arbitrary element y in dom(rs(z) · rs2) and suppose that rs(y).flg is not set. By well-

formedness, it must be true that y <��
d z. Now we show that y <��

d x. The contrary, x <d y,
would imply that z <d y, contradicting our assumption. Therefore by the premise the
associated flag must be set. However, well-formedness requires that flags are mirrored in rs
and d, contradicting our assumption and completing the proof. 2

The final lemma shows that shifting left from the current maximal node reaches a node
earlier in the order. Note that the existence of the new node is shown on left of the impli-
cation because this lemma applied in a negative position in the proof.

Lemma 7.5. 0 ≤ d(a).off < d(a).loff ∧wf(d)∧a Joff (•+1) <d k <d b =⇒ a <��
d k <d b

Proof. The result follows from the structure of the heap map and the definition of <d.
2

Proving extend. A sketch-proof of extend is given in Fig. 30. There are two cases for
extending the chain: either the node is the last element in the current array and there is

1

¶
recv(x, P)

©
2 wait(chan_addr x){
3 chan_addr a = x;

4

{
∃r1, r2. r2

1/2
Z==⇒ P ∗ [change(x, r2)]r11 ∗ a = x ∗

oreg(r1, {Chain(rs, d) | wf(rs, d) ∧ r2 ∈ rs(finalleafd(x)).I})

}
5 while (a.hdr != NULL) {

6

∃r1, r2. r2

1/2
Z==⇒ P ∗ [change(x, r2)]r11 ∗

oreg

Ç
r1,

®
Chain(rs, d)

wf(rs, d) ∧ r2 ∈ rs(finalleafd(x)).I ∧
∀l. (a <d l <��

d x) ∧ leafd(l)⇒ issetd(l)

ǻ
7 for(skip; a.off<=a.hdr->loff; a.off++){
8 while(a.hdr->flags[a.off] != 1) skip;

9

∃r1, r2. r2

1/2
Z==⇒ P ∗ [change(x, r2)]r11 ∗

oreg

Ç
r1,

®
Chain(rs, d)

wf(rs, d) ∧ r2 ∈ rs(finalleafd(x)).I ∧ issetd(a) ∧
∀l. (a <d l <��

d x) ∧ leafd(l)⇒ issetd(l)

ǻ
10 // Appeal to well-formedness to add ’a’ to checked interval.

11

∃r1, r2. r2

1/2
Z==⇒ P ∗ [change(x, r2)]r11 ∗

oreg

Ç
r1,

®
Chain(rs, d)

wf(rs, d) ∧ r2 ∈ rs(finalleafd(x)).I ∧
∀l. (a <��

d l <
��
d x) ∧ leafd(l)⇒ issetd(l)

ǻ
12 // Apply Lemma 7.5 to show preceding node exists.
13 }
14 // Stable because chain cannot be extended once all the flags have been set.

15

∃r1, r2. r2

1/2
Z==⇒ P ∗ [change(x, r2)]r11 ∗

oreg

Ç
r1,

®
Chain(rs, d)

wf(rs, d) ∧ r2 ∈ rs(finalleafd(x)).I ∧
∀l. (lastd(a) <��

d l <
��
d x) ∧ leafd(l)⇒ issetd(l)

ǻ
16 // Case-split on whether d(a.hdr).uhdr = NULL, if so, apply Lemma 7.3.

17 // As ∀x.¬x <d lastd(a), well-formedness gives us ∀x. lastd(a) <��
d x.

18

∃r1, r2. r2
1/2
Z==⇒ P ∗ [change(x, r2)]r11 ∗

oreg

r1,

Chain(rs, d)

wf(rs, d) ∧ r2 ∈ rs(finalleafd(x)).I ∧á
d(a.hdr).uhdr 6= NULL =⇒
∀l. (lastd(a) <��

d l <
��
d x) ∧ leafd(l)⇒ issetd(l)

∨ d(a.hdr).uhdr = NULL =⇒
∀l. l <��

d x ∧ leafd(l)⇒ issetd(l)

ë

Fig. 28. Sketch-proof of wait with summarization (completed in Fig. 29).

19 a = a.hdr->up;

20

∃r1, r2. r2
1/2
Z==⇒ P ∗ [change(x, r2)]r11 ∗

oreg

r1,

Chain(rs, d)

wf(rs, d) ∧ r2 ∈ rs(finalleafd(x)).I ∧á
a.hdr 6= NULL =⇒
∀l. a <��

d l <
��
d x ∧ leafd(l)⇒ issetd(l)

∨ a.hdr = NULL =⇒
∀l. l <��

d x ∧ leafd(l)⇒ issetd(l)

ë

21 a.off++; // Apply Lemma 7.5 to non-NULL case.

22

∃r1, r2. r2
1/2
Z==⇒ P ∗ [change(x, r2)]r11 ∗

oreg

r1,

Chain(rs, d)

wf(rs, d) ∧ r2 ∈ rs(finalleafd(x)).I ∧á
a.hdr 6= NULL =⇒
∀l. a <d l <��

d x ∧ leafd(l)⇒ issetd(l)

∨ a.hdr = NULL =⇒
∀l. l <��

d x ∧ leafd(l)⇒ issetd(l)

ë

23 }

24

∃r1, r2. r2

1/2
Z==⇒ P ∗ [change(x, r2)]r11 ∗

oreg

Ç
r1,

®
Chain(rs, d)

wf(rs, d) ∧ r2 ∈ rs(finalleafd(x)).I ∧
∀l. l <��

d x ∧ leafd(l)⇒ issetd(l)

ǻ
25 // Apply Lemma 7.4 to show all nodes in chain are set.

26

∃r1, r2. r2

1/2
Z==⇒ P ∗ [change(x, r2)]r11 ∗

oreg

Ö
r1,

Chain(rs, d)

wf(rs, d) ∧ r2 ∈ rs(finalleafd(x)).I ∧
∀z. leafd(z) ∧ z ∈ dom(rs) ∧ descendd(x, z) =⇒
∃rs1, rs2. rs = rs1 · rs(z) · rs2 ∧ ctrue(rs(z) · rs2)

è

27 // Identical reasoning to chained implementation (§6.3)
28 ...
29 }

Fig. 29. Sketch-proof of wait with summarization (continued from Fig. 28).

space to add an extra node; or there is no space and the algorithm allocates a fresh array.
This choice is made by the conditional in line 6.

The proof needs the following lemmas to show that the unused predicate representing
unused permissions is preserved by extending the chain.

Lemma 7.6.Ç
exts(〈x, i〉, (rs, d), (rs′, d′)) ∧ dom(d′) = dom(d) ∧ r′ /∈ rs ∧
rs′(〈x, i+ 1〉).I = {r′} ∧ wf(rs, d) ∧ wf(rs′, d′) ∧ unused(r, rs, d)

å
=⇒

unused(r, rs′, d′) ∗ [send(〈x, i+ 1〉)]r1 ∗ [change(〈x, i+ 1〉, r′)]r1
Proof. Begin by observing that, by the definition of exts, 〈x, i+ 1〉 /∈ rs, and thus that:

unused(r, rs, d) =⇒ [send(〈x, i+ 1〉)]r1 ∗ [change(〈x, i+ 1〉, r′)]r1 ∗ true

As 〈x, i + 1〉 ∈ rs′, it holds immediately that 〈x, i + 1〉 ∈ uS(rs′). As 〈x, i + 1〉 is a leaf,
finalleafd′(〈x, i + 1〉) = 〈x, i + 1〉. As it is not the first leaf in the array x, it cannot have a

1

¶
send(x, P) ∗�e∈E e ≺ x ∗�l∈L x ≺ l

©
2 extend(chan_addr x){
3 // Frame off order predicates and unfold send.

4

{
∃r1, r2. r2

1/2
Z==⇒ P ∗ [send(x)]r11 ∗ [mark]r1 ∗

oreg(r1, {Chain(rs, d) | wf(rs, d) ∧ leafd(x) ∧ rs(x).flg = 0})

}
5 chan_addr nx,r;
6 if(x.off == x.hdr->loff && x.off < MAX){

7

∃r1, r2. r2

1/2
Z==⇒ P ∗ [mark]r1 ∗ [send(x)]r11 ∗ r′

1Z=⇒ Q ∗ r′′ 1Z=⇒ Q ∗

oreg

Ç
r1,

®
Chain(rs, d)

wf(rs, d) ∧ leafd(x) ∧ rs(x).flg = 0

∧ d(x.hdr).loff = x.off ∧ x.off < MAX

´å
8 x.hdr->flags[x.loff+1] = 0;
9 x.hdr->loff++;

10 // Transition step ext. Use Lemmas 7.6 and 7.8 to show perms available.

11

∃r1, r2. r2
1/2
Z==⇒ P ∗ r′

1/2
Z==⇒ Q ∗ r′′

1/2
Z==⇒ Q ∗

[mark]r1 ∗ [send(x)]r11 ∗ [send(〈x.hdr, x.off + 1〉)]r11 ∗ [change(〈x.hdr, x.off + 1〉, r′′)]r11 ∗

oreg

Ö
r1,

Chain(rs, d)

rs = rs1 · rs(x) · (〈x.hdr, x.off + 1〉, r′, {r′′}, 0, ∅) · rs2 ∧
wf(rs, d) ∧ leafd(x) ∧ rs(x).flg = 0 ∧ leafd(〈x.hdr, x.off + 1〉)
∧ d(x.hdr).loff = x.off + 1 ∧ x.off < MAX

è

12 r.hdr = x.hdr; r.off = x.off + 1;
13 nx = x;

14

∃r1, r2. r2

1/2
Z==⇒ P ∗ r′

1/2
Z==⇒ Q ∗ r′′

1/2
Z==⇒ Q ∗

[mark]r1 ∗ [send(nx)]r11 ∗ [send(r)]r11 ∗ [change(r, r′′)]r11 ∗

oreg

Ç
r1,

®
Chain(rs, d)

rs = rs1 · rs(nx) · (r, r′, {r′′}, 0, ∅) · rs2 ∧ wf(rs, d) ∧
leafd(nx) ∧ rs(nx).flg = 0 ∧ leafd(r) ∧ rs(r).flg = 0

´å
15 } else {

16

{
∃r1, r2. r2

1/2
Z==⇒ P ∗ r′ 1Z=⇒ Q ∗ r′′ 1Z=⇒ Q ∗ [mark]r1 ∗ [send(x)]r11 ∗

oreg (r1, {Chain(rs, d) | wf(rs, d) ∧ leafd(x) ∧ rs(x).flg = 0})

}
17 nh = malloc(chan_hdr);
18 nh->up = x; nh->loff = 1;
19 // Transition step ext. Use Lemmas 7.7 and 7.8 to show perms available.

20

∃r1, r2. r2
1/2
Z==⇒ P ∗ r′

1/2
Z==⇒ Q ∗ r′′

1/2
Z==⇒ Q ∗

[mark]r1 ∗ [send(〈nh, 0〉)]r11 ∗ [send(〈nh, 1〉)]r11 ∗ [change(〈nh, 1〉, r′′)]r11 ∗

oreg

Ö
r1,

Chain(rs, d)

rs = rs1 · (rs(x) Jloc 〈nh, 0〉) · (〈nh, 1〉, r′, {r′′}, 0, ∅) · rs2 ∧
wf(rs, d) ∧ leafd(x) ∧ rs(x).flg = 0 ∧ leafd(〈nh, 0〉) ∧ leafd(〈nh, 1〉)
∧ rs(〈nh, 0〉).flg = 0 ∧ rs(〈nh, 1〉).flg = 0

è

21 nx.hdr = nh; nx.off = 0;
22 r.hdr = nh; r.off = 1;
23 }
24 return (r,nx);
25 }

26

¶
send(r, Q) ∗ recv(r, Q) ∗ send(nx, P) ∗ r ≺ nx ∗�e∈E e ≺ r ∗�l∈L nx ≺ l

©
Fig. 30. Sketch-proof of extend with summarization.

finalleaf parent, meaning it must be in C(rs′, d′). Thus 〈x, i+ 1〉 ∈ uC(rs′, d′). This suffices
to show that [send(〈x, i+ 1〉)] and [change(〈x, i+ 1〉, r′)] can be safely removed from unused.
2

Lemma 7.7.Ç
exts(〈x, i〉, (rs, d), (rs′, d′)) ∧ dom(d′) = dom(d)] {l} ∧ r′ /∈ rs ∧
rs′(〈l, 1〉).I = {r′} ∧ wf(rs, d) ∧ wf(rs′, d′) ∧ unused(r, rs, d) ∗ [send(〈x, i〉)]r1

å
=⇒

unused(r, rs′, d′) ∗ [send(〈l, 0〉)]r1 ∗ [send(〈l, 1〉)]r1 ∗ [change(〈l, 1〉, r′)]r1

Proof. By the structure of ext, 〈l, 0〉 and 〈l, 1〉 are not in rs, but are in rs′. The ability
to retrieve [send(〈l, 0〉)]r1∗ [send(〈l, 1〉)]r1 follows immediately. As 〈l, 0〉 is leftmost in the array
l, its parent 〈x, i〉 is the maximal final-leaf in C(rs′, d′). However, 〈l, 1〉 is not leftmost, and
thus is in C(rs′, d′). By the same argument used in the previous lemma, [change(〈l, 1〉, r′)]r1
can be removed from the unused. 2

Lemma 7.8. ext(x, (rs, d), (rs′, d′)) ∧ wf(rs, d) ∧ wf(rs′, d′) =⇒ uC(rs, d) ⊆ uC(rs′, d′)

Proof. There are two cases for extension: in-place extension in the array, or creation
of a new array. In the former case, finalleaf is preserved for existing nodes because the only
new node is less than all existing nodes in the array. In the latter case, the parent of the
new array is a finalleaf to the new array, and all other finalleaf relationships are preserved.

Now pick a pair (x, i) ∈ uC(rs, d), the set of used send permissions. Extending the chain
can’t stop x from satisfying finalleaf or make any node higher than x satisfy finalleaf. There-
fore x ∈ C(rs′, d′) after extension. The only alteration to renounced sets W in rs′ is to
add a new empty set. Thus ¬∃y. r ∈ rs′(y).W. Finally, both cases of extension preserve the
promise sets I, ensuring that r ∈ rs′(finalleafd′(x)).I. 2

7.4. Verifying splitting and renunciation axioms

The splitting and renunciation axioms do not depend on the underlying data-structure rep-
resentation, and therefore are largely identical to the ones given in §6.4. The main difference
is the new definition of unused. The renunciation case is straightforward, but for splitting
we need to show that we can pull the appropriate change permissions out of the ‘library’
predicate unused. This is captured by the following lemma:

Lemma 7.9.

unused(r1, rs, d) ∗ [change(x, r2)]r11 ∧ split(x, (rs, d), (rs′, d′)) ∧
rs(finalleafd(x)) = (r, I] {r2}, f,W) ∧ rs′ = rs Jfinalleafd′ (x)

JI ((• \ {r2})] {r3, r4})
=⇒ unused(r1, rs

′, d′) ∗ [change(x, r3)]r11 ∗ [change(x, r4)]r11

Proof. By the definition of split, d = d′, and element locations in rs are unchanged
in rs′. Thus it holds that C(rs, d) = C(rs′, d′) and finalleafd(x) = finalleafd′(x). From the
definition of uC the available change permissions are controlled by the set rs(finalleafd(x)).I.
This set is correctly updated by the transition, which completes the proof. 2

8. COMPARISON TO CONFERENCE PAPER

This paper substantially expands and revises the proofs of correctness given in our confer-
ence paper [?]. All the proofs have been restructured, and the proof of the summarising
implementation (§7) is entirely new. This paper also fixes a subtle logical error which ren-
dered some of the reasoning in our conference paper unsound. In this section, we describe
how this problem arose, and how we have fixed it.

Our specifications rely crucially on higher-order quantification to abstract over the re-
sources transferred through channels. To support this, in [?] we extended the original con-
current abstract predicates logic [?] with higher-order assertions and quantification.

In concurrent abstract predicates, resources describe not only the current state of shared
regions but also the protocols that govern these shared regions. In the case of higher-order
shared resources, these protocols are themselves expressed in terms of assertion variables
that might be instantiated with shared resources. Support for such higher-order shared
resources thus require a semantic domain of protocols that include assertions over (among
other things) protocols. This results in a circularity and the resulting equation (protocol ∼=
P(...× protocol)) has no solution in set-theory, by a simple cardinality argument.

The logic and model presented in [?] broke this circularity by ignoring protocol assertions
when interpreting protocols. As a consequence, many of the properties we relied on when
reasoning about the higher-order resources box(i, P, π) and fut(i, P) are unsound. (In that
paper, fut played a similar role to recv in this paper, while box was used in verifying the
splitting axiom.) For instance, fut(i, P) is generally not stable when P is instantiated with
an assertion that includes a protocol assertion, because fut(i, P) asserts the existence of a
shared region whose protocol is defined in terms of P . A more detailed discussion of this
class of problem is given in [?].

The program logic itself presented in [?] still appears sound. However, many steps in
the proofs of programs depend on unsound auxiliary entailment steps. These steps are
common in separation logic proofs, but in most earlier work entailments generally capture
comparatively simple properties. We failed to appreciate how deeply the proofs in [?] relied
on very subtle entailments between shared regions that were broken in our modified model.
The problem came to light a year later when Svendsen attempted to use our logic to verify
the Joins library [?]. Resolving this kind of problem motivated the development of iCAP,
which is the proof technique we use in this paper.

iCAP uses step-indexing to stratify the construction of the semantic domain of protocols.
The resulting logic does support higher-order shared resources, but requires . operators
to ensure that protocols are properly stratified. Thus the problematic circularity in [?] is
appropriately resolved in the rules of the logic. At the level of human process, we have been
much more meticulous in this paper in identifying and checking entailment steps used in
program proofs.

Acknowledgements. Thanks to the anonymous referees, Richard Bornat, Matko Botinčan,
Thomas Dinsdale-Young, Philippa Gardner, Neel Krishnaswami, Daiva Naudžiūnienė, Vik-
tor Vafeiadis and John Wickerson.

A. SAVED PROPOSITIONS

A saved proposition r
πZ=⇒ P is encoded as a normal iCAP predicate with a structure

guaranteeing the properties we want. Intuitively, this predicate consists of a shared region
with identifier r, with the proposition P encoded into its transition relation. Linearity comes
from a permission with fractional argument π.

More formally, we assume two transition-system states {1st, 2nd} and a single token tok,
and invariant map Iprp and transition relation Tprp defined as follows:

Iprp(Q)(1st) , emp

Iprp(Q)(2nd) , Q

Tprp(tok) , {(1st, 2nd)}

We then define the saved proposition r
πZ=⇒ Q as follows:

r
πZ=⇒ Q , region({1st, 2nd}, Tprp, Iprp(Q), r) ∗ [tok]πr

The fact that the representation transition state 1st is emp means that we are not obliged
to supply P when creating the saved proposition. The second state encodes the value of the
saved proposition.

The linearity property (property 2) holds trivially from the linearity of permissions. Two
saved propositions with arguments π1 and π2 must contain tok permissions with fractional
arguments π1 and π2. Combining these gives the required result.

For the unification property (property 3) we need to reason more deeply about the iCAP
model. The following facts about regions and invariant maps hold in iCAP – for proofs
see [?].

region(S, T, I, r) ∗ region(S′, T ′, J, r) =⇒ (.I(s) ⇒ .J(s)) (5)

region(S, T, I, r) ∗ region(S′, T ′, J, r) =⇒ (.I(s) −∗ .J(s)) (6)

The later modality, ., is needed in these properties because we are reasoning about the
contents of a shared region – albeit one that will not contain any resource. We can then
prove the unification property as follows:

Proof (Property 3).

r
π1Z==⇒ P ∗ r π2Z==⇒ Q

⇒ r
π1Z==⇒ P ∗ region({1st, 2nd}, Tprp, Iprp(P), r) region is duplicable.

∗ r π2Z==⇒ Q ∗ region({1st, 2nd}, Tprp, Iprp(Q), r)

⇒ r
π1Z==⇒ P ∗ r π2Z==⇒ Q ∗ (.(Iprp(P)(2nd))⇒ .(Iprp(Q)(2nd))) Property 5.

⇒ r
π1Z==⇒ P ∗ r π2Z==⇒ Q ∗ (.P ⇒ .Q) defn of Iprp

2

For unification inside separating implication we reason as follows:

Proof (Property 4). Using property 6 and the same proof technique as above, we
can derive a slightly different version of the unification property:

r
π1Z==⇒ P ∗ r π2Z==⇒ Q =⇒ (.P)−∗ (.Q) (7)

The proof of Property (4) then goes as follows:

r
π1Z==⇒ P ∗ r π2Z==⇒ Q ∗ (X −∗ .(Q ∗ Y)) ∗ (P −∗ Z)

SMono

⇒ r
π1Z==⇒ P ∗ r π2Z==⇒ Q ∗ (X −∗ .(Q ∗ Y)) ∗ .(P −∗ Z)

LBin, assume . distributes over −∗
⇒ r

π1Z==⇒ P ∗ r π2Z==⇒ Q ∗ (X −∗ (.Q ∗ .Y)) ∗ ((.P)−∗ .Z)

Assume property 7

⇒ r
π1Z==⇒ P ∗ r π2Z==⇒ Q ∗ (X −∗ (.Q ∗ .Y)) ∗ ((.P)−∗ .Z) ∗ ((.Q)−∗ (.P))

Transitivity of −∗
⇒ r

π1Z==⇒ P ∗ r π2Z==⇒ Q ∗ (X −∗ (.Q ∗ .Y)) ∗ ((.Q)−∗ .Z)

Framing of −∗
⇒ r

π1Z==⇒ P ∗ r π2Z==⇒ Q ∗ (X −∗ (.Q ∗ .Y)) ∗ ((.Q) ∗ (.Y))−∗ ((.Z) ∗ (.Y))

Transitivity of −∗
⇒ r

π1Z==⇒ P ∗ r π2Z==⇒ Q ∗ (X −∗ ((.Z) ∗ (.Y)))

2

B. PROOFS FOR OUT-OF-ORDER SIGNALLING

This appendix gives proofs for some of the lemmas stated in §6.

Lemma 6.1.

resource(I, ∅) v �
i∈I

.∃Q : Prop. i
1/2
Z==⇒ Q(i) ∗ d.Q(i)e

Proof.

W = ∅ ∧ ∃Q : I → Prop, R : W → Prop.

�i∈I . i
1/2
Z==⇒ Q(i) ∗�w∈W . w

1/2
Z==⇒ R(w)

∗ b(.�w∈W . R(w))−∗ .�i∈I . dQ(i)ec
Simplify using W = ∅, weakening.

v ∃Q : I → Prop.�i∈I . i
1/2
Z==⇒ Q(i) ∗ b.�i∈I . Q(i)c

Switch from b−c to d−e, pull out �.

v ∃Q : I → Prop.�i∈I . i
1/2
Z==⇒ Q(i) ∗�i∈I . d.Q(i)e

Push in the existential.

v �i∈I .∃Q : Prop. i
1/2
Z==⇒ Q(i) ∗ d.Q(i)e

2

Lemma 6.2. r
1/2
Z==⇒ P ∗ bP c ∗ resource(I,W] {r}) v resource(I,W)

Proof.

r
1/2
Z==⇒ R ∗ bRc ∗ resource(I,W] {r})
Definition of resource.

v r
1/2
Z==⇒ R ∗ bRc ∗Ü

∃Q : I → Prop, R : W] {r} → Prop.

�i∈I . i
1/2
Z==⇒ Q(i) ∗�w∈W]{r}. w

1/2
Z==⇒ R(w)

∗ b(.�w∈W]{r}. R(w))−∗ .�i∈I . dQ(i)ec

ê
Property (3), monotonicity of ., monotonicity of b−c.
v ∃P : Prop. r

1/2
Z==⇒ R ∗ b.Rc ∗ (b.Rc ⇒ b.P c)Ü
∃Q : I → Prop, R : W → Prop.

r
1/2
Z==⇒ P ∗�i∈I . i

1/2
Z==⇒ Q(i) ∗�w∈W . w

1/2
Z==⇒ R(w)

∗ b(.P ∗ .�w∈W . R(w))−∗ .�i∈I . dQ(i)ec

ê
Modus ponens.

v ∃P : Prop. r
1/2
Z==⇒ R ∗ b.P c ∗Ö
∃Q : I → Prop, R : W → Prop.

r
1/2
Z==⇒ P ∗�i∈I . i

1/2
Z==⇒ Q(i) ∗�w∈W . w

1/2
Z==⇒ R(w)

∗ b(.P ∗ .�w∈W . R(w))−∗ .�i∈I . dQ(i)ec

è
Combine b−c, modus ponens for −∗, weakening.

v ∃Q : I → Prop, R : W → Prop.

�i∈I . i
1/2
Z==⇒ Q(i) ∗�w∈W . w

1/2
Z==⇒ R(w)

∗ b(.�w∈W . R(w))−∗ .�i∈I . dQ(i)ec
v resource(I,W)

2

Lemma 6.3. chainres(rs) ∧ wf(rs) ∧ ctrue(rs)

v ∃rs′. chainres(rs′) ∧ cconf(rs′) ∧ rs pr→∗ rs′ ∧ wf(rs′)

Proof. We perform a sequence of smaller view-shifts corresponding to converting each
cnode in turn, starting with the earliest element in the chain:

P0 v P1 v P2 v . . . v Pn

Here n is the length of rs and the subscript 1, 2, 3 . . . denotes the length of suffix of rs which
has been checked. We write rs[a, b] for the subsequence of rs from element a to element b,
inclusive of both. Thus the inductive invariant is:

Pi , ∃rs′. chainres(rs[0, n− i] · rs′) ∧ cconf(rs′)

∧ rs[(n− i) + 1, n]
pr→∗ rs′ ∧ wf(rs[0, (n− i)] · rs′)

The base case of the proof is simple. If i = 0 take rs′ to be empty and the invariant follows
trivially from the premise. Let us assume that i > 0. We reason as follows to pull out the

intermediate chain node:

∃rs′. chainres(rs[0, n− i] · rs′) ∧ cconf(rs′) ∧ rs[(n− i) + 1, n]
pr→∗ rs′ ∧ wf(rs[0, n− i] · rs′)

v
∃rs′, s. chainres(rs[0, n− (i+ 1)]) ∗ resource(s.I, s.W) ∗ chainres(rs′)

∧ cconf(rs′) ∧ rs[n− i, n]
pr→∗ s · rs′ ∧ wf(rs[0, n− (i+ 1))] · s · rs′)

If s.W = ∅ then we are done. Otherwise, we induct on the size of W, showing that it can
be reduced to ∅ by classical entailment. (Recall that by definition W is finite.)

Pick an element w ∈ W. Since the chain is well-formed, the region identifier w must
also be a member of some set s′.I for an earlier element s′ ∈ rs′. If w is a member of
s′.I for multiple s′, we pick the first such s′ ∈ rs′. Since cconf holds for rs′ it follows that
s′.W = ∅. Thus, there exists rs′1, rs′2 and s′ such that w ∈ s′.I, s′.W = ∅, rs′ = rs′1 · s′ · rs′2
and ∀x ∈ rs′1. w 6∈ x.I. By the definition of resource, there exists a saved proposition

w
1/2
Z==⇒ R inside resource(s.I, s.W). By the same definition, the saved proposition w

1/2
Z==⇒ P

and resource .P must be included in resource(s′.I, ∅). We move the resource from one node
to the other, and delete the saved proposition using weakening:

resource(s.I, s.W) ∗ chainres(rs′1) ∗ resource(s′.I, ∅) ∗ chainres(rs′2)

v
resource(s.I, s.W \ {w}) ∗ chainres(rs′1) ∗ resource(s′.I \ {w}, ∅) ∗ chainres(rs′2)

Let rs′′ denote rs′1 · s′[I 7→ s′.I \ {w}] · rs′2. By definition of
W→ it thus follows that

rs[n− i, n]
pr→∗ s · rs′ W→ s[W 7→ s.W \ {w}] · rs′′

Hence, by Lemma B.1 it follows that

wf(rs[0, n− (i+ 1))] · s[W 7→ s.W \ {w}] · rs′′)

The result is that the assertion is rewritten as follows:

v ∃rs′, s. chainres(rs[0, n− (i+ 1)]) ∗ resource(s.I, s.W \ {w}) ∗ chainres(rs′)

∧ cconf(rs′) ∧ rs[n− i, n]
pr→∗ s · rs′ ∧ wf(rs[0, n− (i+ 1))] · s · rs′)

Thus we have rewritten s.W into a smaller set. By inducting on the size of this set we can
get to the point where W ′ = ∅. This allows us to complete one step of the outer induction,
which completes the inductive proof. 2

Lemma B.1.

wf(rs) ∧ rs W→ rs′ ⇒ (available(rs) = available(rs′) ∧ wf(rs′))

Proof. By definition of rs
W→ rs′ there exists rs1, rs2, rs3, s1, s2 and w such that

rs = rs1 · s1 · rs2 · s2 · rs3, w ∈ s2.I, w ∈ s1.W,

rs′ = rs1 · (s1 JW (• \ w)) · rs2 · (s2 JI (• \ w)) · rs3
Since s2.W ∩ s2.I = ∅ and wf(s2 · rs3) it follows that w 6∈ (s2.W ∪ available(rs3)) and
∀s ∈ rs2. w 6∈ s.I. Thus,

available((s2 JI (• \ w)) · rs3) = (available(rs3) \ s2.W)] (s2.I \ {w})
= available(s2 · rs3) \ {w}

Since w ∈ s1.W and wf(s1 · rs2 · s2 · rs3) it follows that w ∈ available(rs2 · s2 · rs3). Hence,
since ∀s ∈ rs2. w 6∈ s.I it follows that ∀s ∈ rs2. w 6∈ s.W. Thus,

available((s1 JW (• \ w)) · rs2 · (s2 JI (• \ w)) · rs3)

= (available(rs2 · (s2 JI (• \ w)) · rs3) \ (s1.W \ {w}))] s1.I
= ((available(rs2 · s2 · rs3) \ {w}) \ (s1.W \ {w}))] s1.I
= (available(rs2 · s2 · rs3) \ s1.W)] s1.I
= available(s1 · rs2 · s2 · rs3)

from which it follows easily that available(rs) = available(rs′). To show that wf(rs′) we must
also show that

s1.W \ {w} ⊆ available(rs2 · (s2 JI (• \ w)) · rs3)

= available(rs2 · s2 · rs3) \ {w}
and s2.W ⊆ available(rs3) both of which follow easily from the assumption that wf(rs). It
remains to show that all sets I for the chain are pairwise disjoint, and likewise for all sets
W. As we have only removed identifiers, this is satisfied trivially. 2

Lemma 6.4. resource(I] r2, ∅) ∗ r2
1/2
Z==⇒ P v resource(I, ∅) ∗ d.P e

Proof.

resource(I] r2, ∅) ∗ r2
1/2
Z==⇒ P

Lemma 6.1.

v r2
1/2
Z==⇒ P ∗�i∈I]r2 .∃R. i

1/2
Z==⇒ R ∗ d.Re

Pull out resource for identifier r2.

v r2
1/2
Z==⇒ P ∗ ∃R′. r2

1/2
Z==⇒ R′ ∗ d.R′e ∗�i∈I .∃R. i

1/2
Z==⇒ R ∗ d.Re

Property (3), monotonicity of d−e.
v r2

1/2
Z==⇒ P ∗ ∃R′. (d.R′e ⇒ d.P e) ∗ r2

1/2
Z==⇒ R′ ∗ d.R′e ∗�i∈I .∃R. i

1/2
Z==⇒ R ∗ d.Re

Modus ponens, weakening.

v d.P e ∗�i∈I .∃R. i
1/2
Z==⇒ R ∗ d.Re

Definition of resource.

v d.P e ∗ resource(I, ∅)

2

Lemma 6.7.

{oreg(r, {Chain(rs) | x ∈ rs}) ∗ oreg(r′, {Chain(rs′) | x ∈ rs′})} 〈skip〉 {r = r′}
Proof. Prove this by case-splitting on whether the two regions are equal. Suppose the

two are equal – then the specification is proved. If they are unequal, we prove this leads to
a contradiction by opening both regions and examining their contents. Each region asserts
exclusive ownership of heap cell x.loc which leads to a contradiction. Therefore the post-
condition is false, allowing us to prove any post-condition. 2

Lemma 6.8. resource(I,W] {r}) ∗ r
1/2
Z==⇒ S ∗ r′

1/2
Z==⇒ T1

v ∃r′′. resource(I,W] {r′, r′′}) ∗ r′′
1/2
Z==⇒ (T1 −∗ S)

Proof. First we construct a new saved proposition r′′ such that r′′ Z⇒ (T1 −∗ S). Now
it suffices to prove

resource(I,W] {r}) ∗ r
1/2
Z==⇒ S ∗ r′

1/2
Z==⇒ T1 ∗ r′′

1/2
Z==⇒ T2 ∧ valid(T1 ∗ T2 ⇒ S)

v resource(I,W] {r′, r′′})

r
1/2
Z==⇒ S ∗ r′

1/2
Z==⇒ T1 ∗ r′′

1/2
Z==⇒ T2 ∧ valid(T1 ∗ T2 ⇒ S) ∗Ö

∃Q : I → Prop, R : W] {r} → Prop.

�i∈I . i
1/2
Z==⇒ Q(i) ∗�w∈W]{r}. w

1/2
Z==⇒ R(w)

∗ b(.�w∈W]{r}. R(w))−∗ .�i∈I . dQ(i)ec

è
Rearrange

v ∃P : Prop, Q : I → Prop, R : W] {r′, r′′} → Prop.

valid(R(r′) ∗R(r′′)⇒ S) ∧ r
1/2
Z==⇒ S ∗ r

1/2
Z==⇒ P

∗�i∈I . i
1/2
Z==⇒ Q(i) ∗�w∈W]{r′,r′′}. w

1/2
Z==⇒ R(w)

∗ b.P ∗ .�w∈W . R(w))−∗ .�i∈I . dQ(i)ec
Property (3), SMono and distributing . over =⇒ .

v ∃P : Prop, Q : I → Prop, R : W] {r′, r′′} → Prop.

valid((.R(r′)) ∗ (.R(r′′))⇒ .P) ∧�i∈I . i
1/2
Z==⇒ Q(i) ∗�w∈W]{r′,r′′}. w

1/2
Z==⇒ R(w)

∗ b(.P ∗ .�w∈W . R(w))−∗ .�i∈I . dQ(i)ec
By mono of b c, −∗ and *.

v ∃Q : I → Prop, R : W] {r′, r′′} → Prop.

�i∈I . i
1/2
Z==⇒ Q(i) ∗�w∈W]{r′,r′′}. w

1/2
Z==⇒ R(w)

∗ b((.R(r′)) ∗ (.R(r′′)) ∗ .�w∈W . R(w))−∗ .�i∈I . dQ(i)ec
Rearrange

v ∃P : Prop, Q : I → Prop, R : W] {r′, r′′} → Prop.

�i∈I . i
1/2
Z==⇒ Q(i) ∗�w∈W]{r′,r′′}. w

1/2
Z==⇒ R(w)

∗ b.�w∈W]{r′,r′′}. R(w))−∗ .�i∈I . dQ(i)ec

2

Lemma B.2.

r2
1/2
Z==⇒ P ∗ bdP e −∗ (P1 ∗ P2)c ∗ r3

1/2
Z==⇒ P1 ∗ r4

1/2
Z==⇒ P2 ∗ resource(I] {r2},W)

v resource(I] {r3, r4},W)

Proof.

r2
1/2
Z==⇒ P ∗ bdP e −∗ (P1 ∗ P2)c ∗ r3

1/2
Z==⇒ P1 ∗ r4

1/2
Z==⇒ P2 ∗ resource(I] {r2},W)

Definition of resource.

v r2
1/2
Z==⇒ P ∗ bdP e −∗ (P1 ∗ P2)c ∗ r3

1/2
Z==⇒ P1 ∗ r4

1/2
Z==⇒ P2Ö

∃Q : I] {r2} → Prop, R : W → Prop.

�i∈I]{r2}. i
1/2
Z==⇒ Q(i) ∗�w∈W . w

1/2
Z==⇒ R(w)

∗ (b(.�w∈W . R(w))−∗ .�i∈I]{r2}. dQ(i)ec)

è
Pull out r2, . mono w.r.t. −∗, property (4).

v r2
1/2
Z==⇒ P ∗ r3

1/2
Z==⇒ P1 ∗ r4

1/2
Z==⇒ P2Ö

∃Q : I] {r2} → Prop, R : W → Prop.

r2
1/2
Z==⇒ Q(r2) ∗�i∈I . i

1/2
Z==⇒ Q(i) ∗�w∈W . w

1/2
Z==⇒ R(w)

∗ b(.�w∈W . R(w))−∗ .(P1 ∗ P2 ∗�i∈I . dQ(i)e)c)

è
Fold r3, r4 into I, weaken with d e, weakening.

v ∃Q : I] r2 → Prop, R : W → Prop.

�i∈I]{r3,r4}. i
1/2
Z==⇒ Q(i) ∗�w∈W . w

1/2
Z==⇒ R(w)

∗ b(.�w∈W . R(w))−∗ .�i∈I]{r3,r4}. dQ(i)ec)
Definition of resource.

v resource(I] {r3, r4},W)

2

Lemma 6.9. r2 ∈ rs(x).I ∧ r2
1/2
Z==⇒ P ∗ bdP e −∗ (P1 ∗ P2)c ∗ chainres(rs)

v ∃rs′, r3, r4. r3, r4 /∈ rs ∧ rs′ = rs JxJI (• \ r2)] {r3, r4} ∧
r3

1/2
Z==⇒ P1 ∗ r4

1/2
Z==⇒ P2 ∗ chainres(rs′)

Proof.

r2 ∈ rs(x).I ∧ r2
1/2
Z==⇒ P ∗ bdP e −∗ (P1 ∗ P2)c ∗ chainres(rs)

Make saved propositions, fresh by construction.

v r2 ∈ rs(x).I ∧ r2
1/2
Z==⇒ P ∗ bdP e −∗ (P1 ∗ P2)c ∗ chainres(rs) ∗

∃r3, r4. r3
1Z=⇒ P1 ∗ r4

1Z=⇒ P2 ∧ r3, r4 /∈ rs
Pull out resource predicate for x.

v ∃rs1, rs2. r2 ∈ rs(x).I ∧ r2
1/2
Z==⇒ P ∗ bdP e −∗ (P1 ∗ P2)c ∗

chainres(rs1) ∗ resource(rs(x).I, rs(x).W] {rs(x).res | rs(x).flg = 0}) ∗ chainres(rs2) ∗
∃r3, r4. r3

1Z=⇒ P1 ∗ r4
1Z=⇒ P2 ∧ r3, r4 /∈ rs ∧ rs = rs1 · rs(x) · rs2

Apply Lemma B.2.

v ∃rs1, rs2, r3, r4. r2 ∈ rs(x).I ∧ r2
1/2
Z==⇒ P ∗ bdP e −∗ (P1 ∗ P2)c ∗

chainres(rs1) ∗ resource((rs(x).I \ r2)] {r3, r4}, rs(x).W] {rs(x).res | rs(x).flg = 0}) ∗
chainres(rs2) ∗ r3

1/2
Z==⇒ P1 ∗ r4

1/2
Z==⇒ P2 ∧ r3, r4 /∈ rs ∧ rs = rs1 · rs(x) · rs2

Definition of chainres.

v ∃rs′, r3, r4. r3, r4 /∈ rs ∧ rs′ = rs JxJI (• \ r2)] {r3, r4} ∧
r3

1/2
Z==⇒ P1 ∗ r4

1/2
Z==⇒ P2 ∗ chainres(rs′)

2

C. ICAP PROOF SYSTEM

In this Appendix we introduce the formal iCAP proof system. The introduction is self-
contained, but does not cover the full iCAP proof system. In particular, certain iCAP
features, such as guarded recursive predicates and phantom state are not necessary for the
present paper, and have been dropped from the proof system.

C.1. Syntax

The proof system consists of two logics, an assertion logic and a specification logic, over a
common simply-typed term language generated by the following grammar:

M,N,P,Q,S,T,F,R ::=

| λx : τ. M | M N | x

| ⊥ | > | M ∨ N | M ∧M | M⇒ N | ∀x : τ. P | ∃x : τ. P | M =τ N

| P ∗ Q | P−∗ Q | emp | M.F 7→ N | M:N | region(R,M,N) | [M]RN | stable(P)

| P vR Q | (∆).{P}s̄{Q} | (∆).〈P〉̄s〈Q〉R | M.N : (∆).{P}{x.Q} | M : (∆).{P}{x.Q}
| .M | valid(P) | spec(S) | ∆X(x)

Here X is an arbitrary set and x an arbitrary element of X. The ∆X(x) gives a shallow
embedding of the meta-theory into iCAP. Correspondingly, the grammar of types (given
below) features a type constructor ∆(X) for injecting arbirary sets into iCAP.

Types τ, σ ::= 1 | τ → σ | τ × σ | τ + σ | P(τ) | ∆(X) | Prop | Spec

In addition to the usual type-constructors, iCAP includes two proposition types – one for
each logic – the Prop type for the assertion logic and the Spec type for the specification logic.
Base-types for values, Val, state identifiers, SId, action identifiers, AId, region identifiers,
RId, class names, Class, and field names, Field are just syntactic suger for injections of the

corresponding set (e.g., Val is syntactic suger for ∆(Val)). We will usually leave out the
explicit injection for elements when reasoning about elements of these injected types.

Well-formed terms Γ; ∆ ` M : τ

The typing rules of the logic are given below. The rules have been split into standard higher-
order logic typing rules, followed by iCAP specific typing rules. Terms are typed in a logical
variable context, Γ, and program variable context, ∆. Logical variables are used purely
for specification purposes and may not appear free in the code of Hoare triples. Program
variables may appear free in both the pre- and postcondition of Hoare triples and in the
code snippet. The logical variable context, Γ, maps variables to types, while all variables in
the program variable context, ∆, have the type Val.

(x : τ) ∈ Γ

Γ; ∆ ` x : τ

(x : Val) ∈ ∆

Γ; ∆ ` x : Val

Γ, x : τ ; ∆ ` M : σ

Γ; ∆ ` λx : τ. M : τ → σ
Ξ ` M : τ → σ Ξ ` N : τ

Ξ ` M N : σ

p ∈ {⊥,>, emp}
Ξ ` p : Prop

Ξ ` P : Prop Ξ ` Q : Prop op ∈ {∨,∧,⇒, ∗,−∗}
Ξ ` P op Q : Prop

Ξ ` M : τ Ξ ` N : τ
Ξ ` M =τ N : Prop

Γ, x : τ ; ∆ ` P : Prop Q ∈ {∃,∀}
Γ; ∆ ` Qx : τ. P : Prop

p ∈ {⊥,>}
Γ;− ` p : Spec

Γ;− ` S : Spec Γ;− ` T : Spec op ∈ {∨,∧,⇒}
Γ;− ` S op T : Spec

Γ;− ` M : τ Γ;− ` N : τ

Γ;− ` M =τ N : Spec

Γ, x : τ ;− ` S : Spec Q ∈ {∀,∃}
Γ;− ` Qx : τ. S : Spec

Ξ ` M : P(SId) Ξ ` I : SId→ Prop Ξ ` T : AId→ P(SId× SId) Ξ ` R : RId

Ξ ` region(M, I,T,R) : Prop

Ξ ` A : AId Ξ ` R : RId Ξ ` P : Perm

Ξ ` [A]RP : Prop

x ∈ X X ∈ obj(Sets)
Ξ ` ∆X(x) : ∆(X)

Ξ ` M : Val Ξ ` C : Class
Ξ ` M:C : Prop

Ξ ` M : Val Ξ ` F : Field Ξ ` N : Val
Ξ ` M.F 7→ N : Prop

Γ;− ` S : Spec

Γ; ∆ ` spec(S) : Prop

Γ;− ` P : Prop

Γ;− ` valid(P) : Spec

Ξ ` P : Prop

Ξ ` .P : Prop

Γ;− ` P : Prop

Γ;− ` stable(P) : Spec

Γ;− ` R : P(RId) Γ;− ` P : Prop Γ;− ` Q : Prop

Γ;− ` P vR Q : Spec

Γ;− ` S : Spec

Γ;− ` .S : Spec

Γ; ∆ ` P : Prop Γ; ∆ ` Q : Prop FV(s) ⊆ vars(∆)

Γ;− ` (∆).{P}s{Q} : Spec

Γ; ∆ ` P : Prop Γ; ∆ ` Q : Prop Γ;− ` R : P(RId) FV(s) ⊆ vars(∆)

Γ;− ` (∆).〈P〉s〈Q〉R : Spec

C.2. Logics

The iCAP proof system consists of two logics: an assertion logic for reasoning about the
current state and a specification logic for reasoning about the behavior of programs. The
specification logic is given by the specification entailment judgment Γ | Φ ` S where S is a
specification and Φ is a specification context. The assertion logic is given by the assertion
entailment judgment Γ; ∆ | Φ | P ` Q where P and Q are assertions and Φ is a specification
context. The assertion entailment includes the specification context Φ, to allow the use of
assertion assumptions embedded in specifications.

C.2.1. Specification and assertion embeddings. The valid embedding is used to export axioms
about abstract resources in library specifications to clients. For instance, the axioms about
the channel order (duplication and transitivity) are implicitly expressed as validities about
the channel order resource. The introduction and elimination rule for valid specifications is
given below.

Γ;− | Φ | > ` P

Γ | Φ ` valid(P)

Γ | Φ ` valid(P)

Γ;− | Φ | > ` P

C.2.2. Later operator. The SLob rule internalizes induction on step-indicies in the logic
and is implicitly used when verifying mutually recursive methods. In particular, to verify
a method call, it suffices to know that the body of the called method satisfies a given
specification one step later, to know that the call satisfies the given specification now.
Intuitively, calling a method uses one step in the operational semantics, before the method
body starts executing.

SLob
Γ | Φ, .S ` S

Γ | Φ ` S

SMono

Γ | Φ ` S⇒ .S

LPoints
Γ | Φ ` 〈x.f 7→ v〉 c 〈Q〉E

Γ | Φ ` 〈.(x.f 7→ v)〉 c 〈Q〉E

LBin
op ∈ {∧,∨, ∗}

Γ; ∆ | Φ | .(P op Q) a` (.P) op (.Q)

LImpl

Γ; ∆ | Φ | .(P⇒ Q) ` (.P)⇒ (.Q)

LWand

Γ; ∆ | Φ | .(P−∗ Q) ` (.P)−∗ (.Q)

LCeil

Γ; ∆ | Φ | .dPe a` d.Pe

LFloor

Γ; ∆ | Φ | .bPc a` b.Pc

LQuant

Q ∈ {∀,∃}
Γ; ∆ | Φ | .(Qx : τ. P(x)) a` Qx : τ. . P(x)

Γ; ∆ | Φ | region(X,T, I1, r) ∗ region(Y, T, I2, r) ` I1(s)⇒ I2(s)

C.2.3. View-shifts. The view-shift relation includes standard assertion implication. In addi-
tion it is transitive and supports framing of stable frames. There is no implicit assumption

that the pre- and postcondition of view-shifts is stable.

VTrans
Γ | Φ ` P vE Q Γ | Φ ` Q vE R

Γ | Φ ` Q vE R

VImpl
Γ | Φ | P ` Q

Γ | Φ ` P vE Q

VAlloc
Γ | Φ ` Γ | Φ ` ∀α ∈ AId. ∀x ∈ SId× SId. (.T (α)(x))⇒ T (α)(x) ∨ .⊥

Γ | Φ ` E is infinite Γ | Φ ` ∀n ∈ E . P ∗~α∈A[α]n1 ⇒ .I(n)(x)
Γ | Φ ` ∀n ∈ E . ∀s. stable(I(n)(s)) Γ | Φ ` A ∩B = ∅
Γ | Φ ` P vE ∃n ∈ E . region({x}, T, I(n), n) ∗~α∈B [α]n1

VOpen
Γ | Φ ` stable(P) Γ | Φ ` stable(Q)

Γ | Φ ` ∀x ∈ X. f(x) ∈ Y
Γ | Φ ` ∀x ∈ X. (x, f(x)) ∈ T (α) ∨ f(x) = x

Γ | Φ ` ∀x ∈ X. P ∗ .I(x) ∗ [α]nπ vE Q ∗ .I(f(x))

Γ | Φ ` region(X,T, I, n) ∗ P ∗ [α]nπ vE]{n} region(Y, T, I, n) ∗ Q

The VAlloc rule presented above generalizes the region allocation rule presented in 4, by
allowing the newly allocated region to immediately take ownership of action permissions
on the newly allocated region (~α∈A[α]n1). In addition, it allows the allocator to pick an
infinite set E of region identifiers, from which the region identifier of the newly allocated
region will be chosen. This is used to reason about inequality of region idenfiers, which is
necessary when reasoning about nested region openings.

C.2.4. Atomic commands.

Γ,∆ ` P,Q : Prop atomic(s)
Γ | Φ ` (∆).〈P〉s〈Q〉E

Γ | Φ ` (∆).{P}s{Q}

Γ,∆ ` P,Q : Prop Γ,∆ ` E1, E2 : P(RId)

Γ | Φ ` (∆).〈P〉s〈Q〉E1\E2

Γ | Φ ` (∆).〈P〉s〈Q〉E1

Atomic
Γ,∆ | Φ ` stable(P) Γ,∆ | Φ ` ∀y. stable(Q(y))

Γ,∆ | Φ ` ∀x ∈ X. (x, f(x)) ∈ T (A) ∨ f(x) = x
Γ | Φ ` ∀x ∈ X. (∆).〈P ∗~α∈A[α]ng(α) ∗ .I(x)〉 c 〈Q(x) ∗ .I(f(x))〉E

Γ | Φ ` (∆). 〈P ∗~α∈A[α]ng(α) ∗ region(X,T, I, n)〉

c

〈∃x. Q(x) ∗ region({f(x)}, T, I, n)〉E]{n}

C.2.5. Stability.

Γ | Φ ` ∀α 6∈ A. ∀x ∈ X. T (α)(x) ⊆ X
Γ | Φ ` stable(region(X,T, I, n) ∗~α∈A[α]n1) Γ | Φ ` stable(>) Γ | Φ ` stable(⊥)

Γ | Φ ` stable(emp) Γ | Φ ` stable(M.F 7→ N) Γ | Φ ` stable(M : N)

Γ | Φ ` stable(P) Γ | Φ ` stable(Q) op ∈ {∨,∧, ∗}
Γ | Φ ` stable(P op Q) Γ | Φ ` stable(M =τ N)

Γ | Φ ` ∀x : τ. stable(P(x)) Q ∈ {∀,∃}
Γ | Φ ` stable(Qx : τ. P(x))

Γ ` S : Spec

Γ | Φ ` stable(spec(S))

C.2.6. Structural rules.

VFrame
Γ | Φ ` P vE Q Γ | Φ | stable(R)

Γ | Φ ` P ∗ R vE Q ∗ R

AFrame
Γ | Φ ` (∆).〈P〉 c 〈Q〉E Γ,∆ | Φ ` stable(R)

Γ | Φ ` (∆).〈P ∗ .R〉 c 〈Q ∗ R〉E

Frame
Γ | Φ ` (∆).{P} c {Q} Γ,∆ | Φ ` stable(R)

Γ | Φ ` (∆).{P ∗ R} c {Q ∗ R}

Conseq

Γ,∆ | Φ ` P1 vE P2 Γ | Φ ` (∆).{P2} c {Q2} Γ,∆ | Φ ` Q2 vE Q1

Γ | Φ ` (∆).{P1} c {Q1}

AConseq

Γ,∆ | Φ ` P1 vE P2 Γ | Φ ` (∆).〈P2〉 c 〈Q2〉E Γ,∆ | Φ ` Q2 vE Q1

Γ | Φ ` (∆).〈P1〉 c 〈Q1〉E

Seq
Γ | Φ ` (∆).{P}s1{Q} Γ | Φ ` (∆).{Q}s2{R}

Γ | Φ ` (∆).{P}s1; s2{R}

