
Repairing Serializability Bugs in Distributed Database
Programs via Automated Schema Refactoring

Kia Rahmani
Purdue University, USA
rahmank@purdue.edu

Kartik Nagar
IIT Madras, India

nagark@cse.iitm.ac.in

Benjamin Delaware
Purdue University, USA
bendy@purdue.edu

Suresh Jagannathan
Purdue University, USA
suresh@cs.purdue.edu

Abstract

Serializability is awell-understood concurrency controlmech-
anism that eases reasoning about highly-concurrent database
programs. Unfortunately, enforcing serializability has a high
performance cost, especially on geographically distributed
database clusters. Consequently, many databases allow pro-
grammers to choose when a transaction must be executed
under serializability, with the expectation that transactions
would only be so marked when necessary to avoid serious
concurrency bugs. However, this is a significant burden to
impose on developers, requiring them to (a) reason about
subtle concurrent interactions among potentially interfering
transactions, (b) determine when such interactions would
violate desired invariants, and (c) then identify the minimum
number of transactions whose executions should be serial-
ized to prevent these violations. To mitigate this burden, this
paper presents a sound and fully automated schema refac-
toring procedure that transforms a program’s data layout
ś rather than its concurrency control logic ś to eliminate
statically identified concurrency bugs, allowing more trans-
actions to be safely executed under weaker and more perfor-
mant database guarantees. Experimental results over a range
of realistic database benchmarks indicate that our approach
is highly effective in eliminating concurrency bugs, with
safe refactored programs showing an average of 120% higher
throughput and 45% lower latency compared to a serialized
baseline.
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1 Introduction

Programs that concurrently access shared data are ubiqui-
tous: bank accounts, shopping carts, inventories, and social
media applications all rely on a shared database to store
information. For performance and fault tolerance reasons,
the underlying databases that manage state in these appli-
cations are often replicated and distributed across multiple,
geographically distant locations [34, 36, 48, 51]. Writing pro-
grams which interact with such databases is notoriously
difficult, because the programmer has to consider an expo-
nential space of possible interleavings of database operations
in order to ensure that a client program behaves correctly.
One approach to simplifying this task is to assume that sets
of operations, or transactions, executed by the program are
serializable [40], i.e. that the state of the database is always
consistent with some sequential ordering of those transac-
tions. One way to achieve this is to rely on the underlying
database system to seamlessly enforce this property. Unfor-
tunately, such a strategy typically comes at a considerable
performance cost. This cost is particularly significant for
distributed databases, where the system must rely on expen-
sive coordination mechanisms between different replicas,
in effect limiting when a transaction can see the effects of
another in a way that is consistent with a serializable execu-
tion [5]. This cost is so high that developers default to weaker
consistency guarantees, using careful design and testing to
ensure correctness, only relying on the underlying system
to enforce serializable transactions when serious bugs are
discovered [27, 37, 45, 50].
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Uncovering such bugs is a delicate and highly error-prone
task even in centralized environments: in one recent study,
Warszawski and Bailis [56] examined 12 popular E-Commerce
applications used by over two million well-known websites
and discovered 22 security vulnerabilities and invariant vi-
olations that were directly attributable to non-serializable
transactions. To help developers identify such bugs, the com-
munity has developed multiple program analyses that report
potential serializability anomalies [12, 13, 27, 31, 39]. Auto-
matically repairing these anomalies, however, has remained
a challenging open problem: in many cases full application
safety is only achievable by relying on the system to enforce
strong consistency of all operations. Such an approach re-
sults in developers either having to sacrifice performance
for the sake of correctness, or conceding to operate within
a potentially restricted ecosystem with specialized services
and APIs [4] architectured with strong consistency in mind.
In this paper, we propose a novel language-centric ap-

proach to resolving concurrency bugs that arise in these dis-
tributed environments. Our solution is to alter the schema,
or data layout, of the data maintained by the database, rather
than the consistency levels of the transactions that access
that data. Our key insight is that it is possible to modify
shared state to remove opportunities for transactions to wit-
ness changes that are inconsistent with serializable execu-
tions. We, therefore, investigate automated schema trans-
formations that change how client programs access data to
ensure the absence of concurrency bugs, in contrast to using
expensive coordination mechanisms to limit when transac-
tions can concurrently access the database.

For example, to prevent transactions from observing non-
atomic updates to different rows in different tables, we can
fuse the offending fields into a single row in a single table
whose updates are guaranteed to be atomic under any consis-
tency guarantee. Similarly, consecutive reads and writes on a
row can be refactored into łfunctionalž inserts into a new ta-
ble, which removes the race condition between concurrently
running instances of the program. By changing the schema
(and altering how transactions access data accordingly), with-
out altering a transaction’s atomicity and isolation levels,
we can make clients of distributed databases safer without
sacrificing performance. In our experimental evaluation, we
were able to fix on average 74% of all identified serializabil-
ity anomalies with only a minimal impact (less than 3% on
average) on performance in an environment that provides
only weak eventually consistent guarantees [14]. For the
remaining 26% of anomalies that were not eliminated by our
refactoring approach, simply marking the offending trans-
actions as serializable yields a provably safe program that
nonetheless improves the throughput (resp. latency) of its
fully serialized counterpart by 120% (resp. 45%) on average.
This paper makes the following contributions:

1. We observe that serializability violations in database
programs can be eliminated by changing the schema
of the underlying database and the client programs
in order to eliminate problematic accesses to shared
database state.

2. Using this observation, we develop an automated refac-
toring algorithm that iteratively repairs statically iden-
tified serializability anomalies in distributed database
clients. We show this algorithm both preserves the se-
mantics of the original program and eliminates many
identified serializability anomalies.

3. We develop a tool, Atropos1, implementing these
ideas, and demonstrate its ability to reduce the num-
ber of serializability anomalies in a corpus of standard
benchmarks with minimal performance impact over
the original program, but with substantially stronger
safety guarantees.

The remainder of the paper is structured as follows. The
next section presents an overview of our approach. Section 3
defines our programming model and formalizes the notion
of concurrency bugs. Section 4 provides a formal treatment
of our schema refactoring strategy. Sections 5 and 6 describe
our repair algorithm and its implementation, respectively.
Section 7 describes our experimental evaluation. Related
work and conclusions are given in Section 8 and Section 9.

2 Overview

To illustrate our approach, consider an online course man-
agement program that uses a database to manage a list of
course offerings and registered students. Figure 1 presents a
simplified code snippet implementing such a program. The
database consists of three tables, maintaining information
regarding courses, students, and their email addresses. The
STUDENT table maintains a reference to a student’s email
entry in schema EMAIL (via secondary key st_em_id) and a
reference to a course entry in table COURSE (via secondary
key st_co_id) that the student has registered for. A student’s
registration status is stored in field st_reg. Each entry in
table COURSE also stores information about the availability
of a course and the number of enrolled students.

The program includes three sets of database operations or
transactions. Transaction getSt, given a student’s id, first re-
trieves all information for that student (S1). It then performs
two queries, (S2 and S3), on the other tables to retrieve their
email address and course availability. Transaction setSt

takes a student’s id and updates their name and email ad-
dress. It includes a query (S4) and an update (U1) to table
STUDENT and an update to the EMAIL table (U2). Finally, trans-
action regSt registers a student in a course. It consists of
an update to the student’s entry (U3), a query to COURSE to
determine the number of students enrolled in the course they

1https://github.com/Kiarahmani/AtroposTool
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co_id co_avail co_st_cnt em_id em_addr

st_id st_name st_em_id st_co_id st_regSTUDENT

COURSE EMAIL

1 getSt(id):

2 x:= select * from STUDENT where st_id=id//S1

3 y:= select em_addr from EMAIL where em_id=x.st_em_id //S2

4 z:= select co_aval from COURSE where co_id=x.st_co_id //S3

1 setSt(id,name ,email):

2 x := select st_em_id from STUDENT where st_id=id//S4

3 update STUDENT set st_name=name where st_id=id//U1

4 update EMAIL set em_addr=emal where em_id=x.st_em_id //U2

1 regSt(id,course):

2 update STUDENT set st_co_id=course , st_reg=true

3 where st_id=id//U3

4 x:= select co_st_cnt from COURSE where co_id=course //S5

5 update COURSE set co_st_cnt=x.co_st_cnt+1,

6 co_avail=true where co_id=course //U4

Figure 1. Database schemas and code snippets from an on-
line course management program

wish to register for (S5), and an update to that course’s avail-
ability (U4) indicating that it is available now that a student
has registered for it.

The desired semantics of this program is these transactions
should be performed atomically and in isolation. Atomicity
guarantees that a transaction never observes intermediate
updates of another transaction. Isolation guarantees that a
transaction never observes changes to the database by other
committed transactions once it begins executing. Taken to-
gether, these properties ensure that all executions of this pro-
gram are serializable, yielding behavior that corresponds to
some sequential interleaving of these transaction instances.
While serializability is highly desirable, it requires using

costly centralized locks [25] or complex version manage-
ment systems [10], which severely reduce the system’s avail-
able concurrency, especially in distributed environments
where database state may be replicated or partitioned to
improve availability. In such environments, enforcing seri-
alizability typically either requires coordination among all
replicas whenever shared data is accessed or updated, or
ensuring replicas always witness the same consistent order
of operations [16]. As a result, in most modern database sys-
tems, transactions can be executed under weaker isolation
levels, e.g. permitting them to observe updates of other com-
mitted transactions during their execution [34, 38, 43, 48].
Unfortunately, these weaker guarantees can result in serial-

izability anomalies, or behaviors that would not occur in a
serial execution. To illustrate, Figure 2 presents three con-
current executions of this program’s transaction instances
that exhibit non-serializable behaviors.
The execution on the left shows instances of the getSt

and setSet transactions. Following the order in which op-
erations execute (denoted by red arrows), observe that (S2)
witnesses the update to a student’s email address, but (S1)
does not see their updated name. This anomaly is known as
a non-repeatable read. The execution in the center depicts the

concurrent execution of instances of getSt and regSt. Here,
(S1) witnesses the effect of (U3) observing that the student is
registered, but (S3) sees that the course is unavailable, since
it does not witness the effect of (U4). This is an instance
of a dirty-read anomaly. Lastly, the execution on the right
shows two instances of regSt that attempt to increment the
number of students in a course. This undesirable behavior,
known as a lost update, leaves the database in a state incon-
sistent with any sequential execution of the two transaction
instances. All of these anomalies can arise if the strong atom-
icity and isolation guarantees afforded by serializability are
weakened.

getSt(1): setSt(1,A,a@b):

S1

S2

U1

U2

getSt(1): regSt(1,101):

S1

S3

U3

U4

regSt(2,101): regSt(1,101):

S5

U4

S5

U4

Figure 2. Serializability Anomalies

Several recent proposals attempt to identify such unde-
sirable behaviors in programs using a variety of static or
dynamic program analysis and monitoring techniques [12,
13, 39, 56]. Given potential serializability violations, the stan-
dard solution is to strengthen the atomicity and isolation
requirements on the offending transactions to eliminate the
undesirable behaviour, at the cost of increased synchroniza-
tion overhead or reduced availability [7, 27, 50].

Atropos. Are developers obligated to sacrifice concur-
rency and availability in order to recover the pleasant safety
properties afforded by serializability? Surprisingly, we are
able to answer this question in the negative. To see why,
observe that a database program consists of two main com-
ponents - a set of computations that includes transactions,
SQL operations (e.g., selects and updates), locks, isolation-
level annotations, etc.; and a memory abstraction expressed
as a relational schema that defines the layout of tables and
the relationship between them. The traditional candidates
picked for repairing a serializability anomaly are the trans-
actions from the computational component: by injecting
additional concurrency control through the use of locks or
isolation-strengthening annotations, developers can control
the degree of concurrency permitted, albeit at the expense
of performance and availability.

This paper investigates the under-explored alternative of
transforming the program’s schema to reduce the number
of potentially conflicting accesses to shared state. For ex-
ample, by aggregating information found in multiple tables
into a single row on a single table, we can exploit built-in
row-level atomicity properties to eliminate concurrency bugs
that arise because of multiple non-atomic accesses to differ-
ent table state. Row-level atomicity, a feature supported in
most database systems, guarantees that other concurrently
executing transactions never observe partial updates to a
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co_id log_id co_st_cnt_log

st_id st_name st_em_id st_em_addr st_regSTUDENT

COURSE_CO_ST_CNT_LOG

st_co_id st_co_avail

1 getSt(id):

2 x:= select * from STUDENT where st_id=id //RS1 ,RS2 ,RS3

1 setSt(id,name ,email):

2 update STUDENT set st_name=name ,st_em_addr=email

3 where st_id=id //RU1 ,RU2

1 regSt(id,course):

2 update STUDENT set st_co_id=course , st_co_avail=true ,

3 st_reg=true where st_id=id //RU3

4 insert into COURSE_CO_ST_CNT_LOG values

5 (co_id=course ,log_id=uuid(),co_st_cnt_log =1) //RU4

Figure 3. Refactored transactions and database schemas

particular row. Alternatively, it is possible to decompose data-
base state to minimize the number of distinct updates to a
field, for example by logging state changes via table inserts,
rather than recording such changes via updates. The former
effectively acts as a functional update to a table. To be sure,
these transformations affect read and write performance to
database tables and change the memory footprint, but they
notably impose no additional synchronization costs. In scal-
able settings such as replicated distributed environments,
this is a highly favorable trade-off since the cost of global
concurrency control or coordination is often problematic
in these settings, an observation that is borne our in our
experimental results.
To illustrate the intuition behind our approach, consider

the database program depicted in Figure 3. This program
behaves like our previous example, despite featuring very
different database schemas and transactions. The first of the
two tables maintained by the program, STUDENT, removes the
references to other tables from the original STUDENT table, in-
stead maintaining independent fields for the student’s email
address and their course availability. These changes make the
original course and email tables obsolete, so they have been
removed. In addition, the number of students in each course
is now stored in a dedicated table COURSE_CO_ST_CNT_LOG.
Each time the enrollment of a course changes, a new record
is inserted into this table to record the change. Subsequent
queries can retrieve all corresponding records in the table
and aggregate them in the program itself to determine the
number of students in a course.

The transactions in the refactored program are also modi-
fied to reflect the changes in the data model. The transaction
getSt now simply selects a single record from the student
table to retrieve all the requested information for a student.
The transaction setSt similarly updates a single record. Note
that both these operations are executed atomically, thus elim-
inating the problematic data accesses in the original program.
Similarly, regSt updates the student’s st_co_id field and in-
serts a new record into the schema COURSE_CO_ST_CNT_LOG.

Using the function uuid() ensures that a new record is in-
serted every time the transaction is called. These updates
remove potential serializability anomalies by replacing the
disjoint updates to fields in different tables from the original
with a simple atomic row insertion. Notably, the refactored
program can be shown to be a meaningful refinement of
the original program, despite eliminating problematic seri-
alizability errors found in it. Program refinement ensures
that the refactored program maintains all information main-
tained by the original program without exhibiting any new
behaviour.

The program shown in Figure 3 is the result of several data-
base schema refactorings [3, 21, 24], incremental changes
to a database program’s data model along with correspond-
ing semantic-preserving modifications to its logic. Manually
searching for such a refactored program is unlikely to be
successful. On one hand, the set of potential solutions is
large [3], rendering any manual exploration infeasible. On
the other hand, the process of rewriting an application for a
(even incrementally) refactored schema is extremely tedious
and error-prone [55].

We have implemented a tool named Atropos that, given a
database program, explores the space of its possible schema
and program refactorings, and returns a new version with
possibly many fewer concurrency bugs. The refactored pro-
gram described above, for example, is automatically gener-
ated byAtropos from the original shown in Figure 1. Figure 4
presents the Atropos pipeline. A static analysis engine is
used to identify potential serializability anomalies in a given
program. The program is then pre-processed to extract the
components which are involved in at least one anomaly, in
order to put it into a form amenable for our analysis. Next, a
refactoring engine applies a variety of transformations in an
attempt to eliminate the bugs identified by our static analysis.
Finally, the program is analyzed to eliminate dead code, and
the refactored version is then reintegrated into the program
from which it was extracted.

Static 
Anomaly 
Detector

Pre-proce
ssor

Refactoring 
Engine 

Post-proc
essor

Refactored Program

Refactored SchemaSchema Declaration

Transactional Program

Figure 4. Schematic overview of Atropos

3 Database Programs

We adopt a commonly-used model for database applica-
tions [41, 42, 44], in which programs consist of a statically
known set of transactions that are comprised of a combina-
tion of control flow and database operations. The syntax of
our database programs is given in Figure 5. A program 𝑃 is

defined in terms of a set of database schemas (𝑅), and a set
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𝑓 ∈ FldName

𝜌 ∈ SchmName

𝑡 ∈ TxnName

𝑎 ∈ Arg

𝑥 ∈ Var

𝑛 ∈ Val

agg ∈ {sum, min, max}

𝑒 ≔ 𝑛 | 𝑎 | 𝑒 ⊕ 𝑒 | 𝑒 ⊙ 𝑒 | 𝑒 ◦ 𝑒 | iter | agg(𝑥.𝑓 ) | at𝑒 (𝑥.𝑓 )

𝜙 ≔ this.𝑓 ⊙ 𝑒 | 𝜙 ◦ 𝜙

𝑞 ≔ 𝑥 := SELECT 𝑓 FROM 𝑅 WHERE 𝜙 | UPDATE 𝑅 SET 𝑓 = 𝑒 WHERE 𝜙

𝑐 ≔ 𝑞 | iterate(e) {c} | if(e) {𝑐 } | skip | 𝑐 ;𝑐

⊕ ∈ {+,−,×, /}

⊙ ∈ {<, ≤,=,>, ≥}

◦ ∈ {∧,∨}

𝑇 ≔ 𝑡 (𝑎) {𝑐 ; return 𝑒 }

𝑅 ≔ 𝜌 : 𝑓

𝐹 ≔ ⟨𝑓 : 𝑛⟩

𝑃 ≔ (𝑅,𝑇 )

Figure 5. Syntax of database programs

of transactions (𝑇 ). A database schema consists of a schema

name (𝜌) and a set of field names (𝑓 ). A database record (𝐹 )
for schema 𝑅 is comprised of a set of value bindings to 𝑅’s
fields. A database table is a set of records. Associated with
each schema is a non-empty subset of its fields that act as
a primary key. Each assignment to these fields identifies a
unique record in the table. In the following, we write 𝑅id
to denote the set of all possible primary key values for the
schema 𝑅. In our model, a table includes a record correspond-
ing to every primary key. Every schema includes a special
Boolean field, 𝑎𝑙𝑖𝑣𝑒 ∈ FldName, whose value determines if
a record is actually present in the table. This field allows us
to model DELETE and INSERT commands without explicitly
including them in our program syntax.
Transactions are uniquely named, and are defined by a

sequence of parameters, a body, and a return expression. The
body of a transaction (𝑐) is a sequence of database commands

(𝑞) and control commands. A database command either modi-
fies or retrieves a subset of records in a database table. The
records retrieved by a database query are stored locally and
can be used in subsequent commands. Control commands
consist of conditional guards, loops, and return statements.
Both database commands (SELECT and UPDATE ) require an
explicit where clause (𝜙) to filter the records they retrieve or
update. 𝜙fld denotes the set of fields appearing in a clause 𝜙 .

Expressions (𝑒) include constants, transaction arguments,
arithmetic and Boolean operations and comparisons, iter-
ation counters and field accessors. The values of field 𝑓

of records stored in a variable 𝑥 can be aggregated using
agg(𝑥 .𝑓 ), or accessed individually, using at𝑒 (𝑥 .𝑓 ).

3.1 Data Store Semantics

Database states Σ are modeled as a triple (str, vis, cnt),
where str is a set of database events (𝜂) that captures the
history of all reads and writes performed by a program oper-
ating over the database, and vis is a partial order on those
events. The execution counter, cnt, is an integer that rep-
resents a global timestamp that is incremented every time

a database command is executed; it is used to resolve con-
flicts among concurrent operations performed on the same
elements, which can be used to define a linearization or ar-
bitration order on updates [15]. Given a database state (Σ),
and a primary key 𝑟 ∈ 𝑅id, it is possible to reconstruct each
field 𝑓 of a record 𝑟 , which we denote as Σ(𝑟 .𝑓 ).

Retrieving a record from a table 𝑅 generates a set of read
events, rd(𝜏, 𝑟, 𝑓 ), which witness that the field 𝑓 of the record
with the primary key 𝑟 ∈ 𝑅id was accessed when the value
of the execution counter was 𝜏 . Similarly, a write event,
wr(𝜏, 𝑟, 𝑓 , 𝑛), records that the field 𝑓 of record 𝑟 was assigned
the value 𝑛 at timestamp 𝜏 . The timestamp (resp. record)
associated with an event 𝜂 is denoted by 𝜂𝜏 (resp. 𝜂𝑟 ).

Our semantics enforces record-level atomicity guarantees:
transactions never witness intermediate (non-committed)
updates to a record in a table by another concurrently ex-
ecuting one. Thus, all updates to fields in a record from a
database command happen atomically. This form of atomic-
ity is offered by most commercial database systems, and is
easily realized through the judicious use of locks. Enforcing
stronger multi-record atomicity guarantees is more challeng-
ing, especially in distributed environments with replicated
database state [6, 9, 20, 35, 57]. In this paper, we consider
behaviors induced when the database guarantees only a very
weak form of consistency and isolation that allows trans-
actions to see an arbitrary subset of committed updates by
other transactions. Thus, a transaction which accesses multi-
ple records in a table is not obligated to witness all updates
performed by another transaction on these records.
To capture these behaviors, we use a visibility relation

between events, vis, that relates two events when one wit-
nesses the other in its local view of the database at the time of
its creation. A local view is captured by the relation� ⊆ Σ×Σ

between database states, which is constrained as follows:

(ConstructView)
str′ ⊆ str ∀𝜂′∈str′∀𝜂∈str (𝜂𝑟 = 𝜂′𝑟 ∧ 𝜂𝜏 = 𝜂′𝜏 ) ⇒ (𝜂 ∈ str

′)

vis′ = vis |str′ cnt′ = cnt

(str′, vis′, cnt′) � (str, vis, cnt)

The above definition ensures that an event can only be
present in a local view, str′, if all other events on the same

record with the same counter value are also present in
str′ (ensuring record-level atomicity). Additionally, the vis-
ibility relation permitted on the local view, vis′, must be
consistent with the global visibility relation, vis.
Figure 6 presents the operational semantics of our lan-

guage, which is defined by a small-step reduction relation,
⇒ ⊆ Σ × Γ × Σ × Γ, between tuples of data-store states
(Σ) and a set of currently executing transaction instances

(Γ ⊆ 𝑐 × 𝑒 × (Var ⇀ 𝑅id × 𝐹 )). A transaction instance is
a tuple consisting of the unexecuted portion of the trans-
action body (i.e., its continuation), the transaction’s return
expression, and a local store holding the results of previously
processed query commands. The rules are parameterized
over a program 𝑃 containing a set of transactions, 𝑃txn. At
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(txn-invoke)

𝑛 ∈ Val 𝑡 (𝑎) {𝑐 ; return 𝑒 } ∈ 𝑃txn

Σ, Γ ⇒ Σ, Γ∪{𝑡 : 𝑐 [𝑎/𝑛]; skip ;𝑒 [𝑎/𝑛];∅}

(txn-step)

Σ,Δ, 𝑐 −→ Σ
′,Δ′, 𝑐′

Σ, {𝑡 : 𝑐 ;𝑒 ;Δ}∪Γ ⇒ Σ
′, {𝑡 : 𝑐′;𝑒 ;Δ′ }∪Γ

(txn-ret)

𝑒 ∉ Val Δ, 𝑒 ⇓𝑚

Σ, {𝑡 : skip;𝑒 ;Δ}∪Γ ⇒ Σ, {𝑡 : skip;𝑚;Δ}∪Γ

(seq)

Σ,Δ, 𝑐 −→ Σ
′,Δ′, 𝑐′′

Σ,Δ, 𝑐 ;𝑐′ −→ Σ
′,Δ′, 𝑐′′;𝑐′

(skip)

Σ,Δ, skip;𝑐 −→ Σ,Δ, 𝑐

(cond-t)

Δ, 𝑒 ⇓ true

Σ,Δ, if(𝑒) {𝑐 } −→ Σ,Δ, 𝑐

(cond-f)

Δ, 𝑒 ⇓ false

Σ,Δ, if(𝑒) {𝑐 } −→ Σ,Δ, skip

(iter)

Δ, 𝑒 ⇓ 𝑛

Σ,Δ, iterate(𝑒) {𝑐 } −→ Σ,Δ, concat(𝑛, 𝑐)

(select)
Σ
′
� Σ 𝜀1 = {rd(cnt, 𝑟 , 𝑓 ) | 𝑟 ∈ 𝑅id ∧ 𝑓 ∈ 𝜙fld }

results = {(𝑟, ⟨𝑓 : 𝑛⟩) | 𝑟 ∈ 𝑅id ∧ Σ
′ (𝑟 ) = ⟨𝑓 ′ : 𝑛′⟩ ∧

Δ, 𝜙 ( ⟨𝑓 ′ : 𝑛′⟩) ⇓ true ∧ 𝑓 : 𝑛 ⊆ 𝑓 ′ : 𝑛′ }

𝜀2 = {rd(cnt, 𝑟 , 𝑓
′
𝑖 ) | (𝑟, ⟨𝑓

′ : 𝑛′⟩) ∈ results ∧ 𝑓 ′𝑖 ∈ 𝑓 }

str′ = Σ.str ∪ 𝜀1 ∪ 𝜀2 vis′ = Σ.vis ∪ {(𝜂,𝜂′) | 𝜂′ ∈ 𝜀1 ∪ 𝜀2 ∧ 𝜂 ∈ Σ′.str) }

Σ,Δ, 𝑥 := SELECT 𝑓 FROM 𝑅 WHERE 𝜙 −→ (str′, vis′, cnt + 1),Δ [𝑥 ↦→ results], skip

(update)
Σ
′
� Σ

𝜀 = {wr(cnt, 𝑟 , 𝑓𝑖 ,𝑚) | 𝑟 ∈ 𝑅id ∧ Σ
′ (𝑟 ) = ⟨𝑓 : 𝑛⟩ ∧

Δ, 𝜙 ( ⟨𝑓 : 𝑛⟩) ⇓ true ∧ (𝑓𝑖 = 𝑒𝑖 ) ∈ 𝑓 = 𝑒 ∧ Δ, 𝑒𝑖 ⇓𝑚}

str′ = Σ.str ∪ 𝜀 vis′ = Σ.vis ∪ {(𝜂,𝜂′) | 𝜂′ ∈ 𝜀 ∧ 𝜂 ∈ Σ′.str}

Σ,Δ, UPDATE 𝑅 SET 𝑓 = 𝑒 WHERE 𝜙 −→ (str′, vis′, cnt + 1),Δ, skip

Figure 6. Operational semantics of weakly-isolated database programs.

every step, a new transaction instance can be added to the
set of currently running transactions via (txn-invoke). Al-
ternatively, a currently running transaction instance can be
processed via (txn-step). Finally, if the body of a transac-
tion has been completely processed, its return expression
is evaluated via (txn-ret); the resulting instance simply
records the binding between the transaction instance (𝑡 ) and
its return value (𝑚).
The semantics of commands are defined using a local

reduction relation (→) on database states, local states, and
commands. The semantics for control commands are straight-
forward outside of the (iter) rule, which uses an auxiliary
function concat(𝑛, 𝑐) to sequence 𝑛 copies of the command
𝑐 . Expression evaluation is defined using the big-step rela-

tion ⇓ ⊆ (Var ⇀ 𝑅id × 𝐹 ) × 𝑒 × Val which, given a store
holding the results of previous query commands, determines
the final value of the expression. The full definition of ⇓ can
be found in the supplementary material.

The semantics of database commands, given by the (select)
and (update) rules, expose the interplay between global and
local views of the database. Both rules construct a local view
of the database (Σ′ � Σ) that is used to select or update
the contents of records. Neither rule imposes any restric-
tions on Σ

′ other than the consistency constraints defined
by (ConstructView). The key component of each rule is
how it defines the set of new events (𝜀) that are added to the
database. In the select rule, 𝜀1 captures the retrievals that oc-
cur on database-wide scans to identify records satisfying the
SELECT command’s where clause. In an abuse of notation, we

write Δ, 𝜙 (⟨𝑓 : 𝑛⟩) ⇓ 𝑛 as shorthand for Δ, 𝜙 [this.f/𝑛] ⇓ 𝑛.
𝜀2 constructs the appropriate read events of these retrieved
records. The (update) rule similarly defines 𝜀, the set of
write events on the appropriate fields of the records that
satisfy the where clause of the UPDATE command under an
arbitrary (but consistent) local view (Σ′) of the global store
(Σ). Both rules increment the local timestamp, and establish
new global visibility constraints reflecting the dependencies
introduced by the database command, i.e., all the generated
read and write events depending upon the events in the local

view. All updates are performed atomically, as the set of cor-
responding write events all have the same timestamp value,
however, other transactions are not obligated to see all the
effects of an update since their local view may only capture
a subset of these events.

3.2 Anomalous Data Access Pairs

We reason about concurrency bugs on transactions induced
by our data store programming model using execution histo-

ries; finite traces of the form: Σ1, Γ1 ⇒ Σ2, Γ2 ⇒ · · · ⇒ Σ𝑘 , Γ𝑘
that capture interleaved execution of concurrently executing
transactions. A complete history is one in which all trans-
actions have finished, i.e., the final Γ in the trace is of the
form: {𝑡1 : skip;𝑚1,Δ1} ∪ . . . ∪ {𝑡𝑘 : skip;𝑚𝑘 ,Δ𝑘 }. As a
shorthand, we refer to the final state in a history ℎ as ℎfin. A
serial execution history satisfies two important properties:

Strong Atomicity: (∀𝜂, 𝜂 ′. 𝜂cnt < 𝜂 ′cnt ⇒ vis(𝜂, 𝜂 ′)) ∧

∀𝜂, 𝜂 ′, 𝜂 ′′. st(𝜂, 𝜂 ′) ∧ (vis(𝜂, 𝜂 ′′) ⇒ vis(𝜂 ′, 𝜂 ′′))

Strong Isolation: ∀𝜂, 𝜂 ′, 𝜂 ′′. st(𝜂, 𝜂 ′) ∧ vis(𝜂 ′′, 𝜂 ′) ⇒

vis(𝜂 ′′, 𝜂).

The strong atomicity property prevents non-atomic inter-
leavings of concurrently executing transactions. The first
constraint linearizes events, relating timestamp ordering of
events to visibility. The second generalizes this notion to
multiple events, obligating all effects from the same trans-
action (identified by the st relation) to be visible to another
if any of them are; in particular, any recorded event of a
transaction𝑇1 that precedes an event in𝑇2 requires all of𝑇

′
1𝑠

events to precede all of 𝑇2’s.
The strong isolation property prevents a transaction from

observing the commits of other transactions once it begins
execution. It does so through visibility constraints on a trans-
action 𝑇 that require any event 𝜂 ′′ generated by any other
transaction that is visible to an event 𝜂 ′ generated by 𝑇 to
be visible to any event 𝜂 that precedes it in 𝑇 ’s execution.
A serializability anomaly is an execution history with a

final state that violates at least one of the above constraints.
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These sorts of anomalies capture when the events of a trans-
action instance are either not made visible to other events
in totality (in the case of a violation of strong atomicity)
or which themselves witness different events (in the case
of a violation of strong isolation). Both kinds of anomalies
can be eliminated by identifying commands which gener-
ate sets of problematic events and altering them to ensure
atomic execution. Two events are executed atomically if they
witness the same set of events and they are both made
visible to other events simultaneously, i.e. atomic(𝜂, 𝜂 ′) ≡
∀𝜂 ′′. (vis(𝜂, 𝜂 ′′) ⇒ vis(𝜂 ′, 𝜂 ′′))∧(vis(𝜂 ′′, 𝜂) ⇒ vis(𝜂 ′′, 𝜂 ′)).

Given a program 𝑃 , we define a database access pair (𝜒)

as a quadruple (𝑐1, 𝑓 1, 𝑐2, 𝑓 2) where 𝑐1 and 𝑐2 are database

commands from a transaction in 𝑃 , and 𝑓 1 (resp. 𝑓 2) is a
subset of the fields that are accessed by 𝑐1 (resp. 𝑐2). An
access pair is anomalous if there is at least one execution in
the execution history of P that results in an event generated

by 𝑐1 accessing a field 𝑓1 ∈ 𝑓 1 which induces a serializability
anomaly with another event generated by 𝑐2 accessing field

𝑓2 ∈ 𝑓 2. An example of an anomalous access pair for the
program from in Section 2, is (𝑆1, {st_name}, 𝑆2, {em_addr})
and (𝑈 1, {st_name},𝑈 2, {em_addr}); this pair contributes to
that program’s non-repeatable read anomaly from Figure 2.

We now turn to the development of an automated static re-
pair strategy that given a program 𝑃 and a set of anomalous
access pairs produces a semantically equivalent program 𝑃 ′

with fewer anomalous access pairs. In particular, we repair
programs by refactoring their database schemas in order to
benefit from record-level atomicity guarantees offered by
most databases, without introducing new observable behav-
iors. We elide the details of how anomalous access pairs
are discovered, but note that existing tools [13, 46] can be
adapted for this purpose. Section 6 provides more details
about how this works in Atropos.

4 Refactoring Database Programs

In this section, we establish the soundness properties on
the space of database program refactorings and then intro-
duce our particular choice of sound refactoring rules. Similar
refactorings are typically applied by developers when mi-
grating traditional database programs to distributed database
systems [28, 58]. Our approach to repair can be thought of
as automating this manual process in a way that eliminates
serializability anomalies.
The correctness of our approach relies on being able to

show that each program transformation maintains the invari-
ant that at every step in any history of a refactored program,

it is possible to completely recover the state of the data-store

for a corresponding history of the original program. To estab-
lish this property, we begin by formalizing the notion of a
containment relation between tables.

1 11 1

2 22 1

1 33 1

st_id

STUDENT

st_name st_em_id st_regst_co_idst_em_addr st_co_avail

COURSE_ST_CNT_LOG

co_id co_log_id co_cnt_log

COURSE

co_id co_avail co_st_cnt

1 true 2

100 Bob 1 true1Bob@host.com true

200 Alice 2 true1Alice@host.com true

0 0

0

2 true 1

300 Chris 3 true2Chris@host.com true

Figure 7. An example illustrating value correspondences.

4.1 Database Containment

Consider the tables in Figure 7, which are instances of the
schemas from Section 2. Note that every field of COURSE0 can
be computed from the values of some other field in either
the STUDENT0 or COURSE_ST_CNT_LOG0 tables: co_avail cor-
responds to the value of the st_co_avail field of a record
in STUDENT0, while co_st_cnt can be recovered by sum-
ming up the values of the co_cnt_log field of the records in
COURSE_ST_CNT_LOG0 whose co_id field has the same value
as the original table.
The containment relation between a table (e.g. COURSE0)

and a set of tables (e.g. STUDENT0 and COURSE_ST_CNT_LOG0)
is defined using a set of mappings called value correspon-
dences [55]. A value correspondence captures how to com-
pute a field in the contained table from the fields of the
containing set of tables. Formally, a value correspondence
between field 𝑓 of schema 𝑅 and field 𝑓 ′ of schema 𝑅′ is
defined as a tuple (𝑅, 𝑅′, 𝑓 , 𝑓 ′, 𝜃, 𝛼) in which: (i) a total record

correspondence function, denoted by 𝜃 : 𝑅id → 𝑅′
id
, relates

every record of any instance of 𝑅 to a set of records in any
instance of 𝑅′ and (ii) a fold function on values, denoted by

𝛼 : Val→ Val is used to aggregate a set of values. We say

that a table 𝑋 is contained by a set of tables 𝑋 under a set
of value correspondences 𝑉 , if 𝑉 accurately explains how to

compute 𝑋 from 𝑋 , i.e.

𝑋 ⊑𝑉 𝑋 ≡ ∀𝑓 ∈ 𝑋fld . ∃(𝑅, 𝑅
′, 𝑓 , 𝑓 ′, 𝜃, 𝛼) ∈ 𝑉 . ∃𝑋 ′ ∈ 𝑋 .

∀𝑟 ∈ 𝑅id . 𝑋 (𝑟 .𝑓 ) = 𝛼 ({𝑚 | 𝑟 ′ ∈ 𝜃 (𝑟 ) ∧ 𝑋 ′(𝑟 ′.𝑓 ′) =𝑚})

For example, the table COURSE0 is contained in the set
of tables {STUDENT0, COURSE_ST_CNT_LOG0} under the pair
of value correspondences, (COURSE, STUDENT, co_avail,
st_co_avail, 𝜃1, any) and (COURSE, COURSE_ST_CNT_LOG,
co_st_cnt, co_cnt_log, 𝜃2, sum), where 𝜃1 (1) = {100, 200},
𝜃1 (2) = {300},𝜃2 (1) = {(1, 11), (1, 33)} and𝜃2 (2) = {(2, 22)}.

The aggregator function any : Val → Val returns a non-
deterministically chosen value from a set of values. The
containment relation on tables is straightforwardly lifted to
data store states, denoted by Σ ⊑𝑉 Σ

′, if all tables in Σ are
contained by the set of tables in Σ

′.
We define the soundness of our program refactorings us-

ing a pair of refinement relations between execution histo-
ries and between programs. An execution history ℎ′ (where
ℎ′
fin

= (Σ′, Γ′)) is a refinement of an execution ℎ (where
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(intro 𝜌)

𝜌 ∉ 𝑅RelNames

𝑉 , (𝑅,𝑇 ) ↩−→ 𝑉 , (𝑅 ∪ {𝜌 : ∅},𝑇 )

(intro 𝜌.𝑓 )

𝑅 = 𝜌 : 𝑓 𝑓 ∉ 𝑓 𝑅′ = 𝜌 : 𝑓 ∪ {𝑓 }

𝑉 , ( {𝑅 } ∪ 𝑅,𝑇 ) ↩−→ 𝑉 , ( {𝑅′ } ∪ 𝑅,𝑇 )

(intro 𝑣)

𝑣 ∉ 𝑉 𝑇 ′ = {𝑡 (𝑎) { [[𝑐 ]]𝑣 ; return [[𝑒 ]]𝑣 } | 𝑡 (𝑎) {𝑐 ; return 𝑒 } ∈ 𝑇 }

𝑉 , (𝑅,𝑇 ) ↩−→ 𝑉 ∪ {𝑣 }, (𝑅,𝑇 ′)

Figure 8. Refactoring Rules

ℎfin = (Σ, Γ)), denoted by ℎ′ ⪯𝑉 ℎ, if and only if Γ′ and Γ

have the same collection of finalized transaction instances
and there is a set of value correspondences𝑉 under which Σ

is contained in Σ
′, i.e. Σ ⊑𝑉 Σ

′. Intuitively, any refinement of
a history ℎ maintains the same set of records and spawns the
same set of transaction instances as ℎ, with each instance
producing the same result as it does in ℎ. Lastly, we define
a refactored program 𝑃 ′ to be a refinement of the original
program 𝑃 , denoted by 𝑃 ′ ⪯𝑉 𝑃 , if the following conditions
are satisfied:

(I) Every history ℎ′ of 𝑃 ′ has a corresponding history ℎ
in 𝑃 such that ℎ′ is a refinement of ℎ.

(II) Every serializable history ℎ of 𝑃 has a corresponding
history ℎ′ in 𝑃 ′ such that ℎ′ is a refinement of ℎ.

The first condition ensures that 𝑃 ′ does not introduce any
new behaviors over 𝑃 , while the second ensures that 𝑃 ′ does
not remove any desirable behavior exhibited by 𝑃 .

4.2 Refactoring Rules

We describe Atropos’s refactorings using a relation ↩−→ ⊆

𝑉 × 𝑃 × 𝑉 × 𝑃 , between programs and sets of value cor-
respondences. The rules in Figure 8 are templates of the
three categories of transformations employed by Atropos.
These categories are: (1) adding a new schema to the pro-
gram, captured by the rule (intro 𝜌); (2) adding a new field
to an existing schema 𝜌 , captured by rule (intro 𝜌.𝑓 ); and,
(3) relocating certain data from one table to another while
modifying the way it is accessed by the program, captured
by the rule (intro 𝑣).
The refactorings represented by (intro 𝑣) introduce a

new value correspondence 𝑣 , and modify the body and re-
turn expressions of a programs transactions via a rewrite
function, [[.]]𝑣 . A particular instantiation of [[.]]𝑣 must en-
sure the same data is accessed and modified by the resulting
program, in order to guarantee that the refactored program
refines the original. At a high-level, it is sufficient for [[·]]𝑣
to ensure the following relationship between the original (𝑃 )
and refactored programs (𝑃 ′) :

(R1) 𝑃 ′ accesses the same data as 𝑃 , which may be main-
tained by different schemas;

(R2) 𝑃 ′ returns the same final value as 𝑃 ;
(R3) and, 𝑃 ′ properly updates all data maintained by 𝑃 .

To see how a rewrite function might ensure R1 to R3, con-
sider the original (top) and refactored (bottom) programs
presented in Figure 9. This example depicts a refactoring of

transactions getSt and setSt to utilize a value correspon-
dence from em_addr to st_em_addr, moving email addresses
to the STUDENT table, as described in Section 2. The select
commands S1 and S3 in getS remain unchanged after the
refactoring, as they do not access the affected table. However,
the query S2, which originally accessed the EMAIL table is
redirected to the STUDENT table.
More generally, in order to take advantage of a newly

added value correspondence 𝑣 , [[.]]𝑣 must alter every query
on the source table and field in 𝑣 to use the target table of 𝑣
instead, so that the new query accesses the same data as the
original. This rewrite has the general form:

[[𝑥 := SELECT 𝑓 FROM 𝑅 WHERE 𝜙]]𝑣 ≡

𝑥 := SELECT 𝑓 ′ FROM 𝑅′ WHERE redirect(𝜙, 𝜃 )
(1)

Intuitively, in order for this transformation to ensure R1,
the redirect function must return a new where clause on
the target table which selects a set of records corresponding
to set selected by the original clause.

In order to preserve R2, program expressions also need to
be rewritten to evaluate to the same value as in the original
program. For example, observe that the return expression
in getSt is updated to reflect that the records held in the
variable y now adhere to a different schema.

The transformation performed in Figure 9 also rewrites
the update (U2) of transaction setSt. In this case, the update
is rewritten using the same redirection strategy as (S2), so
that it correctly reflects the updates that would be performed
by the original program to the EMAIL record.
Taken together, 𝑅1 − 𝑅3 are sufficient to ensure that a

particular instance of intro 𝑣 is sound2:

Theorem 4.1. Any instance of intro 𝑣 whose instantiation

of [[·]]𝑣 satisfies 𝑅1 − 𝑅3 is guaranteed to produce a refactored

program that refines the original, i.e.

∀𝑃,𝑃 ′,𝑉 ,𝑣𝑤𝑤 . (𝑉 , 𝑃) ↩−→ (𝑉 ∪ {𝑣}, 𝑃
′) ⇒ 𝑃 ′ ⪯𝑉∪{𝑣 } 𝑃

Although our focus has been on preserving the semantics of
refactored programs, note that as a direct consequence of our
definition of program refinement, this theorem implies that
sound transformations do not introduce any new anomalies.
We now present the instantiations of intro 𝑣 used by

Atropos, explaining along the way how they ensure R1-R3.

4.2.1 Redirect Rule. Our first refactoring rule is param-
eterized over the choice of schemas and fields and uses
the aggregator any. Given data store states Σ and Σ

′, the

record correspondence is defined as: ⌈𝜃⌉ (𝑟 ) ≡ {𝑟 ′ | 𝑟 ′ ∈

𝑅′
id
∧ ∀𝑓 ∈𝑅id

∀𝑛 . Σ(𝑟 .𝑓 ) ⇓ 𝑛 ⇒ Σ
′(𝑟 ′.𝜃 (𝑓 )) ⇓ 𝑛}. In essence,

2A complete formalization of all three refactoring rules, their correctness

criteria, and proofs of soundness is presented in the extended version of

this paper [47].
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1 getSt(id):

2 x:= select * from STUDENT where st_id=id//S1

3 y:= select em_addr from EMAIL where em_id=x.st_em_id //S2

4 z:= select co_avail from COURSE

5 where co_id=x.st_co_id //S3

6 return (y.em_addr)

intro (EMAIL, STUDENT, em_addr, st_em_addr, ⌈𝜃0 ⌉, any)
↩−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

1 getSt(id):

2 x:= select * from STUDENT where st_id=id //S1

3 y:= select st_em_addr from STUDENT

4 where st_em_id=x.st_em_id //S2'

5 z:= select co_avail from COURSE

6 where co_id=x.st_co_id //S3

7 return (y.st_em_addr)

1 setSt(id,name ,email):

2 x:= select st_em_id from STUDENT where st_id=id //S4

3 update STUDENT set st_name=name where st_id=id //U1

4 update EMAIL set em_addr=email

5 where em_id=x.st_em_id //U2

6 return 0

intro (EMAIL, STUDENT, em_addr, st_em_addr, ⌈𝜃0 ⌉, any)
↩−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

1 setSt(id,name ,email):

2 x:= select st_em_id from STUDENT where st_id=id //S4

3 update STUDENT set st_name=name where st_id=id //U1

4 update STUDENT set st_em_addr=email

5 where st_em_id=x.st_em_id //U2'

6 return 0

Figure 9. A single program refactoring step, where 𝜃0 (EMAIL.em_addr) = STUDENT.st_em_addr

the lifted function 𝜃 identifies how the value of the primary
key 𝑓 of a record 𝑟 can be used to constrain the value of

field 𝜃 (𝑓 ) in the target schema to recover the set of records
corresponding to 𝑟 , i.e. 𝜃 (𝑟 ). The record correspondences
from Section 4.1 were defined in this manner, where

𝜃1 (COURSE.co_id) ≡ STUDENT.st_co_id , and

𝜃2 (COURSE.co_id) ≡ COURSE_CO_ST_CNT_LOG.co_id.

Defining the record correspondence this way ensures that if a
record 𝑟 is selected in Σ, the corresponding set of records in Σ′

can be determined by identifying the values that were used to
select 𝑟 , without depending on any particular instance of the
tables. Our choice of record correspondence function makes
the definition of [[·]] for select statements a straightforward
instantiation of (1) with the following definition of redirect:

redirect(𝜙, ⌈𝜃⌉) ≡
∧

𝑓 ∈𝜙fld

this.𝜃 (𝑓 ) = 𝜙 [𝑓 ]exp (2)

The one wrinkle in this definition of redirect is that it is
only defined when the where clause 𝜙 is well-formed, i.e.
𝜙 only consists of conjunctions of equality constraints on
primary key fields. The expressions used in such a constraint
is denoted by 𝜙 [𝑓 ]exp. As an example, the where clause
of command (S2) in Figure 9 (left) is well-formed, where
𝜙 [em_id]exp ≡ x.st_e_id. However, the where clause in
(S2′) after the refactoring step is not well-formed, since it
does not constrain the primary key of the STUDENT table.
This restriction ensures that only queries that access a single
record of the original table will be rewritten. Expressions
using variables containing the results of such queries are
rewritten by substituting the source field name with the
target field name, e.g. [[at1 (𝑥 .𝑓 )]]𝑣 ≡ at1 (𝑥 .𝑓 ′).
Redirecting updates is similarly defined using the defini-

tion of redirect(𝜙, 𝜃 ) from 2:

[[UPDATE 𝑅 SET 𝑓 = 𝑒 WHERE 𝜙]]𝑣 ≡

UPDATE 𝑅′ SET (𝑓 ′ = [[𝑒]]𝑣) WHERE redirect(𝜙, 𝜃 )

4.2.2 Logger Rule. Unfortunately, instantiating intro 𝑣

is not so straightforward when we want to utilize value cor-
respondences with more complicated aggregation functions
than any. To see why, consider how we would need to mod-
ify an UPDATE when 𝛼 ≡ sum is used. In this case, our rule
transforms the program to insert a new record corresponding
to each update performed by the original program. Hence,
the set of corresponding records in the target table always
grows and cannot be statically identified.
We enable these sorts of transformations by using log-

ging schema for the target schema. A logging schema for
source schema 𝑅 and the field 𝑓 is defined as follows: (i) the
target schema (𝐿𝑜𝑔𝑅) has a primary key field, correspond-
ing to every primary key field of the original schema (𝑅);
(ii) the schema has one additional primary key field, denoted
by 𝐿𝑜𝑔𝑅.log_id, which allows a set of records in 𝐿𝑜𝑔𝑅 to
represent each record in 𝑅; and (iii) the schema 𝐿𝑜𝑔𝑅 has a
single field corresponding to the original field 𝑅.𝑓 , denoted
by 𝐿𝑜𝑔𝑅.𝑓 ′.
Intuitively, a logging schema captures the history of up-

dates performed on a record, instead of simply replacing old
values with new ones. Program-level aggregators can then
be utilized to determine the final value of each record, by
observing all corresponding entries in the logging schema.
The schema COURSE_CO_ST_CNT_LOG from Section 2 is an
example of a logging schema for the source schema and field
COURSE.co_st_cnt.
Under these restrictions, we can define an implementa-

tion of [[·]] for the logger rule using sum as an aggregator.

This refactoring also uses a lifted function ⌈𝜃⌉ for its value
correspondence, which allows [[·]] to reuse our earlier defi-
nition of redirect. We define [[·]] on accesses to 𝑓 to use
program-level aggregators, e.g. [[at1 (𝑥 .𝑓 )]]𝑣 ≡ sum(𝑥 .𝑓 ′).
Finally, the rewritten UPDATE commands simply need to

log any updates to the field 𝑓 , so its original value can be
recovered in the transformed program, e.g.

[[UPDATE 𝑅 SET 𝑓 = 𝑒 + at1 (𝑥 .𝑓 ) WHERE 𝜙]]𝑣 ≡ UPDATE 𝑅′

SET 𝑓 ′ = [[𝑒]]𝑣WHERE redirect(𝜙, 𝜃 ) ∧ 𝑅′.log_id = uuid().
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Having introduced the particular refactoring rules instan-
tiated in Atropos, we are now ready to establish the sound-
ness of those refactorings:

Theorem 4.2. The rewrite rules described in this section sat-

isfy the correctness properties (R1), (R2) and (R3).

Corollary 4.3. (Soundness) Any sequence of refactorings per-

formed by Atropos is sound, i.e. the refactored program is a

refinement of the original program.

Proof. Direct consequence of theorems 4.1 and 4.2. □

5 Repair Procedure

Figure 10 presents our algorithm for eliminating serializ-
ability anomalies using the refactoring rules from the previ-
ous section. The algorithm (repair) begins by applying an
anomaly detector O to a program to identify a set of anoma-
lous access pairs. As an example, consider regSt from our
running example. For this transaction, the anomaly oracle
identifies two anomalous access pairs:

(U3, {st_co_id, st_reg}, U4, {co_avail}) (𝜒1)

(S5, {co_st_cnt}, U4, {co_st_cnt}) (𝜒2)

The first of these is involved in the dirty read anomaly from
Section 2, while the second is involved in the lost update
anomaly.

Function :repair(𝑃 )

1 𝜒 ← O(𝑃 ) ; 𝑃 ← pre_process(𝑃, 𝜒)

2 for 𝜒 ∈ 𝜒 do

3 if try_repair(𝑃, 𝜒) = 𝑃 ′ then 𝑃 ← 𝑃 ′

4 return post_process(𝑃 )

Function :try_repair(𝑃, 𝜒)

1 𝑐1 ← 𝜒.𝑐1; 𝑐2 ← 𝜒.𝑐2

2 if same_kind(𝑐1, 𝑐2) then

3 if same_schema(𝑐1, 𝑐2) then

4 return try_merging(𝑃, 𝑐1, 𝑐2)

5 else if try_redirect(𝑃, 𝑐1, 𝑐2) = 𝑃 ′ then

6 return try_merging(𝑃 ′, 𝑐1, 𝑐2)

7 return try_logging(𝑃, 𝑐1, 𝑐2)

Figure 10. The repair algorithm

The repair procedure next performs a pre-processing phase,
where database commands are split into multiple commands
such that each command is involved in at most one anoma-
lous access pair. For example, the first step of repairing the
regSt transaction is to split command U4 into two update
commands, as shown in Figure 11 (top). Note that we only
perform this step if the split fields are not accessed together in
other parts of the program; this is to ensure that the splitting
does not introduce new unwanted serializability anomalies.
After pre-processing, the algorithm iterates over all de-

tected anomalous access pairs (𝜒) and greedily attempts to

1 regSt(id,course):

2 update STUDENT set st_co_id=course ,st_reg=true

3 where st_id=id//U3

4 x:= select co_st_cnt from COURSE

5 where co_id=course //S5

6 update COURSE set co_st_cnt=x.co_st_cnt +1

7 where co_id=course //U4.1

8 update COURSE set co_avail=true

9 where co_id=course //U4.2

intro (COURSE, STUDENT, co_avail, st_co_avail, ⌈𝜃1 ⌉, any)
↩−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

1 regSt(id,course):

2 update STUDENT set st_co_id=course ,st_reg=true

3 where st_id=id//U3

4 x:= select co_st_cnt from COURSE

5 where co_id=course //S5

6 update COURSE set co_st_cnt=x.co_st_cnt +1

7 where co_id=course //U4.1

8 update STUDENT set st_co_avail=true

9 where st_co_id=course //U4.2'

intro COURSE_CO_ST_CNT_LOG
↩−−−−−−−−−−−−−−−−−−−−−−→ . . .

intro (COURSE, COURSE_ST_CNT_LOG, co_st_cnt, co_cnt_log, ⌈𝜃2 ⌉,sum)
↩−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

1 regSt(id,course):

2 update STUDENT set st_co_id=course , st_reg=true

3 where st_id=id//U3

4 x:= select co_st_cnt from COURSE

5 where co_id=course //S5

6 insert into COURSE_CO_ST_CNT_LOG values //U4.1'

7 (co_id=course ,log_id=uuid(),co_st_cnt_log =1)

8 update STUDENT set st_co_avail=true

9 where st_co_id=course //U4.2'

Figure 11. Repair steps of transaction regSt

repair them one by one using try_repair. This function
attempts to eliminate a given anomaly in two different ways;
either by merging anomalous database commands into a sin-
gle command, and/or by removing one of them by making it
obsolete. In the remainder of this section, we present these
two strategies in more detail, using the running example
from Figure 11.

We first explain the merging approach. Two database com-
mands can only be merged if they are of the same kind (e.g.
both are selects and if they both access the same schema.
These conditions are checked in lines 2-3. Function try_merge
attempts to merge the commands if it can establish that their
where clauses always select the exact same set of records, i.e.
condition (R1) described in Section 4.2.

Unfortunately, database commands involved in anomalies
are rarely on the same schema and cannot be merged as they
originally are. Using the refactoring rules discussed earlier,
Atropos attempts to introduce value correspondences so
that the anomalous commands are redirected to the same
table in the refactored program and thus mergeable. This is
captured by the call to the procedure try_redirect. This
procedure first introduces a set of fields into the schema
accessed by 𝑐1, each corresponding a field accessed by 𝑐2.
Next, it attempts to introduce a sequence of value correspon-
dences between the two schemas using the redirect rule,
such that 𝑐2 is redirected to the same table as 𝑐1. The record
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correspondence is constructed by analyzing the commands’
where clauses and identifying equivalent expressions used
in their constraints. If redirection is successful, try_merge is
invoked on the commands and the result is returned (line 6).

For example, consider commands U3 and U4.2 in Figure 11
(top), which are involved in the anomaly 𝜒1. By introducing
a value correspondence from COURSE to STUDENT, Atropos
refactors the program into a refined version where U4.2 is
transformed into U4.2′ and is mergeable with U3.
Merging is sufficient to fix 𝜒1, but fails to eliminate 𝜒2.

The repair algorithm next tries to translate database up-
dates into an equivalent insert into a logging table using
the try_logging procedure.This procedure first introduces
a new logging schema (using the intro 𝜌 rule) and then in-
troduces fields into that schema (using intro 𝜌.𝑓 ). It then at-
tempts to introduce a value correspondence from the schema
involved in the anomaly to the newly introduced schema
using the logger rule. The function returns successfully if
such a translation exists and if the select command involved
in the anomaly becomes obsolete, i.e., the command is dead-
code. For example, in Figure 11, a value correspondence from
COURSE to the logger table COURSE_CO_ST_CNT is introduced,
which translates the update command involved in the anom-
aly to an insert command. The select command is obsolete
in the final version, since variable 𝑥 is never used.

Once all anomalies have been iterated over, Atropos per-
forms a post-processing phase on the program to remove any
remaining dead code and merge commands whenever pos-
sible. For example, the transaction regSt is refactored into
its final version depicted in Figure 3 after post-processing.
Both anomalous accesses (𝜒1 and 𝜒2) are eliminated in the
final version of the transaction.

6 Implementation

Atropos is a fully automated static analyzer and program re-
pair tool implemented in Java. Its input programs are written
in a DSL similar to the one described in Figure 5, but it would
be straightforward to extend the front-end to support popu-
lar database programming APIs, e.g. JDBC or Python’s DB-
API. Atropos consists of a static anomaly detection engine
and a program refactoring engine and outputs the repaired
program. The static anomaly detector in Atropos adapts
existing techniques to reason about serializability violations
over abstract executions of a database application [13, 39]. In
this approach, detecting a serializability violation is reduced
to checking the satisfiability of an FOL formula constructed
from the input program. This formula includes variables
for each of the transactional dependencies, as well as the
visibility and global time-stamps that can appear during a
program’s execution. The assignments to these variables in
any satisfying model can be used to reconstruct an anoma-
lous execution. We use an off-the-shelf SMT solver, Z3 [17],
to check for anomalies in the input program and identify a

Table 1. Statically identified anomalous access pairs in the
original and refactored benchmark programs

Benchmark #Txns #Tables EC AT CC RR Time (s)

TPC-C [1, 18, 33] 5 9, 16 33 8 33 33 81.2

SEATS [18, 52] 6 8, 12 35 10 35 33 61.5

SmallBank [18, 50] 6 3, 5 24 8 21 20 68.7

Twitter [18] 5 4, 5 6 1 6 5 3.6

SIBench [18] 2 1, 2 1 0 1 1 0.3

Wikipedia [18] 5 12, 13 2 1 2 2 9.0

FMKe [53] 7 7, 9 6 2 6 6 33.6

Killrchat [2, 13] 5 3, 4 6 3 6 6 42.9

Courseware [27, 32] 5 3, 2 5 0 5 5 12.7

set of anomalous access pairs. These access pairs are then
used by an implementation of the repair algorithm build a
repaired version of the input program.

7 Evaluation

This section evaluates Atropos along two dimensions:

1. Effectiveness: Does schema refactoring eliminate se-
rializability anomalies in real-world database appli-
cations? Is Atropos capable of repairing meaningful
concurrency bugs?

2. Performance: What impact does Atropos have on
the performance of refactored programs? How does
Atropos compare to other solutions to eliminating
serializability anomalies, in particular by relying on
stronger database-provided consistency guarantees?

7.1 Effectiveness

To assess Atropos’ effectiveness, we applied it to a corpus of
standard benchmarks from the database community. Table 1
presents the results for each program. The first six programs
come from the ten benchmarks defined in the OLTPBench
project [18]. We did not consider the remaining four bench-
marks because they do not exhibit any serializability anom-
alies. The last three programs are drawn from papers that
deal with the consistency of distributed systems [13, 27, 53].
The first four columns in Table 1 display the number of

transactions (#Txns), the number of tables in the original and
refactored schemas (#Tables), and the number of anomalies
detected assuming eventually consistent guarantees for the
original (EC) and refactored (AT) programs. For each bench-
mark, Atropos was able to repair at least half the anomalies,
and in many cases substantially more, suggesting that many
serializability bugs can be directly repaired by our schema
refactoring technique. The total time needed to analyze and
repair each benchmark is presented in the Time(s) column.
The time spent on analysis dominates these numbers; re-
pairing programs took under 50ms for every benchmark.
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Figure 12. Performance evaluation of SmallBank, SEATS and TPC-C benchmarks running on US cluster (see the
extended version [47] for experimental results for local and globally distributed clusters).

In order to compare our approach to other means of anom-
aly elimination ś namely, by merely strengthening the con-
sistency guarantees provided by the underlying database ś
we modified Atropos’s anomaly oracle to only consider ex-
ecutions permitted under causal consistency and repeatable
read; the former enforces causal ordering in the visibility re-
lation, while the latter prevents results of a newly committed
transaction 𝑇 becoming visible to an executing transaction
that has already read state that is written by 𝑇 . The next
two columns of Table 1, (CC) and (RR), show the result of
this analysis: causal consistency was only able to reduce
the number of anomalies in one benchmark (by 12%) and
repeatable read in three (by 5%, 15% and 16%). This suggests
that only relying on isolation guarantees between eventual
and sequential consistency is not likely to significantly re-
duce the number of concurrency bugs that manifest in an
EC execution.

As a final measure of Atropos’s impact on correctness, we
carried out a more in-depth analysis of the SmallBank bench-
mark, in order to understand Atropos’s ability to repair
meaningful concurrency bugs. This benchmark maintains
the details of customers and their accounts, with dedicated
tables holding checking and savings entries for each cus-
tomer. By analyzing this and similar banking applications
from the literature [27, 31, 56], we identified the following
three invariants to be preserved by each transaction:

(i) Each account must accurately reflect the history of
deposits to that account,

(ii) The balance of accounts must always be non-negative,
(iii) Each client must always witness a consistent state of

her checking and savings accounts. For example, when
transferring money between accounts, users should
not see a state where the money is deducted from the
checking account but not yet deposited into savings.

Interestingly, we were able to detect violations of all three in-
variants in the original program under EC, while the repaired
program violated only invariant (ii). This is evidence that
the statically identified serializability anomalies eliminated
by Atropos are meaningful proxies to the application-level
invariants that developers care about.

7.2 Performance

To evaluate the performance impact of schema refactor-
ing, we conducted further experiments on a real-world geo-
replicated database cluster, consisting of three AWS ma-
chines (M10 tier with 2 vCPUs and 2GB of memory) lo-
cated across US in N. Virginia, Ohio and Oregon. Similar
results were exhibited by experiments on a single data cen-
ter and globally distributed clusters. Each node runs Mon-
goDB (v.4.2.9), a modern document database management
system that supports a variety of data-model design options
and consistency enforcement levels. MongoDB documents
are equivalent to records and a collection of documents is
equivalent to a table instance, making all our techniques
applicable to MongoDB clients.

Figure 12 presents the latency (top) and throughput (bot-
tom) of concurrent executions of SmallBank (left), SEATS
(middle) and TPC-C (right) benchmarks. These benchmarks
are representative of the kind of OLTP applications best
suited for our refactoring approach. Horizontal axes show
the number of clients, where each client repeatedly sub-
mits transactions to the database according to each bench-
mark’s specification. Each experiment was run for 90 sec-
onds and the average performance results are presented. For
each benchmark, performance of four different versions of
the program are compared: (i) original version running un-
der EC (♦ EC), (ii) refactored version running under EC (■
AT-EC), (iii) original version running under SC ( SC) and
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Figure 13. Average latency breakdown for each transaction

(iv) refactored version where transactions with at least one
anomaly are run under SC and the rest are run under EC
(▲ AT-SC). Across all benchmarks, SC results in poor per-
formance compared to EC, due to lower concurrency and
additional synchronization required between the database
nodes. On the other hand, AT-EC programs show negligible
overhead with respect to their EC counterparts, despite hav-
ing fewer anomalies. Most interestingly, refactored programs
show an average of 120% higher throughput and 45% lower
latency compared to their counterparts under SC, while of-
fering the same level of safety. These results provide evidence
that automated schema refactoring can play an important
role in improving both the correctness and performance of
modern database programs.
Lastly, in order to illuminate the impact of refactoring

on the performance of individual transactions, Figure 13
presents the average latency across all experiments for each
transaction in the original and the refactored programs run-
ning under EC. There are minor performance improvements
due to fewer database operations (e.g. the update reservation
transaction from SEATS or the payment transaction from
TPC-C) and minor performance losses due to additional log-
ging and aggregation (e.g. the balance transaction in Small-
Bank or the delivery transaction in TPC-C) witnessed after
refactoring the benchmarks. The refactoring of our bench-
marks has limited impact on the latency of individual trans-
actions as evidenced by the close similarity of the shapes of
the radar charts in the figure.

7.3 Discussion

It is well-known that some serializability anomalies cannot
be eliminated without database-level enforcement of strong
isolation and consistency semantics [26]. In particular, if
an anomaly is caused by a read operation (R) followed by
a write operation (W) that depends on the value returned
by R, it cannot be eliminated without synchronization be-
tween clients. For example, the write check transaction in
the Smallbank benchmark includes an anomaly caused by
reading an account’s balance and then performing writes

to that account depending on the original account balance.
This is a well-studied anomaly which has been proven to
require strong consistency and isolation in order to be fully
eliminated [27, 50].
Since Atropos is a synchronization-free solution, it can-

not always repair every serializability anomaly in a program,
as shown in Table 1. Nevertheless, by first using Atropos

to repair anomalies that do not require synchronization and
then relying on stronger consistency semantics to eliminate
the remainder, it is possible to provide strong serializabil-
ity guarantees with less performance impact than relying
solely on database-level enforcement of strong isolation and
consistency semantics.

8 Related Work

Wang et al. [55] describe a synthesis procedure for generating
programs consistent with a database refactoring, as deter-
mined by a verification procedure that establishes database
program equivalence [54]. Their synthesis procedure per-
forms enumerative search over a template whose structure
is derived by value correspondences extracted by reasoning
over the structure of the original and refactored schemas. Our
approach has several important differences. First, our search
for a target program is driven by anomalous access pairs that
identify serializability anomalies in the original program and
does not involve enumerative search over the space of all
equivalent candidate programs. This important distinction
eliminates the need for generating arbitrarily-complex tem-
plates or sketches. Second, because we simultaneously search
for a target schema and program consistent with that schema
given these access pairs, our technique does not need to em-
ploy conflict-driven learning [23] or related mechanisms to
guide a general synthesis procedure as it recovers from a
failed synthesis attempt. Instead, value correspondences de-
rived from anomalous access pairs help define a restricted
class of schema refactorings (e.g., aggregation and logging)
that directly informs the structure of the target program.
Identifying serializability anomalies in database systems

is a well-studied topic that continues to garner attention [8,
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11, 22, 30, 37], although the issue of automated repair is com-
paratively less explored. A common approach in all these
techniques is to model interactions among concurrently ex-
ecuting database transactions as a graph, with edges con-
necting transactions that have a data dependency with one
another; cycles in the graph indicate a possible serializabil-
ity violation. Both dynamic [12, 56] and static [13, 39, 46]
techniques have been developed to discover these violations
in various domains and settings.

Various techniques have been developed to discover these
violations dynamically. For example, Warszawski and Bailis
[56] use program traces to identify potential vulnerabilitis in
Web applications that exploit weak isolation while Brutschy
et al. [12] present a dynamic analysis technique for discov-
ering serializability in an eventually consistent distributed
setting. Follow-onwork [13] develops scalable staticmethods
under stronger causally-consistent assumptions. Rahmani
et al. [46] present a test generation tool for triggering se-
rializability anomalies that builds upon a static detection
framework described in [39].

An alternative approach to eliminating serializability anom-
alies is to develop correct-by-construction methods. For ex-
ample, to safely develop applications for eventually-consistent
distributed environments, conflict-free replicated data-types
(CRDTs) [49] have been proposed. CRDTs are abstract data-
types (e.g. sets, counters) equipped with commutative op-
erations whose semantics are invariant with respect to the
order in which operations are applied on their state. Alterna-
tively, there have been recent efforts which explore enriching
specifications, rather than applications, with mechanisms
that characterize notions of correctness in the presence of
replication [29, 50], using these specifications to guide safe
implementations. These techniques, however, have not been
applied to reasoning on the correctness of concurrent re-
lational database programs which have highly-specialized
structure and semantics, centered on table-based operations
over inter-related schema definitions, rather than control-
and data-flow operations over a program heap.
The idea of altering the data structures used by a client

program, rather than changing its control flow, is reminis-
cent of the data-centric synchronization proposed by Dolby
et al. [19], which considers how to build atomic sets with
associated units of work. The context of their investigation,
concurrent Java programs, is quite different from ours; in
particular, their solution does not consider sound schema
refactorings, an integral part of our approach.

9 Conclusions and Future Work

There are several interesting future directions for Atropos.
In particular, our repair algorithm greedily identifies the first
refactoring that eliminates an anomaly. Integrating a cost
model into this search could result in repaired programs with
even better performance. In addition, though we were not

able to identify any cases where the ordering of refactorings
mattered in our experiments, investigating the potential of
refactorings to enable additional beneficial transformations
merits further investigation.

The techniques presented in this paper operate solely on
the database parts of some larger program. Our refactorings
are guaranteed to soundly preserve the semantics of these
parts, and thus those of the surrounding program as well. A
more holistic refactoring approach, which considers both the
database parts and the surrounding application, may offer
further opportunities for repairs and performance improve-
ments.
We have presented Atropos, an approach for automati-

cally eliminating serializability anomalies in the clients of dis-
tributed databases. By altering the data layout (i.e. schemas)
of the underlying database and refactoring the client pro-
grams accordingly, we demonstrate that it is possible to re-
pair many statically identified anomalies in those clients. Our
experimental results showcase the utility of this approach,
showing that the refactored programs perform comparably
to the original programs, while exhibiting fewer serializabil-
ity bugs. Furthermore, our evaluation shows that the combi-
nation of Atropos and stronger database-provided consis-
tency semantics, enables clients of distributed databases to
offer strong serializability guarantees with less performance
impact than stronger consistency semantics alone.
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