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Abstract
Subtle concurrency errors in multithreaded libraries that arise be-
cause of incorrect or inadequate synchronization are often difficult
to pinpoint precisely using only static techniques. On the other
hand, the effectiveness of dynamic race detectors is critically de-
pendent on multithreaded test suites whose execution can be used to
identify and trigger races. Usually, such multithreaded tests need to
invoke a specific combination of methods with objects involved in
the invocations being shared appropriately to expose a race. With-
out a priori knowledge of the race, construction of such tests can
be challenging.

In this paper, we present a lightweight and scalable technique
for synthesizing precisely these kinds of tests. Given a multi-
threaded library and a sequential test suite, we describe a fully auto-
mated analysis that examines sequential execution traces, and pro-
duces as its output a concurrent client program that drives shared
objects via library method calls to states conducive for triggering a
race. Experimental results on a variety of well-tested Java libraries
yield 101 synthesized multithreaded tests in less than four minutes.
Analyzing the execution of these tests using an off-the-shelf race
detector reveals 187 harmful races, including several previously un-
reported ones. Our implementation, named Narada, and the results
of our experiments are available at
http://www.csa.iisc.ernet.in/˜sss/tools/narada .

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—testing tools; F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming Languages—
program analysis

General Terms Design, Reliability, Verification

Keywords Race detection; dynamic analysis; concurrency

1. Introduction
Ensuring libraries are thread-safe [1, 20] is highly desirable be-
cause it would alleviate the burden on applications to deal with
the complexities of multithreading. However, building thread-safe
libraries is a challenging task [10]. Since libraries are intended
to be used by multiple clients concurrently, they must be struc-
tured to prevent unwanted racy access to shared state. But, per-
formance considerations dictate minimizing unnecessary synchro-
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nization. Thus, if a library is shown not to be thread-safe, applica-
tions may be able to take preventive action to avoid the conditions
that trigger a thread-safety violation. For example, if it is known
that invoking two methods in a library, with certain kinds of pa-
rameters, from distinct threads can result in a data race, applica-
tions can be (re)written to acquire suitable locks before invoking
these methods, without requiring re-implementation of the library.

There have been many program analysis techniques that have
been developed to detect races in shared-memory multithreaded
programs. These efforts can be broadly classified into three main
categories: (a) static analysis techniques (e.g., [15, 21]), (b) sys-
tematic testing (e.g., [13, 14]), and (c) dynamic analysis approaches
(e.g., [2, 7, 18, 19, 24–26]). While static analysis techniques are ex-
ecution agnostic and can be comprehensive, results can oftentimes
be imprecise [12], with non-trivial false positive rates. On the other
hand, systematic testing and dynamic analysis techniques are crit-
ically dependent on the availability of effective multithreaded tests
to detect races precisely.

Designing useful multithreaded tests is difficult because if a
race is not known to exist a priori, the test essentially devolves
into a blind search for a potential race in the library. For a race
to manifest, appropriate library methods need to be invoked from
at least two different client threads. Moreover, it is also essential
that the objects on which the methods operate need to be in a state
conducive to trigger the race, and must be shared among these
threads appropriately. The requirement to both carefully understand
object sharing properties in the library and drive execution to a
proper global state, makes the design of effective multithreaded
tests for race detection especially challenging.

class Lib {
Counter c;
public void synchronized update() { c.inc(); }
public void synchronized set(Counter x) {
c = x;

}
}

class Counter {
int count;
public void inc() { count++; }

}

Figure 1: Illustrative Example.

Figure 1 presents the implementation of two classes Lib and
Counter. Because the method update is synchronized, one may
mistakenly assume that invoking it from multiple threads without
holding any additional lock will not lead to a race. Upon careful
inspection, it is clear that this assumption is not true. For example,
consider a scenario in which:

1. objects p and q of type Lib, and object r of type Counter are
created,
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2. p.set(r) and q.set(r) are invoked, and

3. p.update() and q.update() are invoked from two threads
concurrently.

If a multithreaded test performing the aforementioned operations
exists, then one of the possible interleavings in the many execu-
tions of the test can expose the race on count. Therefore, race
detection [7, 13] by analyzing the execution of the multithreaded
test is also feasible. However, designing such a test requires creat-
ing objects of appropriate types, driving each thread to a suitable
state so that concurrent execution of the update method can ex-
pose the underlying race. The goal of this paper is to automatically
synthesize such multithreaded tests.

We propose a novel and scalable technique for automatically
synthesizing racy tests to enable race detection in multithreaded
libraries. The input to our technique is the implementation of the
library and a sequential seed test-suite. The output is a multi-
threaded test-suite, where each test spawns multiple threads and
invokes various methods in the library appropriately. The key in-
sight to our approach is that the properties observed during sequen-
tial execution can be leveraged to generate constraints such that a
multithreaded execution satisfying the constraints will result in a
race.

Our approach executes the sequential seed test-suite to invoke
various methods in the library under test. We analyze the sequential
execution traces to identify unprotected accesses to fields. If a lock
on the object before accessing its contents (fields) is not held,
then the corresponding access is considered unprotected. We adopt
this conservative approach to maximize the effectiveness of our
search for feasible locations that can be manipulated to produce
a race. Therefore, even if a lock is held before accessing a field, our
definition identifies the potential for a race when the lock objects
differ on a shared memory access.

We also identify various methods in the library that modify ob-
ject state based on the parameters supplied by the sequential tests.
For a race to manifest, we need to construct a context where the
intersection of the held lock objects for any two shared memory
accesses is empty. Interestingly, while Eraser [24] uses this prop-
erty to detect races, we apply the same property to generate race
inducing tests. We identify a composition of method invocations in
the library with appropriate parameters to manifest the necessary
context.

Building the necessary context requires the presence of objects
upon which library operations can be performed. To do this, as part
of the synthesized multi-threaded test, we execute the sequential
test multiple times and collect the objects, that are used as pa-
rameters (including receivers) for different method invocations, by
storing references to them. Subsequently, we use the references to
drive the objects to the necessary state as required by the context,
spawn multiple threads and invoke appropriate methods from these
threads concurrently. The resulting execution can result in a race
as the held locks on the shared memory accesses do not share a
common lock.

We have incorporated our ideas as part of a tool, named
Narada.1 We have performed a detailed evaluation of Narada on
a number of open-source multithreaded Java libraries and compo-
nents. Our experimental results show that we are able to synthesize
a number of multi-threaded tests that expose many races, includ-
ing previously undetected ones.2 Analyzing nine classes resulted in
the synthesis of 101 multithreaded tests leading to the detection of
307 (187 harmful) races; we are able to synthesize the tests in less

1 The name of an Indian sage renowned for setting up conflicts to address a
greater good.
2 https://github.com/hazelcast/hazelcast/issues/4039

WriteBehindQueues.java:
----------------------
27 public final class WriteBehindQueues {
44 public static <T> WriteBehindQueue<T>

createSafeWriteBehindQueue(WriteBehindQueue<T> q) {
45 return new SynchronizedWriteBehindQueue<T>(q);
46 }
47
48 public static WriteBehindQueue

createCoalescedWriteBehindQueue() {
49 return new CoalescedWriteBehindQueue();
50 }
137 }

SynchronizedWriteBehindQueue.java:
---------------------------------
23 /* Thread safe write behind queue. */
27 class SynchronizedWriteBehindQueue<E> implements

WriteBehindQueue<E> {
29 private final WriteBehindQueue<E> queue;
31 private final Object mutex;
32
33 SynchronizedWriteBehindQueue(WriteBehindQueue<E> q) {
37 this.queue = q;
38 this.mutex = this;
39 }
40
63 public void removeFirst() {
64 synchronized (mutex) {
65 queue.removeFirst();
66 }
67 }
146 }

CoalescedWriteBehindQueue.java:
------------------------------
17 class CoalescedWriteBehindQueue implements

WriteBehindQueue<DelayedEntry> {
19 protected final Map<Data, DelayedEntry> queue;

57 public void removeFirst() {
58 final Set<Data> keySet = queue.keySet();
59 for (Data key : keySet) {
60 queue.remove(key);
61 break;
62 }
63 }
158 }

Figure 2: Motivating example.

than four minutes with negligible memory overhead. These results
substantially improve upon recent prior work on detecting thread-
safety violations [20].

The paper makes the following technical contributions:

• We develop a framework to synthesize multithreaded tests de-
tecting races in library code by using the implementation of the
library under consideration and a sequential seed test-suite as in-
put.
• Our approach analyzes sequential execution traces, identifies un-

protected accesses, derives the sequence of method invocations
that drives objects to states conducive for triggering a race and
reuses existing sequential tests to generate the necessary objects
for multithreaded execution.
• We provide details about the implementation of our proposed

design and give detailed experimental results to demonstrate the
efficacy of our approach.
• We also demonstrate the usefulness of our tool, named Narada,

by seamlessly integrating it with RaceFuzzer [25] which reports a
number of harmful races on multiple benchmarks after analyzing
the execution of the tests synthesized by Narada.

https://github.com/hazelcast/hazelcast/issues/4039


2. Motivation
We motivate the problem addressed in the paper by using a real
example from hazelcast3, a popular open source in-memory
data grid, that is under active development with 12K commits, 68
releases and 82 contributors. According to the documentation, the
APIs are used to improve performance of applications, to distribute
data across servers, clusters and geographies and to manage very
large data sets or very high data ingest rates.

Figure 2 presents partial implementations of three classes
from hazelcast-3.3.2. Two method implementations from
WriteBehindQueues, a class that provides static fac-
tory methods which create write behind queues, are shown.
SynchronizedWriteBehindQueue is a supposedly thread-
safe class based on the comment on line 23. The imple-
mentation of the constructor and a method removeFirst
is shown in the figure. Finally, the partial implementa-
tion of class CoalescedWriteBehindQueue, one of the
WriteBehindQueue classes, is shown in the figure where there
is no synchronization performed in the implementation of method
removeFirst.

public void exposeRace() {
WriteBehindQueue cwbq =

WriteBehindQueues.createCoalescedWriteBehindQueue();

WriteBehindQueue<DelayedEntry> swbq1 =
WriteBehindQueues.createSafeWriteBehindQueue(cwbq);

WriteBehindQueue<DelayedEntry> swbq2 =
WriteBehindQueues.createSafeWriteBehindQueue(cwbq);

...
Thread t1 = new Thread() {

void run() { swbq1.removeFirst(); }
}
Thread t2 = new Thread() {

void run() { swbq2.removeFirst(); }
}

}

Figure 3: Racing test.

Based on our analysis, we claim that clients using the library can
potentially have races depending upon the invoked methods and
the objects on which the methods are invoked. More specifically,
executing the multithreaded program shown in Figure 3 can ex-
pose a race in the class SynchronizedWriteBehindQueue.
This is because the two objects swbq1 and swbq2 wrap one ob-
ject cwbq as shown in Figure 4. Subsequently, from two threads,
removeFirst is invoked where the state of cwbq is updated.
However, the updates are performed while holding locks on swbq1
and swbq2 respectively leading to a race. Ideally, the update
on cwbq should have been performed while holding a lock on
cwbq. The developers of the library incorrectly assign the this
object as the mutex instead of the queue object in line 38
in SynchronizedWriteBehindQueue.java leading to this
problem.

Designing this racy test manually is a non-trivial task. It requires
a nuanced understanding of the implementation of the three classes,
identification of the shared memory access and the associated lock
object correlations, a specific invocation order of methods (in this
case, constructors) with appropriate parameters to setup the nec-
essary context, and then an invocation of relevant methods from
distinct threads to cause a race. The nesting of the invocations to
manifest the race makes the task more challenging. For example,
in the above scenario, the race happens when removeFirst in-
vokes remove which updates its internal state.

3 http://www.hazelcast.org

...

swbq1.queue

swbq2.queue

Lock on swbq1 Lock on swbq2 No lock

cwbq.queue

t2 :

t1 : 

Figure 4: Concurrent updates to cwbq.queue.

public void test() {
WriteBehindQueue cwbq =
WriteBehindQueues.createCoalescedWriteBehindQueue();

WriteBehindQueue<DelayedEntry> swbq =
WriteBehindQueues.createSafeWriteBehindQueue(cwbq);

...
swbq.removeFirst();

}

Figure 5: Sequential seed test.

Our analysis is able to automatically synthesize the racy test
shown in Figure 3. The input to our analysis is the implemen-
tation of the library along with a sequential seed test shown in
Figure 5. Apart from the racy test shown in Figure 3, we are
able to synthesize many racy tests that expose multiple races in
SynchronizedWriteBehindQueue. Even though it may ap-
pear that objects will not be intentionally shared as described
above, when the library is used as a component in a larger appli-
cation, the flow of parameters can unintentionally result in such
sharing. Our analysis can help avoid such scenarios by synthesiz-
ing tests to detect potential races when libraries are used.

3. Design
Our analysis is broadly divided into three stages. The first ana-
lyzes execution traces derived from executing sequential tests to (a)
identify unprotected accesses (Section 3.1), and (b) identify vari-
ous ways to modify library-controlled objects from a client (Sec-
tion 3.2). The second stage uses this information to build con-
straints pertaining to library methods, along with appropriate pa-
rameters, that need to be invoked to trigger a race (Section 3.3).
The third stage synthesizes racy test which executes sequential tests
to build object state that can be used to enforce these constraints
(Section 3.4). Analyzing the execution of the racy test with suitable
dynamic analysis engines can expose underlying races.

Pair Generator

Access analyzer Context Deriver

Test Synthesizer

Access Data Method Sequences

Access Data

Potential racy
access pairs

Library, 

Multithreaded

Tests

Sequential Tests

Figure 6: Overview of test synthesis.

Figure 6 presents a design overview of our analysis. The first
stage of the analysis is accomplished by the Access Analyzer, the
second stage is performed by a combination of Pair Generator and
Context Deriver, and Test Synthesizer addresses the third stage
of the analysis. We now describe each stage in detail.



H ∈ P((Var + Var × Field) 7→ (Loc × {C,NC} × {L,U})) A ∈ P(Label 7→ (Writeable × Unprotected))

H = R(S, `,C,U, x0, x1, . . . , xk) ` ∈ Client

〈x0.m(x1, x2, . . . , xk)`.T , φ, φ〉 → 〈T ,H , φ〉
(invoke)

H ′ = bind(H , x, y)

〈(x := y)`.T ,H ,A〉 → 〈T ,H ′,A〉
(assign)

H ′ = H ◦ R(S, `,NC,U, x)

〈(x := alloc)`.T ,H ,A〉 → 〈T ,H ′,A〉
(alloc)

z ∈ {x.f1, x.f1.f2, . . .} = N(x) H(z, l′,C, ) = true A′ = A[` 7→ (true, false)]

〈(return(x))`.T ,H ,A〉 → 〈T ,H ,A′〉
(return)

H ′ = bind(H , x, y.f)
A′ = A[` 7→ (false,H(y, l,C,U))]

〈(x := y.f)`.T ,H ,A〉 → 〈T ,H ′,A′〉
(read)

H ′ = bind(H , alias(H , x) ⊕ {f}, y)
A′ = A[` 7→ (H(x, l,C, ) ∧H(y, l,C, ),H(x, l,C,U))]

〈(x.f := y)`.T ,H ,A〉 → 〈T ,H ′,A′〉
(write)

H ′ = lbind(H , alias(H , x), L)

〈lock(x)`.T ,H ,A〉 → 〈T ,H ′,A〉
(lock)

H ′ = lbind(H , alias(H , x),U)

〈unlock(x)`.T ,H ,A〉 → 〈T ,H ′,A〉
(unlock)

Figure 7: Inference rules.

3.1 Analysis of Sequential Execution Traces
Our analysis operates over traces, a sequence of expressions that
comprise the execution of a sequential test; these expressions may
consist of code from the client as well as libraries. For the purposes
of our discussion, traces are built from the following terms:

e ∈ Exp := x | y | x.f | alloc | x.m(x1, . . . , xn)
stmt ::= x := e | x.f := y | lock(x) | unlock(x) | return(x)

Expressions include variables (x, y, etc.), field accesses (x.f), ob-
ject allocations (alloc) and library method calls. Statements are as-
signments to variables, which may represent objects, and fields of
objects, as well as lock, unlock and return statements.

Each element in a trace has a unique label that serves as its dy-
namic execution index [11, 29]. Given a trace, the first step towards
synthesizing a racy test is to analyze it, constructing an abstract
structure of the heap and the accesses made by each trace element.
Beyond recording basic points-to and aliasing information, these
abstractions also maintain information about whether an access to
a shared variable is unprotected or writeable. These concepts, in
turn, critically rely on the notion of controllability - intuitively, a
controllable variable references an object maintained by the library
that can be manipulated by the client through library methods. For
example, if a field of a library-manipulated object is set to the value
passed as a parameter by a client, then the access of the field is
considered controllable until the field is subsequently updated to
reference an object that is not influenced by any of the method’s
parameters (e.g., an object allocated locally).

Having information about controllable fields enables the anal-
ysis to setup the necessary context for race synthesis. Now, if the
access to an object is performed without holding a relevant lock,
and the variable being used to perform the access is controllable,
we consider that access unprotected, and this access can poten-
tially be influenced in a synthesized test case to construct a race.
Second, if both sides of an assignment are controllable, and the ac-
cess involves a write to a field, then that access is considered write-
able; such accesses can also be used to drive execution of a library
method to a state that can lead to a race.

Our analysis maintains two structures - H and A to maintain
this information. H is a per-trace element abstraction of the pro-
gram heap, recording the location to which a variable or field (more
precisely, sequence of fields rooted at a variable) within an object is
bound, whether that variable (or field) is controllable, and whether
it is locked or unlocked at any specific point in the execution. In our
rules, we overloadH’s definition so thatH(x, l,Cont,Lock) is true
if variable x points to a location l where Cont is one of C (control-

lable) or NC (not controllable), and Lock is one of L (locked) or U
(unlocked). A is a projection of the heap that records information
about accesses, collecting for each point in the trace, writeable and
unprotected information that can be used to determine whether the
recorded accesses can be involved in a race in a multi-threaded ex-
ecution. It effectively summarizes heap state relevant for each point
in the trace.

Figure 7 defines the rules that evaluate a trace to produce these
abstractions. The evaluation relation (→) operates over a triple
consisting of a trace T whose head element is e, and whose current
heap abstraction isH , and whose access projection isA; each rule
determines how to evaluate e to produce a new heap and a new
projection.

The invoke rule for a library method invocation from a client4

assumes the existence of a bootstrapping function, R. This function
takes as input the source program, S, the trace element index `, a
controllable flag, a lock flag and a set of variables. It initializes the
heapH by allocating new heap locations, and binding variables and
fields accessible from the objects denoted by these variables, based
on the variable’s static type, with these flags. In the antecedent of
this rule, since the invocation is initiated by the client and as we
ignore the lock acquisitions within the client body, the heap estab-
lished by R initializes the receiver object as well as its arguments
in the invocation to be controllable and unlocked.

The operator bind in rule assign (whose definition is straightfor-
ward and elided here) performs a deep walk over the heap, resetting
aliasing properties of its arguments; two variables and/or fields are
aliased if they map to the same location. Thus, after an assignment,
(x := y), the heap abstraction would identify x to be aliased with
y (they would both map to the same heap node, say l), x.f to be
aliased with y.f where f is a field in the object referenced by x and
y as determined by their static type, and so forth. Note that A is
left unmodified in the rule. This is because an assignment of this
form does not modify the value of any field referenced by x or y;
while these assignments can be leveraged by subsequent phases of
the analysis to break aliasing relationships, they cannot be used to
directly induce a race, which arise from storing into and reading
from object fields.

When variable x is reassigned to point-to a newly allocated
object, its prior aliasing relationship with other variables is broken,
and an aliasing relationship with the new object is established (H ′).
Furthermore, we initialize the controllablity and locking properties
of this object using the bootstrapping function, R, as described

4 This is the only operation presumed to be executed by the client; all other
rules assume the operation being considered occurs within a library method.



previously; the expression H ◦ R(. . .) in the antecedent of the
rule alloc defines heap concatenation between H and the heap
returned by R. Because the newly created object is allocated within
a library method, its controllability flag is set to NC. Moreover,
when a variable is assigned to a newly allocated object, there are
no changes to the access projection because allocation does not
involve writing to an object, only reassigning a reference.

Rule return deals with values returned by a method that may
be influenced by the method’s parameters. This rule is applicable
only on return to the client. Even though an object returned from a
library method may have been allocated locally, it could have been
assigned (or have one of its fields assigned) to a method parameter.
In this case, we mark the return label as being associated with a
writeable action, indicating that test synthesis can manipulate this
method, or any other library method that takes arguments of the
return type, via client actions. The auxiliary operatorN returns the
set of field access names for the returned object based on its static
type. For example, in the following:
void foo (z) {
x := alloc(); y := z; w := x; w.f := y; return w;
}
even though the return value w is aliased to x, a variable bound
to locally-allocated object, the alias of parameter z (here, y), is
assigned to one of w’s fields. Thus, from this return value, we know
that its field f is the parameter passed to foo, thus providing a
mechanism to influence any other method that requires an object
with that state. To record this ability, the rule marks the return
statement as writeable inA.

Rule read establishes alias relationships between x and y.f (and
recursively from fields found in objects they reference through the
use of bind); moreover, the access map is updated to reflect the fact
that at this access (at label ` in the trace) no field is being written
(there is only a read of y.f), and its access is unprotected only if y
is controllable, and unlocked.

Rule write is more complicated. Apart from performing a deep
walk of the heap with x.f and y as parameters to re-establish alias-
ing relationships, it is imperative that all aliases of x are extracted
(via operator alias) and a field dereference f from each one of them
is also aliased to y. We overload the definition of bind so that the
expression:

bind(H ,alias(H ,x) ⊕ {f},y)
establishes aliasing relationships between every alias of x.f and y
in heap H ; operator ⊕ concatenates its second argument to each
element in the set produced by its first. For example, if z.h is an
alias of x, then x.f and z.h.f need to be aliased to y. Furthermore,
because a write to x happens, we check whether the right-hand
side of the assignment (y) and target (x) are controllable from the
client. If so, the write access becomes writeable. The detection of
unprotectedness is performed as before.
lock and unlock rules find all aliases of the parameter x and

update their locking state to L and U respectively using the lbind
operator that updates the heap state accordingly.

3.1.1 Example
We now explain the application of the inference rules with an illus-
trative example. Figure 8 presents the implementation of method
foo in class A, and the trace obtained by executing the method. In-
teresting changes toH after each label are shown in Table 1. When
the method is invoked from a client, the bootstrapping of various
symbols is done (using R) and the resulting output is shown after
label 1. Subsequently, a lock on this updates the locking state of
the appropriate heap element. When this is assigned to b, the two
symbols become aliases. Furthermore, as mentioned in the rule for
x := y (based on bind’s deep walk over the heap), a.x and b.x
are also aliased. The remaining transitions in Table 1 are derived
similarly.

class A {
void foo(Y y) {
synchronized(this) {
A b = this;
X t = b.x;
t.o = rand();
b.y = y;

}
}

}
(a) Source.

1 a.foo(y)
2 lock(this)
3 b := this
4 t := b.x
5 t.o := rand();
6 b.y := y
7 unlock(this)

(b) Trace.

Figure 8: Illustrative example.

Table 1: Interesting changes in aliasing relationships captured by
H at the end of each label from Figure 8. For clarity, we omit
including locations and do not repeat unchanged heap elements
across execution steps.

1 a 7→ (C,U), a.x 7→ (C,U), a.y 7→ (C,U), a.x.o 7→ (C,U),
this 7→ (C,U), this.x 7→ (C,U), this.y 7→ (C,U),
this.x.o 7→ (C,U), y 7→ (C,U)

2 a 7→ (C,L), this 7→ (C,L)
3 b 7→ (C,L), b.x 7→ (C,U), b.y 7→ (C,U), b.x.o 7→ (C,U)
4 t 7→ (C,U), t.o 7→ (C,U)
5 a.x.o 7→ (NC,U), b.x.o 7→ (NC,U), t.o 7→ (NC,U)

this.x.o 7→ (NC,U)
6 a.y 7→ (C,U), b.y 7→ (C,U), this.y 7→ (C,U)
7 a 7→ (C,U), this 7→ (C,U), b 7→ (C,U)

Apart fromH , we also maintainA to specify whether an access
at a particular point in the trace is writeable and/or unprotected.
Upon applying the inference rules, at the end of the method, we
observe that:

A : {4 7→ (false,false), 5 7→ (false,true), 6 7→ (true,false)}

The read access at label 4 is neither writeable, since it is a read,
nor unprotected because b is locked (L); thus, this access is not
manipulable from any client-driven testcase. Similarly, the write
access at label 5 is not writeable because the right-hand side of the
assignment is not controllable (the rand function returns a random
object whose contents cannot be controlled by a client). On the
other hand, the write access at label 6 is writeable because the right-
hand side of the assignment (y) and target (b) are controllable (C)
(see H after label 5). The access at label 5 is unprotected because
t is unlocked (U). In contrast, the access at label 6 is protected
because b is locked (L).
A is leveraged by the subsequent stages of our analysis. For

example, the derivation that the access at 5 is unprotected suggests
the construction of a test which can exploit the access to expose a
race. For example, if two threads invoke foo with different objects
a1 and a2 as the receiver respectively, in a context where a1.x and
a2.x point to the same object, then a race manifests. However, for
the fields to point to the same object, it is necessary to set the
context appropriately. This is obtained by analyzing the writeable
bit inA.

While the above analysis identifies the accesses that are write-
able and/or unprotected, to fully automate racy test synthesis, we
still need information connecting the associated accesses to the ob-
jects that are accessible from the client; this information includes:

• the receivers on library method invocations,
• parameters passed to the invocations, or
• return values from the invocations.

We now describe the process of deriving this data.



Arg : S ymbol + (S ymbol × Field) D ∈ P(Label 7→ P(Argf Arg))

H ′ = bind(H , x, y.f) A′ = A[` 7→ (false,H(y, l,C,U))] D′ = D[` 7→ {src(x,H)f src(y,H) ⊕ f}]

〈(x := y.f)`.T ,H ,A,D〉 → 〈T ,H ′,A′,D′〉
(read)

H ′ = bind(H , alias(H , x) ⊕ {f}, y) A′ = A[` 7→ (H(x, l,C, ) ∧H(y, l,C, ),H(x, l,C,U))] D′ = D[` 7→ {src(x,H) ⊕ ff src(y,H)}]

〈(x.f := y)`.T ,H ,A,D〉 → 〈T ,H ′,A′,D′〉
(write)

z ∈ {x.f1, x.f1.f2, . . .} = N(x) H(z, (l′,C, )) = true A′ = A[` 7→ (true, false)] D′ = D ◦ update(H , `,N(x))

〈(return(x)`.T ,H ,A,D〉 → 〈T ,H ,A′,D′〉
(return)

Figure 9: Modified inference rules.

3.2 Connecting Client Objects to Interesting Accesses
A determines whether an access at a label ` is writeable and/or un-
protected. However, it does not provide the necessary information
to identify the client object on which the access happens. For exam-
ple, in Figure 8, we know fromA that the access at 5 is unprotected
and the access at 6 is writeable. However, we need to additionally
identify the client object that corresponds to (i.e., is aliased with)
the components comprising these accesses. In other words, if the
client invokes a1.foo(b1), we need to identify that a1.x is an unpro-
tected write at 5 and a1.y is the write at 6. This aliasing information
between client-supplied objects and the accesses that read or write
them also needs to be established.

To be able to do this effectively, we need additional variables
to identify the source of an access precisely. For example, in the
following:
void foo (z) {
y := z; z := alloc; x := y.f;

}

when the read of y.f occurs, the object referenced by y is the first
parameter to foo and not z since z is re-allocated between y’s initial
assignment to z and the dereference of y. f . To ensure that we are
able to track dataflow of client objects within library methods pre-
cisely, we introduce additional (local) variables to record parameter
values. We rewrite each method with these variables such that each
parameter and the receiver is assigned to a new variable (Ii) at the
beginning of the method. The inference rules given in Figure 7 are
applicable to these assignments, only if the method is directly in-
voked from the client. Moreover, for subsequent trace elements that
are part of the original program, the heap locations for Iis (and its
deep dereferences) inH will never need to be modified. The above
example is rewritten as follows:

void foo (z) {
Ithis:= this; Iz := z; y := z; z := alloc; x := y.f;
}

Here, when the assign rule from Figure 7 is applied on the assign-
ment Iz := z, then Iz is aliased with z, Iz.f is aliased with z.f and
so forth. Subsequently, when z is allocated, it points to a new lo-
cation in H . However, Iz points to the old location even though it
aliases with z initially. Therefore, when y.f is considered, we can
identify that y is an alias of Iz and realize that it is the parameter
passed to the method.

The operator src(x,H) returns the additional variable (or its
dereference) that aliases with x inH .

src(x,H) =

{
Ii.∗ if ∃i, Ii.* ∈ alias(x,H)
⊥ otherwise

For example, at the end of the method body for the above example,
we get src(y,H) = Iz, src(x,H) = Iz.f and src(z,H) = ⊥ (where
⊥ represents an uninteresting value).

To achieve our goal of identifying useful client objects, we
modify the inference rules as shown in Figure 9. We maintain
another structureD that records access summaries at a label which
may involve zero or more accesses. The operator (f) defines a
relation between the value of its right-hand side and its left-hand
side. The definitions of ⊕ and ◦ are as before. The evaluation
relation is now redefined to operate over a quadruple with the triple
as defined before, and D. Rule read updates D to denote that the
first element of the pair is the additional synthesized variable (or
one of its deep dereferences) that aliases with x and the second
element is the field f of some synthesized variable (or its deep
dereference) that aliases with y. A similar action is performed for
the write rule.

The return rule is more involved. We define an update operator
that creates a special variable Ir that is associated with the return
variable x. For each element z in N(x), if x.f is controllable, then
the associated state in x becomes writeable. Therefore, we identify
the influencing parameter (or receiver) and add an appropriate
mapping

` 7→ (Ir.ff src(x.f))

to D. Because, this is performed for each z satisfying the above
criteria, there can be multiple assignments at the label correspond-
ing to return. Essentially, this means that even if the object being
returned was allocated within the library, if one (or more) of its
fields are updated within the library with parameters passed from
the client, that information can be collected to enable race synthe-
sis. Consider the following code snippet:

foo(x,y) {
x.f := y; w := alloc; w.z := x; return w;

}

The set, {Ir.z.f f Iy, Ir.z f Ix}, is the access summary at the
return label. It denotes that a client can invoke the method foo
to obtain an object whose fields are determined by the parameters
passed by the client. This enables the client to drive the object to a
chosen state.

For the example given in Figure 8, introduction of the additional
variables results in the code and trace as shown in Figure 11. The
generatedA andD structures are given below:

A : {4 7→ (false,false), 5 7→ (false,true), 6 7→ (true,false)}
D : {4 7→ {⊥fI1.x}, 5 7→ {I1.x.of ⊥}, 6 7→ {I1.yfI2}}

The binding at label 6 in D indicates that the parameter affected
by the left-hand side of the assignment (I1) is the receiver object



e` ∈ m (Ii.ff I j) ∈ D(`) type(Ix) = type(Ii)

Q(Ix.f) = m
(set)

Q(Ix.f) = m1 Q(o.g) = m2 type(o) = type(f)

Q(Ix.f.g) = m2.m1
(concat)

` ∈ client `′′ ∈ m (Ii.f.gf I j) ∈ D(`′′) type(Ix) = type(Ii) 〈e`.T , , ,D〉
∗
−→ S i

∗
−→ 〈e`

′′

.T
′′
, , ,D′′〉 ∧ S i , 〈e`

′

.T
′
, , , (Ii.ff )〉

Q(Ix.f.g) = m
(deep-set)

Figure 10: Deriving method sequences.

class A {
void foo(Y y) {
I1 = this; I2 = y;
synchronized(this) {

A b = this;
X t = b.x;
t.o = rand();
b.y = y;

}
}

}
(a) Source.

1 a.foo(y)
1’ I1 := this
1" I2 := y
2 lock(this)
3 b := this
4 t := b.x
5 t.o := rand();
6 b.y := y
7 unlock(this)

(b) Trace.

Figure 11: Example after introducing additional variables.

(a) and that parameter aliased with the expression on the right-
hand side of the assignment is the supplied argument (y), denoted
by I2. The corresponding A also shows that this is a writeable
access. For non-writeable accesses, either the lhs or rhs of the
access summary D at a label is ⊥ (labels 4, 5). Nevertheless, the
unprotected access at these labels can still be derived from D. For
example, the unprotected access at label 5 is I1.x.o.

3.3 Setting the Necessary Context
We use the information describing unprotected accesses to con-
struct racy tests. An unprotected access at a label ` in one thread
can race with

• a concurrent access at ` from a different thread,
• an (un)protected access on the same object at some `′ in a

different thread.

For each unprotected access detected by our analysis, we generate
multiple racing pairs as described above. However, the key criterion
for a race to manifest is that the object instances under considera-
tion are the same. In general, if the racing pairs are Ix. f1. f2 . . . fk. f
and Iy. f ′1 . f

′
2 . . . f ′k′ . f

′, where f and f ′ have the same type, then the
owner of f and f ′ need to point to the same object instance. In other
words, Ix. f1. f2 . . . fk and Iy. f ′1 . f

′
2 . . . f ′k′ need to point to the same ob-

ject instance. Therefore, initially, we need to design a mechanism to
set the context such that object instances are shared appropriately.

In the example shown in Figure 11, we derive that the write
access at label 5 is unprotected. If we pair the unprotected access
(I1.x.o from D) with the access at the same label from a different
thread, we need to set a context such that a race on a.x can manifest.
This can happen only if I1.x from the two threads reference the
same object. In other words, the fields x of the receivers of foo
need to reference the same object. Importantly, there is no need
to strengthen this constraint further, for example by requiring that
the receivers be the same object, because imposing these additional
constraints can potentially disable race detection. For instance,
if the receivers (represented by I1) are the same for foo, then
the race cannot manifest because of the lock acquisition on the
receivers. Therefore, we need two different object instances as
receivers for foo, while requiring that the field x of both these
receivers nonetheless refers to the same object. This translates to

identifying method(s) that assign an object passed by the client to
the field x of object of type A. The client can then pass the same
object to the method(s) to set the field x for two different objects of
type A.

x"

n

x

z

y y’ m

x’

m

y
x.f := y

x

n

z

y y’

y.g := z

x.f.g := z

Figure 12: Illustrative example for updating object state.

We observe that the overall problem of setting a context can be
reduced to the fundamental problem of making an assignment to
x. f1. f2 . . . f with an object specified by the client. There may not
be one method that takes an object as parameter and assigns it to
x. f1. f2 . . . f . A sequence of method invocations may be necessary
to accomplish the required assignment. For example, as shown in
Figure 12, method n may assign y.g, m may assign x. f where y
and x. f have the same types. Sequentially invoking the methods
n and m with the appropriate parameters can modify the state of
object x by assigning an object that is available from the client to
x. f .g even though there is no single setter method to update the
associated state. This can be extended to handle the assignment for
x. f1. f2 . . . f .
D plays a significant role in deciding the method(s) that need to

be invoked. We use it to derive the required sequence of method
invocations as shown by the rules in Figure 10. Q is a query
operator that takes the field dereference under consideration and
outputs either a method or a sequence of methods. The set rule
identifies the method m where I j can be assigned to the field f
of Ii by a client, such that the type of Ii and Ix are equivalent. The
concat rule essentially identifies a sequence of two methods m1 and
m2 such that the first method assigns Ix.f and the second method
assigns o.g where the types of o and f match. The rule deep-set
identifies a method in which Ix.f.g is assigned. If there is no re-
assignment to Ii. f until Ii.f.g is assigned in m, then the method m
is considered to make an assignment to Ix.f.g.

In the above description, the source of the assignment is always
the object that is passed as a parameter. However, in practice,
the source of the assignment can be a field of the object that is
passed as a parameter. For example, in a trace z := y.g; x. f := z,
where y is a parameter passed to a method, x. f is associated with
Iy.g. To handle such a scenario, we need to repetitively apply the
aforementioned rules on Iy.g.

We now illustrate setting the context for the example given in
Figure 8 by adding method bar to class A and adding class Z as
shown in Figure 13. Assume that the methods bar and baz are ex-
ecuted as part of some sequential test(s). Based on our analysis,
analyzing the execution trace of bar will detect the presence of a
writeable assignment to A.x, (i.e) the corresponding D will have
(Ithis.xf Iz.w). Similarly, our analysis detects a writeable assign-
ment for Z.w in baz.



class A {
X x; Y y;
void foo(Y y) {
synchronized(this) {

A b = this;
X t = b.x;
t.o = rand(); // unprotected access of this.x
b.y = y; // protected access of this

}
}
void bar(Z z) {
this.x = z.w; // sets field x of A

}
}
class Z {
X w = null;
void baz(X x) {
this.w = x; // sets field w of Z

}
}

Figure 13: Illustrative example for setting context.

For a race to manifest on the field x in class A when method
foo is invoked by two threads, it is essential that the field x across
the two invocations point to the same object. In other words, when
a.foo and a′.foo are invoked by two different threads, then a.x and
a′.x need to refer to the same object. Trivially, this is possible by
ensuring a and a′ refer to the same object. However, this will not
help in manifesting the race as a lock is acquired on the receivers (a
and a′). Thus, we also need to ensure a and a′ are distinct. Initially,
we can consider distinct a and a′ and identify the possibility of
ensuring that their field x can be set appropriately. We can achieve
this by invoking method bar on a and a′ which will help set the
field x. Since the right-hand side of the assignment in bar is a field
w of the object z passed as its parameter, we invoke method baz to
set the field w appropriately. To summarize, the following context
can be derived to manifest the potential race under consideration:

z.baz(x); a.bar(z); a′.bar(z); // context
a.foo(...); // thread 1, unprotected access
a′.foo(...); // thread 2, unprotected access

Setting the context as shown above accomplishes the task of
appropriate object sharing. However, in general, for a successful
execution of the synthesized code, we need legal object instances of
different types (e.g., x, z, a, a′). In the next section, we address the
challenge of creating such object instances to allow us to thereby
correctly set the required context and invoke relevant methods
concurrently from different threads to expose a race.

3.4 Synthesizing Tests
We now describe our approach for synthesizing an executable test.
Primarily, we need to have legal object instances to execute the
synthesized code as described in previous sections. For this pur-
pose, we use a simple yet effective approach where we execute the
sequential tests, that have been used earlier in our analysis, multi-
ple times. However, instead of running the tests to completion, we
suspend the execution before a method is invoked on the objects
of interest, i.e., those that have been determined to be relevant for
a race. For example, if we need to collect objects of type Z and X
that need to be passed to z.baz(x), we execute the sequential test
until the invocation of baz and collect the objects pointed by z and
x for constructing the racing test. In other words, we store the refer-
ences to these objects for later use. Similarly, if we need to invoke
a method twice such that each invocation is with a different set of
parameters, we execute the sequential test twice and collect the ob-
jects before the two invocations.

Unless object sharing is explicitly required, we do not share ob-
jects across different method invocations. If the objects are shared
unnecessarily, it can potentially disable race detection. For in-

stance, in the running example (Figure 13), when foo needs to
be invoked separately by two threads, we ensure that two differ-
ent sets of object instances are collected to be used as receivers to
the invocations respectively. Otherwise, if the object referenced by
the receivers are the same, the two threads cannot enter the syn-
chronization body in foo concurrently. On the other hand, with the
objects being distinct, concurrent access to the synchronized body
becomes feasible. Conversely, in the running example, when the
context is being set and bar is invoked twice, we ensure the same
object of type Z is passed as parameter to both the invocations.

Algorithm 1 Outline of a Generated Test

Input: Method pairs mr, mr′ to manifest a race (r, r′).
Sequence of relevant setter methods Qr, Q′r.

1: for (each m in Qr) Or[m]← collectObjects(m)
2: for (each m in Qr′ ) Or′ [m]← collectObjects(m)
3: Pr ← collectObjects(mr)
4: Pr′ ← collectObjects(mr′ )
5: shareObjects(Pr, Pr′ , Or, Or′ )
6: for (each m in Qr) Invoke m with Or[m] as parameters.
7: for (each m in Qr′ ) Invoke m with Or′ [m] as parameters.
8: Spawn a new thread and invoke mr with parameters in Pr.
9: Spawn a new thread and invoke mr′ with parameters in Pr′ .

Algorithm 1 presents the outline of the multi-threaded tests syn-
thesized by our analysis. To synthesize a test that manifests a race
between accesses r and r′, we use the corresponding method invo-
cations (mr, mr′ ) as input. We also use a pair of method sequences
given by Qr and Qr′ as input to set the relevant context which en-
ables the objects to be driven to a state conducive for manifest-
ing a race. Initially, we collect the objects passed as parameters
to the various methods in the sequences using the auxiliary func-
tion, collectObjects (lines 1-2). The auxiliary function invokes
the appropriate sequential test, suspends the execution before the
method of interest is invoked and stores the references to the ob-
jects passed as parameters to the invocation. After collecting the
objects for the methods involved in setting the context, we also
collect the objects for the pair of methods, mr and mr′ , which con-
tain the racy accesses (lines 3-4). We use the auxiliary function,
shareObjects to re-arrange objects among Pr, Pr′ , Or and Or′ so
that invoking the methods with the updated object references will
help expose the race. Since all the pre-requisites for manifesting
a race are satisfied, we invoke the methods in the setter methods
with the appropriate objects (lines 6-7). Subsequently, we spawn
new threads and invoke the methods that contain the racy accesses
concurrently.

Table 2: Application of Algorithm 1 on example.

Before sharing After sharing
Or baz: (z1, x1), bar: (a2, z2) baz: (z1, x1), bar: ( a5 , z1)

Or′ baz: (z3, x3), bar: (a4, z4) baz: (z1, x1) , bar: (a6, z1)
Pr foo: (a5, y5) foo: (a5, y5)
Pr′ foo: (a6, y6) foo: (a6, y6)

For the example presented in Figure 13, the method of interest
is foo. The method sequences Qr and Qr′ are {baz, bar} as de-
scribed previously. When the synthesized multi-threaded test is ex-
ecuted as shown in Algorithm 1, the collected objects for all these
methods are shown in Table 2. Due to shareObjects, the param-
eters of the invocations are re-arranged suitably (shown in boxes).
Subsequently, after the methods for setting the context, z1.baz(x1),
a5.bar(z1) and a6.bar(z1) are executed, a5.x and a6.x will point to
x1. Finally, the test case invokes a5.foo(y5) and a6.foo(y6) from



two newly spawned threads respectively. The synthesized test can
expose a race on a5.x.o (equivalent to a6.x.o) as it is modified by
two threads concurrently.

4. Implementation
We have implemented the analysis described in Section 3 to syn-
thesize racy tests for multithreaded Java libraries. We use soot [28]
for instrumenting the bytecode and obtain the execution traces from
the sequential test for further analysis. There can be nested calls
from a library invocation. We scope the variable names by assign-
ing unique index for each method invocation.

We perform lazy initialization to implement the functionality
described byR in Section 3. This is because it is not always possible
to assign a separate heap location for every variable by performing
a deep walk on the type graph (e.g., linked list). Therefore, when
a library method is invoked from the client (the sequential test),
we initialize the variables corresponding to the various parameters
passed to the invocation and set the controllable and locked flags.
Subsequently, for an unseen variable, we assign the flags based on
its owner state. For example, the flags for an unseen variable x. f
will be assigned based on the state of x.

Our implementation considers the access to some field x. f to
be unprotected if a lock on x is not held. In practice, there can
be scenarios where x. f is always accessed with a lock held on
x.g; in other words, there can be a strong correlation between the
accesses and some other field. We adopt a conservative approach
and consider the access as unprotected and attempt to synthesize a
test. The downside of this conservative analysis is the synthesis of
tests that will not expose any races.

It is possible to synthesize varied method sequences to set the
same context. For example, there can be multiple setters for a field.
Our implementation randomly selects one of the possible methods
to derive the required method sequence. We treat constructor as
any other method to help set the context, but discard unprotected
accesses found in them while building the racing pairs. Moreover,
in some scenarios, we may not be able to derive the context for as-
signing the entire field dereference x. f1 . . . f . We attempt to assign
the prefixes of the dereference so that the objects at some point of
the hierarchy are shared, which can also lead to tests that do not
expose races. Methods need not always run to completion to drive
an object to a specific state. For example, there can be a strong
non-controllable update to a field after the controllable assignment,
which can override the earlier update and will not help in setting the
required context. We handle it by letting a separate thread invoke
the method and suspend its execution at the label corresponding to
the writeable assignment or the closest point where all held locks
are released.

We integrate the output of our implementation, named Narada,
with RaceFuzzer [25]. The integration is seamless and does not
require any modifications to the race detector.

5. Experimental Validation
We validate our approach by synthesizing racy tests for multi-
threaded Java libraries, including thread-safe classes, using our im-
plementation. The experiments are performed on an Ubuntu-14.04
desktop running on a 3.5 Ghz Intel Core i7 processor with 16GB
RAM. The information regarding the various libraries used is given
in Table 3. hazelcast is an open-source in-memory data grid,
openjdk is the Java Development Kit, colt is a high perfor-
mance scientific computing library, hsqldb is a leading SQL re-
lation database software, hedc is a web-crawler application, h2
is a SQL database engine, and classpath contains core class li-
braries for use with virtual machines and compilers. The versions
of the benchmarks and the classes analyzed for synthesizing races

Table 3: Benchmark Information.

Benchmark Version Class name
hazelcast 3.3.2 SynchronizedWriteBehindQueue (C1)
openjdk 1.7 SynchronizedCollection (C2)

CharArrayWriter (C3)
colt 1.2.0 DynamicBin1D (C4)
hsqldb 2.3.2 DoubleIntIndex (C5)

Scanner (C6)
hedc NA PooledExecutorWithInvalidate (C7)
h2 1.4.182 Sequence (C8)
classpath 0.99 CharArrayReader (C9)

Table 4: Synthesized test count and synthesis time.

Class Methods LoC Race Tests Time
Pairs (in secs)

C1 14 104 65 15 12.2
C2 19 85 131 40 13.5
C3 13 92 13 9 2.2
C4 35 313 26 11 33.0
C5 32 508 136 8 7.4
C6 26 1802 85 8 121.7
C7 9 191 4 4 3.6
C8 18 233 4 4 5.8
C9 8 102 2 2 1.9

Total 466 101 201.3

are given in the Table 3. For brevity, we refer to the analyzed classes
as C1. . .C9.

Table 4 presents the number of methods and the lines of code in
each class. If a brute-force approach is employed to detect races in
a class, not only all possible pairs of methods need to be invoked
concurrently (e.g., 35 × 35 for C4), the objects passed to them
should be in a state that can induce a race. Consequently, the
overall search space is quite large. We analyze the classes with
our implementation by constructing a seed-testsuite for each class
where each method in the class is invoked exactly once, without any
constraints on the state of the objects involved in the invocations.
With this trivial effort, we are able to identify 466 racing pairs
across all the classes.5 Because our analysis also provides enough
information pertaining to the context, it helps prune the search
space significantly leading to the overall synthesis of 101 tests. It
is not necessary for all racing pairs to have unique tests because
there can be multiple unprotected accesses of the same field within
a method. For example, 15 tests are synthesized to enable detection
of 65 racing pairs in C1. The overall analysis time for all the classes
to synthesize the tests is less than four minutes.

Table 5 shows the results of applying RaceFuzzer [25], a dy-
namic data race detection tool, on the execution of the tests syn-
thesized by Narada. 307 races were detected in total, of which 259
races were automatically reproduced. We manually analyzed the
output of the automatically reproduced races and identified that 187
of these races are indeed harmful. The 62 benign races in C6 are
due to a reset method which resets a number of fields to constant
values. Moreover, we manually triaged races that could not be re-
produced by RaceFuzzer, and discovered that 44 out of these 48
races were true positives (TP), with the remaining four being false
positives (FP) that arise due to imprecision in the detector.

5 We did not list eight other classes in openjdk because the races were
very similar to the races in SynchronizedCollection.



Table 5: Analysis of synthesized tests by RaceFuzzer. Manually
analyzed data for races detected by RaceFuzzer but not reproduced
by it is also shown.

Class Races Reproduced Manual
Detected Harmful Benign TP FP

C1 76 58 2 12 4
C2 84 65 1 18 -
C3 8 7 1 - -
C4 4 2 0 2 0
C5 36 30 6 - -
C6 89 15 62 12 -
C7 4 4 - - -
C8 4 4 - - -
C9 2 2 - - -

Total 307 187 72 44 4

There are a few races that are not feasible for which our system
produces a racing pair. For example, we construct 26 racing pairs
for C4 where only four races are detected. This is because the
races on some fields can never manifest as the necessary fields
to set a suitable context can never be influenced from clients.
The implementation of Narada and the raw experimental data are
publicly available6 and we refer the interested reader to it for further
details.

Figure 14 presents the distribution of tests as a function of the
number of detected races. For C5, C6. . .C8, each test detects at
least one race. For the remaining classes, we also synthesize tests
that do not detect any race. As mentioned previously, when we
are unable to set a context for a specific field, we try to achieve
object sharing to the extent possible by making assignments to
its ancestors. For example, in C4 where setting the context is not
possible, we still synthesize tests for those racing pairs resulting in
a majority of the tests not enabling race detection.
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Figure 14: Distribution of tests w.r.t the number of detected races.

We also analyzed these library classes with contege [20], a tool
that performs a random search to detect thread safety violations.
It was able to detect two thread-safety violations in C5 and one
thread-safety violation in C6 by generating 2.9K and 105 tests re-
spectively. The detected thread-safety violations are races, which
are also detected by our analysis. For other benchmarks, it gener-
ated between 1K- 70K tests, yet was unable to detect any thread-
safety violations.

6 http://www.csa.iisc.ernet.in/˜sss/tools/narada

6. Related Work
We are the first to design and implement a directed approach for
synthesizing tests to enable race detection. In ConTeGe [20], the
authors propose an approach for precisely detecting thread safety
violations by generating random multithreaded executions. If the
multithreaded execution crashes or deadlocks and the correspond-
ing serialized execution executes without a problem, the tool re-
ports a thread safety violation. Because of the randomized nature of
executing the tests, any two methods can be invoked concurrently
and the objects passed to them need not necessarily be shared. In
contrast, our approach analyzes the sequential execution to identify
problematic regions and synthesizes a racy test accordingly. Be-
cause of the directed nature of our design, we are able to prune the
overall search space for races effectively.

In previous work [22], we designed an approach for synthesiz-
ing tests to detect deadlocks [23]. We differ from this approach in
the intended application (races vs deadlocks) and also the proper-
ties that need to be inferred for the purpose of synthesizing tests
to enable race detection. In [6], the authors propose an approach
that employs concolic execution techniques to cover code regions
to enable race detection. In contrast, we propose a technique for
synthesizing multithreaded tests. The execution of the synthesized
tests can potentially be integrated with their approach for exposing
racing schedules.

A number of dynamic analysis techniques have been proposed
to enable race detection. FastTrack [7] is a dynamic race detec-
tor that leverages the happens-before relation to detect races pre-
cisely. It improves the performance of Djit+ [19] by employing
epochs to minimize the comparison of the vector clock times. Race-
Fuzzer [25] presents a mechanism for fuzzing the schedule to ex-
pose races. Eraser [24] uses the lockset algorithm to detect po-
tential races. All these approaches require defect inducing multi-
threaded tests to be executed to detect races and can leverage the
tests synthesized by our implementation.

Chess [13] systematically explores the state space to detect con-
currency bugs. The priority-based probabilistic concurrency testing
(PCT) [3] and parallel PCT [14] propose strategies for quickly de-
tecting concurrency bugs. Maple [30] is a tool that exposes untested
thread interleavings to enable concurrency bug detection. The avail-
ability of multithreaded tests is a pre-requisite for these approaches;
all these approaches can benefit from the tests synthesized using
our implementation. IMUnit [9] is a framework for specifying the
schedules on multithreaded tests. We can leverage the framework
to suitably specify racing schedules on the synthesized tests.

Many static analysis approaches have been proposed to detect
races [5, 15, 21]. These approaches require a programmer to verify
the correctness of the reported defect. Moreover, because of the
static nature of the analysis, there can be many false positives. In
contrast, by automatically synthesizing tests and integrating it with
dynamic race detectors, we can automatically identify real races
and eliminate the need for manual intervention.

Numerous techniques for automatically generating tests have
been proposed in the literature [4, 8, 16]. The primary goal for
these approaches is to improve code coverage and detect sequential
bugs. Apart from the goals being different, we address a different
set of challenges including identifying the relevant methods to be
invoked concurrently and the appropriate sharing of objects. Our
approach uses sequential tests as part of a seed testsuite and can
use the output of the sequential test generators for bootstrapping.

In [17], the authors propose a synthesis mechanism inspired by
test-driven development where the input/output examples are con-
sumed to synthesize programs. Test-driven repair [27] combines
static and dynamic analysis to identify modifications to code that
will prevent races. We differ from these approaches in terms of the
intended application and the underlying mechanism.

http://www.csa.iisc.ernet.in/~sss/tools/narada


7. Conclusions
Multithreaded tests are necessary to detect races using dynamic
analysis engines. However, developing effective multithreaded tests
is hard. In this paper, we presented the design and implementation
of a novel approach to automatically synthesize racy tests to en-
able race detection in multithreaded libraries. We demonstrate the
efficacy of our approach by applying our implementation, named
Narada, on multiple open-source Java libraries leading to the de-
tection of many harmful races.
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