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Specification-Guided Component-Based Synthesis from
Effectful Libraries

ASHISH MISHRA, Purdue University, USA
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Component-based synthesis seeks to build programs using the APIs provided by a set of libraries. Oftentimes,

these APIs have effects, which make it challenging to reason about the correctness of potential synthesis

candidates. This is because changes to global state made by effectful library procedures affect how they may be

composed together, yielding an intractably large search space that can confound typical enumerative synthesis

techniques. If the nature of these effects are exposed as part of their specification, however, deductive synthesis

approaches can be used to help guide the search for components. In this paper, we present a new specification-

guided synthesis procedure that uses Hoare-style pre- and post-conditions to express fine-grained effects

of potential library component candidates to drive a bi-directional synthesis search strategy. The procedure

alternates between a forward search process that seeks to build larger terms given an existing context but

which is otherwise unaware of the actual goal, alongside a backward search mechanism that seeks terms

consistent with the desired goal but which is otherwise unaware of the context from which these terms

must be synthesized. To further improve efficiency and scalability, we integrate a conflict-driven learning

procedure into the synthesis algorithm that provides a semantic characterization of previously encountered

unsuccessful search paths that is used to prune the space of possible candidates as synthesis proceeds. We have

implemented our ideas in a tool called Cobalt and demonstrate its effectiveness on a number of challenging

synthesis problems defined over OCaml libraries equipped with effectful specifications.
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1 INTRODUCTION
Many useful programming tasks can be efficiently expressed by intelligently composing the elements

found in a library of available APIs (or components). Program synthesis queries, in particular, can

benefit from the ability to use library function calls in synthesizing terms. This observation has led,

in recent years, to the development of several useful component-based synthesis tools [Feng et al.

2017b; Guo et al. 2019; Guria et al. 2021; James et al. 2020a; Shi et al. 2019]. These methods typically

use examples and/or type annotations to guide the synthesis procedure in an enumerative fashion.

However, APIs often have effects that must be taken into account when reasoning about their

composition. Library implementations of imperative data structures, databases, or parsers are
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canonical examples where it is natural to have effectful APIs. In these domains, the effects performed

by APIs can impose non-trivial constraints on the choice of synthesis candidates and the order in

which they must be sequenced.

Ordinarily, the types associated with such functions would not expose these kinds of effects. A

typical type for an update operation on the state maintained by a database library instance, for

example, might simply recognize that it performs a write effect by declaring its return type to be

unit, without providing specific details about how the database actually changes. Consequently,

state-of-the-art purely type-directed component-based synthesis approaches [Feng et al. 2017b;

Guo et al. 2019] when applied to these kinds of libraries could easily synthesize unsound programs

because the necessary protocol constraints are not reflected in library function types. Simply

embellishing a library with coarse read/write effect annotations [Guria et al. 2021] is also unlikely

to be effective for problems like these because the lack of fine-grained effect tracking would require

the synthesis procedure to explore an intractably large space of possible candidate compositions,

since every successful call to an effectful operation potentially alters the underlying state.

However, advances in mechanized proof assistants and automated theorem provers have made it

increasingly worthwhile for library developers to provide detailed specifications that can be used

as part of a verification task. For example, F* [Swamy et al. 2013] and VOCal [Charguéraud et al.

2017] are significant efforts aimed at developing mechanically-verified effectful libraries of general-

purpose data structures and algorithms. In this paper, we show how library specifications of the kind

produced by these efforts can also be effectively repurposed to guide complex component-based

synthesis tasks.

Our approach introduces a new specification-guided synthesis strategy that interprets a li-

brary’s specification (expressed in terms of Hoare-style pre- and post-conditions) as type specifica-

tions [Nanevski et al. 2006], using a bi-directional search strategy to enable scalability and precision.

Specifically, we use strongest postcondition forward-reasoning to build larger terms from existing

ones maintained by a synthesis search context, and weakest precondition backward-reasoning

from the postcondition (the synthesis query) to enable goal-directed search. Alone, each process

has important weaknesses - forward reasoning lacks knowledge about the synthesis goal, while

backward reasoning has an incomplete view of the context from which terms must be synthesized.

We show how to mitigate these weaknesses, and exploit their underlying synergies, by integrating

both within a unified synthesis framework. For improved efficiency and scalability, we additionally

leverage a conflict-driven learning strategy [Biere et al. 2009; Feng et al. 2018; Ganzinger et al. 2004]

in the context of effectful program synthesis, to build a knowledge base that records discriminating
propositions associated with previously encountered incorrect synthesized terms that can be used

to more intelligently guide the search process and safely prune the space of possible candidates we

need to consider. The need for such careful integration arises from the unbounded search space

that must be explored to satisfy a query - having effectful libraries means that every call to a library

method in a synthesized term can potentially result in a new heap state that reflects the effectful

behavior of the method, leading to a potential explosion of possible candidate programs that the

synthesis procedure may have to consider.

This paper makes the following contributions:

• We present a novel bi-directional deductive synthesis strategy for specification-guided com-

ponent synthesis of effectful libraries. The synthesis strategy alternates between forward

and backward enumerative search, seeking to compose terms consistent with the library

specifications.
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• We address scalability issues by additionally integrating a CDCL-style learning component

that builds a knowledge base of failed candidate terms that can be used as search proceeds to

avoid reconsideration of previously identified infeasible terms.

• We present detailed experimental results on an implementation of these ideas called Cobalt
that enables component-based synthesis of OCaml libraries equipped with effectful specifica-

tions. Our results demonstrate the utility of our approach over a range of different application

domains with respect to both expressivity of the synthesis queries that can be handled, and

scalability over the size of the search space that must be navigated.

The remainder of the paper is organized as follows. In the next section, we provide a detailed

overview of our approach. Section 3 presents a declarative bi-directional type-checking formulation

of the synthesis procedure. Section 4 formalizes the synthesis algorithm along with details of

the CDCL-learning approach used to improve enumerative search. Additional details about the

implementation, along with benchmark results, are presented in Section 5. Related work is given in

Section 6, and conclusions are presented in Section 7.

2 OVERVIEW

Fig. 1. An overview of the Cobalt synthesis process.

Figure 1 depicts Cobalt’s synthesis pro-
cedure and its core components. Cobalt
takes as input aHoare-triple style query

specification Ψ and a set of library func-

tion specifications Σ. For Σ, we rely on

available verified libraries like [Char-

guéraud et al. 2017; Swamy et al. 2013]

that come equipped with effectful spec-

ifications; from a user’s perspective, a

Cobalt user thus only needs to provide

a declarative specification for the syn-

thesis goal.

To motivate our approach, consider

a string Table data structure adopted

from [Sekiyama and Igarashi 2017] and implemented using a mutable string list in an ML-like

language. The table maintains the invariant that its elements are pairwise distinct. It provides a set

of effectful library functions to add a new string, to check membership, etc., on a table instance.

These components have associated specifications capturing their semantics as shown in Figure 2a.

To capture the effectful behavior of these functions, we use specifications that express pre- and

post-conditions over abstract heaps. For instance, the specification for the add_tbl function (refer

Figure 2a) has a precondition that defines a stateful constraint on its input string s, requiring
that it not be present in the table referenced by tbl in the input heap; specifications express these

constraints in terms of first-order predicate logic formulae built from interpreted select/update

operators [McCarthy 1993] on the heap (such as sel) and user-defined uninterpreted function

symbols like mem and size defined over tables. The postcondition captures the behavior of adding

s to the table, assuming the precondition holds, by relating the state of the table after the function

completes (Tbl’) to its state on entry (Tbl); specifically, it constrains the size of Tbl’ to be one

more than Tbl, and asserts that s is a member of Tbl’. The Tbl and Tbl’ heap objects are accessed

via input heap h and output heap h’, respectively1. The specifications given for other library

1
We capitalize variables that correspond to ghost state in specifications; these are intermediate computed heap values that

do not appear as arguments or results of library functions.
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type pair = Pair of float ∗ int
type table = [string] ref

add_tbl : (tbl : table ∗ s : string)→
{∀ h, Tbl. sel (h, tbl) = Tbl ∧ not (mem (Tbl, s)}

v : unit
{∀ h, v, h', Tbl, Tbl'.

sel (h', tbl) = Tbl' ∧ sel (h, tbl) = Tbl ∧
mem (Tbl', s) ∧ size (Tbl') == size (Tbl) + 1};

mem_tbl : (tbl : table ∗ s : string)→
{true} v : bool
{Tbl' = Tbl ∧ ([v=true] <=> mem(Tbl', s)) ∧

([v=false] <=> not (mem (Tbl', s)))};

size_tbl : (tbl : table)→
{true} v : int {Tbl' = Tbl ∧ v == size (Tbl)};

fresh_str : unit→
{true} v : string {mem (Tbl', v) = false ∧ Tbl' = Tbl};

avg_len_tbl : (tbl : table)→
{size (Tbl) > 0} v : float {Tbl' = Tbl ∧ minmax (Tbl', v)};

clear_tbl : (tbl : table)→ {true} v : unit {size (Tbl') = 0};

(∗ remove less than ∗)
rlt_tbl : (tbl : table ∗ s : string)→
{true} v : unit {size (Tbl') <= size (Tbl)};

(∗ remove greater than ∗)
rgt_tbl : (tbl : table ∗ s : string)→
{true} v : unit {size (Tbl') <= size (Tbl)};

(a) Effectful specifications for a Table library.

(∗A Safety Query−Spec∗)
goal1 : (tbl : table ∗ s : string)→ v:

float

(∗A Functional Query−Spec∗)
goal2 : (tbl : table ∗ s : string)→
{True}

v : pair
{∀ h, v, h', Tbl, Tbl'.
sel (h, tbl) = Tbl ∧ sel (h', tbl) = Tbl'

∧
mem (Tbl', s) ∧
size (Tbl') == size (Tbl) + 1};

(∗A Correct Solution∗)
goal2 (tbl : table ∗ s : string) =
b1← mem_tbl (tbl, s);
if (b1)
then s1← fresh_str ();

_← add_tbl(tbl, s1);
x1← average_len_tbl (tbl);
y1← size_tbl (tbl);
return Pair (x1, y1)

else _← add_tbl (tbl, s);
x1← average_len_tbl (tbl);
y1← size_tbl (tbl);
return Pair (x1, y1)

(b) Functional query-spec and a solu-
tion.

Fig. 2. Effectful specifications for a Table library, Synthesis Queries and a Solution

functions are similar but simplified to reduce clutter. In particular, we drop quantifiers when

obvious and assume Tbl and Tbl’ represent the table tbl in pre- and post-heap h, h’, respectively.

Fig. 3. A pictorial representation of the effects induced
by a call to add_tbl.

Figure 3 depicts the behavior of the add_tbl
(tbl, s) library function over an input example

table. The reference tbl refers to a table (a list
of strings) named Tbl before the execution of

the function. An invocation add_tbl (tbl, Dec)
is executed provided the precondition that the
string to be added (Dec) is not in Tbl is true.
If so, the function adds the string to the table,
yielding the post-state in which tbl now refers
to a new table (labeled as Tbl’).
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Synthesis Problems. Given this library, there are two kinds of synthesis queries (query-specs) that
can be made. One is a type inhabitation query similar to what is possible in other type-directed

component-based synthesis approaches [Feng et al. 2017b; Guo et al. 2019; Guria et al. 2021]. We

call these queries safety queries since the synthesis goal is to generate a type-safe term using library

components. Figure 2b shows such a query (goal1) for a function that given a table instance and

as arguments returns a float. A solution to this query might be a function that applies add_tbl to
the goal’s arguments and returns the average length of the new table via avg_len_tbl.

Our focus in this paper, however, is on solving richer queries (which subsume these queries) that

exploit interesting effect-based functional correctness properties desired by the client program. For

instance, our goal might be to synthesize a function that adds its input string to a table, returning a

pair of the average length and size of the new table. These kinds of effectful queries can be specified

using a query-spec such as the one for goal2 shown in Figure 2b.

This goal specifies a function that takes a table instance (tbl) and string parameter (s) as arguments

and whose body satisfies the provided pre- and post-conditions. The precondition imposes no

constraints on the table or string. The postcondition is a relation between the table in the pre-heap

(Tbl) and the post-heap (Tbl’); it requires the synthesized function to produce a Tbl’ whose size
is one greater than Tbl and that contains the string s. The result type of the function, however,
additionally requires that the function return a pair of float and int values. Observe that there are
no functions in the given interface that explicitly returns a pair, although size_tbl returns the size
of the table as an int, and avg_len_tbl returns a value of type float, provided that its table argument

is not empty.

2.1 Solution Overview
To explain how Cobalt synthesizes a suitable function (shown in Figure 2b) given these various

constraints, we first explain the details of its bi-directional search strategy and CDCL-inspired

search algorithm.

2.1.1 Weakest Precondition Guided Search. The synthesis procedure begins in a backward phase,
starting from the query’s postcondition and return type. It maintains a context, a list of library
functions and arguments provided by the user in the query-spec, as well as path conditions. The

procedure searches for a function f under an initial context that contains the arguments declared in

the query (e.g. s) and libraries, such that f can be invoked in this context, leading to the required

postcondition. To make this decision, Cobalt uses a weakest precondition call rule and performs

the following check, assuming the library specification for f is (𝑥𝑖 : 𝜏𝑖 )→ {𝑃𝑟𝑒𝑓 } v : t {𝑃𝑜𝑠𝑡𝑓 }:

∀ h. ([𝑦𝑖/𝑥𝑖]𝑃𝑟𝑒𝑓 ) h =>

(∀ v:t. h'. ([𝑦𝑖/𝑥𝑖]𝑃𝑜𝑠𝑡𝑓 ) h v h' => Post h v h')

Given synthesized arguments 𝑦𝑖 , it searches for a function 𝑓 to which these arguments can be

applied such that 𝑓 ′𝑠 precondition is satisfied by the existing context, and 𝑓 ’s postcondition implies

the postcondition of the query. To illustrate, suppose we have a query; goal:

(𝑦𝑖 : int) → { dom (h, i) = true} {v : 'a} { 𝑦𝑖 ≥ 5 ∧ sel (h', i) ≤ 20 }

If the synthesis context includes a condition (x ≥ 10), then given two functions with signatures,

𝑓 : (x : int) → { true } v : int { x == 10 ∧ sel (h', i) == 10 }

𝑔 : (x : int) → { true } v : int { x == 4 }

the procedure synthesizes the call, 𝑓 (x), discarding the synthesis candidate 𝑔(x). Note that this is a
very strong requirement since the postcondition might impose additional constraints not considered

by 𝑓 . Indeed, we might have a situation where the above check does not hold, but in which Post
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can be translated into a form R ∧ Post’ where R is a frame [Reynolds 2002]. In such a case, we can

choose a function candidate if it satisfies the following weaker check:

∀ h. R ∧ ([𝑦𝑖/𝑥𝑖]𝑃𝑟𝑒𝑓 ) h =>

(∀ v:t. h'. ([𝑦𝑖/𝑥𝑖]𝑃𝑜𝑠𝑡𝑓 ) h v h' => Post' h v h')

This is an instance of a framing problem and in Section 3.2.1, we discuss important optimizations

that allow us to soundly weaken this rule to allow partial satisfaction of the query’s goal.

If Cobalt does not find any effectful function satisfying the check, it searches for a pure function

with the required return type and generates a subprogram with holes called hypotheses and a

weakest precondition for this pure function call. In our example, there is no effectful library

function that immediately satisfies the goal. Thus, Cobalt chooses the pure Pair constructor and
generates a term represented by the following derivation:

[(s: string)] ⊢ {True} (v : pair)

{size (Tbl') = size (Tbl) + 1 ∧ mem (Tbl' s)}

{

[(s: string)] ⊢
{ True }

x1 ← {(??) : float}; y1 ← {(??) : int}

{size (Tbl') = size (Tbl) + 1 ∧ mem (Tbl', s)}

--------------------------

return Pair (x1, y1)}

Listing 1. A backward (postcondition)-guided derivation; we omit introduction of the table instance tbl for
perspicuity - Tbl and Tbl’ represent tbl’s value in the pre- and post-heap, resp.

The derivation is of the form,

Γ ⊢ {P}(𝑣 : 𝜏){Q}) { (Γ ⊢ {P}𝐻 ;WP(𝑡,Q) | 𝑡 ′

and yields a hypothesis 𝐻 , a possibly holed term, along with a predicate (WP(𝑡 , Q)) constructed

by applying the weakest precondition semantics for the term chosen by the synthesis algorithm;

in the above example, 𝑡 ′ = return Pair (x1, y1). Since there are no available terms in the context

corresponding to the required constructor arguments (an int and float), a new term is created

with two holes of appropriate argument types; these terms are bound to fresh variables and

used as arguments to the Pair constructor. Thus, 𝐻 captures potential program shapes for the

current synthesis choice. Observe that neither avg_len_tbl nor size_tbl, which can contribute to

the appropriate return type, have specifications that align with the currently synthesized term; for

example, avg_len_tbl, although returning a float, also requires that its input table size is greater

than 0, a property that is not ensured by the holed term’s precondition (True).
Consequently, further progress on the backward derivation stalls. Rather than aborting and

searching for a new candidate, we instead proceed to apply a forward search starting from the

existing precondition of the current term. To make sure that we avail of the information learnt

from the backward derivation, we pass 𝐻 (the sequence of holed terms constructing x1 and y1) and
the current weakest precondition - size (Tbl’) = size (Tbl) +1 ∧ mem (Tbl’, s) - as the new

postcondition for the forward search.

Although our backward search in this example simply does a pattern match over the data

constructor Pair, our synthesis procedure can, in fact, generate interesting non-trivial programs of

larger size by searching for a function in the library iteratively at each step, such that its specification

allows for valid weakest-precondition reasoning for the given post-condition. For instance, consider

a simple synthetic example with two library functions, m1 and m2:
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Fig. 4. A partial forward enumeration. gray edges show type- and/or specification-incorrect discarded
transitions, black edges show type-correct, potentially explorable transitions, and red-dashed edges give
examples of type-correct paths that do not lead to required solution. Labeled nodes with same color show
equivalent-modulo-stuckness nodes.

res : ref int;
flag : ref bool;
m1 : unit→ {res = 7} v : int {res' = res + 3}

m2 : unit→ {res = 5 ∧ flag = false}
v : int

{res' = res + 2 ∧ flag' = true}

The methods’ specifications highlight how the functions manipulate two mutable references: an

integer res, and a boolean flag. Given this library and the following goal query:

goal : {res = 0 ∧ flag = false} (v : unit) {res' = 10};

backward synthesis starts by generating a partial term (a term with holes) (𝜆 (). (??) : unit; m1 ()) as
the specification form1 satisfies the weakest-precondition check. It then continues trying to fill the

hole to find the next such function with (WP( m1 (), {res’ = 10}) as an updated postcondition. Now,

the specification for m2 satisfies this check and thus a bigger program is created, consequently

generating the term (𝜆 ().(??) : unit ; m2(); m1()), before passing the synthesis to the forward-synthesis
component.

Forward synthesis has two subcomponents (refer Figure 2) that collectively attempt to synthesize

a term 𝑒 ′, which when unified with the partial term 𝑒 , synthesized by the backward synthesis, gives

the required solution. If it fails to find such a term, it again invokes the Backward component with

information about the failed program. Forward synthesis uses strongest post-condition reasoning

to synthesize a term in a forward fashion.
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2.1.2 Strongest Postcondition Guided Search. Because the body of the function being synthesized

may contain top-level conditional branches or match-case statements, search begins by first syn-

thesizing the body of the function as a top-level branching term. Specifically, Cobalt looks for
functions with Boolean return types, or arguments in the query-spec that have inductive type (like

lists, trees, etc.) and applies proof rules for if-then-else andmatch respectively to introduce top-level
conditional branching or matching synthesis sub-problems.

For instance, given the specification in Listing 1, and the specification for Boolean-valued

library function mem_tbl (refer Figure 2a), Cobalt generates the synthesis sub-queries shown

in Figure 5 by applying an if-then-else synthesis rule and introducing true and false postcondi-

tions from mem_tbl’s specification to the preconditions of the term’s true and false branches

(shown in red). We now explain how Cobalt proceeds with the synthesis query for the true branch.
The enumeration procedure is conceptually similar to the backward derivation, but uses the

strongest postcondition of the already-built term to guide the choice of the next library com-

ponent candidate. Intuitively, Cobalt iteratively builds type-correct program terms of increas-

ing length in a depth-first manner until it finds a program that satisfies the hypotheses (the

holed terms), and the required specifications. Not surprisingly, the domain of such terms is un-

bounded since we can generate distinct unrolled looping terms like 𝑡1; 𝑡2
∗
; 𝑡3, 𝑡1; 𝑡2; 𝑡3

∗
, etc. of

arbitrarily large depth. To mitigate this situation, we bound the maximum depth of search to a

depth value k on the length of program terms. The value of k can be chosen by the user and

can be iteratively incremented. For ease of presentation, assume (k = 5) for our running example.

𝜆 (tbl : table, s : string).

b1 ← mem_tbl (tbl, s);

if (b1) then

{∀ h. sel (h, tbl) = Tbl ∧ (𝑚𝑒𝑚(𝑇𝑏𝑙, 𝑠)}
(x1 ← {(??) : float}; y1 ← {(??) : int}

{size (Tbl') = size (Tbl +1) ∧ mem (Tbl' s)}

else

{∀ h. sel (h, tbl) = Tbl ∧ 𝑛𝑜𝑡 (𝑚𝑒𝑚(𝑇𝑏𝑙, 𝑠)}
(x1 ← {(??) : float}; y1 ← {(??) : int}

{size (Tbl') = size (Tbl +1) ∧ mem (Tbl' s)}

Fig. 5. A partial program with holes and top-level branch-
ing.

Suppose during enumeration we have syn-

thesized a term 𝑡 of size less than k. The pro-
cedure first tries to verify if 𝑡 is the required

solution by performing two checks that as-

certain whether: a) 𝑡 satisfies the hypothe-

sis 𝐻 (𝑡 ≺ 𝐻 ); and, b) SP (P, 𝑡 )⇒ Q’, where
P andQ’ are pre- and post-specifications for
the query specification. Informally, 𝑡 ≺ 𝐻

if 𝑡 is a term that has the same shape as 𝐻

with every holed term replaced by a type-

consistent concrete one.

If 𝑡 satisfies these checks, the procedure

returns 𝑡 as the required solution. However,

if either of the two checks fail, a search com-

mences to look for a component f that can
be sequenced with 𝑡 . To guide this search,

Cobalt uses a strongest postcondition call rule and performs the following check, assuming the

library specification for f is (𝑥𝑖 : 𝜏𝑖 )→ {𝑃𝑟𝑒𝑓 } v : t {𝑃𝑜𝑠𝑡𝑓 }:

∀ h. (SP (P, t)) h => ([𝑦𝑖/𝑥𝑖]𝑃𝑟𝑒𝑓 ) h

To illustrate, consider again a similar example scenario discussed in the previous section. Suppose

we have a query; goal:

(𝑦𝑖 : int) → { dom (h, i) = true ∧ 𝑦𝑖 ≥ 5 ∧ sel (h, i) ≤ 20} v : 'a { . . . }

Given two functions with signatures:

𝑓 : (x : int) → { x ≥ 5 ∧ sel (h, i) ≤ 20} v : int { x == 10 ∧ sel (h', i) == 10 }

𝑔 : (x : int) → { x < 5 ∧ sel (h, i) ≤ 10 } v : int { x == 4 }

the synthesis procedure synthesizes the call 𝑓 (𝑦𝑖 ), discarding the synthesis candidate 𝑔(𝑦𝑖 ).
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Figure 4 presents a pictorial representation of this enumeration process for some of the true
branch paths of the synthesis query. Each choice made by the search process is given a label (F𝑖).
The edges include black edges representing explored edges as well as gray edges showing discarded

choices encountered by the forward call-rule. For instance, edge (F0 -> F1) is disallowed since

the branch precondition (mem(Tbl, s)) is inconsistent with the precondition for (add s). Similarly,

we have other discarded edges like (F2 -> F3), etc. The rule thus allows the search procedure to

discard multiple incorrect programs early on; for instance, given the initial query above, Cobalt
prunes out incorrect paths such as {_ <- add_tbl (tbl, s); ....} thereby significantly reducing the search
space of possible candidates.

2.1.3 Conflict-driven learning based enumeration. While the forward (similarly backward) search

process can prune out many incorrect programs quickly, the number of candidate programs (paths

with black edges in the figure) is likely to be still very large, making a naïve enumerative search

over this space infeasible. A primary reason is the likelihood of repeated exploration of previously

seen paths allowed by forward reasoning that do not lead to the goal postcondition. For instance,

consider the path (F0 -> F4 -> F5 -> F6 -> F7). Here, the corresponding program term is not a

solution since the postcondition of the synthesized term:

∃ Tbl1, Tbl2, Tbl3. ∀ Tbl, Tbl'.

Tbl1 = Tbl ∧ size (Tbl2) <= size (Tbl1) ∧
size (Tbl3) <= size (Tbl2) ∧
size (Tbl') = 0

does not imply the postcondition of the true branch of the current synthesis candidate, which

requires that

size (Tbl’) = size (Tbl +1) ∧ mem (Tbl’, s)

Further, since the depth of the path when reaching F7 (here, 4) is less than the depth-bound (k=5),

the search process seeks a component that can satisfy the required postcondition. Unfortunately, no

such choice is possible. Thus, the algorithm backtracks and makes a different choice at one of the

earlier nodes. We call a node like F7 that can no longer make progress for a given k as a k-bound-
stuck-node, inspired by the notion of a conflict-node in conflict-driven learning approaches [Biere

et al. 2009; Zhang et al. 2001].

Suppose, the algorithm backtracks to node F5 (over multiple steps); unfortunately, it again faces

a choice similar to the choice at the stuck-node F7 to select/discard the function clear_tbl. Since the
term corresponding to path (F0 -> F4 -> F5 -> F9) (call it 𝑡1) is syntactically distinct from the

term corresponding to (F0 -> F4 -> F5 -> F6 -> F7) (call it 𝑡2), the algorithm cannot trivially

prune out this choice. But, by choosing F9, it must again performs checks similar to those performed

under the 𝑘-bound-stuck-node F7. For instance, the algorithm would again visit discarded terms

(gray edges) like (add_tbl(tbl, s), avg_len_tbl (tbl), etc.). Finally, it will eventually find itself at

another 𝑘-bound-stuck node (F10-1) causing it to backtrack to F5. Once again, it faces a choice
(F5 -> F10-2), which is similar to the new stuck node found at (F10-1). Figure 4 depicts how

the algorithm repeatedly traverses many paths similar to an already visited stuck path, and must

therefore eventually backtrack.

Even though concluding the similarity between 𝑡1 and 𝑡2 is not possible syntactically, we observe

that this similarity arises because the algorithm is making the same function choice (i.e. clear_tbl)
and the strongest postconditions SP (P, 𝑡1) and SP (P, 𝑡2) that guide the search process under F9
and F7 are related by (SP (P, 𝑡1)⇒ SP (P, 𝑡2)). In an unbounded depth-first search (k=∞), for any
path explored under F9, there exists a path explored under F7, and hence by knowing that F7 does
not lead to a solution (i.e. is a 𝑘-bound-stuck-node), we can conclude that F9 will also not lead
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to a solution. We can, therefore, discard the exploration of the tree rooted at F9 by learning the

postconditions at F7 and F9. We call nodes like (F7 and F9) as equivalent-modulo-stuckness, and
highlight their similarity by depicting them with the same color in Figure 4.

However, since our exploration is bounded by terms of size k, there may be paths that were

prematurely truncated under F7 but can make progress under F9. For example, consider a path

(F10-1 -> F11-1) under F9. Eagerly discarding F9 would lead us to miss such paths and may result

in failure to satisfy a feasible synthesis query under a given k bound. Notice, however, that for

each such path under F9, there is a smaller path e.g. (F10-2 -> F11-2) that is also reachable and can

lead to a solution if the longer path under F9 can. Thus F7 and F9 can be assumed to be logically

equivalent-modulo-stuckness; we can thus safely discard the exploration of the tree rooted at F9,
given that there is an equivalent path at F10-2.

Based on the above observations, we equip our search procedure with a conflict-driven learning

component called CDCL-search that learns discriminating propositions (𝐷𝑘
(Fi)) associated with

each visited k-bound-stuck-node Fi and uses them to discard future exploration of nodes that are

logically equivalent to an earlier k-bound-stuck-node, modulo the stuckness property.

We explain the working of the algorithm using our running example. Upon encountering a

k-bound-stuck-node (e.g. node F7), our CDCL search procedure learns two propositions. First, it

learns a proposition 𝑆𝑝 , which we call the stuck-path proposition that captures the post-state for the

k-bound-stuck-node (e.g. F7). Second, it creates a disjunctive formula𝑇𝑝 called truncated proposition
containing a disjunct for each call truncated prematurely for the k-bound-stuck-node (e.g. F7 ->
fresh_str). The idea is to learn information about paths that were taken but were prematurely

left unexplored due to the bound 𝑘 . The discriminating proposition for a k-bound-stuck node 𝐷𝑘

(k-bound-stuck-node) is given by a tuple (𝑆𝑝 , 𝑇𝑝 ).

{
not ( ∀ Tbl'. size (Tbl') = 0 => size

(Tbl') = 0)

}
∨{

(∀ Tbl, Tbl'. ... ∧ size (Tbl') = 0 =>

true ∧
(not (∀ Tbl, Tbl'. size (Tbl')

<= size (Tbl) => true))}

Fig. 6. Checks derived using the discriminating
proposition 𝐷𝑘 (F7) in CDCL-search.

𝐷𝑘
(F7) can help us to discard logically equivalent-

modulo stuck nodes: the algorithm backtracks with

this learned information to the earlier decision node

F5; while making the decision at edge (F5 -> F9)
with the 𝐷𝑘

(F7) information in hand, the algo-

rithm checks if the decision node F9 is logically

equivalent-modulo-stuckness with the earlier en-

counter of clear_tbl(tbl). The algorithm performs

the following checks, where 𝑡3 is the term corre-

sponding to path (F0 -> F4 -> F5), and J F7 K = clear(),
the function invoked at node F7 in Figure 4:

(not ( 𝐷𝑘(J F7 K).𝑆𝑝 => SP (P, 𝑡1))) ∨
(SP (P, 𝑡1) => 𝐷𝑘(J F7 K).𝑇𝑝 ∧
not (SP (P, 𝑡3) => 𝐷𝑘(J F7 K).𝑇𝑝))

Intuitively, these two disjuncts check the two obser-

vations discussed earlier. The first disjunct captures

the fact that any path that can be explored by mak-

ing this choice was already visited and seen to be

leading to a stuck-node under the earlier exploration of clear_tbl(tbl) at F7. The second disjunct

verifies that for any node that was truncated prematurely under the stuck-node and that can make

progress under the current choice, there is an equivalent path in a tree rooted outside F9. For
our running example, this translates and simplifies to checks shown in Figure 6. Since both these

disjuncts are false, the CDCL-search algorithm decides that for the current value of k, the two nodes
are logically equivalent-modulo-stuckness and it can thus safely discard the exploration of F9.
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c ∈ Constants
x ∈ Variables
ℓ ∈ Locations
v ∈ Value ::= c | ℓ | 𝜆 (x:𝜏). e𝑖𝑝 | Di 𝑥 𝑗
e𝑝 ∈ Pure Exp ::= x | v
e𝑖𝑝 ∈ Impure Exp ::= f (e𝑝 ) | ref v | match e𝑝with Di x𝑗 → e𝑖𝑝

| if e𝑝 then e𝑖𝑝 else e𝑖𝑝 | return e𝑝 | x← e𝑖𝑝 1; e𝑖𝑝 2 | ♦
f ∈ Library Function
♦ ∈ hole ::= (??) : 𝜏

TN ∈ TypeNames ::= list, tree, pair, . . .
t ∈ Base-Type ::= int | bool | . . . | heap | TN | t ref
𝜏 ∈ Type ::= {𝜈 : t | 𝜙 } | (x : 𝜏)→ 𝜏 | { 𝜙1 } 𝜈 : t { 𝜙2 }
𝜙 ,𝑃 ,𝑄 ∈ Propositions ::= true | false | 𝑄 (𝑥𝑖 )

| ¬ 𝜙 | 𝜙 ∧ 𝜙 | 𝜙 ∨ 𝜙 | 𝜙 ⇒ 𝜙 | ∀ (x : t). 𝜙 | ∃ (x : t). 𝜙
Γ ∈ Type Context ::= ∅ | Γ, x : 𝜏 | Γ, 𝜙
Σ ∈ Library ::= ∅ | Σ, 𝑓 : (𝑥𝑖 : 𝜏𝑖 )→ 𝜏

| Σ, Di 𝑥 𝑗 : 𝜏 𝑗 → 𝜏

Fig. 7. 𝜆𝑒 𝑓 𝑓 Expressions and Types

The forward-algorithm continues the exploration with learning until it finds a solution for the

given value 𝑘 . If it fails to find a program, it returns the failed paths of lengths upto k to the

backward search again, in a handshaking step. At this point, the backward algorithm may need to

backtrack and make different choices. By supplying failing information about paths, the backward

search can avoid choosing equivalent terms modulo these failures. We depict various components

of the synthesis procedure in Figure 1. Applying these mechanisms (backward+forward+cdcl) to the

original goal (goal2), Cobalt synthesizes the solution shown in Figure 2b in approximately 7 seconds.

(i.e. forward+cdcl) finds a solution in 10 seconds; a forward-no-cdcl synthesis strategy explores

many more paths (compared to forward+cdcl) and takes 28 seconds, while a backward-alone

synthesis strategy fails to find a solution within a 10 minute time-bound.

3 COBALT SYNTHESIS
We now present a set of bi-directional search rules and the CDCL-search algorithm presented in

the last section that formalizes our specification-guided synthesis strategy.

Synthesis Language. Our synthesis procedure operates over a core-calculus 𝜆eff [Wadler and

Thiemann 2003], an extension of the call-by-value simply-typed 𝜆-calculus tailored to support

specification-guided component-based synthesis. The language differentiates between pure and

impure expressions, the latter being those whose computation can induce effects. Values are

constants of base type, type constructor applications, (closed) lambda expressions, and locations.

Pure expressions are values and variables. Impure expressions include calls to effectful library

functions, expressions that create references, pattern-matching and conditional expressions whose

bodiesmay introduce effects, amonadic return expression, and and amonadic sequencing expression

(x ← e𝑖𝑝 1 ; e𝑖𝑝 2) that evaluates e𝑖𝑝
1
and binds its result to a variable x in e𝑖𝑝

2
.

As we have seen in our earlier examples, the language also allows typed holed-expressions

of a given type 𝜏 that takes the form ((??) : 𝜏). Such a term represent an unknown expression

in a program that must be constrained by the type 𝜏 ; our synthesis procedure transforms such

expressions by replacing these holes with concrete terms.
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Types and Environments. The type language includes support for base types such as types for

integers, Booleans, strings, etc., as well as a special heap type to denote the type of abstract heap

variables like h, h’ found in specifications. There are additionally user-defined data types TN, and
type constructors used to type references that hold values of some base type. More interestingly,

base types can be refined with propositions, and effectful computations have types defined in

terms of Hoare-style pre- and post-conditions of the form {𝜙1} 𝜈 : t {𝜙 ′
1
} that represent an effectful

computation, which when executed in a pre-state satisfying proposition {𝜙1}, upon termination,

returns a value 𝜈 of base type t along with a post-state satisfying {𝜙 ′
1
}.

Propositions (𝜙) are first-order predicate logic formulae over base-typed variables. Propositions

also include a set of Qualifiers which are user-defined uninterpreted functions symbols such as

mem, size etc. used in our example; qualifiers also include two special interpreted function symbols

(sel and update) used to model access and modification to the global heap. The type language also

includes dependent-function types since arguments and return values of library functions can be

associated with types that are refined by propositions
2
.

Propositions in pre- and post-conditions capture non-spatial properties of the pre- and post-

abstract heaps respectively. These properties capture actions involving accesses and modifications

to heap objects associated with a heap variable (sel and update), or describe shallow structural

properties of heap objects, e.g., length, head, etc. for a list. Our current implementation currently

does not allow expression of spatial properties that describe disjointedness of heap fragments.

Consequently, we assume that each heap object is always referenced by a unique path (variable x
or x.f.y) and that there is no sharing of heap objects. We have found that these assumptions are not

particularly onerous in the context of the OCaml libraries we have examined.

There are two environments maintained by Cobalt of particular interest: (1) environment Γ
records the types of variables along with a set of propositions relevant to a specific context, and (2)

and, environment Σ maps library functions and datatype constructors to their signatures.

3.1 A Cobalt Synthesis Problem
A Cobalt synthesis problem can be described as follows: given a library Σ of functions and data

constructors, annotated with a suitable types, a type environment Γ, and a goal specification (Ψ),
which is a dependent-function type of the form

(x : 𝜏) → ({𝑃}v : t{𝑄})
where v is a free variable denoting the return value of the program and in which pre- and post-

conditions 𝑃,𝑄 may contain argument variable x, heap locations, and the return variable v, the
synthesis problem seeks to synthesize an expression 𝑒 ∈ 𝑒𝑝 ∪ 𝑒𝑖𝑝 in 𝜆eff such that

Γ; Σ ⊢ 𝑒 : (x : 𝜏) → {𝑃}v : t{𝑄}

3.2 Bi-directional Deductive Component-Based Synthesis
Given a Cobalt synthesis problem, the synthesis procedure is a bi-directional deductive proof-

search [Delaware et al. 2015; Osera and Zdancewic 2015; Polikarpova et al. 2016] over library

functions and the given query specification. We next explain each of these modes of the synthesis

procedure.

3.2.1 Forward Synthesis. Figure 8a shows our forward synthesis system using synthesis rules of

the following form:

Γ; Σ ⊢ 𝜏 ↠ e
2
Additional details about the language’s type system can be found in an accompanying technical report [Mishra and

Jagannathan 2022b].

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 147. Publication date: October 2022.



Effectful Component-Based Synthesis 147:13

Γ; Σ ⊢ 𝜏 ↠ e Forward Synthesis

Γ; Σ ⊢ {𝜈 : TN | 𝜙} ↠ e
Di (xj : 𝜏j) → {𝜈 : TN | 𝜙i} ∈ Σ

Γi ≡ Γ, xj : 𝜏j , {x ′/𝜈}𝜙i
Γ, {x ′/𝜈}𝜙, Γi ; Σ ⊢ {P }𝜈 : t{Q } ↠ ei

Γ; Σ ⊢ {P }𝜈 : t{Q } ↠ match ewithDi ( xj ) → ei
FW_match

x : 𝜏 ∈ Γ

Γ; Σ ⊢ 𝜏 ↠ x
FW_var

Γ; Σ ⊢ {𝜈 : bool | 𝜙t ∧ 𝜙f } ↠ e
Γ, {true/𝜈}𝜙t; Σ ⊢ {P }𝜈 : t{Q } ↠ et
Γ, {false/𝜈}𝜙

f
; Σ ⊢ {P }𝜈 : t{Q } ↠ e

f

Γ; Σ ⊢ {P }𝜈 : t{Q } ↠ if e then et else ef
FW_if

f : xi : 𝜏i → {P1 }𝜈 : t ′{Q1 } ∈ Σ
Γ; Σ ⊢ 𝜏i ↠ yi
Γ; Σ ⊢ P ⇒ P1

Q′ ≡ SP (P , f ( yi ))=P ∧ Q1

Γ, yi : 𝜏i ; Σ ⊢ {Q′ }𝜈 : t{Q } ↠ e
Γ; Σ ⊢ {P }𝜈 : t{Q } ↠ z ← (f ( yi )); (e)

FW_call

Γ, R ; Σ ⊢ {P }𝜈 : t{Q } ↠ e
((Vars (R )) ∩ (EVars (P ,Q )))=∅

((Qual (R )) ∩
((Qual (P )) ∪ (Qual (Q ))))=(∅)

Γ; Σ ⊢ {P ∧ (R )}𝜈 : t{Q ∧ (R )} ↠ e
FW_frame

Γ; Σ ⊢ {P }𝜈 : t{Q1 } ↠ e
Γ; Σ ⊢ SP (P , e) ⇒ (Q )
Γ; Σ ⊢ {P }𝜈 : t{Q } ↠ e

FW_sub

(a) Forward Type Synthesis Rules

Γ; Σ ⊢ {𝜙1}♦{𝜙2} ↞ e
Γ; Σ ⊢ 𝜏 ↞ e Backward Synthesis

Γ; Σ ⊢ {P }𝜈 : t{Q } ↠ e
Γ; Σ ⊢ {P }(??) : t{Q } ↞ e

BW_fw

y ∉ Dom (Γ)
Γ; Σ ⊢ 𝜏 ↞ y ← ((??) : 𝜏); (skip) BW_hole

f : xi : 𝜏i → {P1 }𝜈 : t ′{Q1 } ∈ Σ
Γ; Σ ⊢ 𝜏𝑖 ↞ yi

Γ; Σ ⊢ P1 ⇒ (Q1 ⇒ Q)
P ′ ≡ WP (f ( yi ),Q )=P1 ∧ ( Q1 ⇒ Q )

Γ; Σ ⊢ {P }(??) : 𝜏i{P ′ } ↞ ei
yi ← (ei) ; (f ( yi )) ∉ 𝐹

Γ; Σ ⊢ {P }(??) : t ′{Q } ↞ yi ← (ei) ; (f ( yi ))
BW_call

Γ; Σ ⊢ {P1 }(??) : t{Q } ↞ e
(Holes (e))=(∅)

Γ; Σ ⊢ P ⇒ (WP (e,Q ))
Γ; Σ ⊢ {P }(??) : t{Q } ↞ e

BW_sub

P ⊢ P1 ∧ (R )
Q1 ∧ (R ) ⊢ Q

((Vars (R )) ∩ (EVars (P1 ,Q1 )))=(∅)
((Qual (R )) ∩

((Qual (P1 )) ∪ (Qual (Q1 ))))=(∅)
Γ; Σ ⊢ {P1 }(??) : t{Q1 } ↞ e
Γ; Σ ⊢ {P }(??) : t{Q } ↞ e

BW_frame

(b) Backward Type Synthesis Rules

Fig. 8. Forward and Backward Type Synthesis Rules

Each such rule defines a declarative judgment explaining the generation (along with a proof-

derivation) of a conclusion term e in an environment of types (Γ) and libraries (Σ) against a given
type 𝜏 , using the derivation of other well-typed subterms in the rule’s premise. Generating a

variable (FW_Var) simply requires choosing the variable of the required type from the environment.

To generate a match expression (FW_Match) the procedure first recursively generates a term e
using the (FW_Var) rule for a datatype TN from the environment. Second, it creates an extended

environment Γ𝑖 for each case branch i using constructors (Di (x𝑗 : 𝜏 𝑗 )→ { 𝜈 : TN | 𝜙𝑖 } for the TN,
while replacing the bound variable 𝜈 in each 𝜙𝑖 with an existential match variable 𝑥 ′. Finally, it
recursively generates expressions (e𝑖 ) for the original synthesis problem specification in each of

these extended environments. Thus, the rule allows us to break the original synthesis problem into
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𝑖 subproblems that can be solved in stronger environments, thereby pushing type information from

a constructor’s specification (Di ∈ Σ) to the synthesis query.

The generation of a conditional if-then-else expression (FW_IF) is similar to match with a few

important differences. It first requires the generation of the Boolean test expression e. Since
our focus is component-based synthesis, the synthesis procedure only has access to the library

specifications (Σ) and the goal specification Ψ at its disposal. Thus, only way to generate a Boolean-

typed expression is via function calls. Consequently, the procedure searches for a library function

call with Boolean return type using the FW_Call rule described below and postconditions (𝜙𝑡 and

𝜙 𝑓 ) for true and false return values, resp. It then creates extended environments to recursively

synthesize the true and false branch by substituting true and false for the bounded variable 𝜈 , and

synthesizes terms for the true and false branches in their extended environments.

The FW_Call rule defines the strongest-post condition forward search procedure. The rule depicts

a scenario when a single function-call does not suffice to generate a term for the required goal

specification Ψ. It breaks the original synthesis into two sub-synthesis problems: First, it searches

for a function 𝑓 in the library with a type, such that a) the synthesis procedure can synthesize

expressions 𝑦𝑖 as its arguments (see second premise); b) with appropriate mapping for the heap

and arguments variables
3
, it can satisfy the forward rule for Hoare-style reasoning, i.e. the goal’s

precondition P implies the required precondition P1 for 𝑓 (see third premise). Successfully checking

these two conditions implies that a function call expression (𝑓 (𝑦𝑖 )) in the current environment

is well-typed. Second, it calculates the strongest-post condition (SP (P, (𝑓 (𝑦𝑖 )))) for this term,

and recursively synthesizes an expression e with this as the new precondition. The expression

synthesized for the original specification is a monadic sequencing of the function call (𝑓 (𝑦𝑖 )) and e.

Framing. The rule (FW_Frame) is concerned with expression synthesis taking into account frames,
heap/store fragments that do not change during the evaluation of a program expression [Reynolds

2002].

The auxiliary function Vars(R) gives the set of reference used in 𝑅. The auxiliary function EVars
takes a list of propositions and returns the set of existential references found in the environment used

in these propositions; these existentials are introduced when computing the strongest postcondition

in the FW_Call rule. The function Qual(R) gives the set of qualifiers (like size, mem, etc.) used in 𝑅.

The premise in FW_Frame checks that the references found in the frame 𝑅 are disjoint from the

existential references in 𝑃 and 𝑄 and that 𝑅’s qualifier set is also disjoint from 𝑃 and 𝑄 .

The subtype rule (FW_Sub) defines the condition for the successful termination of the forward

proof search process using the standard strongest postcondition-based verification condition check.

3.2.2 Backward Synthesis. Figure 8b presents the backward synthesis inference rules whose judg-

ments are either of the form:

Γ; Σ ⊢ 𝜏 ↞ e

for introducing a holed subterm into, or

Γ; Σ ⊢ {𝜙1} ♦ {𝜙2} ↞ e

for eliminating a holed subterm from, the term being synthesized.

Backward synthesis can invoke forward-synthesis non-deterministically at any time (see rule

BW_FW). In practice, we invoke the forward rule when the backward synthesis cannot make any

progress, i.e. when no backward rule applies.

The backward hole rule (BW_hole) generates a holed expression bound to a fresh variable 𝑦

for an arbitrary synthesis query. This is the introduction rule for a holed expression that allows

3
We drop variable substitutions in propositions to reduce clutter in rules.
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Synthesize(⟨Γ,Σ, Ψ⟩, F)
(1) 𝑡 := BW_Rules (Γ, Σ ,Ψ, F)

(2) if (𝑡 ≠ (⊥, _)) then
(3) return 𝑡 ;

else
(4) if (𝑡 = (⊥, ⟨𝐻, 𝑒𝑏,Ψ

′⟩)) then
(5) 𝑡 ′ := CDCL (⟨Γ, Σ, Ψ′⟩, 𝐻 )

(6) if (𝑡 ′ = 𝑒𝑓 ) then
(7) return (𝑒𝑓 ; 𝑒𝑏 );

(8) else if 𝑡 ′ = (⊥, F′) then
(9) Synthesize (Γ, Σ, Ψ, (F ∪ F′));

CDCL(⟨Γ,Σ, Ψ⟩, 𝐻)
(10) D := ∀ 𝑐𝑖 ∈ Σ. D (𝑐𝑖 ) = (true, false)
(11) F := ∅, 𝑝𝑖 := ⊥
(12) while true do
(13) (Γ, 𝐷 , 𝑐𝑖 ) := R_Choice (Γ, Σ, D, Ψ, 𝐻 , 𝑝𝑖 )

(14) if 𝑐𝑖 = ⊥ then
(15) if ( | 𝑝𝑖 | > 0) then
(16) F := F ∪ {(𝑝𝑖 )} ;

(17) (𝑝𝑖 , 𝐷) := R_Learn (Γ, Σ, ⟨ D, 𝑝𝑖 ⟩);
(18) else return (⊥, F) ;

else
(19) 𝑒 := FW_SUB (Γ, Σ, (𝑝𝑖 ;𝑐𝑖 ), Ψ);

(20) if (𝑒 ≠ ⊥) then return 𝑒 ;

(21) else 𝑝𝑖 := (𝑝𝑖 ;𝑐𝑖 ) ;

Algorithm 1: The Synthesis Algorithm

the procedure to create hypotheses when backward synthesis cannot find a required term in the

context.

The main rule for backward enumeration is BW_Call. The rule requires searching for a function

𝑓 in the library with a return type matching the hole. Note the difference from the FW_Call rule,

where we looked for any allowed function call; here, we use goal directed search instead. Once

such a function is found, the rule generates arguments 𝑦𝑖 for 𝑓 by either introducing holed terms

for each argument, effectively yielding new synthesis sub-queries, or finding suitable variables

(using BW_Var, similar to FW_Var, not shown here) in the environment of the required type. This

is an instance where the effect of having an incomplete view of the context becomes apparent

during the backward search. The rule ensures that the function call can be soundly made using the

weakest precondition check. This check verifies that, assuming the precondition for the function

(𝑃1) in the given environment (Γ) holds, that the postcondition for the function (𝑄1) implies the goal

postcondition (𝑄) with appropriate substitution for heap variables and arguments
4
If this check

succeeds, it further checks that the resulting term is not already seen as a failed program using

the set of learned failed programs F. If successful, the weakest precondition predicate (WP((𝑓 (𝑦𝑖 )),

𝑄)) for the function call using 𝑄 and the function’s argument and specifications is used. Finally, it

creates new subproblems using this weakest precondition as the postcondition and the types of the

function’s arguments as the hole types.

The backward frame rule (BW_Frame) identifies a frame 𝑅 using the consequence judgments in

the premise, applies frame rule checks on the disjointness of variables and qualifiers, and establishes

a synthesis query on the framed pre- and postconditions (𝑃1 and 𝑄1).

4 SYNTHESIS ALGORITHM
Algorithm 1 outlines the top-level synthesis algorithm and can be understood as pseudo-code for

the overview of our approach given in Figure 1. The input to the algorithm is a Cobalt synthesis
problem (a triple ⟨Γ, Σ,Ψ⟩) along with a set of explored stuck-paths F, initially empty. The algorithm

first makes a call to the backward synthesis procedure using a function BW_Rules, a deterministic

4
We elide variable substitutions in the rules for perspicuity.
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implementation of the backward synthesis rules given in Figure 8b). In case backward synthesis does

not succeed in producing a complete solution (line 4), it returns a partial solution 𝑒𝑏 , a hypothesis

𝐻 , and a new specification Ψ′, which is calculated by substituting the weakest precondition for Ψ’s
postcondition and the partial solution 𝑒𝑏 . The algorithm invokes the CDCL routine (line 5) with the

hypothesis 𝐻 , the updated specification Ψ′. The CDCL routine if successful, returns a solution 𝑒𝑓
for Ψ′, which is then sequenced (using a monadic-sequencing expression) with the partial backward

solution 𝑒𝑏 , to give the required solution for the original problem (line 8). Otherwise, the synthesis

routine is recursively called (line 9) with an updated stuck-paths set (F ∪ F′).

4.1 Conflict Driven Learning Based Enumeration
The CDCL routine takes as input a synthesis problem as well as a hypothesis 𝐻 and returns either a

𝜆eff expression satisfying Ψ (line 20) or ⊥ (line 18) if it cannot find such an expression. It maintains

three data-structures: 1) a Discriminating Propositions map D that maps components 𝑐𝑖 to a pair

of stuck-path and truncated-path propositions as discussed in the last section; 2) a sequence of

components 𝑝𝑖 (a path) representing the partially synthesized expression; and, 3) a set of already

explored stuck-paths F. The algorithm begins by initializing D by mapping each component in Σ
with trivial propositions and the sequence 𝑝𝑖 as an empty sequence. The search is performed by

the main loop (lines 12-21) that iterates until it finds a correct expression (line 20) or has exhausted

path exploration (line 18), updating D and 𝑝𝑖 in each iteration.

The algorithm makes a choice of the next component for a given 𝑝𝑖 and D, using a function

R_Choice (line 13), a deterministic implementation of the CDCL_CHOICE rule given in Figure 9. If

the procedure is unable to find a new component (line 14), it learns new discriminating propositions

for the stuck-node associated with 𝑝𝑖 and backtracks to the previous path using a function R_Learn
(line 17), a deterministic implementation of the CDCL_LEARN rule in Figure 9, or it has exhausted

all paths and terminates the loop (line 18). If a candidate component has been found, a call to the

FW_Sub function (corresponding to the rule FW_SUB in Figure 8a) is performed (line 19); this

call checks if the type for the expression corresponding to path (𝑝𝑖 ;𝑐𝑖 ) is a subtype of the original

synthesis query Ψ, in which case it returns this expression. If not, the algorithm continues with an

updated path (𝑝𝑖 ;𝑐𝑖 ).

Learning Discriminating Propositions. We introduce discriminating propositions for a k-bound-
stuck-node 𝑐𝑖 using the CDCL_LEARN rule.

5
Given a stuck-path 𝑝𝑖 , typing (Γ) and library (Σ)

environments, and an incoming discriminating propositions Map 𝐷 , the rule generates a new set

of discriminating propositions for the stuck-node 𝑐𝑖 , updating 𝐷 in the process, and returning a

smaller path to be explored next. The learned proposition has two components. The first is a stuck-
path proposition 𝜙𝑠 that captures the strongest postcondition for 𝑡𝑝𝑖 , the expression corresponding

to 𝑝𝑖 for the given goal precondition 𝜙 .6 The second component, a truncated proposition 𝜙𝑡 , is a

disjunction over the preconditions of those components 𝑐 𝑗 that can in principle be invoked using

the FW_call rule but which cannot due to the bound 𝑘 and which are thus prematurely truncated.

This is ensured by the implication (Σ, Γ 𝜙𝑠 ⇒ 𝜙𝑐 𝑗 ).

The CDCL_CHOICE rule uses the discriminating propositions introduced by the learning rule

to prune away equivalent-modulo-stuckness paths. It returns a new function component 𝑐𝑖 that

can be used to construct a bigger 𝜆eff expression, provided an existing path 𝑝𝑖 , a hypothesis 𝐻 ,

typing and library environments, a discriminating propositions map 𝐷 , and the goal specification

Ψ. The rule first searches for a component 𝑐𝑖 using the forward synthesis rules, and performs two

5
A formal definition for k-bound-stuck nodes can be found in an accompanying technical report [Mishra and Jagannathan

2022b].

6
In the following, we abuse the use of 𝑝𝑖 to serve as both the path and the term 𝑡𝑝𝑖 it represents for perspicuity.
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𝐻 ;𝐷 ; Γ; Σ ⊢ (Ψ, 𝑝𝑖 ) ↩→ (𝑝𝑖 ; 𝑐𝑖 )
Γ; Σ ⊢ (𝑝𝑖 , 𝐷) ↩→ (𝑝 ′𝑖 , 𝐷

′) CDCL Rules

Ψ ≡ {𝜙}𝑣 : 𝑡{𝜙 ′} 𝑝𝑖 ≡ 𝑐1; 𝑐2; ...; 𝑐𝑖 𝐷 (𝑓𝑖 ) = ⟨𝜙𝑠𝑓𝑖 , 𝜙𝑡𝑓𝑖 ⟩ 𝜙𝑠 ≡ SP(𝜙, pi)
𝜙𝑡 ≡ {

∨
𝑗 .𝜙𝑐 𝑗 | (𝑐 𝑗 : (𝑥𝑖 : 𝜏𝑖 ) → {𝜙𝑐 𝑗 }𝑣 : 𝑡 ′{𝜙 ′𝑐 𝑗 }) ∈ Σ ∧ (Γ, 𝜙𝑠 ⇒ 𝜙𝑐 𝑗 )}

𝐷 ′ = 𝐷 [𝑐𝑖 ↦→ ⟨(𝜙𝑠𝑓𝑖 ∧ 𝜙𝑠 ), (𝜙𝑡𝑓𝑖 ∨ 𝜙𝑡 )⟩]

Γ; Σ; ⊢ (𝑝𝑖 , 𝐷) ↩→ ((𝑐1; 𝑐2; ...𝑐𝑖−1), 𝐷 ′)
CDCL_LEARN

Ψ ≡ {𝜙}𝑣 : 𝑡{𝜙 ′} Γ; Σ ⊢ {SP(𝜙, 𝑝𝑖 )}v : t{𝜙 ′} ↠ 𝑐𝑖
(𝑝𝑖 ; 𝑐𝑖 ) ≺ 𝐻 𝐷 (𝑐𝑖 ) = ⟨𝜙𝑠 , 𝜙𝑡 ⟩ | (𝑝𝑖 ; 𝑐𝑖 ) |≤ 𝑘 𝑋 ≡ {¬(𝜙𝑠 ⇒ SP(𝜙, (pi; ci))}∨

{(SP(𝜙, (pi; ci)) ⇒ 𝜙𝑡 ) ∧ ¬(SP(𝜙, (pi)) ⇒ 𝜙𝑡 )}
([Γ] |= 𝑋 )

𝐻 ;𝐷 ; Γ; Σ; ⊢ (Ψ, 𝑝𝑖 ) ↩→ (𝑝𝑖 ; 𝑐𝑖 )
CDCL_CHOICE

Fig. 9. Rules for constructing and using discriminating propositions.

additional checks for the new potential path 𝑝𝑖+1 = (𝑝𝑖 ;𝑐𝑖 ): (1) that 𝑝𝑖+1 satisfies the shape given
by the hypothesis 𝐻 , and (2) that 𝑝𝑖+1 is not equivalent-modulo-stuckness to some earlier visited

stuck-path. The check first generates the strongest postconditions for the expressions corresponding

to paths 𝑝𝑖 and 𝑝𝑖+1 respectively. It extracts the discriminating proposition pair (𝜙𝑠 , 𝜙𝑡 ) for the

component 𝑐𝑖 and generates a check with two disjuncts. Failure of the first disjunct intuitively

implies that any path (and hence the corresponding term) that can be explored by choosing 𝑐𝑖 was

explored earlier without leading to a solution and hence the exploration of 𝑐𝑖 and all the following

paths can be safely skipped without effecting the completeness of the search process. In such a

case, we should choose 𝑐𝑖 only if we had prematurely truncated some path earlier that can also be

taken along 𝑝𝑖+1 (checked using conjunct #1 in the second disjunct) and which cannot be explored

without exploring 𝑝𝑖+1 (checked using conjunct #2 in the second disjunct).

4.2 Soundness
Programs synthesized by Cobalt are correct with respect to the provided query specification Ψ
assuming the validity of each library function against their specifications.

7

Theorem 4.1 (Soundness). Iff Synthesize (⟨Γ,Σ, Ψ⟩, ∅) = e then Γ;Σ ⊢ e : Ψ.

Since the CDCL routine (refer Algorithm 1) can possibly discard a correct program if it can ensure

that there exists another program satisfying the given query-spec of smaller size, the completeness

argument is relative to a query spec.

Theorem 4.2 (Completeness). ∀ k. If Synthesize (⟨Γ,Σ, Ψ⟩, ∅) = ⊥ then � e. | e | ≤ k and Γ; Σ ⊢ e
: Ψ.

5 IMPLEMENTATION AND EVALUATION
Cobalt is implemented in approximately 7300 lines of OCaml. We rely on OCaml lexing and

parsing libraries OCamllex [Leroy et al. 2022] for handling the front end of our query specification

language and use Z3 [de Moura and Bjørner 2008] to discharge SMT queries. The input to Cobalt
is a specification file containing a library of functions and data constructors, along with their

specifications, followed by a goal query specification.

7
Proofs can be found in the accompanying technical report [Mishra and Jagannathan 2022b].
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We evaluateCobalt by synthesizing programs from several domains and consider its effectiveness

with respect to the following questions:

RQ
1
Is Cobalt effective in synthesizing programs from available verified libraries?

RQ
2
How does Cobalt’s integration of forward, backward, and CDCL search compare against

each technique applied individually?

RQ
3
How sensitive is Cobalt synthesis to the complexity of library specifications and queries?

RQ
4
How does Cobalt compare against other state-of-the art component-based synthesis tech-

niques when applied to specification-rich libraries?

5.1 Benchmarks
We consider a number of synthesis problems for applications drawn from three different domains;

a detailed characterization of the queries can be found in [Mishra and Jagannathan 2022b]. The

results of applying Cobalt to these problem domains are shown in Figures 10a, 10b and 10c. In

these figures, synthesis problems for database applications are prefixed with “D” and are adopted

from [Itzhaky et al. 2017]. These queries (D1-D11) are defined over two database applications.

The first is a Newsletter database with a single table NS with attributes newsletter, user, subscribed,
articles, code, etc. and effectful library functions such as subscribe, unsubscribe, add, etc. An example

query (D5) encodes the following problem: given a newsletter n and a user u, return the list of articles
available to u in n, and then unsubscribe u from n; the solution must take care to first check that

the user is subscribed to the newsletter before unsubscribing. The second is a network firewall

database that has two tables, a table of devices and a table storing sender-receiver links; its library

functions include add_device, add_connection, delete_device etc. For example, query D7 encodes the

following problem: insert new devices d and x in the device table and create a connection between them.

Synthesizing programs from queries of this kind must take into account appropriate preconditions

that reflect the effectful behavior of the library; e.g., to establish a connection to a device that is not

currently in the device table requires that the device first be added.

The second domain consists of parser benchmarks prefixed with “P” and include stateful combi-

nator style parsers for simplified grammars for a PNG image format and C-language declaration

syntax. The libraries and specifications are constructed using the grammars of stateful parsers [Jim

et al. 2010]. The libraries include subparsers and standard basic parsers for alphabet, identifier,

number, etc. The synthesis queries describe the specification for bigger parsers that can be con-

structed using these libraries. E.g. benchmark P1 encodes the following data-dependent property:

synthesize a parser for a png-chunk using subparsers for length, typespec, content, etc. such that the
combined size of typespec and content of the output chunk is always equal to the parsed length value.
Synthesizing programs that satisfy these kinds of properties must take into account the effects

of upstream parsers on the length value when considering parsing candidates downstream in a

parsing pipeline.

The third domain considers imperative data structure libraries that implement tables, queues

written in OCaml; in the figures, these benchmarks are prefixed with “I”. The Table library de-

scribed in Figure 2a and its specifications are adopted from [Sekiyama and Igarashi 2017], while

libraries for Queue are adopted from the development of mutable data structures given in Software

Foundations [Appel et al. 2021]. The queries we consider involve multiple insertions, deletions,

conditional insertions/deletions etc. on tables and queues, maintaining library usage protocols.

For instance, I4 encodes the following query : Given a queue of unique integers, and an integer,
synthesize a program which increments the size of the queue. The result must take into account if the

given integer is present in the queue or not and then appropriately insert either the given or a new

integer.
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This domain also includes other OCaml data structure libraries imported from works attempting

mechanical verification for OCaml libraries [Charguéraud et al. 2017]. These benchmarks are

prefixed with the appropriate data-structure name, for instance “V” for OCaml Vector library, “HT”

for Hash Tables, etc. The queries again include standard textbook examples of the usages of these

libraries. E.g. benchmark HT3 encodes the following query: given a hash table, and a key-value pair,
add the pair in the table, create a new hash table and transfer the contents of the current table to the
new table.

In total, these libraries span 48 files and contain a total of 251 functions, a size that makes memo-

rization of their signatures and specifications by clients impractical. The imperative data-structure

Libraries contribute 105 functions, the parser library contributes 32, the database library contributes

40, with the remaining functions include constructors (e.g. Pair and Triple, etc.) and pure functions

from OCaml libraries like the OCaml Core [Leroy et al. 2022] (or functions translated from the

Haskell Core libraries used by other purely functional component-based synthesis approach [James

et al. 2020a,b]). Note that Cobalt works on this complete library set; the alternative could be

to find the minimal set of functions required for each domain. Finding such a library set a priori
is not feasible as these functions can be called across multiple domains; e.g., a database domain

benchmark may use methods from a List library defined in the imperative data-structure domain; a

Queue benchmark may use a pure Pair creation function, etc. Indeed, we found that 28% of our

synthesized solutions used at least one function from outside its domain.

5.2 Library Specification Annotations
All the benchmarks in our evaluation were taken from verified libraries whose specifications were

provided by the library authors. Fortunately there are multiple such projects currently available

across a number of different domains [Charguéraud et al. 2017; Jim et al. 2010; Sekiyama and Igarashi

2017]. We adopted these specifications to the Cobalt specification language, a straightforward

mechanical task for most of these benchmarks; four of the libraries defined specifications that

capture richer properties than what Cobalt currenty supports and their specifications had to be

slightly rewritten. For example, the specification for the Vector library in the VOCal suite leverages
the algebraic theory of lists which cannot be handled using our SMT-based synthesis procedure.

In these cases, we modified these specification to use more abstract notions like list membership,

ordering, etc. These modified libraries are used in benchmarks V1-V3, Q1-Q3, RB1, RB2, and ZL1-

ZL3. Queries were chosen to ensure that every library method for each application class would be

used in at least one solution, that no two solutions would be identical, and that each solution would

entail some combination of non-trivial control-flow (e.g., pattern-matching over type constructors)

with library calls, and non-trivial synthesis of function call arguments.

To actually define queries over these annotated libraries, we adopted a mix of methodologies: For

some benchmarks, we directly use the verification task defined by the authors and translate it to its

synthesis dual. For example, Figure 2 and benchmarks I10 and I11 are direct verification queries given

in [Sekiyama and Igarashi 2017]. Similarly, the Firewall example (D6) for deleting network devices

is translated directly from the verification queries provided in [Itzhaky et al. 2017]. Additionally, we

also manually defined queries using real-life scenarios and textbook examples, e.g. extracting read

articles from a Newsletter, while ensuring that the library protocol is followed (D5), replacing one

device with another in a firewall as a central device (D8), etc. We also created several such real-life

scenarios for databases and textbook examples over imperative data-structure libraries including

inserting multiple elements in a hashtable, adding elements in a queue maintaining uniqueness, etc.

For parser examples, we relied directly upon specifications associated with known data-dependent

grammars for parsers, e.g. a PNG chunk that must satisfy a length-payload dependence, is given as

specification query P1.
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(a) Database Benchmarks (b) Parsing Benchmarks

(c) Imperative Data Structure Benchmarks

Fig. 10. Synthesis time in seconds for Cobalt (T Cobalt) and uni-directional approaches (Time (BW-alone))
and (Time (FW-alone)) and a naìve forward synthesis (Time (no-cdcl)). The horizontal axis enumerates
different synthesis queries. Benchmarks for which a bar does not appear for a given approach indicate that
the synthesis problem was not solvable within a 10 minute time-bound. Graphs are given in log-scale. The
ratio of size of query specification, to the size of synthesized expressions in terms of the number of AST nodes
is given within parentheses on the labels of the x-axis.

5.3 Results
The figures show synthesis times in seconds (the y-axis is in log scale) executing on a standard

Intel laptop with 16GB RAM. All queries were executed with a time-out limit of 10 mins and a

bound k=5. The timings are for four different instantiations: the blue bar shows timings for Cobalt
(with bidirectional synthesis + CDCL-learning); the red bar (FW-alone) shows times with backward

synthesis disabled, but with CDCL-leaning enabled; c) the black bar (BW-alone) shows times for

just backward synthesis, with forward synthesis and CDCL disabled; and, d) the green bar shows

the synthesis time for a naìve forward alone synthesis without the CDCL learning component.

Benchmarks with no corresponding bar indicate that the particular instantiation could not find a

solution (i.e., it either timed-out or got stuck). Each benchmark label along the horizontal axis has

an associated numeric value in parenthesis indicating the size of the synthesized result for that

query in terms of number of AST nodes, e.g. D1 (13).
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5.3.1 RQ
1
and RQ

2
: Effectiveness and impact of design decisions. Our results show that Cobalt was

successfully able to synthesize component-based programs for all the benchmarks considered.
8
.)

Overall synthesis times for all benchmarks take less than one minute, with approximately 32/47

completing in less than 10 seconds. The variance in synthesis times is primarily due to the number

of quantified variables that must be instantiated in queries supplied to Z3. The complexity of these

generated formulae are in turn dependent on the complexity of method specifications and synthesis

queries, and the specificity of the expected return type. More significantly, the chart also reveals

that bi-directional synthesis can solve queries that are not solvable using just the FW/BW-alone

synthesis approaches.

Five of the benchmarks we consider (D3-D5, I7, P5) were unable to be solved using either forward-

or backward synthesis within the given time bound. Using just a backward synthesis (BW-alone)
method fails to find solutions for 34/47 queries, while disabling goal-directed search (FW-alone)
fails to find a solution in 6/47 queries. Finally, the naìve forward alone synthesis (FW-no-cdcl) was
unable to find a solution for 14/47 queries. For the 41 queries FW-alone is able to solve, Cobalt is on
average 2x faster, justifying the benefits of our bi-directional synthesis strategy over a unidirectional

synthesis with CDCL.

There are 8 queries for which FW-alone can find a solution but a naïve synthesis without the

learning component (FW-no-cdcl) failed to find a solution. For the remaining queries where both

succeed in finding a solution, the FW-no-cdcl is on-average 6x slower than the CDCL version,

justifying the benefits of using a CDCL mechanism as part of a forward search procedure.

1 𝜆 (d : device) (x : device).
2 b1← is_device x;
3 if (b1)
4 b2← is_central x;
5 if (b2) then
6 _← delete_device d x;
7 ret ()
8 else
9 _← make_central x;
10 _← delete_device d x;
11 ret ()
12 else
13 _← add_device x;
14 _← make_central x;
15 _← delete_device d x;
16 ret ()

Fig. 11. Synthesized Program for
query the D11

Synthesized Programs. The size of synthesized programs

(given in parentheses along with the benchmark name on the

x-axis) range between 6 to 38 AST nodes. These programs in-

clude function calls, conditional control-flow, constructors ap-

plications, etc. The number of components (continuous chain

lengths) across synthesized programs, range from 2 to 7, com-

parable to other component-based-synthesis systems such

as [Feng et al. 2017b] (Fig. 8) or [Guria et al. 2021] (Table-1)].

As an example of the output Cobalt generates, Figure 11
presents the synthesis result for query D11, which asks to

synthesize a program that, given a globally shared Firewall
database, and two devices: d, a central device, and x, deletes
d and makes x as the central device. The conditional branches
(lines 3, 12) distinguish cases when we need to add x to the

database before deleting d. Similarly, the nested conditional

(5, 8) distinguishes cases when we can directly delete d (if x
is central) or when we need to first make x a central device.

Utility and Specification Efforts. Each benchmark label along

the horizontal axis also has an associated ratio (𝑝/𝑞) in paren-

thesis, where 𝑝 is the size of the query specifications in terms

of the number of conjuncts in the specification, and 𝑞 is the size of the synthesized result for that

query in terms of the number of AST nodes. E.g., the label D1 (5/13) implies that Cobalt given
query D1, a table insertion query whose specification has five conjuncts, produces a synthesized

program with 13 AST nodes.

8
The synthesis time using Cobalt for V1 (Figure 10c) is 1.1 seconds and is thus not visible on the presented log scale.
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These ratios highlight that for simple programs, the size of the synthesized programs is compa-

rable to the size of the specifications. However, for programs with intricate control flows found in

some of the database queries (e.g., D9 and D10) or conditional queries found in some of the impera-

tive data structure benchmarks (e.g., Q3 and HT2), queries are simpler because their preconditions

are weaker. At the same time, the synthesized programs generated are more complex, especially

highlighting the power of Cobalt’s efficient enumerative search with limited specification.

Although Cobalt performs well on this traditional metric, we found that writing such programs

from scratch (even in OCaml), without the use of libraries would typically involve non-trivial

complexity with intricate control flows, loops, recursion, etc. For instance, in the absence of

component-based synthesis support, synthesizing a program for the query in Figure 2 would need

to synthesize code/auxiliary functions for tasks like table insertion, checking membership, taking

the average etc. This makes it challenging to apply state-of-the-art deductive synthesis techniques

directly to our queries, given that synthesizing auxiliary functions with these complex features

in an effectful setting remains very much an open problem [Polikarpova and Sergey 2019]. Thus,

a more reasonable and precise assessment of Cobalt’s capabilities would involve comparing the

complexity of defining queries with the complexity of the overall function synthesized, i.e. the

combined size of the synthesized code plus the size of each library function used in the code.

In summary, these results support our two main claims: (1) a bi-directional synthesis strategy is

beneficial to reason over effectful libraries - unlike Cobalt, neither FW-alone nor BW-alone could
successfully discharge all the synthesis problems in our benchmark suite; note that at least one

benchmark in each application class failed to be solved by either uni-directional method, indicating

that our technique is not specialized to a particular application class. And, (2) CDCL learning in

this setting is demonstrably useful - since FW-alone is also equipped with CDCL, its execution

times are competitive with Cobalt for the benchmarks it completes. We note that disabling CDCL

in FW-alone causes at least an order of magnitude increase in synthesis times while more than

doubling the number of failing benchmarks.

5.3.2 RQ
3
: Sensitivity to specification complexity and library size. Synthesis complexity (and

hence synthesis times) is dominated by the complexity of the queries discharged to Z3. Synthesis

time increases as function specifications and queries become more complex, where complexity of

specifications is directly correlated with the number of uninterpreted functions and variables in

the query and number of conjuncts in propositional formulas.

Case Study. To understand the impact of specification complexity on synthesis capability, we

compared the synthesis times for queries D1-D11 using its provided specifications, comparing it

against the synthesis times taken when additional qualifiers are added to these specifications. For

instance, the Newsletter benchmark has three qualifiers in its original specification viz. nlmem
(a membership qualifier), subscribed (a Boolean-valued subscription function) and confirmed (a

Boolean-valued function, indicating if the user has confirmed an action). To these, we additionally

include the following four new qualifiers in a new variant of the benchmark: activenl (a Boolean-
valued function that is true if a newsletter has at least one active subscription), activeuser (a
Boolean-valued function capturing if a user has at least one active subscription), subsize (an integer-

valued function that gives the number of newsletters a user is subscribed to) and nlreach (the

number of users which are subscribed to a newsletter).

Figure 12 shows the specification for a library function subscribe, which takes a newsletter n and

a user u and sets the subscription of the user for the newsletter to true and a synthesis query (goal)
to synthesize a program which returns the list of articles read by u in n and then unsubscribes the

user from the newsletter. The original specification and the query is shown in black; the modified
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subscribe : (n : nl)→ (u :user)→
{ nlmem (D , n , u) = true ∧
confirmed (D, n, u) = true ∧
subscribed (D, n, u) = false

} v : unit
{
nlmem (D', n, u) = true ∧
subscribed (D', n, u) = true ∧
confirmed (D', n, u) = false ∧
subsize (D’, u) == subsize (D, u) +

1 ∧
nlreach (D’, n) == nlreach (D,
n) + 1

}

goal : (n : nl)→ (u :user)→
{
nlmem (D , n , u) = true ∧
subscribed (D, n, u) = true ∧
confirmed (D, n, u) = false ∧
activenl (D, n) = true ∧activeuser

(D, u) = true ∧subsize (D, u)
> 0 ∧nlreach (D, n) > 0

} v : [string]
{
v = articles (D') ∧ nlmem (D', n, u) = false

∧
activenl (D, n) = true ∧subsize

(D’, u) == subsize (D, u) - 1
∧nlreach (D, n) == nlreach (D,
n) - 1)

}

Fig. 12. Effectful specifications for a Newsletter library function and a synthesis query goal. Shaded specifica-
tions are additional properties that were added to the original to assess the Cobalt’s sensitivity to specification
complexity and size.

variant includes the original formulas plus the new conjuncts (shown in gray). In a similar fashion

we also define revised specifications for the Firewall libraries and its associated queries (D6-D11).

Figure 13 shows two line graphs comparing the time for the original run (Time (original)) com-

pared to the time taken to synthesize a result when these new qualifiers are

Fig. 13. Running time comparison between original
Database benchmarks against doubling the number
of qualifiers in specifications.

added to specifications and queries (Time (double

qualifiers)). Synthesis times increase from 0% to a

maximum of 26% (case D7); for most other cases,

the increase is less than 20%, an indication that

Cobalt’s synthesis strategy scales reasonably well
against specification complexity.

5.3.3 RQ
4
: Comparison to other enumerative and

deductive component-based synthesis techniques.

Comparisonwith other type-directed, component-
based enumerative synthesis approaches. To ad-

dress how Cobalt compares against other sys-

tems, we consider the effectiveness of type and

example-based synthesis approaches [Feng et al.

2017a,b; James et al. 2020b] in solving effectful

queries, using example demonstrations instead

of specifications to guide the synthesis procedure. For instance, the query,

(l : int list)→ (i : int)→ { true } (v : int list) { size (v') = size (l) + 1 }

can be synthesized using type-and-examples by giving the type, (int list→ int list), and a set of

input-output examples, e.g., i) (l=[1; 2], i=3 , output=[1;2;3]) ii) (l=[1], i=1, output=[1,1]).
TYGAR [Guo et al. 2019] is a type-directed component-based tool that operates over polymorphic

Haskell data-types and components. We conducted an experiment on an extension of TYGAR,

named Hoogle+ [James et al. 2020b] that allows using examples to further guide the TYGAR
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synthesis process. To perform our comparison, we modeled the Table datatype used in our running

example as a functional list over an abstract type, erasing effect annotations from each of the

libraries, and making sure to include suitable libraries that were available in Hoogle+.

To simplify things further, we also modified the original query to just return a new table (rather

than the original Pair value) as follows:

goal: (tbl : table)→ (s : a)→ {True} v : table
{sel (h, tbl) = Tbl ∧ sel (h', tbl) = Tbl' ∧ mem (Tbl', s) ∧ size (Tbl') = size (Tbl) + 1};

We translated the Cobalt query above to the following Hoogle+ query:

goal : (tbl : table)→ (s : a)→ table

Running Hoogle+ on this query returns the following synthesized term:

goal = 𝜆 (tbl : table) (s : a) . (add_tbl s)

This program is unsound given the original interface of the add_tbl function since it can violate

the uniqueness invariant of the table, a property enforced by the library via the precondition (not
(mem (Tbl, s)) of the add_tbl function.

To refine this result, we next supplied input-output examples to Hoogle+ to help guide it to find

the required (sound) solution. Some of the examples provided included:

1 Input : tbl = [], s = 'b' ; Output : ['b']
2 Input : tbl = ['b'], s = 'b' ; Output : ['b';'c']
3 Input : tbl = ['a'], s = 'b' ; Output : ['a';'b']

4 Input : tbl = ['a';'c'], s = 'b' ; Output : ['a';'c';'b']
5 Input : tbl = ['a';'b'], s = 'b' ; Output : ['a';'b';'d']

Unfortunately, these examples were ineffective in helping Hoogle+ to find a solution. This is

because, although examples are effective at capturing structural properties like ordering, size or

reformatting of inputs, they are not very useful in defining logical cumulative properties like

membership or its negation. The input-output pairs at lines 2-5 above try to capture such a property,

but fail to do so as the synthesizer has no way of knowing that the new elements inserted (i.e.

‘c’, ‘d’) are related to the input table by the property not a member or are intended to be just

another character. This example illustrates the difficulty in relating the shape and contents of

an input-output example to a provided logical specification, especially when these specifications

capture effectful behavior.

Comparison with specification-guided heap manipulating program synthesis. A direct comparison

with other heap- and effect-aware synthesis tools [Itzhaky et al. 2021b] like Suslik [Polikarpova and

Sergey 2019] or Cypress [Itzhaky et al. 2021a] is not feasible because of fundamental differences in

approaches and goals. For example, Suslik supports queries over separation-logic formulas with

limited support for component-based synthesis, and limited expressiveness to specify effectful but

non-separation specifications. Conversely, Cobalt defines a specification language for reasoning

over components with non-trivial effectful semantics and rich qualifiers, but does not support

separation logic formulas that capture fine-grained sharing and aliasing properties of the heap.

These differing capabilities are in service of differing goals: Suslik aims to synthesize recursive,

pointer-manipulating programs from inductive specifications using the shape properties expressed

in these specifications. Cobalt, on the other hand, uses pre/post specifications of effectful libraries

to guide a component-based synthesis procedure for synthesizing non-recursive (albeit condi-

tional) programs for complex, effectful (albeit non-separation) specifications that do not appeal to

sophisticated shape properties.

These differences pose major technical challenges in running such tools on our benchmarks. For

example, in theory, our queries correspond to non-spatial specifications in Suslik. However, both

our queries and specifications allow rich formulas with qualifiers/method-predicates likemem, size,
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etc. Unfortunately, such specifications are beyond what is currently supported for pure (non-spatial)

formulas in Suslik, which only supports qualifiers over a simple theory of linear arithmetic. This

limitation is discussed by the authors in follow-up work [Itzhaky et al. 2021b], Sec 4.2.

To attempt to better quantify these differences, we translated the Cobalt synthesis problem

(Sec. 3.1) to separation-logic (spatial) formulas in Suslik because spatial formulas do allow method

predicates; each of these, however, must be given a logical interpretation. We then ran Suslik on

this translated problem.

For example, we translated the Cobalt synthesis problem given in Figure 2b to a Suslik query

as follows. We first define a unique list (ulist) that is a singly-linked list with unique elements to

model the table data structure.

predicate ulist(loc x, set s) {
| x == 0 => { s == {} ; emp }
| not (x == 0) => { s == {v} ++ s1 ∧ not (v in s1); [x, 2] ∗∗ x :→ v ∗∗ (x + 1) :→ nxt ∗∗ ulist(nxt, s1) }

}

We then define two qualifiers sll_mem and sll_len over the table as inductive separation-logic formu-

las:

predicate sll_len(loc x, int len) {
| x == 0 => { len == 0 ; emp }
| not (x == 0) =>

{ len == len1 + 1; [x, 2] ∗∗ x :→ v ∗∗
(x + 1) :→ nxt ∗∗ sll_len(nxt, len1) }

}

predicate sll_mem(loc x, int str, set s, bool mem){
| x == 0 => { s == {} && false; emp }
| not (x == 0) =>

{ s == {v} ++ s1 && (str == v || mem1);
[x, 2] ∗∗ x :→ v ∗∗ (x + 1) :→ nxt
∗∗ sll_mem(nxt, str, s1, mem1) }

}

We next define a library of functions using ulist and these qualifiers in terms of separation formulas.

Finally, we took Cobalt queries and translated these to Suslik queries; for example, the functional

query specification shown in Figure 2b can be written as follows:

void goal (loc r, loc ret)
{ r :→ x ∗∗ ret :→ val ∗∗ ulist (x, s) ∗∗ sll_len (x, n) }
{(mem == true) ∧ n1 == n + 1; r :→ y ∗∗ ulist (y, s1) ∗∗ sll_mem (y, val, s1, mem) ∗∗ sll_len (y, n1)}

Benchmark Cobalt Suslik

I1 ✓ err

I4 ✓ t/o

I5 ✓ t/o

I6 ✓ err

I9 ✓ t/o

I10 ✓ t/o

I11 ✓ t/o

V1 ✓ err

Fig. 14. Results of running selected
Cobalt queries on Suslik.

A formula in Suslik has two components { 𝜙 ; 𝑃 }; a non-

separation formula (authors call it a pure formula) 𝜙 and an

impure component 𝑃 possibly containing separation formu-

las. 𝑃 contains points-to specification (written as x :-> y) and
separating conjuncts (written as (𝑃1 ** 𝑃2)).

The above query’s post-condition thus requires that the size

of the output ulist (represented by y), which is pointed-to by

r, has size one greater than the input ulist (represented by x),
and the returned value (represented by val) is present in y.
On this query, the Suslik tool timed out with a timeout of

30000 seconds
9
(approx. 8 hours 20 minutes). We ran a similar

experiment on several other Cobalt benchmarks wherever it

was possible for us to define an inductive separation-logic

predicate corresponding to the qualifiers in our specifications

for the data-structure used in the benchmarks. Figure 14 shows

the results for these benchmakrs. For each of these experiments, Suslik either timed-out (t/o) or

9
This is the timeout value set in the online version of the tool.
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generated a program with an error expression, a result indicating an inconsistent internal state

encountered while solving the query.

These experiments give anecdotal evidence about our claim of differing capabilities and goals.

We conjecture the timeout happens because Suslik hides complexities of the function call rule

into a call-abduction routine. This routine prepares the current heap (say H) to take it to another

heap (say H’) such that the precondition of a function f holds in H’. Thus, Suslik uses an abduction

(forward search) procedure for resolving multiple function calls. While this may be sufficient in

the case of a single recursive function call, its generalization to handle multiple library functions

requires a multi-abduction decision procedure [Albarghouthi et al. 2016] to resolve, a challenging

problem in the presence of expressive data structures of the kind used in our benchmarks [Zhou

et al. 2021].

5.4 Limitations
Cobalt relies on automated verification of the programs for its forward, backward as well as the

CDCL search procedures. This reliance requires Cobalt to make fundamental assumptions about

library behavior that (a) each heap object (OCaml reference) is always referenced by a unique

path (e.g, a variable x or a field access x.f.y) and, (b) that there is no sharing of heap objects. This

allows us to reason locally and automatically about effectful behavior of library functions without

the need for reasoning over separation-logic formulas. In practice, this restriction prevents us

from synthesizing programs from libraries that do require heap sharing, for example, those that

implement cyclic data structures, graphs, etc. We leave incorporating approaches such as [Piskac

et al. 2013; Qiu et al. 2013] that enable some degree of automated verification for programs specified

using separation formulas into our synthesis pipeline as a topic for future work.

6 RELATEDWORK

Deductive Program Synthesis. Related deductive synthesis approaches to ours include Suslik [Po-

likarpova and Sergey 2019] and its follow-up work Cypress [Itzhaky et al. 2021a], both of which take

Hoare-triple style specifications and have synthesis rules for function calls. As we have described

in the previous section, an important difference between Cobalt and Suslik specifications stems

from the form of Suslik pre- and post-conditions, {𝜙 ; P}→ {𝜙 ′ ; Q}, that are expressed using two

components - a non-separation part 𝜙 defining constraints on the logical data structure associated

with the actual mutable data structure, and a spatial part defining assertions related to the shape of

the heap. The pre- and post-formulas in Cobalt specifications are analogous to the non-separation

part of Suslik specifications; our specification framework has no corresponding analog to Sus-

lik’s spatial component. For non-spatial properties, however, our queries, and consequently our

specifications, enable rich formulas with qualifiers, expressivity that is beyond what is currently

supported for pure formulas in Suslik, which only supports a simple theory of linear arithmetic.

As our experimental comparison results show, these significant differences lead to fundamentally

different synthesis strategies making any kind of direct comparison infeasible. We note that Suslik

does allows libraries of functions through their (Abduce Call) rule which is a naìve call-abduction

routine that is equivalent to Cobalt’s no-cdcl approach in theory.

Other deductive synthesis [Delaware et al. 2015, 2019; Kneuss et al. 2013; Polikarpova et al. 2016]

and proof-search guided synthesis efforts [Frankle et al. 2016; Osera and Zdancewic 2015] use

deductive proof rules for synthesizing pure terms. In contrast, our synthesis rules operate over

heap manipulating expressions (viz. effectful function calls and sequencing). Synquid [Polikarpova

et al. 2016] uses a bi-directional typing calculus to synthesize functional programs. However their

notion of bi-directionality is related to bi-directional typing [Dunfield and Krishnaswami 2021],
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which is unrelated to the notion of bi-directionality used in Cobalt that is defined with respect to

forward and backward proof search over programs with effectful specifications [Nanevski et al.

2006, 2008; Swamy et al. 2013]. Viser [Wang et al. 2019] uses a light-weight bidirectional abstract

interpretation coupled tightly to table transformation tasks that can reason specifically about simple

table inclusion constraints; however, it cannot handle general effectful specifications of the kind

intended to be used in Cobalt.

Component-based Synthesis and Learning. There is a long line of work on the use of component-

based synthesis in the context of domain-specific languages [Feng et al. 2017a; Jha et al. 2010] as

well as general-purpose programming domains [Feng et al. 2018, 2017b; Guo et al. 2019; Guria et al.

2021; Shi et al. 2019; Wang et al. 2019]. Cobalt is distinguished from these other systems in the form

of the query specifications that we consider (formal query specifications expressed as Hoare triples

vs. input-output or informal specifications as found in [Feng et al. 2018, 2017b; Guria et al. 2021;

Shi et al. 2019]); and, in our expectation that the libraries from which synthesized programs are

constructed are effectful, in contrast to the assumptions made in [Feng et al. 2018; Guo et al. 2019].

Although Sypet [Feng et al. 2017b] does support effectful libraries, it does not use library protocol

specifications to guide synthesis and consequently cannot enforce associated library protocols or

programs that require conditional control-flow.

Our CDCL-learning based enumeration is similar in spirit to the conflict-driven learning based

synthesis of pure components [Feng et al. 2018], and is inspired by conflict-driven learning based

enumeration techniques found in modern SAT solvers [Biere et al. 2009]. The discriminating

propositions learned in Cobalt, however, must include the path-sensitive, effectful semantics of

failed programs in terms of the strongest postconditions associated with these programs, in contrast

to the simpler, global set of Boolean propositional formulas associated with the partial failed

programs found in [Feng et al. 2018], such a global formula in presence of effectful libraries with

path-sensitive information will grow too large and overwhelm the solver. Further, we must also

account for program failures due to bounded exploration of an unbounded search space without

losing completeness, a challenge [Feng et al. 2018] does not face.

7 CONCLUSIONS
We present a new specification-guided synthesis framework capable of synthesizing effectful

programs from a library of effectful components. We capture the behavior of these components

using a rich specification language that capture effectful behavior in terms of Hoare-style pre- and

post-conditions. The synthesis procedure itself combines forward and backward proof search with

respect to these specifications, integrating a CDCL-style learning framework to enable scalability.

Experimental results on a tool (Cobalt) that integrates these ideas are promising, demonstrating

Cobalt’s ability to efficiently synthesize programs over complex effectful queries, guaranteed to be

consistent with component specifications.

8 DATA AVAILABILITY STATEMENT
The Cobalt tool and the artifact used in the paper is available in [Mishra and Jagannathan 2022a]
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