
116

Data-Driven Abductive Inference of Library Specifications

ZHE ZHOU, Purdue University, USA

ROBERT DICKERSON, Purdue University, USA

BENJAMIN DELAWARE, Purdue University, USA

SURESH JAGANNATHAN, Purdue University, USA

Programmers often leverage data structure libraries that provide useful and reusable abstractions. Modular

verification of programs that make use of these libraries naturally rely on specifications that capture important

properties about how the library expects these data structures to be accessed and manipulated. However,

these specifications are often missing or incomplete, making it hard for clients to be confident they are using

the library safely. When library source code is also unavailable, as is often the case, the challenge to infer

meaningful specifications is further exacerbated. In this paper, we present a novel data-driven abductive

inference mechanism that infers specifications for library methods sufficient to enable verification of the

library’s clients. Our technique combines a data-driven learning-based framework to postulate candidate

specifications, along with SMT-provided counterexamples to refine these candidates, taking special care to

prevent generating specifications that overfit to sampled tests. The resulting specifications form a minimal

set of requirements on the behavior of library implementations that ensures safety of a particular client

program. Our solution thus provides a new multi-abduction procedure for precise specification inference

of data structure libraries guided by client-side verification tasks. Experimental results on a wide range of

realistic OCaml data structure programs demonstrate the effectiveness of the approach.

CCS Concepts: • Computing methodologies→ Classification and regression trees; • Software and its
engineering→ Software verification and validation; Automated static analysis.

Additional Key Words and Phrases: Automated Verification, Data-Driven Specification Inference, Data Struc-

tures, Decision Tree Learning, Counterexample Guided Refinement

ACM Reference Format:
Zhe Zhou, Robert Dickerson, Benjamin Delaware, and Suresh Jagannathan. 2021. Data-Driven Abductive

Inference of Library Specifications. Proc. ACM Program. Lang. 5, OOPSLA, Article 116 (October 2021), 29 pages.

https://doi.org/10.1145/3485493

1 INTRODUCTION
Using a specification of a library’s methods in the verification of its clients is a hallmark of modular

reasoning. Because these specifications encapsulate the interface between the client and the library,

each may be independently verified without access to the other’s implementation. This modularity

is particularly beneficial when the library function is complex or its source code is unavailable. All

too often, though, such specifications are either missing or incomplete, preventing the verification

of clients without making (often unwarranted) assumptions about the behavior of the library. This

problem is further exacerbated when libraries expose rich datatype functionality, which often leads

to specifications that rely on inductive invariants [Dillig et al. 2013; Itzhaky et al. 2014] and complex

Authors’ addresses: Zhe Zhou, Purdue University, USA; Robert Dickerson, Purdue University, USA; Benjamin Delaware,

Purdue University, USA; Suresh Jagannathan, Purdue University, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).

2475-1421/2021/10-ART116

https://doi.org/10.1145/3485493

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 116. Publication date: October 2021.

https://doi.org/10.1145/3485493
https://doi.org/10.1145/3485493

116:2 Zhe Zhou, Robert Dickerson, Benjamin Delaware, and Suresh Jagannathan

structural relations. One solution to this problem is to automatically infer missing specifications.

Unfortunately, while significant progress has been made in specification inference over the past

several years [Albarghouthi et al. 2016; Miltner et al. 2020; Padhi et al. 2016; Zhu et al. 2016], existing

techniques have not considered inference in the frequently occurring case of client programs that

make use of data structure libraries with unavailable implementations.

To highlight the challenge, consider the following simple program, which concatenates two

stacks together using four operations provided by a Stack library: push, top, is_empty and tail.

1 let rec concat s1 s2 =
2 if Stack.is_empty s1 then s2
3 else Stack.push (Stack.top s1) (concat (Stack.tail s1) s2)

To ensure the correctness of this client function, its author may wish to verify that (a) the top

element of the output stack is always the top element of one of the input stacks; and, (b) every

element of the output stack is also an element of one of the input stacks and vice-versa. In order to

express this behavior in a form amenable for automatic verification, we need some mechanism

to encode the semantics of stacks in a decidable logic. To do so, we rely on a pair of method

predicates, "𝑎 is the head of stack 𝑠", ℎ𝑑 (𝑠, 𝑎), and "𝑎 is a member of stack 𝑠",𝑚𝑒𝑚(𝑠, 𝑎), to write our

postcondition:

∀𝑢,(hd (𝜈,𝑢) =⇒ hd (s1, 𝑢) ∨ hd (s2, 𝑢)) ∧ (mem(𝜈,𝑢) ⇐⇒ mem(s1, 𝑢) ∨mem(s2, 𝑢))
(𝜙concat)

We assume these method predicates are associated with (possibly blackbox) implementations that

we can use to check the specifications in which they appear. For example, hd may be defined in terms

of the stack operations top and is_empty, while the implementation ofmem might additionally use

tail. The variable 𝜈 in 𝜙concat is used to represent the output stack of concat. The above assertion
claims that the head of the output stack must be the head of either s1 or s2 and that any element

found in the output must be a member of either s1 or s2.
By treating method predicates (hd and mem) and library functions (push, top, is_empty, and

tail) as uninterpreted function symbols, it is straightforward to generate verification conditions

(VCs), e.g. using weakest precondition inference, which can be handed off to an off-the-shelf SMT

solver like Z3 to check. However, the counter-examples returned by the theorem prover may be

spurious, generated by incorrect assumptions about library method behavior in the absence of any

constraints on these behaviors outside the client VCs. For example, the prover might assume the

formula ¬hd (s1, top(s1)) is valid, i.e. that the result of top(s1) is not the head of s1. This claim is

obviously inconsistent with the client’s expectation of top’s semantics, but it is not disallowed by any

constraints in the SMT query. Using this assumption, Z3 may return the following counterexample:

∃s u.hd (s, u)∧¬mem(s, u). This counterexample, which is obviously incongruous with the intended

semantics of hd and mem, occurs because the expected relationship between hd and mem is lost

when the predicates are embedded as uninterpreted functions in the SMT query.

To overcome this problem, we need stronger specifications for the library methods, defined in

terms of these method predicates, that are sufficient to imply the desired client postcondition. In

particular, these specifications should rule out spurious unsafe executions such as the counter-

example given above. In the (quite likely) scenario that such library specifications are not already

available, a reasonable fallback is to infer some specifications for these functions that are strong

enough to ensure the safety of the client. Traditional approaches to specification inference usually

adopt a closed-world assumption in which specifications of library methods are discovered in

isolation, independent of the client context in which they are being used. Such assumptions are not

applicable here since (a) we do not have access to the library’s method implementations and (b) the

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 116. Publication date: October 2021.

Data-Driven Abductive Inference of Library Specifications 116:3

Fig. 1. Elrond pipeline.

nature of the specifications we need to infer are impacted by the verification demands of the client.

In this setting, some form of data-driven inference [Miltner et al. 2020; Padhi et al. 2016; Zhu et al.

2016] can be beneficial. Such an approach may be tailored to the client context in which the library

methods are used, postulating candidate specifications for library methods based on observations

of their input-output behavior. Unfortunately, completely blackbox data-driven approaches are

susceptible to overfitting on the set of observations used to train them, and can thus discount

reasonable and safe behaviors of the underlying library functions.

To address the problem of overfitting, we might instead consider attacking this problem from

a purely logical standpoint, treating specification inference as an instance of a multi-abductive

inference problem [Albarghouthi et al. 2016] that tries to find formulae Rpush, Rtop, Rtail and Ris_empty

such that

∧
𝑅𝑖 ̸ |= ⊥ and yet which are sufficient to prove the desired verification condition. While

such problems have been previously solved over linear integer arithmetic constraints [Albarghouthi

et al. 2016] using quantifier elimination, these prior techniques cannot be directly applied to formulae

with uninterpreted function symbols like the method predicates (e.g., hd and mem) used to encode

library method specifications in our setting.

In this work, we combine aspects of these data-driven and abductive approaches in a way

that addresses the limitations each approach has when considered independently. Our technique

uses SMT-provided counterexamples to generate infeasible interpretations of these predicates

(similar to other abductive inference methods) while using concrete test data to generate feasible

interpretations (similar to data-driven inference techniques). This combination yields a novel

CEGIS-style inference methodology that allows us to postulate specifications built from method

predicates sufficient to prove the postcondition in a purely blackbox setting. The specifications

learned by this procedure are guaranteed to be both consistent with the observed input-output

behavior of the blackbox library implementations and safe with respect to the postcondition of the

client program. As there may be many such specifications, we also endeavor to find a maximal one

that is at least as weak as every other safe and consistent specification, in order to avoid overfitting

to observed library behaviors. Our algorithm applies another data-driven weakening procedure to

find these maximal specifications.

To demonstrate the effectiveness of our approach, we have implemented a fully automated

abductive specification inference pipeline in OCaml called Elrond (see Figure 1). This pipeline takes

as input (a) an OCaml client program that may call blackbox library code defined over algebraic

datatypes like lists, trees, heaps, etc.; (b) assertions about the behavior of this client program; and, (c)

a set of method predicates (e.g., hd or mem), along with their (possibly blackbox) implementations,

that are used to synthesize library method specifications. It combines tests and counterexample-

guided refinement techniques to either generate a set of maximal specifications for the library

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 116. Publication date: October 2021.

116:4 Zhe Zhou, Robert Dickerson, Benjamin Delaware, and Suresh Jagannathan

methods used by the client program, or a counterexample that demonstrates a violation of the

postcondition. The notion of “weakest” used in our definition of maximal is bounded by the “shape”

of specifications (e.g., the number of quantified variables, the set of method predicates, etc.) and

a time bound. Our results over a range of sophisticated data-structure manipulating programs,

including those drawn from e.g., Okasaki [1999], show that Elrond is able to discover maximally-

weak specifications (as determined by an oracle executing without any time constraints) for the

vast majority of applications in our benchmark suite within one hour.

Our key contribution is thus a new abductive inference framework that is a fusion of automated

data-driven methods and counterexample-guided refinement techniques, tailored to specification

inference for libraries that make use of rich algebraic datatypes. Specifically, we:

1. Frame client-side verification as a multi-abduction inference problem that searches for

library method specifications that are both consistent with the method’s implementation and

sufficient to verify client assertions.

2. Devise a novel specification weakening procedure that yields the weakest specification

among the collection of all safe and consistent ones with respect to a given set of quantified

variables and method predicates.

3. Evaluate our approach in a tool, Elrond, which we use to analyze a comprehensive set of

realistic and challenging functional (OCaml) data structure programs. An artifact containing

this tool and our benchmark suite is publicly available [Zhou et al. 2021b].

The remainder of the paper is structured as follows. The next section presents an overview of our

approach using a detailed example to motivate its key ideas . A formal characterization of the

problem is given in Section 3. Section 4 defines how a data-driven learning strategy can be used

to perform inference. A detailed presentation of the algorithm used to manifest these ideas in a

practical implementation is given in Section 5. Details of our implementation and evaluation results

are explained in Section 6. Related work and conclusions are given in Section 7 and Section 8.

2 OVERVIEW ANDMOTIVATION
We divide the inference of maximal library specifications into two stages, which are represented as

the “Specification Inference” and “Weakening” components in Figure 1. Both stages leverage data-

driven learning to overcome the lack of a purely logical abduction procedure for our specification

language. The initial inference stage learns a set of safe and consistent specifications from a

combination of concrete tests and verifier-provided counterexamples. The next stage then weakens

these specifications by iteratively augmenting this data set with additional safe behaviors until a

set of maximal specifications are found.

Figure 2 provides a more detailed depiction of the initial specification inference stage in Elrond.

Starting from an initial set of maximally permissive specifications, this stage iteratively refines the

set of candidate specifications until either a set of safe and consistent solutions or a counterexample

witnessing an unsafe execution is found.

Each iteration first uses a property-based sampler, e.g. QuickCheck [Claessen and Hughes 2000],

to look for executions of the blackbox library implementations that are inconsistent with the current

set of inferred specifications. The reliance on a generator to provide high-quality tests provides yet

more motivation for the subsequent weakening phase, in order to ensure that the final abduced

specifications are not overfitted to or otherwise biased by the tests provided by the generator. At

the same time, we also observe that the sorts of shape properties (e.g., membership and ordering)

used in our specifications and assertions are relatively under-constrained and are thus amenable to

property-based random sampling. We do not ask, for example, for QuickCheck to generate inputs

satisfying non-structural properties like “a list whose 116
𝑡ℎ

element is equal to 5.”

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 116. Publication date: October 2021.

Data-Driven Abductive Inference of Library Specifications 116:5

Fig. 2. The details of Elrond’s Specification Inference component from Figure 1. The blackbox library imple-

mentation and method predicates are used by multiple components; their corresponding arrows within the

diagram are omitted for clarity.

Any tests that are disallowed by the current solution are passed to a learner which uses them to

generalize the current specification. If no inconsistencies are detected, Elrond attempts to verify the

client against the candidate specifications using a theorem prover. If the inferred specifications are

sufficient to prove client safety, the loop exits, returning the discovered solution. If not, the verifier

has identified a model that represents a potential safety violation. The model is then analyzed in

an attempt to extract test inputs that trigger a safety violation. If we are unable to find such a

counterexample, the model is most likely incongruous with the semantics of the method predicates

and is thus spurious. In this case, the model is passed to the learner so that it can be used to

strengthen candidate specifications, preventing this and similar spurious counterexamples from

manifesting in subsequent iterations.

Fig. 3. The details of Elrond’s Weakening component from Figure 1. Arrows for method predicates are again

omitted for clarity.

While the previous loop is guaranteed to return safe and consistent solutions, it may find

specifications that are nonetheless too strong with respect to the underlying library implementation.

This occurs when the property-based sampler fails to find a test that identifies an inconsistent

specification, which may happen when the input space of a library function is very large. To

combat overfitting specifications to test data, candidate solutions are iteratively weakened using the

data-driven counterexample-guided refinement loop depicted in Figure 3. The data in this phase is

supplied by the underlying theorem prover rather than a concrete test generator. Each iteration of

the refinement loop first attempts to find a safe execution of the client program that is disallowed by

the current set of specifications. If no such execution can be found, the specifications are maximal

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 116. Publication date: October 2021.

116:6 Zhe Zhou, Robert Dickerson, Benjamin Delaware, and Suresh Jagannathan

and the loop terminates. Otherwise, the identified execution is passed to a learner, which uses

it to generalize the candidate solution so that the execution is permitted before continuing the

refinement loop. The learner always generalizes candidate specifications, maintaining the invariant

that the current solution is consistent with all previously observed library behaviors.

2.1 Elrond in Action
To illustrate our approach in more detail, we apply it to the stack concatenation example from the

introduction. Given the postcondition 𝜙concat and the implementation of concat from Section 1,

Elrond generates a formula that can be simplified to the following implication:

∀s1, s2, 𝜈, 𝜈top, 𝜈tail, 𝜈concat, 𝜈is_empty,

(Ris_empty (s1, 𝜈is_empty) ∧ Rtop (s1, 𝜈top) ∧ Rtail (s1, 𝜈tail) ∧ Rpush (𝜈top, 𝜈concat, 𝜈))
=⇒
((𝜈is_empty = ⊥ ∧ ∀𝑢, (hd (𝜈concat, 𝑢) =⇒ hd (𝜈tail, 𝑢) ∨ hd (s2, 𝑢))∧

(mem(𝜈concat, 𝑢) ⇐⇒ mem(𝜈tail, 𝑢) ∨mem(s2, 𝑢))) =⇒
∀𝑢, (hd (𝜈,𝑢) =⇒ hd (s1, 𝑢) ∨ hd (s2, 𝑢)) ∧ (mem(𝜈,𝑢) ⇐⇒ mem(s1, 𝑢) ∨mem(s2, 𝑢)))

The four predicates in the premise of this formula correspond to the four library functions (push,

top, is_empty and tail) invoked in a recursive call to concat. The specification of a blackbox library

function f in our assertion logic is represented as a placeholder predicate: an uninterpreted predicate

that relates the parameters of f to its return value. For a library function f , we adopt a naming

convention of Rf and 𝜈f for its placeholder predicates and return values, respectively. The predicate

Rtop (s1, 𝜈top) in the above formula, for example, says the variable 𝜈top holds the return value of

the call to Stack.top s1 in concat. The result of the recursive call to concat is similarly denoted as

𝜈concat. The conclusion of the formula encodes the expected verification condition for a recursive

call to concat: namely, that if the result of the call to Stack.is_empty s1 is false and the recursive call

to concat (Stack.tail s1) s2 satisfies 𝜙concat, then the result of concat must also satisfy 𝜙concat. The

remainder of this section refers to the premise and conclusion of this implication as Σ𝑐𝑜𝑛𝑐𝑎𝑡 and
Φconcat, respectively.

Method Predicates. From a logical standpoint, the method predicates used in Φconcat are simply

uninterpreted function symbols which have no intrinsic semantics. This representation allows our

specifications to use predicates whose semantics may be difficult to encode directly in the logic.

Embedding recursively defined predicates like mem, for example, requires particular care [Zhu et al.

2016]. In order to ensure that the specifications inferred by Elrond are tethered to reality, users

must also supply Elrondwith implementations (possibly blackbox) of these predicates. One possible

implementation for hd and mem is:

1 let hd(s, u) =
2 if Stack.is_empty s then false else (Stack.top s) == u
3

4 let rec mem(s, u) =
5 if Stack.is_empty s then false else (Stack.top s = u) ||
6 (mem(Stack.tail s, u))

where Stack.is_empty, Stack.top and Stack.tail refer to blackbox implementations of stack library

methods.

While it is possible to naïvely include a method predicate for each library method, such an

approach may not be useful for verification. Some functions may be irrelevant to client assertions,

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 116. Publication date: October 2021.

Data-Driven Abductive Inference of Library Specifications 116:7

unnecessarily increasing the set of possible specifications that must be considered. Conversely, the

library may not include functions for desirable predicates; e.g., the Stack library does not provide a

Stack.mem function, although it is quite relevant for verifying our running example.

Ris_empty (s, 𝜈) ↦→ ∀𝑢, (𝜈 =⇒ ¬mem(s, 𝑢)) ∧ (¬𝜈 ∧ hd (s, 𝑢) =⇒ mem(s, 𝑢))
Rtop (s, 𝜈) ↦→ ∀𝑢,mem(s, 𝜈) ∧ (𝜈 = 𝑢 ⇐⇒ hd (s, 𝑢))
Rtail (s, 𝜈) ↦→ ∀𝑢, (mem(s, 𝑢) =⇒ (mem(𝜈,𝑢) ∨ hd (s, 𝑢)))∧

((mem(𝜈,𝑢) ∨ hd (𝜈,𝑢)) =⇒ mem(s, 𝑢))
Rpush (x, s, 𝜈) ↦→ ∀𝑢, (mem(𝜈,𝑢) ∧mem(s, 𝑢) =⇒ ¬(x = 𝑢 ∨ hd (𝜈,𝑢)))∧

(mem(𝜈,𝑢) ∧ ¬mem(s, 𝑢) =⇒ (x = 𝑢 ∧ hd (𝜈,𝑢)))∧
((x = 𝑢 ∨ hd (𝜈,𝑢) ∨ hd (s, 𝑢) ∨mem(s, 𝑢)) =⇒ mem(𝜈,𝑢))

Fig. 4. Candidate verification interface for the concat example.

Solution Space. Our ultimate goal is to find a mapping from each placeholder predicate in Σ𝑐𝑜𝑛𝑐𝑎𝑡
to an interpretation that entails Φconcat. We refer to such a mapping as a verification interface;

Figure 4 presents a potential verification interface for our running example. Not every mapping that

ensures the safety of concat is reasonable, however. At one extreme, interpreting every predicate

as ⊥ ensures the safety of the client, but does not capture the behavior of any sensible stack

implementation. Our goal, then, is to find interpretations that are general enough to cover a range

of possible implementations. From a purely logical perspective, this an instance of a multi-abductive

inference problem that tries to find the weakest interpretations of Rpush, Rtop, Rtail and Ris_empty in

terms of predicates mem and hd such that the interpretations are self-consistent (i.e.

∧
𝑅𝑖 ̸ |= ⊥)

and which are sufficient to prove the desired verification condition. While solutions to the multi-

abduction problem have been developed for domains that admit quantifier elimination, e.g. linear

integer arithmetic constraints Albarghouthi et al. [2016], there is no purely logical solution for

formulae involving equalities over uninterpreted functions. An additional challenge in our setting

is that we seek to infer specifications consistent with the library’s implementation, a requirement

that is absent in [Albarghouthi et al. 2016].

2.2 Data-Driven Abduction
We overcome these challenges by adopting a data-driven approach to abducing maximal library

specifications, framing the problem as one of training a Boolean classifier on a set of example

behaviors for each function 𝑓 . Under this interpretation, a classifier represents a specification of

the “acceptable” behaviors of 𝑓 . Thus, the goal of the specification inference stage of our algorithm

is to learn a set of classifiers that recognize the behaviors of each 𝑓 that a) are consistent with

𝑓 ’s underlying implementation and b) preserve the safety of the client program. As discussed at

the start of this section, this algorithm uses both an SMT-based verifier and a property-based test

generator as sources of training data for our learner. The former identifies example behaviors

consistent with¬(Σconcat =⇒ Φconcat); these are labelled as “negative” examples, so that the learned

specifications can help the solver rule out behaviors that are inconsistent with the semantics of

the method predicates or that produce unsafe executions (i.e., interpretations that would violate

the postcondition). Example behaviors drawn from tests are labelled as “positive”, so that our

learner is biased towards explanations that are consistent with the (unknown) implementations

of library functions. Notably, our algorithm generalizes this data-driven abduction procedure for

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 116. Publication date: October 2021.

116:8 Zhe Zhou, Robert Dickerson, Benjamin Delaware, and Suresh Jagannathan

individual functions to the multi-abduction case, ensuring that discovered interpretations are

globally consistent over all library methods.

Fig. 5. Elements in the circle labelled Σ⇒ Φ represent positive examples, while the orange ¬(Σ⇒ Φ) circle
contains negative examples. Our algorithm generates a mapping Δ, which maps placeholder predicates to

specifications, separating the two.

Figure 5 depicts the space of example behaviors for our learner, as well four potential verification

interfaces. Each of these represents a potential solution in the hypothesis space for this learner,

which is tasked with building a classifier that separates negative (-) and positive examples (+) for

each library function. The dashed purple line, labelled Δunsafe
, represents an unsafe verification

interface that allows a client program to violate the desired postcondition. The remaining red

lines represent the range of safe verification interfaces. The two dashed red lines represent the

verification interfaces that are sufficient to verify the client, but which are suboptimal. Δsafe
is safe

but inconsistent with the observed behaviors of the library implementation, and is thus overly

restrictive. Δ
safe

cons
is safe and consistent, but not maximal, as there exists a weaker verification

interface (Δmax
) in the hypothesis space that is still safe and consistent. Intuitively, the goal of our

first phase is to identify Δ
safe

cons
, which is then weakened by the second phase to produce Δmax

.

Hypothesis space. Our learner limits the shape of solutions it considers so that inferred specifica-

tions are both amenable to automatic verification and strong enough to verify specified postcondi-

tions. To enable automated verification of client programs, potential specifications are required

to be prenex universally-quantified propositional formulae over datatype values and variables

representing arguments to the predicates under consideration. Some possible specifications of the

library function push in our running example include:

push(x, l) = 𝜈 :


∀𝑢,mem(𝑙, 𝑢) =⇒ mem(𝜈,𝑢), ∀𝑢,¬mem(𝜈,𝑢),
∀𝑢,𝑢 = 𝑥, ∀𝑢,𝑢 = 𝑥 ⇐⇒ hd (𝜈,𝑢),
∀𝑢,mem(𝑙, 𝑢) ∧ hd (𝑙, 𝑢), . . .


which contains, among other candidates, the desired specification.

All atomic literals in generated formulae are applications of uninterpreted method predicates

and equalities over quantified variables, parameters, and return values of functions. The literals in

the above formulae are simply applications of hd and mem to 𝑙, 𝜈 and 𝑢, and the equality 𝑢 = 𝑥 .

We automatically discard equalities between terms of different types, e.g. 𝑙 = 𝑥 . The feature set

for the predicate Rpush, i.e. the set of atomic elements used to construct its specification, is thus:

{hd (𝑙, 𝑢), mem(𝑙, 𝑢), hd (𝜈 ′, 𝑢), mem(𝜈,𝑢), 𝑥 = 𝑢}.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 116. Publication date: October 2021.

Data-Driven Abductive Inference of Library Specifications 116:9

Table 1. Potential negative feature vectors extracted from Cex.

Rtop (s1, 𝜈top) ∀u hd (s1, u) mem(s1, u) 𝜈top = u

u = a false false true

u ≠ a false false false

Rtail (s1, 𝜈tail) ∀u hd (s1, u) mem(s1, u) hd (𝜈tail, u) mem(𝜈tail, u)
u = a false false false true

u ≠ a false false false false

Rpush (𝜈𝑡𝑜𝑝 , 𝜈𝑐𝑜𝑛𝑐𝑎𝑡 , 𝜈) ∀u hd (𝜈concat, u) mem(𝜈concat, u) hd (𝜈, u) mem(𝜈, u) 𝜈top = u

u = a false true false true true

u ≠ a false false false false false

Ris_empty (s1, 𝜈is_empty) ∀u hd (s1, u) mem(s1, u) 𝜈is_empty

u = a false false false

u ≠ a false false false

Training Data. We now consider how to represent library behaviors in a form that is useful for

learning a solution in our hypothesis space. To illustrate our chosen representation, consider the

counterexample produced by an off-the-shelf theorem prover when asked to verify the formula

Σconcat =⇒ Φconcat from our running stack example, where the set of candidate specifications are

initialized to true (i.e., ∀f . Rf ↦→ ⊤):
∀𝑙 𝑢,¬hd (𝑙, 𝑢) ∧ 𝜈top = a ∧ (mem(𝑙, 𝑢) ⇐⇒ ((𝑙 = 𝜈 ∨ 𝑙 = 𝜈concat ∨ 𝑙 = 𝜈tail) ∧ 𝑢 = a)) (Cex)

Intuitively, this counterexample asserts that the stacks 𝜈 , 𝜈tail, and 𝜈concat contain exactly one

element, the constant a, and the other two stacks, s1 and s2, are empty. This assertion indeed

violates the second conjunct of the postcondition, mem(𝜈,𝑢) ⇐⇒ mem(s1, 𝑢) ∨ mem(s2, 𝑢),
but it is inconsistent with the expected semantics of the library functions, and can thus be safely

ignored. The verifier generates this counterexample because the interpretations of the placeholder

predicates in Σconcat are too permissive. In order for the verifier to rule out this counterexample,

the placeholder predicates need to be strengthened to rule out this inconsistent behavior.

Ignoring how we identify this counterexample as spurious for now, note that there are many

ways to strengthen these specifications. One approach is to focus on one particular function at a

time. For example, we could choose to refine the specification of Rtop so that it guarantees that 𝜈top
is a member of s1. Alternatively, we could focus on Rtail, ensuring the members of 𝜈tail are also

contained by s1. In general, however, it may be necessary to strengthen multiple specifications at

once. Therefore, instead of focusing on one specification at a time, we learn refined specifications

simultaneously.

The first step to refining our placeholder specifications is to extract data from Cex in a form

that can be used to train a classifier. We do this by using the assignments to the arguments of the

placeholder predicates in a counterexample to build feature vectors that describe the valuations

of method predicates and equalities in the unsafe execution. Table 1 presents the feature vectors

extracted from Cex. The first column of this table indicates the particular placeholder predicates

that can be strengthened to rule out this counterexample. The second column gives the feature

vectors for a particular instantiation of the quantified variables (𝑒.𝑔., u) of the placeholders. The
subsequent columns list applications of method predicates, with the rows underneath listing the

valuation of these predicates in the offending run. The second row corresponds to the assertion

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 116. Publication date: October 2021.

116:10 Zhe Zhou, Robert Dickerson, Benjamin Delaware, and Suresh Jagannathan

Table 2. Positive feature vectors extracted from executing concat([a], [b]).

Rtop (s1, 𝜈top) ∀u hd (s1, u) mem(s1, u) 𝜈top = u

u = a true true true

u = b false false false

Rtail (s1, 𝜈tail) ∀u hd (s1, u) mem(s1, u) hd (𝜈tail, u) mem(𝜈tail, u)
u = a true true false false

u = b false false false false

Rpush (𝜈𝑡𝑜𝑝 , 𝜈𝑐𝑜𝑛𝑐𝑎𝑡 , 𝜈) ∀u hd (𝜈concat, u) mem(𝜈concat, u) hd (𝜈, u) mem(𝜈, u) 𝜈top = u

u = a false false true true true

u = b true true false true false

Ris_empty (s1, 𝜈is_empty) ∀u hd (s1, u) mem(s1, u) 𝜈is_empty

u = a true true false

u = b false false false

Table 3. Disjoint positive and negative feature vectors of Rtop.

Rtop (s1, 𝜈top) hd (s1, u) mem(s1, u) 𝜈top = u

- false false true

+ true true true

+ false false false

that ¬hd (s1, a) ∧ ¬mem(s1, a) ∧ 𝜈top = a, for example. A strengthening of the specifications that

disallows any one of these interpretations will also rule out the corresponding unsafe run of the

program. Put another way, each row corresponds to a potential negative feature vector, and a

classifier (i.e., specification) for the corresponding placeholder that disallows this feature will

disallow the counterexample.

The designation of these features as potentially negative is deliberate, as we only want to disallow

features that are inconsistent with the implementation of the library functions. As an example, the

first feature vector for Rtop (the second row of Table 1) states that the result of top s1 is not the head

element of the input stack (since 𝜈top = u is true and hd (s1, u) is false), and thus is inconsistent

with any reasonable implementation of top. In contrast, the next feature vector is compatible with

an execution of top where, e.g. top([1]) = 1 and u = 2. The second feature vector represents a

behavior that is consistent with the underlying library implementation and that should be allowed

by the learned specification. The consistency checker generates this positive training data via

random testing of the client program. To see how we extract positive feature vectors from training

data, consider the execution of concat with the inputs s1 = [a] and s2 = [b], which produces the

following assignment to program variables:

𝜈is_empty = ⊥, 𝜈top = a, 𝜈tail = [], 𝜈concat = [b], 𝜈 = [a; b]
Similar to how we built negative feature vectors from Cex, we can construct feature vectors

for each function specification from these assignments. Table 2 illustrates the feature vectors

corresponding to this assignment. Consider the second rowwhere u is instantiated with a: under this
assignment, hd (s1, u) ≡ hd([a], a) is true, as are mem(s1, u) ≡ mem([a], a) and 𝜈top = u ≡ a = a.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 116. Publication date: October 2021.

Data-Driven Abductive Inference of Library Specifications 116:11

Classification. In order to train a classifier, we need to label the extracted feature vectors as either

positive or negative. In other words, we need to identify behaviors that should (and should not) be

allowed by the inferred specification. Assigning labels is not as straightforward as labelling the

feature vectors extracted from counterexamples as negative and those extracted from testing as

positive, as the two sets can overlap. We observe this in the vectors of Rtop from Table 1 and Table 2:

the interpretation hd (s1, u) ↦→ false;mem(s1, u) ↦→ false;𝜈top = u ↦→ false; occurs in both tables.

Intuitively, we do not want to strengthen the specification of Rtop to rule out this interpretation, as

the positive sample is a witness that this execution is consistent with the implementation of Rtop.

Ultimately, therefore, the specification must be relaxed to allow the execution. In cases where a

negative feature vector conflicts with a positive feature vector, we identify the potential negative

feature vector as positive and remove it from the learner’s negative feature vector set. This strategy

is similar to the one used by Miltner et al. [2020] to deal with inductiveness counterexamples.

Thankfully, as long as the counterexample set contains at least one feature vector not known to

be consistent with the underlying library implementation, we can strengthen the specifications

to disallow it. The first feature vector for Rtop in Table 1 represents one such infeasible execution.

This vector encodes the case where 𝑢 is the output of top but is not a member or head of the input

stack. Clearly, no reasonable implementation would support such an interpretation. We use this

observation to label as “negative” those feature vectors that are extracted from a counterexample

but do not appear in the set drawn from a concrete execution. Table 3 shows the partition of positive

and negative feature vectors for Rtop.

Given this labelled set of positive and negative feature vectors, our data-driven learner builds a

separator over the training data. One such classifier (formula) for the data in Table 3 is 𝜈top = u =⇒
hd (s1, u). Substituting similarly learned specifications for the other library functions in Σconcat

equips the SMT solver with enough constraints to rule out Cex while maintaining the invariant

that the learned specifications are also consistent with the underlying library implementations .

Additional iterations of this counterexample-guided refinement loop gather additional positive and

negative features, eventually producing the specifications for the library functions presented in

Figure 4.

Identifying Spurious Counterexamples. Thus far, we have only considered spurious counterexam-

ples generated by the safety checker. Counterexamples, however, can also result from an incorrect

client assertion. For example, suppose the client (unsoundly) asserts :

∀𝑢,mem(𝜈,𝑢) =⇒ mem(s2, 𝑢)

This assertion is wrong, assuming reasonable implementations of top and push, as the elements of

the result stack 𝜈 can also come from s1. We distinguish counterexamples corresponding to actual

safety violations by first checking if all the feature vectors extracted from the counterexample are

included in the set of known positive feature vectors. For example, given this unsound assertion,

the verifier may produce the following counterexample:

∀𝑙 𝑢,(hd (𝑙, 𝑢) ⇐⇒ ((𝑙 = 𝜈 ∨ 𝑙 = s1) ∧ 𝑢 = a)) ∧ 𝜈top = a∧
(mem(𝑙, 𝑢) ⇐⇒ ((𝑙 = 𝜈 ∨ 𝑙 = s1) ∧ 𝑢 = a)) (Cex’)

Table 4 shows all of the feature vectors for Rtop that are extracted from this counterexample .

Since these are a subset of the positive feature vectors from Table 2, there are no feature vectors

that can be labeled as negative, and there are thus no new bad behaviors that the learner can

use to generate a refined specification mapping that rejects the counterexample. In this scenario,

our algorithm tries to discover concrete values of s1 and s2 consistent with Cex’; that is, s1 only

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 116. Publication date: October 2021.

116:12 Zhe Zhou, Robert Dickerson, Benjamin Delaware, and Suresh Jagannathan

Table 4. Feature vectors for Rtop extracted from Cex’.

Rtop (s1, 𝜈top) ∀u hd (s1, u) mem(s1, u) 𝜈top = u

u = a true true true

u ≠ a false false false

Table 5. A weakening feature vector of R
push

in Figure 4

Rpush (𝜈top, 𝜈concat, 𝜈) ∀u hd (𝜈concat, u) mem(𝜈concat, u) hd (𝜈, u) mem(𝜈, u) 𝜈top = u

u = 1 true true true true true

contains a and s2 is empty. When called with these parameters, concat([a], []) will return 𝜈 ≡ [a],
which Elrond returns as a witness of an unsafe execution.

Note that this situation may also occur when the feature set is not large enough, as the specifi-

cations in the corresponding hypothesis space are not expressive enough to identify a spurious

counterexample. Thus, if we are not able to find inputs that trigger a safety violation, we grow the

feature set by increasing the number of quantified variables (e.g. from 𝑢 to 𝑢, 𝑣) so that Elrond can

explore a richer space of specifications.

Weakening. While the above strategy is guaranteed to find a safe and consistent verification

interface when one exists, the solutions it produces may still be suboptimal, as illustrated in Figure 5.

For example, the first conjunct of the specification for push in Figure 4 states that any existing

member of both the input and output stacks should not be the same as the element being added to

the stack; that is, push always produces a stack with no duplicates. This specification is too restrictive,

however, as it disallows reasonable behaviors such as push([1;2], 1) = [1;1;2]. However, if our

sampler never generates an observation corresponding to this behavior, e.g. 𝑥 ≡ 1, s ≡ [1; 2] and
𝜈𝑝𝑢𝑠ℎ ≡ [1; 1; 2], the candidate specification for top produced by Elrond’s first phase will incorrectly

disallow it.

In other words, our reliance on testing to identify and label negative feature vectors may result in

initial specifications that are overfitted to the examples enumerated by the test generator. There are

two potential reasons such a positive example might be missed: (1) the input space of the program

might be too large for a test generator to effectively explore, and (2) the provided implementation

may simply not exhibit this behavior (e.g., it may be the case that the implementation of push that

we are trying to verify against does indeed remove duplicates). While exhaustive or more effective

enumeration can address the first cause, it cannot remedy the second. Elrond’s weakening phase

helps ameliorate both issues.

Our weakening algorithm iteratively weakens candidate specifications, focusing on one library

function at a time. To weaken the specification of push, for example, we fix the specifications of

the other library functions to their assignments in the current verification interface, and then try

to find a maximal weakening of Rpush that admits a larger set of implementations of push. To do

so, Elrond attempts to discover additional weakening feature vectors for Rpush, or feature vectors

corresponding to behaviors disallowed by the current specification but which would not lead to a

violation of client safety. One possible weakening feature vector for our current example is shown in

Table 5. Here, the head of both s1 and the result of the recursive call is 1; this scenario is mistakenly

disallowed by the specification of push in Figure 4.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 116. Publication date: October 2021.

Data-Driven Abductive Inference of Library Specifications 116:13

Elrond repeatedly queries the verifier to identify weakening feature vectors for push, indicating

that the current specification is maximal when none can be found. It then moves on to the next

function specification, iteratively weakening each until a fixpoint is reached. Figure 6 shows the

maximal verification interface Elrond builds by weakening the candidate specifications in Figure 4

. Compared with Figure 4, the specification of push now permits duplicate elements in stacks. In

addition, the specification of is_empty has been simplified by removing the redundant conjunction

¬𝜈 ∧ hd (s, 𝑢) =⇒ mem(s, 𝑢), as hd (s, 𝑢) =⇒ mem(s, 𝑢) can never be violated by a concrete

stack value thanks to the observed semantics of hd and mem.

Ris_empty (s, 𝜈) ↦→ ∀𝑢, (𝜈 =⇒ ¬mem(s, 𝑢))
Rtop (s, 𝜈) ↦→ ∀𝑢, 𝜈 = 𝑢 ⇐⇒ (hd (s, 𝑢) ∧mem(s, 𝑢))
Rtail (s, 𝜈) ↦→ ∀𝑢, (mem(s, 𝑢) =⇒ (mem(𝜈,𝑢) ∨ hd (s, 𝑢)))∧

((mem(𝜈,𝑢) ∨ (hd (𝜈,𝑢) ∧ hd (s, 𝑢))) =⇒ mem(s, 𝑢))
Rpush (x, s, 𝜈) ↦→ ∀𝑢, (mem(𝜈,𝑢) ∧ ¬x = 𝑢 =⇒ mem(s, 𝑢) ∧ ¬hd (𝜈,𝑢))∧

(x = 𝑢 ∨mem(s, 𝑢) =⇒ mem(𝜈,𝑢)) ∧ (¬mem(𝜈,𝑢) ∧ hd (𝜈,𝑢) =⇒ hd (s, 𝑢))

Fig. 6. Maximal specifications for Stack operations. The special variable 𝜈 represents the result of the method.

3 PROBLEM FORMULATION
Having completed a high-level tour of Elrond in action, we now present a precise description of the

specification synthesis problem and our data-driven inference procedure. We consider functional

programs that use data structure libraries providing functions to access and construct instances of

inductively-defined algebraic datatypes (e.g., list, stacks, trees, heaps, tries, etc.).

In the remainder of the paper, we use (Σ,Φ) to refer to the verification query whose validity we are
attempting to establish. These structures serve the same role as verification conditions in a typical

verification framework. The first component of this query, Σ, is a conjunction of applications of

specification placeholders (𝑅𝑓) to arguments; these represent the library method calls made by the

client program. The second component, Φ, represents the client program’s pre- and post-conditions,

encoded as sentences built from logical connectives (∧, ∨, =⇒) over prenex universally-quantified

propositional formulae. Each verification query corresponds to a control flow path in the client

program; the full algorithm considers the conjunction of all these verification queries at once. To

keep the formalization and the description of our algorithms concise, our description considers a

single verification query in isolation. The extension to sets of verification queries is provided in the

full version of the paper [Zhou et al. 2021a] .

Definition 3.1 (Problem Definition). A given verification query (Σ,Φ) with unknown library

functions 𝐹 has the form Σ =⇒ Φ, where:

Σ ≡ (
𝑛∧

𝑓 ∈𝐹,𝑖=0
𝑅𝑓 (®𝑥𝑖) ∧

∧
𝑥,𝑥 ′∈∪0≤ 𝑗≤𝑖 ®𝑥 𝑗∪C

𝑥 = 𝑥 ′)

Here, the equality constraints are either between program variables (𝑥, 𝑥 ′) or between variables

and constants C of some base type (e.g., Booleans and integers). Each 𝑅𝑓 (®𝑥𝑖) in Σ is an application

of a placeholder predicate to some arguments; the conjunction of these placeholder applications

and equality constraints represents a sequence of library method invocations in one control-flow

path of the client.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 116. Publication date: October 2021.

116:14 Zhe Zhou, Robert Dickerson, Benjamin Delaware, and Suresh Jagannathan

To model the input and output behaviors of the blackbox implementations of library functions

andmethod predicates, our formalization relies on a pair of partial functions with the same signature

as the implementations. We use partial functions to reflect the fact that we can only observe a

subset of the full behaviors of these implementations when searching for specifications.

Definition 3.2 (Specification Configuration). Let 𝑃 be a set of method predicates and 𝐹 be the set

of functions in a library used by the client. Let Γ𝑓 be a partial function from the domain of 𝑓 ∈ 𝐹
to its codomain, and Γ𝑝 be a partial function with the same signature as 𝑝 ∈ 𝑃 . Let Γ𝑃 =

⋃
𝑝∈𝑃 Γ𝑝

and Γ𝐹 =
⋃

𝑓 ∈𝐹 Γ𝑓 . A specification configuration is a 5-tuple ((Σ,Φ), 𝑃, 𝐹 , Γ𝑃 , Γ𝐹), where (Σ,Φ) is the
verification query extracted from the client.

Example. The specification configuration of our running example consists of a verification

query (Σ𝑐𝑜𝑛𝑐𝑎𝑡 ,Φconcat), a method predicate set {memhd}, and library functions {push, is_empty,

top, tail}. The partial functions in Γ𝐹 and Γ𝑃 abstract over observations on their corresponding

blackbox implementations; for an execution that produces the feature vectors shown in Table 2,

they are:

Γmem ≡ 𝜆(𝑙 ∈ {s1, s2, 𝜈tail, 𝜈concat, 𝜈}), 𝑢.
(𝑢 = a ∧ (𝑙 = s1 ∨ 𝑙 = 𝜈)) ∨ (𝑢 = b ∧ (𝑙 = s2 ∨ 𝑙 = 𝜈concat ∨ 𝑙 = 𝜈))

Γhd ≡ 𝜆(𝑙 ∈ {s1, s2, 𝜈tail, 𝜈concat, 𝜈}), 𝑢.
(𝑢 = a ∧ (𝑙 = s1 ∨ 𝑙 = 𝜈)) ∨ (𝑢 = b ∧ (𝑙 = s2 ∨ 𝑙 = 𝜈concat))

Γpush ≡ 𝜆𝑥, (𝑙 ∈ {𝜈concat)}).𝜈
Γis_empty ≡ 𝜆(𝑙 ∈ {s1}), false

Γtop ≡ 𝜆(𝑙 ∈ {s1}), a
Γtail ≡ 𝜆(𝑙 ∈ {s1}), 𝜈tail

where stack arguments are limited to values in this particular execution, e.g. s1 or 𝜈tail.

Given a specification configuration as input, the output of our verification pipeline is a verification

interface (Δ), a logical interpretation of the method predicates that maps each placeholder predicate

for a function 𝑓 ∈ 𝐹 to a universally-quantified propositional formula over the parameters and

result of 𝑓 . We impose two requirements on Δ. The first is safety: an underlying theorem prover (e.g.,

a SMT solver) must be able to prove Σ[Δ] =⇒ Φ, where Σ[Δ] denotes the formula constructed by

replacing all occurrences of specification placeholders with their interpretation in Δ, and Σ =⇒ Φ
is the verification query built from a client program:

Definition 3.3 (Safe Verification Interface). For a given verification query (Σ,Φ), a verification
interface Δ is safe when:

(1) it makes the VC valid: Σ[Δ] |= Φ, and
(2) is not trivial: Σ[Δ] ̸|= ⊥

In addition to safety, we also desire that any proposed mapping Δ be consistent with the provided

implementations of method predicates and library functions, i.e. that Δ must accurately represent

their observed behavior. Formally:

Definition 3.4 (Interface Consistency). A verification interface Δ is consistent with Γ𝑃 and Γ𝐹 when

all specifications in Δ are consistent with the inputs on which Γ𝑃 and Γ𝐹 are defined. Formally,

∀𝑓 ∈ 𝐹, Γ𝑓 ∈ Γ𝐹 , Γ𝑓 (®𝛼) = 𝜈 ⇒ Δ(𝑅𝑓) (®𝛼, 𝜈) [Γ𝑃]

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 116. Publication date: October 2021.

Data-Driven Abductive Inference of Library Specifications 116:15

The expression Δ(𝑅𝑓) (®𝛼, 𝜈) denotes the instantiation of the formula bound to 𝑅𝑓 in Δwith the input

arguments ®𝛼 and observed output 𝜈 . The expression Δ(𝑅𝑓) (®𝛼, 𝜈) [Γ𝑃] replaces all free occurrences
of 𝑝 in Δ(𝑅𝑓) (®𝛼, 𝜈) with Γ𝑝 where Γ𝑝 ∈ Γ𝑃 .

This definition thus relates the observed behavior of a library method on test data, encoded by

Γ𝑃 and Γ𝐹 with its logical characterization provided by Δ. Note that there may be many possible

verification interfaces for a given specification configuration. In order to identify the best such

interface, we use an ordering based on a natural logical inclusion property:

Definition 3.5 (Interface Order ≻). The verification interface Δ′ is weaker (≻) than Δ when,

(1) The two interfaces contain the same functions: 𝑑𝑜𝑚(Δ) = 𝑑𝑜𝑚(Δ′)
(2) They are not equal: ∃𝑅𝑓 ∈ 𝑑𝑜𝑚(Δ),Δ(𝑅𝑓) ⇍⇒ Δ′(𝑅𝑓)
(3) The specifications in Δ′ are logically weaker that those in Δ: ∀𝑅𝑓 ∈ 𝑑𝑜𝑚(Δ),Δ(𝑅𝑓) =⇒

Δ′(𝑅𝑓)

Intuitively, weaker verification interfaces are preferable because they place fewer restrictions on

the behavior of the underlying implementation. Given an ordering over verification interfaces, we

seek to find the weakest safe and consistent interface, i.e. one that imposes the fewest constraints

while still enabling verification of the client program.

Definition 3.6 (Maximal Verification Interface). For a specification configuration ((Σ,Φ), 𝑃 , 𝐹 , Γ𝑃 ,
Γ𝐹), Δ is a maximal verification interface when:

(1) Δ is safe for the verification query (Σ,Φ).
(2) Δ is consistent with Γ𝑃 and Γ𝐹 .
(3) For a given bound on the number of quantified variables 𝑘 used by the specifications in Δ,

there is no safe and consistent interface Δ′ whose specifications use at most 𝑘 quantified

variables such that Δ′ ≻ Δ.

We now refine our expectation for the output of our verification pipeline to be not just any safe

and consistent verification interface, but also a maximal one. Notice that our notion of maximality

is parameterized by the number of quantified variables used in the interpretation. As this bound

increases, we can always find a weaker specification mapping. Thus we frame our definition of

maximality to be relative to the number of quantified variables in the specification.

4 LEARNING LIBRARY SPECIFICATIONS
As Section 2 outlined, Elrond frames the search for a safe verification interface as a data-driven

learning problem. At a high level, the goal of learning is to build a classifier (a function from

unlabeled data to a label) from a set of labeled data. More precisely, our goal is to learn classifiers

for each of the library functions in a specification configuration that can correctly identify any

input and output behavior that could induce an unsafe execution in the client.

Our first challenge is to find an encoding of program executions that is amenable to a data-driven

learning framework. To begin, we need to identify the salient features used by a classifier to make

its decisions.

Definition 4.1 (Feature). A feature of a function for a set of variables ®𝑥 is a method predicate

applied to elements of ®𝑥 or equalities between variables in ®𝑥 .

A feature is similar to a literal in first-order logic, but does not allow for method predicates as

arguments (e.g. hd (𝑙,mem(𝑙, 𝑢))) or constant arguments (e.g. hd (𝑙, 3)).

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 116. Publication date: October 2021.

116:16 Zhe Zhou, Robert Dickerson, Benjamin Delaware, and Suresh Jagannathan

Definition 4.2 (Feature Set). The feature set of a function 𝑓 withmethod predicates 𝑃 and quantified

variables ®𝑢, denoted as S ≡ FSet (𝑃, 𝑓 (®𝛼 𝑓) = 𝜈 𝑓 , ®𝑢), is a list of all well-typed features in 𝑃 for the set

of variables ®𝛼 𝑓 ∪ {𝜈 𝑓 } ∪ ®𝑢 which is minimally linearly independent:

∀𝜂 ′ ∉ S, ∃®𝜂 ⊆ S, 𝜂 ′ ⇐⇒
∧
®𝜂

Example. The feature set for the function top : 𝑙𝑖𝑠𝑡𝑎 → 𝑎 from the Stack library, where 𝑎 is

some base type, for predicate set 𝑃 ≡ {hd,mem}, equality operation =𝑎 and quantified variables

®𝑢 ≡ {𝑢 : 𝑎} is FSet (𝑃, top(𝑙) = 𝜈, ®𝑢) ≡ [hd (𝑙, 𝑢), mem(𝑙, 𝑢), 𝜈=𝑎𝑢]. Note that the featuresmem(𝜈,𝑢)
and 𝑙 =𝑎 𝑢 are not included in this set because they are not well-typed. The feature hd (𝑙, 𝜈), on the

other hand, is omitted because it can be represented by hd (𝑙, 𝑢) ∧ 𝜈=𝑎𝑢 and is thus not linearly

independent with respect to the other features in the set. We use feature vectors to encode the

features of observed tests:

Definition 4.3 (Feature Vector). A feature vector is a vector of Booleans that represents the value

of each feature in the feature set for some test.

We also need to define the hypothesis space of possible solutions considered by our learning

system. To easily integrate learned classifiers into the underlying theorem prover, we choose

to represent such solutions as Boolean combinations over terms consisting of applications of

interpreted base relations and uninterpreted functions. In order to preserve decidability, we limit

this space to a subset of effectively propositional sentences. This limitation was expressive enough

for all of our benchmarks.
1

Definition 4.4 (Hypothesis Space). The hypothesis space of specifications for a library function 𝑓 ,

method predicate set 𝑃 , and quantified variables ®𝑢 is the set of formulas in prenex normal form

with the quantifier prefix ∀®𝑢, and whose bodies are built from 𝐹𝑆𝑒𝑡 (𝑃, 𝑓 (®𝛼) = 𝜈, ®𝑢), the logical
connectives {∧,∨,¬, =⇒ }, and Boolean constants ⊤ (true) and ⊥ (false). The hypothesis space

of 𝑓 over 𝑃 and ®𝑢 is denoted 𝐻𝑦𝑝 (𝑃, 𝑓 (®𝛼) = 𝜈, ®𝑢).

In order to classify feature vectors, we ascribe them a semantics in logic:

Definition 4.5 (Unitary classifier). For a given feature vector fv in a feature set S ≡ FSet (𝑃, 𝑓 (𝛼) =
𝜈, ®𝑢), the logical embedding of fv is a formula encoding the assignment to its features:

⟦fv⟧ ≡ ∀®𝑢,
|S |∧
𝑖=0

S[𝑖] ⇐⇒ fv [𝑖]

We say that a classifier 𝜙 labels a feature vector fv as positive when ⟦fv⟧ =⇒ 𝜙 , and negative

otherwise.

Example.Given the classifier𝜙 ≡ ∀𝑢, hd (s1, u) =⇒ 𝜈top = u for the top function from Section 2,

the first row in Table 3 corresponds to the feature vector fv
− ≡ {hd (s1, u) ↦→ false;mem(s1, u) ↦→

false;𝜈top = u ↦→ true}. The unitary classifier for fv is ⟦fv−⟧ ≡ ∀𝑢,¬hd (s1, u)∧¬mem(s1, u)∧𝜈top =
u. fv is labelled negative by 𝜙 , as ⟦fv−⟧ ≠⇒ 𝜙 . The other two feature vectors in Table 3 are labeled

as positive by 𝜙 .

1
Themain sorts of properties that we do not support as a consequence of this choice are thosewhich use quantifier alternation,

e.g., for every element in a stream, there exists another larger element that appears after it: (∀𝑢, ∃𝑣,mem(𝑙,𝑢) =⇒
(mem(𝑙, 𝑣) ∧ ord (𝑙,𝑢, 𝑣) ∧𝑢 ≤ 𝑣)).

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 116. Publication date: October 2021.

Data-Driven Abductive Inference of Library Specifications 116:17

Definition 4.6 (Classification). For a given classifier 𝜙 and feature set S, it is straightforward to

partition the feature vectors of S into positive (𝜙+) and negative (𝜙−) sets:

𝜙+ ≡ {fv ∈ 2S | ⟦fv⟧ =⇒ 𝜙}
𝜙− ≡ {fv ∈ 2S | ⟦fv⟧ ≠⇒ 𝜙}

Notice that these two sets are trivially disjoint: 𝜙+ ∩ 𝜙− = ∅.

For a particular configuration, we can straightforwardly lift this partitioning to verification

interfaces:

Δ(𝑅𝑓) (®𝛼, 𝜈)+ ≡ {fv ∈ 2FSet (𝑃,𝑓 (®𝛼)=𝜈,®𝑢) | ⟦fv⟧ =⇒ Δ(𝑅𝑓) (®𝛼, 𝜈)}

Δ(𝑅𝑓) (®𝛼, 𝜈)− ≡ {fv ∈ 2FSet (𝑃,𝑓 (®𝛼)=𝜈,®𝑢) | ⟦fv⟧ ≠⇒ Δ(𝑅𝑓) (®𝛼, 𝜈)}

4.1 Learning Safe and Consistent Verification Interfaces
We now confront the challenge of how to generate training data from a specification configuration

in a way that guarantees the safety of the learned formulas (classifiers). To do so, we extract feature

vectors from a set of logical samples:

Definition 4.7 (Sample). A sample 𝑠 of a formula 𝜙 is an instantiation of its quantified variables

and a Boolean-valued interpretation for each application of a method predicate to those variables

in 𝜙 , which we denote as 𝑠 |= 𝜙 . The positive and negative samples of a verification query (Σ,Φ)
are samples of Φ and ¬Φ, respectively.

Intuitively, the positive samples of a verification query correspond to safe executions of a client

program, while negative samples represent potential violations that safe verification interfaces

need to prevent. For example, Cex from Section 2 corresponds to the following negative sample of

Φconcat
2
:

{s1 ↦→ l0; s2 ↦→ l1;𝜈 ↦→ l2;𝜈top ↦→ a;𝜈tail ↦→ l3;𝜈concat ↦→ l4;𝜈is_empty ↦→ ⊥; (𝑠−)
hd (𝑙, 𝑢) ≡ {};mem(𝑙, 𝑢) ≡ {(l2, a); (l3, a); (l4, a)}}

and the following sample, extracted from a concrete input and client execution result, is positive:

{s1 ↦→ l0; s2 ↦→ l1;𝜈 ↦→ l2;𝜈top ↦→ a;𝜈tail ↦→ l3;𝜈concat ↦→ l4;𝜈is_empty ↦→ ⊥; (𝑠+)
hd (𝑙, 𝑢) ≡ {(l0, a); (l1, b); (l4, b); (l2, a)};mem(𝑙, 𝑢) ≡ {(l0, a); (l1, b); (l4, b); (l2, a); (l2, b)}}

Although they come from different sources, both samples provide the values of variables (e.g., the

value of 𝜈is_empty in both 𝑠
−
and 𝑠+ is⊥) and the values of predicate applications (e.g., hd (𝜈concat, 𝜈top)

is true in 𝑠− sample and false in 𝑠+).
Using ⟦·⟧, we can extract a collection of feature vectors under a feature set S from a sample 𝑠:

𝜒S (𝑠) ≡{fv ∈ 2S | 𝑠 |= ⟦fv⟧}

For example, the feature vectors extracted from 𝑠− and 𝑠+ for the feature set of top are shown in

the second and third rows of Table 1 and Table 2, respectively.

Definition 4.8 (Classifier Consistency). For a verification query (Σ,Φ), we say that a verification

interface Δ is consistent with a negative sample 𝑠− if at least one of the library specifications in Δ
classifies one or more features extracted from that sample as negative:

∃𝑅𝑓 (®𝛼, 𝜈) ∈ Σ, ∃fv ∈ 𝜒
FSet (𝑃,𝑓 (®𝛼)=𝜈,®𝑢) (𝑠−), fv ∈ Δ(𝑅𝑓) (®𝑎, 𝜈)−

2
The interpretation of method predicates are represented as binary relations.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 116. Publication date: October 2021.

116:18 Zhe Zhou, Robert Dickerson, Benjamin Delaware, and Suresh Jagannathan

Similarly, Δ is consistent with a positive sample 𝑠+ if all specifications in Δ positively identify

every feature vector extracted from 𝑠+:

∀𝑅𝑓 (®𝛼, 𝜈) ∈ Σ, ∀fv ∈ 𝜒
FSet (𝑃,𝑓 (®𝛼)=𝜈,®𝑢) (𝑠+), fv ∈ Δ(𝑅𝑓) (®𝑎, 𝜈)+

Example. The verification interface Δ from Figure 4 is consistent with (𝑠−), as the specification
of the top function labels as negative the following feature vector of 𝑠−, fv− ≡ {hd (s1, u) ↦→
false;mem(s1, u) ↦→ false;𝜈top = u ↦→ true} to negative. Furthermore, Δ is also consistent with all

the feature vectors extracted from 𝑠+.

Theorem 4.9. For a given specification configuration ((Σ,Φ), 𝑃, 𝐹 , Γ𝑃 , Γ𝐹) and verification interface

Δ, Σ[Δ] =⇒ Φ is valid iff Δ is consistent with all negative samples 𝑠−; Δ is a consistent interface iff

Δ is consistent with all positive samples 𝑠+ entailed by Γ𝐹 and Γ𝑃 .
34

4.2 Learning Maximal Verification Interfaces
While Theorem 4.9 identifies the conditions under which a verification interface is safe and consis-

tent, it does not ensure that it is maximal. We frame the search for a maximal solution as a learning

problem for a single function specification assuming all other specifications are fixed .

Definition 4.10 (Weakest safe specification). For a given verification query (Σ,Φ) and safe and

consistent verification interface Δ, 𝜙 is the weakest safe specification of 𝑓 iff

(1) Δ[𝑅𝑓 ↦→ 𝜙] is safe
(2) For a given bound on the number of quantified variables 𝑘 allowed in the specification of 𝑓 ,

there is no other specification 𝜙 ′ with 𝑘 quantified variables that makes Δ[𝑅𝑓 ↦→ 𝜙 ′] safe
such that 𝜙 =⇒ 𝜙 ′.

Definition 4.11 (Sample with respect to library function). For a verification query (Σ,Φ), and safe

verification interface Δ, a sample 𝑠 is positive (resp. negative) with respect to library function

𝑓 when 𝑠 is positive (resp. negative) and consistent with the specifications of all other library

functions in the domain of Δ:

𝑠 |= Σ[Δ[𝑅𝑓 ↦→ ⊤]] ∧ Φ
𝑠 |= Σ[Δ[𝑅𝑓 ↦→ ⊤]] ∧ ¬Φ (resp.)

Ideally, the weakest safe specification of 𝑓 would be able to positively classify every such positive

sample. Because this is not possible in general due to the intrinsic granularity of the hypothesis

space, we must limit ourselves to covering some subset of this space instead. The weakening relation

between classifiers can be viewed as the difference between the sets of positive and negative feature

vectors induced by classifiers:

Definition 4.12 (Weakening feature vector and samples). For a verification query (Σ,Φ) and safe

verification interface Δ, a weakening feature vector fv distinguishes between a weaker safe specifi-

cation and Δ(𝑅𝑓):
fv ∈ Δ(𝑅𝑓)− and Σ[Δ[𝑅𝑓 ↦→ ⟦fv⟧ ∨ Δ(𝑅𝑓)]] =⇒ Φ

A sample 𝑠 is a weakening sample when 𝑠 is positive with respect to 𝑓 and includes some weakening

feature vector. Intuitively, such weakening samples can be used to safely generalize 𝑓 . If we cannot

find any weakening sample, then the specification must have converged to a maximal one.

3
All positive samples 𝑠+ entailed by Γ𝐹 and Γ𝑃 means every positive sample consistent with the observations encoded by Γ𝐹
and Γ𝑃 .
4
Proofs for all theorems are available in the full version of the paper [Zhou et al. 2021a] .

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 116. Publication date: October 2021.

Data-Driven Abductive Inference of Library Specifications 116:19

Algorithm 1:Multi-Abductive Inference Algorithm.

Inputs :Specification configuration ((Σ,Φ), 𝐹 , 𝑃, Γ𝐹 , Γ𝑃)
Output :Maximal verification interface Δ or counterexample Cex

1 ®𝑢 ← ∅;
2 while true do
3 match SpecInfer ((Σ,Φ), 𝐹 , 𝑃, Γ𝐹 , Γ𝑃 , ®𝑢):
4 case Fail 𝑠− do
5 match ExtractCex (𝑠−):
6 case Cex do return Cex ;

7 case None do ®𝑢 ← ®𝑢 ∪ FreshVariable() ;

8 case Fail None do ®𝑢 ← ®𝑢 ∪ FreshVariable() ;
9 case Δ do
10 repeat
11 Δ0 ← Δ;

12 for 𝑓 ∈ 𝐹 do Δ(𝑅𝑓) ← Weaken((Σ,Φ), 𝑃,Δ, 𝑓 , ®𝑢) ;
13 until Δ = Δ0;

14 return Δ;

Example. The sample

{s1 ↦→ l0; s2 ↦→ l1;𝜈 ↦→ l2;𝜈top ↦→ a;𝜈tail ↦→ l3;𝜈concat ↦→ l4;𝜈is_empty ↦→ ⊥;
hd (𝑙, 𝑢) ≡ {(l0, a); (l1, a); (l2, a); (l4, a)};mem(𝑙, 𝑢) ≡ {((l0, a); (l1, a); (l2, a); (l4, a)}}

is a positive sample with respect to push since it makes both input stacks and the output stack

contain a and also have the head element a, which entails Φconcat. It is also consistent with all the

specifications in the verification interface from Figure 4 outside of the one for push. The feature

vector fv shown in Table 5 is extracted from this sample, and it is not included in Δ(𝑅push)+.
Moreover, Σ[Δ[𝑅push ↦→ ⟦fv⟧ ∨ Δ(𝑅push)]] =⇒ Φ, thus fv is a weakening feature vector for push,

and the above sample is a weakening sample for push.

Theorem 4.13. For a given specification configuration ((Σ,Φ), 𝑃, 𝐹 , Γ𝑃 , Γ𝐹) and safe verification

interface Δ, Δ(𝑅𝑓) is weakest safe specification of 𝑓 if and only if there are no weakening samples for

𝑓 .

5 ALGORITHM
Algorithm 1 presents the abductive inference procedure depicted in Figure 1. The algorithm

maintains a list of variables ®𝑢 that defines the hypothesis space it is currently exploring. The main

loop of the algorithm searches for a maximal verification interface in this hypothesis space, starting

from an initially empty set of variables (line 1). We first try to use the SpecInfer subalgorithm

(Algorithm 2) to infer a verification interface that is safe and consistent with the specification

configuration. If inference fails with a sample, we search for corresponding inputs that trigger a

safety violation using random testing via the ExtractCex subroutine (line 8). If we are unable to

find such unsafe inputs, we extend ®𝑢 with a fresh variable (lines 7-8) and restart the loop under

this enhanced hypothesis space. Otherwise, SpecInfer has found a safe and consistent verification

interface, Δ, which we then refine to a maximal solution via a weakening loop. This loop iteratively

weakens the specification of each library function inΔ using theWeaken subalgorithm (Algorithm 3),

and returns Δ once it has reached a fixed-point.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 116. Publication date: October 2021.

116:20 Zhe Zhou, Robert Dickerson, Benjamin Delaware, and Suresh Jagannathan

5.1 Specification Inference

Algorithm 2: Safe and Consistent Specification Inference (SpecInfer)

Inputs :Specification configuration (Σ,Φ), 𝐹 , 𝑃, Γ𝐹 , Γ𝑃 , variables in hypothesis space ®𝑢
Output :Consistent safe verification interface or reports failure

1 for 𝑓 ∈ 𝐹 do 𝜋𝑓 , 𝜔 𝑓 ← ∅, ∅ ;
2 Δ← {𝑅𝑓 ↦→ ∀®𝑢,⊤};
3 while true do
4 while 𝑡𝑟𝑢𝑒 do
5 match Sample(Δ(𝑅𝑓), Γ𝐹 , Γ𝑃):
6 case None do break;
7 case Some 𝑠+ do
8 for 𝑓 ∈ 𝐹 do
9 𝜋𝑓 ← FvecFromSample(FSet (𝑃, 𝑓 (®𝛼 𝑓) = 𝜈 𝑓 , ®𝑢), 𝑠+) ∪ 𝜋𝑓 ;

10 𝜔 𝑓 ← 𝜔 𝑓 \ 𝜋𝑓
11 for 𝑓 ∈ 𝐹 do Δ(𝑅𝑓) ← Learner (𝜋𝑓 , 𝜔 𝑓) ;

12 match Verify((Σ[Δ] =⇒ Φ)):
13 case OK do
14 match Verify(¬Σ[Δ]):
15 case OK do return Fail None ;

16 case Sat _ do return Δ;

17 case Sat 𝑠− do
18 for 𝑓 ∈ 𝐹 do 𝜔 ′

𝑓
← FVecFromSample(FSet (𝑃, 𝑓 (®𝛼 𝑓) = 𝜈 𝑓 , ®𝑢), 𝑠−) \ 𝜋𝑓 ;

19 if
∧
𝑓 ∈𝐹

𝜔 ′
𝑓
= ∅ then return Fail 𝑠− ;

20 else for 𝑓 ∈ 𝐹 do 𝜔 𝑓 ← 𝜔 𝑓 ∪ 𝜔 ′𝑓 ;

21 for 𝑓 ∈ 𝐹 do Δ(𝑅𝑓) ← Learner (𝜋𝑓 , 𝜔 𝑓) ;

Our data-driven multi-abduction specification inference algorithm (SpecInfer) given by Algo-

rithm 2 assumes three key components: a property-based random sampler Sample, a satisfiability

checker Verify, and a classifier learner Learner . Sample takes a first-order formula as input and

attempts to find a counterexample via random sampling, returning data instances which violate

this specification based on these counterexamples. Verify returns OK when given a valid formula,

and produces an assignment of variables and member predicates (i.e. a sample) that invalidates its

input formula otherwise. Learner takes two disjoint sets of feature vectors, 𝜋 and 𝜔 , as inputs, and

returns a formula that classifies elements of 𝜋 and 𝜔 as positive and negative, respectively. Elrond

uses a decision tree algorithm [Ruggieri 2002] as the underlying learning framework.

In more detail, for each library function 𝑓 , SpecInfer maintains a pair of positive and negative

sets of feature vectors 𝜋𝑓 and 𝜔 𝑓 ; these are initially empty (line 1). The algorithm holds the current

candidate verification interface in the variable Δ, which initially stores trivial specifications for

each library function. SpecInfer implements a two-step refinement loop which first calls Sample to

test the current candidate verification interface Δ against Γ𝐹 and Γ𝑃 in order to identify any library

function behaviors that are inconsistent with their current specifications (line 5). If so, Sample

returns a positive sample 𝑠+ that we then use to augment the set of positive feature vectors (line

7). We subsequently remove any feature vectors appearing in 𝜋𝑓 from 𝜔 𝑓 in order to ensure the

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 116. Publication date: October 2021.

Data-Driven Abductive Inference of Library Specifications 116:21

Algorithm 3:Weakening (Weaken)

Inputs : (Σ,Φ), 𝑃,Δ, 𝑓 , ®𝑢
Output :Weakest safe specification of 𝑓

1 𝑊𝑓 ← ∀®𝑢,⊥; 𝜋,𝜔 ← ∅, ∅;
2 while true do
3 match Verify(Σ[Δ[𝑅𝑓 ↦→ ∀®𝑢,⊤]] ∧ Φ =⇒ Σ[Δ[𝑅𝑓 ↦→ Δ(𝑅𝑓) ∨𝑊𝑓 ∨ ⟦𝜔⟧]]):
4 case OK do
5 if𝑊𝑓 = ∀®𝑢,⊥ then return Δ(𝑅𝑓) else return𝑊𝑓 ∨ Δ(𝑅𝑓);
6 case Sat 𝑠 do
7 𝑊𝑓 , 𝜋, 𝜔 ← Update (𝑠,𝑊𝑓 , 𝜋, 𝜔);
8 𝑊𝑓 , 𝜋, 𝜔 ← SafetyLoop (𝑊𝑓 , 𝜋, 𝜔);

9 Procedure Update(𝑠,𝑊𝑓 , 𝜋, 𝜔)
10 for fv ∈ FVecFromModel(𝐹𝑠𝑒𝑡 (𝑃, 𝑓 (𝛼 𝑓) = 𝜈 𝑓 , ®𝑢), 𝑠) do
11 match Verify((Σ[Δ[𝑅𝑓 ↦→𝑊𝑓 ∨ Δ(𝑅𝑓) ∨ ⟦fv⟧]] =⇒ Φ)):
12 case OK do 𝜋 ← 𝜋 ∪ {fv} ;
13 case Sat _ do 𝜔 ← 𝜔 ∪ {fv} ;
14 𝑊𝑓 ← Learner (𝜋,𝜔)
15 return𝑊𝑓 , 𝜋, 𝜔

16 Procedure SafetyLoop(𝑊𝑓 , 𝜋, 𝜔)
17 match Verify((Σ[Δ[𝑅𝑓 ↦→𝑊𝑓 ∨ Δ(𝑅𝑓)]] =⇒ Φ)):
18 case OK do return𝑊𝑓 , 𝜋, 𝜔 ;

19 case Sat 𝑠 do
20 𝑊𝑓 , 𝜋, 𝜔 ← Update(𝑠,𝑊𝑓 , 𝜋, 𝜔);
21 return SafetyLoop(𝑊𝑓 , 𝜋, 𝜔)

two sets are disjoint before invoking Learner to ascertain whether Δ is consistent with the newly

observed behaviors (lines 9-11).

SpecInfer then queries Verify to determine if the current verification interface is sufficient to

ensure the desired safety property (line 12). We then verify that the specifications are not con-

tradictory (line 14) before returning them, in order to ensure that they are not vacuously safe.

Alternatively, if the verifier returns a sample 𝑠− witnessing an unsafe execution that Δ was not

strong enough to disallow, we extract sets of feature vectors for each library function 𝑓 from 𝑠−,
filtering out any that also occur in 𝜋𝑓 (line 18) to maintain the invariant that 𝜋𝑓 and 𝜔 𝑓 are disjoint.

If no new negative feature vectors are found, SpecInfer cannot ensure that 𝑠− is spurious in the

current hypothesis space, and it thus fails, returning Fail 𝑠− to the main algorithm. Otherwise, the

algorithm updates 𝜔 𝑓 with the new negative feature vectors and strengthens Δ to rule out 𝑠− by
invoking Learner and the refinement loop restarts (line 21).

Theorem 5.1 (SpecInfer is Total and Sound). Algorithm 2 always halts and returns a verification

interface that is safe and consistent.

5.2 Weakening
Algorithm 3 shows theWeaken procedure that is used to generalize the specification of a library

function 𝑓 from the initial solution returned by SpecInfer . This procedure takes a verification query,

method predicate set, verification interface, library function, and a list of quantified variables as

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 116. Publication date: October 2021.

116:22 Zhe Zhou, Robert Dickerson, Benjamin Delaware, and Suresh Jagannathan

input, and infers a weakest safe specification for 𝑓 . Notably, the arguments of Weaken do not

include Γ𝑃 or Γ𝑃 , reflecting that our approach to weakening is purely logical.

Weaken maintains a formula𝑊𝑓 which is used to weaken the specification of 𝑓 ; the start of

the function initializes this formula to false (line 1). Like SpecInfer ,Weaken maintains two sets of

feature vectors: 𝜋 , which holds weakening feature vectors, and 𝜔 , which holds feature vectors

representing library behaviors that cause client safety violations. Both sets are initially empty (line

1). The body of Weaken uses a counterexample-guided refinement loop to iteratively construct

𝑊𝑓 . The loop first queries the verifier to ensure that every safe execution consistent with the

candidate specifications besides Δ(𝑅𝑓) is either a) currently allowed by𝑊𝑓 ∨ Δ(𝑅𝑓) or b) involves
a behavior of 𝑓 that can trigger a safety violation in other contexts (line 3). The clauses of the

formula representing each of these pieces are highlighted with the corresponding color. When this

query is valid, there is no weakening sample for 𝑓 ; thus, by Theorem 4.13, the current specification

for 𝑓 is the weakest safe one, and Weaken returns𝑊𝑓 ∨ Δ(𝑅𝑓) (or Δ(𝑅𝑓) when𝑊𝑓 ≡ ⊥) (line 5).
Alternatively, Verify will provide a sample 𝑠 witnessing a safe execution; this sample is passed to

the Update subroutine to further weaken𝑊𝑓 . Update first uses Verify to identify feature vectors

extracted from 𝑠 that trigger safety violations in other contexts. After inserting safe and unsafe

feature vectors into 𝜋 and 𝜔 , respectively (lines 12-13), Update uses Learner to refine𝑊𝑓 . The

weakened specification𝑊𝑓 ∨ Δ(𝑅𝑓) may violate client program safety, however. We use a learning

based procedure for its intrinsic generalization ability: when we add a new feature vector to 𝜋 ,

the learned classifier will not only classify that new feature vector to positive, but also potentially

others. This ability results in faster convergence, since we do not need to explicitly enumerate each

weakening feature vector. However, to avoid the learned classifier from being weakened to the

point that it mistakenly classifies unsafe feature vectors as safe,Weaken then invokes SafetyLoop

to filter any unsafe weakenings (line 8). SafetyLoop implements a similar strategy as Algorithm 2

to progressively refine𝑊𝑓 until it guarantees safety. After this step, the loop restarts in order to

identify additional weakening possibilities .

Theorem 5.2 (Weaken is Sound). For given (Σ,Φ), 𝑃,Δ, 𝑓 , ®𝑢, if Δ is safe, Algorithm 3 will halt

with the weakest safe specification for 𝑓 .

Theorem 5.3 (Relative Completeness). Algorithm 1 either returns either a maximal verification

interface or a concrete counterexample.

6 IMPLEMENTATION AND EVALUATION
We have implemented a verification pipeline based on the above approach, called Elrond[Zhou et al.

2021b], that targets OCaml programs which rely on libraries to manipulate algebraic data types.

Elrond consists of 7267 lines of OCaml and uses Z3 [de Moura and Bjørner 2008] as its backend

solver. Elrond’s frontend generates verification queries from client programs via weakest liberal

precondition predicate transformers. Elrond does not automatically infer inductive invariants for

recursive client functions, and it expects client programs to provide such invariants, in addition to

any pre- and post-conditions.

Our experimental evaluation of Elrond addresses five key questions:

Q1: Is Elrond able to find specifications sufficient to verify a range of properties and client

programs in a reasonable amount of time?

Q2: Can Elrond identify unsafe client programs?

Q3: Can Elrond efficiently find maximal solutions?

Q4: Is Elrond able to find useful intermediate generalizations of initial specifications?

Q5: Does weakening improve the quality of the inferred specifications?

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 116. Publication date: October 2021.

Data-Driven Abductive Inference of Library Specifications 116:23

Table 6. Experimental results. The columns in the table can be divided into three groups. The first group

presents the number of distinct library functions (|𝐹 |), the number of library function applications (|𝑅 |), and
the size of the method predicate set (|𝑃 |) for each benchmark. The second column describes the number of

quantified variables (| ®𝑢 |), the number of counter-examples generated (|𝑐𝑒𝑥 |), and the time in seconds (time𝑐)

needed for Elrond to find a consistent and safe verification interface. Times indicate how long it took for

counter-example generation, sampling, feature vector extraction, and labelling and DT learning. They do

not include the time taken to generate the initial verification query. Red entries in the time column indicate

how long it took to identify safety violations in the five unsafe benchmarks. The last group lists the number

of gathered (#Gather) and total positive (|𝜙+ |) feature vectors in the space of weakenings, the time needed

by the weakening phase (time𝑤), and the time needed for the SMT solver to find a sample allowed by a

weakened solution but not the initial one (time𝑑). Blue entries in the |𝜙+ | column indicate a lower bound.

“Limit” entries in the time𝑤 column indicate that the one hour time bound was reached. “Max” entries in the

time𝑑 column indicate that the initial solution was already maximally weak.

(|𝐹 |, |𝑅 |) |𝑃 | | ®𝑢 | |𝑐𝑒𝑥 | time𝑐 (s) #Gather / |𝜙+ | time𝑤(s) time𝑑 (ms)

queue

(6, 10) 2 2 26 1.85 366 / 1828 47.9 123.5
(4, 5) 2 1 10 0.28 235 / 1536 9.2 18.2
(4, 5) 3 2 23 0.87 2076 / 30054 318.9 42.7
(6, 10) 1 1 8 0.22 53 / 114 1.9 Max

stack

(4, 5) 2 1 11 0.61 29 / 13 0.5 18.5
(4, 5) 3 2 39 2.94 3220 / 22716 Limit 169.3
(4, 5) 2 1 4 0.08

heap

(3, 8) 2 2 71 11.21 1790 / 26588 Limit 895.8
(2, 21) 1 1 10 0.37 172 / 432 21.5 21.3
(2, 21) 3 2 141 107.18 702 / 177388 Limit 328.3
(2, 21) 3 2 192 152.99 512 / 190215 Limit 149.7
(3, 8) 1 1 10 0.37 464 / 3308 46.0 Max

stream

(4, 10) 1 1 4 0.15 50 / 110 1.3 21.1
(4, 10) 2 2 23 1.57 640 / 1376 1038.0 70.6
(4, 10) 3 2 18 1.69 1755 / 31276 741.8 24.3
(4, 10) 3 2 12 0.37

set

(1, 21) 4 2 91 77.75 1369 / 59797035 Limit 1268.7
(2, 8) 1 1 11 0.30 181 / 448 11.2 21.1
(2, 8) 2 1 21 0.81 3327 / 27609 1741.9 23.2
(2, 8) 2 2 63 8.28 2496 / 28495 Limit 314.1
(2, 6) 3 1 15 0.39 3644 / 22526 1203.3 19.5
(2, 6) 3 1 25 0.69 3091 / 20090 968.7 19.2
(1, 21) 1 1 10 0.27 228 / 772 34.0 Max

(2, 8) 2 1 8 0.14
(2, 6) 3 3 29 4.69

trie
(4, 18) 2 1 12 0.47 167 / 404 13.6 28.0
(4, 18) 2 1 15 0.31

All reported data was collected on a Linux server with an Intel(R) Core(TM) i7-8700 CPU@ 3.20GHz

and 64GB of RAM.

To answer these questions, we have evaluated Elrond on a corpus
5
of client programs drawn

from Okasaki [1999], the OCaml standard library [Leroy et al. 2014], Verified Functional Algo-

rithms [Appel 2018] and Software Foundations [Pierce et al. 2010]. Our benchmarks cover a range

5
All benchmarks, post-conditions, and inferred library specifications from our evaluation are provided in the full version of

the paper [Zhou et al. 2021a] .

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 116. Publication date: October 2021.

116:24 Zhe Zhou, Robert Dickerson, Benjamin Delaware, and Suresh Jagannathan

of abstract data types manipulating a diverse set of algebraic data types, including queues (bankers

queues and batched queues), list-based stacks, heaps (leftist heaps and splay heaps), streams, sets

(backed by trees, red black trees, and lists), and tries. The underlying representation of each algebraic

data type provides a set of method predicates related to ordering, membership, and uniqueness

(no duplicate elements) that can be queried as part of a test. These sorts of shape properties are

relatively under-constrained and are thus amenable to property-based random sampling. We used

Elrond to verify several different properties for each data type, including membership, ordering,

distinct elements, and sorting.

Example 6.1. One of our benchmarks uses the following specification for an insert program that

inserts an element x into an unbalanced set s using a binary tree for its underlying representation:

(∀𝑢,(root (s, 𝑢) =⇒ (𝑢 < x =⇒ root (𝜈insert, 𝑢)) ∧ (𝑢 ≥ x =⇒ root (𝜈insert, x)))
∧ (mem(𝜈insert, 𝑢) ⇐⇒ mem(s, 𝑢) ∨ x = 𝑢)

Given this specification, Elrond infers the following specification for the maket(x, l, r) = 𝜈 function

used by add that constructs a new tree from x and the left and right subtrees l and r:

∀𝑢,(mem(𝜈,𝑢) ⇐⇒ mem(l, 𝑢) ∨mem(r, 𝑢) ∨ (x = 𝑢)) ∧ (root (𝜈,𝑢) ⇐⇒ x = 𝑢)
∧(root (l, 𝑢) =⇒ mem(l, 𝑢)) ∧ (root (r, 𝑢) =⇒ mem(r, 𝑢))

The first line of this specification captures the key semantic properties of the tree, while the second

line encodes a key relationship between the mem and hd method predicates needed by the solver

to verify the specification.

The detailed results of our experiments are shown in Table 6. The first group of columns in Table 6

describes the salient features of our benchmarks. Each client specification uses between 1 and 4

member predicates, and the client programs make between 5 and 21 calls to library functions. In

order to evaluate Elrond’s ability to identify faulty specifications, our experiments also included five

unsafe client programs. Elrond can infer specifications for all the benchmarks with valid assertions,

and returns concrete counter-examples for clients with unsafe post-conditions.

The second group of columns in Table 6 presents our evaluation of Elrond’s ability to discover

an initial safe and consistent verification interface (Q1 and Q2). These columns show that Elrond

is relatively efficient at finding safe specifications, with none of the benchmarks taking longer than

three minutes to learn an initial solution (Q1). As expected, more complicated benchmarks (i.e. those

with more function calls or member predicates) required more SMT-provided counterexamples and

took longer to complete, as did benchmarks requiring a larger hypothesis space (i.e. specifications

with more quantified variables). Notably, Elrond was able to quickly generate concrete counter-

examples witnessing safety violations (Q2) in the five benchmarks with invalid postconditions

(these benchmarks have red entries in the time𝑐 column).

The final group of columns in Table 6 addresses the questions dealing with Elrond’s weakening

phase (Q3 - Q5). Unsurprisingly, weakening requires more time than the initial inference phase;

while the latter needs to identify a single solution, the former needs to account for all possible

solutions in order to select the best one. When evaluating this phase, we choose to use a one

hour time bound for each experiment. If this time bound was reached, we had Elrond return the

current weakened solution. Three-fourths (16/22) of our safe benchmarks were able to find maximal

solutions from the initial solution within this limit (Q3). In general, the time taken to weaken a

solution was correlated with the complexity of the benchmark.

To further investigate how effective Elrond was at exploring the space of candidate weakenings

(Q4), we calculated the ratio of the total number of feature vectors gathered during weakening

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 116. Publication date: October 2021.

Data-Driven Abductive Inference of Library Specifications 116:25

(#Gather) against the total number of positive feature vectors admitted by the final maximal specifi-

cation (|𝜙+ |). The latter number represents the set of vectors that a naïve exhaustive enumeration

would need to consider in order to find our solution. In our experiments, Elrond only needed to

consider at most 40% of the full search space.
6
To get |𝜙+ | for the six benchmarks on which Elrond

returned a partially weakened solution, we increased the time bound to 24 hours and ran Elrond

until it converged on the maximal solution. Elrond was unable to converge under this longer bound

for three of these benchmarks. For these three, we report the total number of feature vectors in the

partial solution, which is indicated using a blue entry in the |𝜙+ | column.

In an attempt to quantify how well Elrond was able to generalize an initial solution, we asked the

SMT solver to identify samples permitted under the weakened solution but not the original (Q5).
The more general a weakened solution, the larger this space should be, so the solver should be able

to more readily identify one of its elements. The results of this experiment are presented under

the time𝑑 column. The initial solution was already maximal for three of our benchmarks, which is

indicated via a “Max” entry in the time𝑑 column. In general, the solver was able to quickly find

such samples for the remaining nineteen benchmarks. This search took longer for the benchmarks

that hit the time bound, suggesting those solutions are either closer to the initial specifications or

are otherwise more complicated for the SMT solver to handle.

Fig. 7. Run times of the first 1000 weakening iterations in benchmarks.

When running our experiments without a time bound, we observed that individual iterations

of the weakening loop took longer to complete over time. As an example, in the first hour of the

second stack benchmark, Elrond performed 46 weakening steps per minute on average, but only

averaged 33 after that. Based on this observation, we conjectured that it became harder for Elrond

to find further generalizations as the weakening phase progresses. To test this hypothesis, we

measured the time required by each of the first 1000 iterations of the weakening loop for the six

benchmarks that hit the time bound. The results of this experiment are presented in Figure 7;

the y-axis uses a logarithmic scale in order to account for times that range from 0.1s to 50s. The

trajectory agrees with our hypothesis, and suggests diminishing returns for running the weakening

procedure for long periods of time.

Finally, in order to show that Elrond produces useful specifications (Q1 and Q5), we used the

Coq proof assistant to verify that implementations of the library functions from our benchmarks

satisfied their inferred specifications.
7
In total, Elrond inferred 68 specifications across all our

experiments; we were able to verify 64 of these in Coq. Of these, three had initial specifications

that were too strong; it was only after the weakening phase that the specifications could be used

for verification. The four specifications that we were not able to verify came from the benchmarks

6
In the first stack benchmark, Elrond gathers more feature vectors than the total number because the algorithm may

generate false feature vectors, as discussed in Section 5.

7
The corresponding Coq developments are provided in the full version of the paper [Zhou et al. 2021a] .

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 116. Publication date: October 2021.

116:26 Zhe Zhou, Robert Dickerson, Benjamin Delaware, and Suresh Jagannathan

whose weakening phase timed out, i.e., these specifications were not maximal. Taken together,

these points suggest that the weakening phase results in more general (and thus more useful)

specifications, and that Elrond is highly effective in finding meaningful specifications.

7 RELATEDWORK
Data-Driven Approaches. There have been several recent data-driven approaches that use learning

to infer specifications of library functions. Zhu et al. [2016] automatically infer specifications that

use a fixed set of features (analogous to our method predicates) to identify relationships between

the input and outputs of a function. Padhi et al. [2016] use program synthesis to automatically

learn features on demand when inferring preconditions for data-structure manipulating library

functions. This approach is further extended by Miltner et al. [2020] to synthesize [Osera and

Zdancewic 2015] representation invariants that are sufficient to verify specifications of the abstract

datatype operations. Rather than inferring specifications of libraries in isolation, we consider

the complementary problem of discovering those specifications in service of verifying library

clients. Broadly speaking, this change in perspective differentiates our approach from these prior

works insofar as we cannot appeal to any source of ground truth (e.g, SMT verification as in Padhi

et al. [2016] or bounded model checking as in Miltner et al. [2020]). This leads to the need for a

weakening procedure to facilitate generalization to ultimately aid client-side verification. However,

techniques like Miltner et al. [2020] could be used alongside ours, for example, by leveraging

abduced specifications to infer and verify representation invariants.

Automated Verification. Encoding verification conditions in a logic for which efficient solvers

exist (e.g. SMT) is ubiquitous in the automatic program verification community. In this setting,

the standard approach to reasoning about clients of user-defined functions is to rely on some

manually written axiomatization of those functions, paying particular care in order to ensure that

the underlying solver will terminate [Itzhaky et al. 2014, 2013]. In the case that a specification

is incomplete, e.g., when defining new functions, manual intervention is required to extend the

axiomatization. Informally, our approach can be thought of as filling in the missing parts of

specifications by using the latent semantics of method predicates. More recently, Vazou et al.

[2017] introduced refinement reflection in order to enable SMT-based reasoning about arbitrary

user-defined functions. There, the semantics of a function are embedded directly into the logic as a

set of equations, and users can manually construct equational proofs about their behavior using a

library of proof combinators. The authors introduce a proof search algorithm to help automate the

construction of these proofs. While this algorithm is complete when a proof exists for a bounded

unfolding of function definitions, users are still required to provide instantiations of lemmas and

induction hypotheses to completely automate program verification. Our approach uses data-driven

methods and counterexample-guided search to generate specifications without the need to reflect

the implementation, which in our setting is unavailable, into the solver’s underlying logic.

Abductive Inference. As noted in Section 2, our logical formulation of specification inference is

an instance of an abductive inference problem. This observation has been previously exploited to

develop inference algorithms for loop invariants [Dillig et al. 2013] and specifications of functions

in a client program [Albarghouthi et al. 2016]. For a given program, both algorithms rely on an

abduction procedure to iteratively strengthen loop invariants (resp. function specifications) until

they are strong enough to prove a user-provided post-condition. While completely automated,

these approaches critically rely on an abduction procedure for the underlying specification logic,

in particular the first-order theory of linear integer arithmetic in their experiments. To the best of

our knowledge, no such abduction procedure exists for the theory of equalities with uninterpreted

function symbols that is commonly used to specify recursive functions over algebraic datatypes.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 116. Publication date: October 2021.

Data-Driven Abductive Inference of Library Specifications 116:27

Our approach provides an alternative solution that combines data-driven methods with SMT-based

counterexample-guided refinement to discover library method specifications to aid client-side

verification.

While Bastani et al. [2015] consider a similar abductive inference problem – discovering minimal

sufficient assumptions in order to analyze client programs when some portion of the code is missing

– there are several major differences between our two approaches: 1) their specification domain is

limited to CFL reachability (alias and taint specifications), while our hypothesis space involves shape

properties (membership, ordering, etc.) over algebraic datatypes; 2) we guarantee specification

consistency with respect to our observations on the blackbox implementation of the libraries; and

(3) our approach incorporates an explicit weakening procedure to generalize candidate solutions.

Specification Inference. Similar to our problem setup, Nguyen et al. [2014] and Su et al. [2018]

infer specifications of library APIs from client information. However, both works try to infer

specifications of correct library usage under the assumption that the client is itself correct. In

contrast, we leverage abductive methods to provide guarantees that any library implementation

must satisfy to ensure the client is safe. Our approach does not assume clients are always safe – e.g,

Elrond was able to identify safety violations in 5 of our benchmarks. Another distinguishing feature

of our work is our focus on generating maximally weak specifications to overcome overfitted

specifications. The work of Pandita et al. [2012] learns specifications from comments in natural

language but does not provide safety and consistency guarantees.

Qin et al. [2010] also infers specifications for unknown procedures in a rich domain involving

shape properties of datatypes. However, their technique does not query library implementations

and does not generalize inferred specifications, which can potentially lead to specifications that are

overfitted to the client safety property. In contrast to our work, their method also requires users to

understand the underlying representation of the datatype used by the library method, and present

explicit interpretations of predicates used in specifications sufficient to verify the client. Finally, we

apply an additional algorithmic weakening procedure to refine inferred specifications.

CHC solving. While it is possible to frame our problem as an instance of data-driven CHC solving

à la Zhu et al. [2018], this would not address the important challenge of generating maximally

weak specifications, a concern that is not considered by Horn-clause semantics [Albarghouthi et al.

2016].

8 CONCLUSIONS
This paper presents a novel data-driven approach to infer specifications using a minimal set of

assumptions that are nonetheless consistent with provided blackbox library implementations and

sufficient to verify client assertions . We demonstrate that our technique, manifested in a tool called

Elrond, is highly effective in identifying sophisticated specifications that enable verification of

challenging functional data structure programs.

ACKNOWLEDGEMENTS
We thank Pedro Abreu and the anonymous reviewers for their detailed comments and suggestions.

This material is based upon work supported by the NSF under Grants CCF-SHF 1717741, CCF-FMiTF

2019263, and CCF-1755880.

REFERENCES
Aws Albarghouthi, Isil Dillig, and Arie Gurfinkel. 2016. Maximal Specification Synthesis. In Proceedings of the 43rd

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (St. Petersburg, FL, USA) (POPL ’16).

Association for Computing Machinery, New York, NY, USA, 789–801. https://doi.org/10.1145/2837614.2837628

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 116. Publication date: October 2021.

https://doi.org/10.1145/2837614.2837628

116:28 Zhe Zhou, Robert Dickerson, Benjamin Delaware, and Suresh Jagannathan

Andrew Appel. 2018. Software Foundations Volume 3: Verified Functional Algorithms.

Osbert Bastani, Saswat Anand, and Alex Aiken. 2015. Specification Inference Using Context-Free Language Reachability. In

Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Mumbai,

India) (POPL ’15). Association for Computing Machinery, New York, NY, USA, 553–566. https://doi.org/10.1145/2676726.

2676977

Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for Random Testing of Haskell Programs. In

Proceedings of the Fifth ACM SIGPLAN International Conference on Functional Programming (ICFP ’00). Association for

Computing Machinery, New York, NY, USA, 268–279. https://doi.org/10.1145/351240.351266

Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Tools and Algorithms for the Construction and

Analysis of Systems, C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 337–340.

https://doi.org/10.1007/978-3-540-78800-3_24

Isil Dillig, Thomas Dillig, Boyang Li, and Ken McMillan. 2013. Inductive Invariant Generation via Abductive Inference. In

Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages and

Applications (Indianapolis, Indiana, USA) (OOPSLA ’13). Association for Computing Machinery, New York, NY, USA,

443–456. https://doi.org/10.1145/2509136.2509511

Shachar Itzhaky, Anindya Banerjee, Neil Immerman, Ori Lahav, Aleksandar Nanevski, and Mooly Sagiv. 2014. Modular

Reasoning about Heap Paths via Effectively Propositional Formulas. SIGPLAN Not. 49, 1 (Jan. 2014), 385–396. https:

//doi.org/10.1145/2578855.2535854

Shachar Itzhaky, Anindya Banerjee, Neil Immerman, Aleksandar Nanevski, and Mooly Sagiv. 2013. Effectively-Propositional

Reasoning about Reachability in Linked Data Structures. In Proceedings of the 25th International Conference on Computer

Aided Verification - Volume 8044 (Saint Petersburg, Russia) (CAV 2013). Springer-Verlag, Berlin, Heidelberg, 756–772.

https://doi.org/10.5555/2958031.2958053

Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon. 2014. The OCaml system

release 4.02. Institut National de Recherche en Informatique et en Automatique 54 (2014).

Anders Miltner, Saswat Padhi, Todd Millstein, and David Walker. 2020. Data-Driven Inference of Representation Invariants.

In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation (London, UK)

(PLDI 2020). Association for Computing Machinery, New York, NY, USA, 1–15. https://doi.org/10.1145/3385412.3385967

Hoan Anh Nguyen, Robert Dyer, Tien N. Nguyen, and Hridesh Rajan. 2014. Mining Preconditions of APIs in Large-

Scale Code Corpus. In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software

Engineering (Hong Kong, China) (FSE 2014). Association for Computing Machinery, New York, NY, USA, 166–177.

https://doi.org/10.1145/2635868.2635924

Chris Okasaki. 1999. Purely Functional Data Structures. Cambridge University Press, USA.

Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-Example-Directed Program Synthesis. In Proceedings of the

36th ACM SIGPLAN Conference on Programming Language Design and Implementation (Portland, OR, USA) (PLDI ’15).

Association for Computing Machinery, New York, NY, USA, 619–630. https://doi.org/10.1145/2737924.2738007

Saswat Padhi, Rahul Sharma, and Todd Millstein. 2016. Data-Driven Precondition Inference with Learned Features. In

Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation (Santa Barbara,

CA, USA) (PLDI ’16). Association for Computing Machinery, New York, NY, USA, 42–56. https://doi.org/10.1145/2908080.

2908099

Rahul Pandita, Xusheng Xiao, Hao Zhong, Tao Xie, Stephen Oney, and Amit Paradkar. 2012. Inferring method specifications

from natural language API descriptions. In 2012 34th International Conference on Software Engineering (ICSE). 815–825.

https://doi.org/10.1109/ICSE.2012.6227137

Benjamin C Pierce, Chris Casinghino, Marco Gaboardi, Michael Greenberg, Cătălin Hriţcu, Vilhelm Sjöberg, and Brent

Yorgey. 2010. Software foundations. Webpage: http://www. cis. upenn. edu/bcpierce/sf/current/index. html (2010).

Shengchao Qin, Chenguang Luo, Guanhua He, Florin Craciun, and Wei-Ngan Chin. 2010. Verifying Heap-Manipulating

Programs with Unknown Procedure Calls. In Formal Methods and Software Engineering, Jin Song Dong and Huibiao Zhu

(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 171–187. https://doi.org/10.1007/978-3-642-16901-4_13

S. Ruggieri. 2002. Efficient C4.5 [classification algorithm]. IEEE Transactions on Knowledge and Data Engineering 14, 2 (2002),

438–444. https://doi.org/10.1109/69.991727

Jingyi Su, Mohd Arafat, and Robert Dyer. 2018. Using Consensus to Automatically Infer Post-Conditions. In Proceedings of

the 40th International Conference on Software Engineering: Companion Proceeedings (Gothenburg, Sweden) (ICSE ’18).

Association for Computing Machinery, New York, NY, USA, 202–203. https://doi.org/10.1145/3183440.3195096

Niki Vazou, Anish Tondwalkar, Vikraman Choudhury, Ryan G. Scott, Ryan R. Newton, Philip Wadler, and Ranjit Jhala.

2017. Refinement Reflection: Complete Verification with SMT. Proc. ACM Program. Lang. 2, POPL, Article 53 (Dec. 2017),

31 pages. https://doi.org/10.1145/3158141

Zhe Zhou, Robert Dickerson, Benjamin Delaware, and Suresh Jagannathan. 2021a. Data-Driven Abductive Inference of

Library Specifications (Full Version). arXiv:2108.04783 [cs.PL]

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 116. Publication date: October 2021.

https://doi.org/10.1145/2676726.2676977
https://doi.org/10.1145/2676726.2676977
https://doi.org/10.1145/351240.351266
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/2509136.2509511
https://doi.org/10.1145/2578855.2535854
https://doi.org/10.1145/2578855.2535854
https://doi.org/10.5555/2958031.2958053
https://doi.org/10.1145/3385412.3385967
https://doi.org/10.1145/2635868.2635924
https://doi.org/10.1145/2737924.2738007
https://doi.org/10.1145/2908080.2908099
https://doi.org/10.1145/2908080.2908099
https://doi.org/10.1109/ICSE.2012.6227137
https://doi.org/10.1007/978-3-642-16901-4_13
https://doi.org/10.1109/69.991727
https://doi.org/10.1145/3183440.3195096
https://doi.org/10.1145/3158141
https://arxiv.org/abs/2108.04783

Data-Driven Abductive Inference of Library Specifications 116:29

Zhe Zhou, Robert Dickerson, Benjamin Delaware, and Suresh Jagannathan. 2021b. OOPSLA2021 Artifact: Data-Driven

Abductive Inference of Library Specifications. https://doi.org/10.5281/zenodo.5130646

He Zhu, Stephen Magill, and Suresh Jagannathan. 2018. A Data-Driven CHC Solver. In Proceedings of the 39th ACM SIGPLAN

Conference on Programming Language Design and Implementation (Philadelphia, PA, USA) (PLDI 2018). Association for

Computing Machinery, New York, NY, USA, 707–721. https://doi.org/10.1145/3192366.3192416

He Zhu, Gustavo Petri, and Suresh Jagannathan. 2016. Automatically Learning Shape Specifications. In Proceedings of the

37th ACM SIGPLAN Conference on Programming Language Design and Implementation (Santa Barbara, CA, USA) (PLDI

’16). Association for Computing Machinery, New York, NY, USA, 491–507. https://doi.org/10.1145/2908080.2908125

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 116. Publication date: October 2021.

https://doi.org/10.5281/zenodo.5130646
https://doi.org/10.1145/3192366.3192416
https://doi.org/10.1145/2908080.2908125

	Abstract
	1 Introduction
	2 Overview and Motivation
	2.1 Elrond in Action
	2.2 Data-Driven Abduction

	3 Problem Formulation
	4 Learning Library Specifications
	4.1 Learning Safe and Consistent Verification Interfaces
	4.2 Learning Maximal Verification Interfaces

	5 Algorithm
	5.1 Specification Inference
	5.2 Weakening

	6 Implementation and Evaluation
	7 Related Work
	8 Conclusions
	References

