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Programming geo-replicated distributed systems is challenging given the complexity of reasoning about

different evolving states on different replicas. Existing approaches to this problem impose significant burden

on application developers to consider the effect of how operations performed on one replica are witnessed and

applied on others. To alleviate these challenges, we present a fundamentally different approach to programming

in the presence of replicated state. Our insight is based on the use of invertible relational specifications of
an inductively-defined data type as a mechanism to capture salient aspects of the data type relevant to

how its different instances can be safely merged in a replicated environment. Importantly, because these

specifications only address a data type’s (static) structural properties, their formulation does not require

exposing low-level system-level details concerning asynchrony, replication, visibility, etc. As a consequence,

our framework enables the correct-by-construction synthesis of rich merge functions over arbitrarily complex

(i.e., composable) data types. We show that the use of a rich relational specification language allows us

to extract sufficient conditions to automatically derive merge functions that have meaningful non-trivial

convergence properties. We incorporate these ideas in a tool calledQuark, and demonstrate its utility via a

detailed evaluation study on real-world benchmarks.

1 INTRODUCTION
Modern distributed data-intensive applications often replicate data across geographically diverse

locations to (a) enable trust decentralization, (b) guarantee low-latency access to application state,

and (c) provide high availability even in the face of node and network failures. There are three

basic approaches that have been proposed to program and reason about applications in this setting.

The first re-engineers algorithms to be cognizant of replicated behavior. This strategy yields

Replicated Data Types (RDTs) [Burckhardt et al. 2014; Shapiro et al. 2011a], abstractions that expose
the same interface as ordinary (sequential) data types, but whose implementations are aware of

replicated state. In some cases, the data type’s underlying representation can be defined to guarantee

the absence of conflicting updates (e.g., by ensuring its operations are commutative). Otherwise,

ensuring convergence of all replicas can be enforced by preemptively avoiding conflicts through

selective consistency strengthening [Li et al. 2014a, 2012a]. Correct RDT implementations guarantee

that all executions correspond to some linearization of the operations performed on them. A second

approach, captured by abstractions like concurrent revisions [Burckhardt et al. 2010], admit richer

semantics by permitting executions that are not linearizable; these abstractions explicitly expose

replicated behavior to clients by defining operations that create and synchronize different versions

of object state, where each version captures the evolution of a replicated object as it executes

on a different replica. Finally, there have been recent attempts to equip specifications, rather

than applications, with mechanisms that characterize notions of correctness in the presence of

replication [Houshmand and Lesani 2019; Sivaramakrishnan et al. 2015], using these specifications

to guide implementations on when and how different global coordination and synchronization

mechanisms should be applied. In all three cases, developers must grapple with various operational
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nuances of replication, either in the way objects are defined, abstractions used, or specifications

written. As a result, all three approaches impose significant cognitive burden that complicates

reasoning and hinders adoption.

In this paper, we propose a fundamentally different approach to programming with replicated

state that enables the automatic derivation of correct distributed (replicated) variants of ordinary

data types. Key to our approach is the use of invertible relational specifications of an inductive data

type definition. These specifications capture salient aspects of the data type that are independent

of its execution under any system model, thus freeing the programmers from having to explicitly

reason about low-level operational issues related to replication, asynchrony, visibility, etc. Their

relational structure, however, provides sufficient guidance on structural properties maintained by

the type (e.g., element ordering) critical to how we might correctly merge multiple instances in a

replicated setting.

Thus, like the version-based schemes mentioned above, our approach is also based on a model of

replication centered around versioned states and explicit merges. In particular, we model replicated

state in terms of concurrently evolving versions of a data type that trace their origin to a common

ancestor version. We assume implementations synchronize pairs of replicas by merging concurrent

versions into a single convergent version that captures salient characteristics of its parents. The

merge operation is further aided by context information provided by the lowest common ancestor
(LCA) version of the merging versions.

Because the exact semantics of merging depends on the type and structure of replicated state,

data types define merge semantics via an explicit merge function. The merge function performs a

three-way merge involving a pair of concurrent versions and their LCA version that constitutes

the context for the merge. The version control model of replication, therefore, allows any ordinary

data type equipped with a three-way merge function to become a distributed data type. The full

expressivity of merge functions can be exploited to define bespoke distributed semantics for data

types that need not necessarily mirror their sequential behavior (i.e., distributed objects that are

not linearizable or serializable), but which are nonetheless well-defined (i.e., convergent) and have

clear utility.

Unlike prior approaches, however, which neither provide any guarantees on the correctness

of merge operations as they relate to the semantics of the data type over which they are defined

nor define a principled methodology for defining such operations over arbitrary types, our focus

in this paper is on deriving such correct merge functions automatically over arbitrarily complex

(i.e, composable) data type definitions, and in the process, ascribe to them a meaningful and

module Counter: COUNTER =

struct

type t = int

let zero = 0

let add x v = v + x

let sub x v = v - x

let mult x v = x * v

let read v = v

end

Fig. 1. A Counter data type in OCaml

useful distributed semantics. By doing so, we elimi-

nate the need to reason about low-level operational

or axiomatic details of replication when transforming

sequential data types to their replicated equivalents.

Our approach towards deriving data type-specific

merge functions is informed by two fundamental ob-

servations about replicated data type state and its type.

First, we note that it is possible to define an intuitive no-

tion of a merge operation on concurrent versions of an

abstract object state regardless of its type. We illustrate

this notion in the context of a simple integer counter,

whose OCaml implementation is shown in Fig. 1. Sup-

pose we wish to replicate the state of the counter across

multiple machines, each of which is allowed to perform concurrent conflicting updates to its local

instance. As long as clients just use the counter’s add and sub operations, conflicts are benign -
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1:3

since integer addition and subtraction commute, add and sub operations can be asynchronously

propagated and applied in any order on all replicas, with the resulting final state guaranteed to

be the result of a linearization of all concurrently generated operations
1
. However, since integer

multiplication does not commute with addition and subtraction, we cannot simply apply mult
on various replicas asynchronously, and expect the state to converge. Global synchronization for

every multiplication is certainly helpful, but is typically too expensive to be practical [Bailis et al.

2013a,b] at scale. Under such circumstances, it is not readily apparent if we can define replicated

counters that support multiplication and yet still have a well-defined semantics that guarantees all

replicas will converge to the same counter state.

Fortunately, a state- and merge-centric view of replication lets us arrive at such a semantics

naturally. In the current example, we view the replicated counter state as progressing linearly

in terms of versions on different replicas. Synchronization between replicas merges their respec-

tive (latest) versions into a new version in the context of their lowest common ancestor (LCA)

version. We can define the merge operation by focusing on the difference between the LCA ver-

sion and the state on each replica. Fig. 2 illustrates this intuition through an example. Here,

two concurrent versions of a counter, 10 and 4, emerge on different replicas starting from a

5

10 4

9

⨉2 =
 +5 -1

Fig. 2. Countermerge visualized

common ancestor (LCA) version 5. The first version 10 is a result

of applying mult 2 to LCA 5, whereas the second version 4 is a

result of performing sub 1. To merge these concurrent versions, we

ignore the operations and instead focus on the difference between

each version and the LCA. Here, the differences (literally) are +5

and −1, respectively. The merged version can now be obtained by

composing the differences and applying the composition on the LCA.

Here, composing +5 and −1 gives +4, and applying it to the LCA 5

gives us 9 as the merged version. In general, the merge strategy for

an integer counter can be defined in terms of a three-way merge

function as follows:

let merge l v1 v2 = l + (v1 - l) + (v2 - l)

In the above definition, l is the common ancestor version, whereas v1 and v2 are the concurrent
versions. Note that the mergeable counter described above does not guarantee linearizability (for

instance, if the concurrent operations in Fig. 2 are mult 2 and mult 3, then the merge result would

be 25 and not 30). Nonetheless, it guarantees convergence, and has a meaningful semantics in the

sense that the effect of each operation is preserved in the final state. Indeed, such a counter type

would be useful in practice, for instance, to record the balance in a banking application, which

might use mult to compute an account’s interest.
2

The Counter example demonstrates the utility of a state- and merge-centric view of replication,

and the benefit of using differences as a means of reasoning about merge semantics. Indeed, the

abstract notion of a difference is general enough that it would appear to make sense (intuitively)

to apply a similar approach for other data types. However, this notion does not easily generalize

because data types often have complex inductive definitions built using other data types, making it

hard to uniformly define concepts involving differences, their application, and their composition. It

is in this context that we find our second observation useful. While data types are by themselves

quite diverse, we note that they can nonetheless be mapped losslessly to the rich domain of

relations over sets, wherein relations so merged can be mapped back to the concrete domain

1
Implicit here is the assumption of an operation-centricmodel of replication, where an operation is immediately applied at one

replica, and lazily propagated to other replicas [Burckhardt et al. 2014; Li et al. 2012a; Shapiro et al. 2011a; Sivaramakrishnan

et al. 2015].

2
Contrary to popular belief, real-world banking applications are weakly consistent [Brewer 2013]
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to yield consistent and useful definitions of these aforementioned concepts. The semantics of a

merge in the relational set domain, albeit non-trivial, is nonetheless standard in the sense that it is

independent of the concrete interpretations (in the data type domain) of the merging relations, and

hence can be defined once and for all. This suggests that the merge semantics for arbitrary data types

l

v2v1

v

R(l)

R(v2)R(v1)

R(v)

α

α α

!

Fig. 3. Merging values in relational domain
with help of abstraction (α ) and concretiza-
tion (γ ) functions. Solid (resp. dashed) unla-
beled arrows represent a merge in the con-
crete (resp. abstract) domain.

can be automatically derived, given a pair of abstraction

(α ) and concretization (γ ) functions for each data type

that map the values of that type to and from the rela-

tional domain (the pair (α,γ ) is an invertible relational
specification of the type). The approach, summarized in

Fig. 3, is indeed the one we use to automatically derive

merges in this paper. The resultant mergeable replicated
data types (MRDTs or mergeable types, for short) have
well-defined distributed semantics in the same sense as

the mergeable counter (i.e., a merge operation applied at

each replica results in the same state that preserves the

effects of all operations performed on all replicas).

To make MRDTs an effective component of a dis-

tributed programming model that yield tangible benefits

to programmers, they must be supported by an under-

lying runtime system that facilitates efficient three-way

merges and state replication. Such a system would have

to track the provenance (i.e., full history) of concurrently evolving versions, facilitate detection

and sharing of common sub-structure across multiple versions, allow efficient computation and

propagation of succinct “diffs” between versions, and ideally also support persistence of replicated

state. Fortunately, these demands can be readily met by a content-addressable storage abstraction

underlying modern version control systems such as Git. Indeed, we have successfully implemented

a range of MRDTs, including mergeable variants of lists, queues, trees, maps and heaps, as well as

realistic applications composed of such data types, including standard database benchmarks such

as TPC-C and TPC-E, on top of the content-addressable storage abstraction underlying Git, and

have evaluated them with encouraging results.

In summary, the contributions of this paper are the following:

(1) We introduce the notion of a mergeable data type, a high-level abstraction equipped with a

three-way merge operation to allow different replica-local states of its instances to be sensibly

merged.

(2) We formalize well-definedness conditions for mergeable types by interpreting the behavior

of merge actions in a relational set-theoretic framework and show that such an interpretation

allows the expression of a rich class of merge functions with intuitive semantics that is

significantly more expressive than CRDTs and related mechanisms. More importantly, we

show that declarative specifications defining the correctness conditions for merge operations

provide sufficient structure to enable automated synthesis of correct merges.

(3) We describeQuark, an implementation of mergeable data types in OCaml built on top of a

distributed, content-addressable, version-based, persistent storage abstraction that enables

highly efficient merge operations.

(4) A detailed experimental study over a collection of data structure benchmarks as well as

well-studied large-scale applications justify the merits of our approach.

The remainder of the paper is structured as follows. In the next section, we provide amore detailed

motivating example to illustrate our ideas. Sec. 3 formalizes the concept of relational abstraction

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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for data structures. Sec. 4 defines the rules to derive merge specifications for data structures given

their relational abstractions. Sec. 5 provides details on how to automatically derive well-formed

merge functions from these specifications. Sec. 6 presents details aboutQuark’s implementation.

Sec. 7 discusses experimental results. Related work and conclusions are given in Sec. 8.

2 MOTIVATION
Consider a queue data structure whose OCaml interface is shown in Fig. 4. Queue supports two
operations: push a that adds an element a to the tail end of the queue, and pop that removes

and returns the element at the head of the queue (or returns None if the queue is empty). We

say the client that performed pop has consumed the popped element. For simplicity, we realize

queue as a list of elements, i.e., we concretize the type ’a Queue.t as ’a list for this discussion.

Like Counter with mult, Queue’s implementation does not qualify it as a CRDT, since push and
pop do not commute. Hence, its semantics under (operation-centric) asynchronous replication is

ill-founded as illustrated in Fig. 5.

The execution shown in Fig. 5a starts with two replicas, R1 and R2, of a queue containing

the elements 1 followed by 2. Two distinct clients connect to each of the replicas and concur-

rently perform pop operations, simultaneously consuming 1. The pops are then propagated over

the network and applied at the respective remote replicas to keep them consistent with the

origin. However, due to a concurrent pop already being applied at the remote replica, the sub-

sequently arriving pop operation pops a different and yet-to-be-consumed element 2 in each

case. The result is a convergent yet incorrect final state, where the element 2 vanishes with-

out ever being consumed. Fig. 5b shows a very similar execution that involves pushes instead
of pops. Starting from a singleton queue containing 1, two concurrent push operations push

elements 2 and 3 resp. on different replicas. When these operations are eventually applied at

the remotes, they are applied in different orders, resulting in the divergence of replica states.

Fig. 5c shows another example of divergence, this time involving both pushes and pops. The

module Queue: sig

type 'a t

val push: 'a -> 'a t -> 'a t

val pop: 'a t -> 'a option * 'a t

end = ...

Fig. 4. The signature of a queue in OCaml

execution starts with two replicas, R1 and R2, of a sin-

gleton queue containing the 1. Two pop operations are
concurrently issued by clients, both (independently)

consuming 1. The pops are then applied at the respec-

tive remotes after a delay. During this delay, R1 sees no

activity, leaving the queue empty for R2’s pop, which
effectively becomes a Nop. On R2 however, a push 2
operation is performed meanwhile, so when R1’s pop
is subsequently applied, it pops the (yet unconsumed)

element 2. As a result, the final state of the queue on

R2 is empty. Like the pops, the push 2 operation is also propagated and eventually applied on R1,

resulting in the final state on R1 being a singleton queue. Thus the replicas R1 and R2 of the final

state of the queue diverge, which preempts any consistent semantics of the queue operations from

being applied to explain the execution.

Bad executions such as those in Fig. 5 can be avoided if every queue operation globally syn-

chronized. However, as explained before, enforcing global synchronization requires sacrificing

availability (i.e., latency), an undesirable tradeoff for most applications [Brewer 2000]. It may

therefore seem impossible to replicate queues with meaningful and useful semantics without losing

availability. Fortunately, this turns out not to be the case. In the context of real applications, there

exist implementations of highly available replicated queues whose semantics, albeit non-standard,

i.e., not linearizable or serializable, have nonetheless proven to be useful. Amazon’s Simple Queue

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.



246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 Gowtham Kaki, Swarn Priya, KC Sivaramakrishnan, and Suresh Jagannathan

[1;2] [1;2]

[2] [2]

pop()➝ 1pop()➝1

pop()

[]

pop()

[]

R1 R2

(a)

[1] [1]

[1;2] [1;3]

push 3push 2

push 2

[1;3;2]

push 3

[1;2;3]

R1 R2

(b)

[1] [1]

[] []

pop()➝ 1pop()➝1

push 2

[2]

[]

pop()

[]

[2]

push 2 pop()➝ 2

R1 R2

(c)

Fig. 5. Ill-formed queue executions

Service (SQS) [Amazon SQS [n. d.]] is one such queue implementation with a non-standard at-least-
once delivery semantics, which guarantees, among other things, that a queued message is delivered

to a client for consumption at least once. Devoid of a formal context, such semantics may seem ad
hoc; however, casting the Queue data type as a mergeable type would let us derive such semantics

from first principles, thus giving us a formal basis to reason about its correctness.

Recall that our underlying execution model is based on state-centric model of replication with

versioned state and explicit three-way merges (which we show how to synthesize). Under this

model, two concurrent versions v1 and v2 of a queue can independently evolve from a common

ancestor (LCA) version l . The semantics of the queue under replication depends on how these

versions are merged into a single version v (Fig. 3). The concurrent versions v1 and v2 would have

evolved from l through several push and pop applications, however let us ignore the operations
for a while and focus on the relationship between the queue states l , v1, and v2. Intuitively, the
following relationships must hold among the three queues:

(1) For every element x ∈ l , if x ∈ v1 and x ∈ v2, i.e., if x is not popped in either of the concurrent

versions, then x ∈ v , i.e., x must be in the merged version. In other words, a queue element

that was never consumed should not be deleted.
(2) For every x ∈ l if x < v1 or x < v2, i.e., if x is popped in either v1 or v2, then x < v . That is, a

consumed element (regardless of how many times it was consumed) should never reappear

in the queue.

(3) For every x ∈ v1 (resp. v2), if x < l , that is x is newly pushed into v1 (resp. v2), then x ∈ v .
That is, an element that is newly added in either concurrent versions must be present in the

merged version.

(4) For every x,y ∈ l (resp. v1 and v2), if x occurs before y in l (resp. v1 and v2), and if x,y ∈ v ,
i.e., x and y are not deleted, then x also occurs before y in v . In other words, the order of

elements in each queue must be preserved in the merged queue.

To formalize these properties more succinctly, we define two relations on lists: (1). A membership
relation on a list l (written Rmem(l)) is a unary relation, i.e., a set, containing all the elements in l , and
(2). An occurs-before relation on l (written Rob (l)) is a binary relation relating every pair of elements

x and y in l , such that x occurs before y in l . For a concrete list l = [1; 2; 3], Rmem(l) is the set
{1, 2, 3}, and Rob (l) is the set {(1, 2), (1, 3), (2, 3)}. Note that for any list l Rob (l) ⊆ Rmem(l)×Rmem(l),
i.e., Rob (l) is only defined for the elements in Rmem(l). Using Rmem , we can succinctly specify the

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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relationship among the members of l , v1, v2, and v , where v = merge l v1 v2, as follows
3
:

Rmem(v) = Rmem(l) ∩ Rmem(v1) ∩ Rmem(v2)
∪ Rmem(v1) − Rmem(l) ∪ Rmem(v2) − Rmem(l)

(1)

The left hand side denotes the set of elements in the merged version v . The right hand side is a

union of three components: (1). The elements common among three versions l , v1, and v2, (2). The
elements in v1 not in l , i.e., newly added in v1, and (3). The elements in v2 not in l , i.e., newly added

in v2. Observe that we applied the same intuitions as the counter merge from Sec. 1 to arrive at the

above specification, namely merging concurrent versions by computing, composing and applying

their respective differences to the common ancestor. However, we have interpreted the difference
through the means of a relation over sets that abstracts the structure of a queue and captures only

its membership property. Another important point to note is that the specification does not appeal

to any operational characteristics of queues, either sequentially or in the context of replication.

Similar intuitions can be applied to manage the structural aspects of merging queues by capturing

their respective orders via the occurs-before relation (Rob ) over lists, but after accounting for a

couple of caveats. First, since Rob ⊆ Rmem × Rmem , Rob (v) has to be confined to the the domain

of Rmem(v) × Rmem(v). Second, the order between a pair of elements where each comes from a

distinct concurrent version is indeterminate, thus Rob (v) can only be underspecified. Taking these

caveats into account, Rob (v) of the merged version v can be specified thus:

Rob (v) ⊇ (Rob (l) ∩ Rob (v1) ∩ Rob (v2)
∪ Rob (v1) − Rob (l) ∪ Rob (v2) − Rob (l))

∩ (Rmem(v) × Rmem(v))
(2)

Note the ⊇ capturing the underspecification. The right hand side is essentially same as the right hand

side of the Rmem equation (above), except that Rob replaces Rmem , and we compute an intersection

with Rmem(v) × Rmem(v) at the top level to confine Rob (v) to the elements in v . As mentioned

earlier, the specification does not induce a fixed order among elements coming from different

queues. To recover convergence, a merge function on queues can choose to order such elements

through a consistent ordering relation, such as a lexicographic order.

The membership and occurs-before specifications together characterize the merge semantics of

the queue data type that we derived from basic principles we enumerated above. We shall now

reconsider the executions from Fig. 5, this time under a state-centric model of replication, and

demonstrate how our merge specification leads us to a consistent distributed semantics for queue,

which subsumes a at-least-once delivery semantics. The corresponding executions under this model

are shown in Fig. 6.

Fig. 6a is the same execution in Fig. 5a with the dashed line representing a version propagation

followed by a merge, rather than an operation propagation followed by an application. For each

version, the Rmem and Rob relations are shown below its actual value. If the version is a result of a

merge, then we compute its Rmem and Rob sets using equations 1 and 2 of the merge specification

above. For both the merges shown in the figure, the concurrent versions (v1 and v2) are the same:

the singleton queue [2], and their LCA version (l ) is the initial queue [1;2]. Thus each concurrent

version is a result of popping 1 from the LCA (which is consumed/delivered twice as acceptable

under at-least-once delivery semantics). Intuitively, the result of the merge should be a version that

incorporates the effect of popping 1, while leaving the rest of the queue unchanged from the LCA.

This leaves the queue [2] as the only possible result of the merge (and the execution). Indeed, this

is the result we would obtain if reconstruct the queue from the merged Rmem and Rob relations

3
We elide parentheses for perspicuity. Any ambiguity in parsing should be resolved by assuming that ∩ and − bind tighter

than ∪
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[2]
({2},∅)

[2]
({2},∅)({2},∅)

pop()➝1

[2]
({2},∅)

[2]
({2},∅)

R1 R2

[1;2]
({1,2},{(1,2)})

pop()➝1

(a)

[1;2]
({1,2},{(1,2)})

[1;3]
({1,3},{(1,3)})

push 2

[1;2;3]
({1,2,3},

{(1,2),(1,3),
(2,3)})

[1;2;3]
({1,2,3},

{(1,2),(1,3),
(2,3)})

R1 R2

[1]
({1},∅)

push 3

(b)

[]
(∅, ∅)

[]
(∅, ∅)

pop()➝1

[2]
({2},∅)

[]
(∅, ∅)

R1 R2

[1]
({1},∅)

pop()➝1

push 2

[2]
({2},∅)

[2]
({2},∅)

(c)

Fig. 6. State-centric view of queue replication aided by context-aware merges (shown in dashed lines)

let rec Rmem = function

| [] -> ∅

| x::xs -> {x} ∪ Rmem (xs)

let rec Rob = function

| [] -> ∅

| x::xs -> ({x} × Rmem (xs)) ∪ Rob (xs)

Fig. 7. Functions that compute Rmem and Rob relations for a list. Syntax is stylized to aid comprehension.

shown in the figure. Execution in Fig. 6b corresponds to the one in Fig. 5b. Here we have two

merges: one into R1 and other into R2. The concurrent versions for both the merges are the same:

[1;2] and [1;3], and their LCA is the queue [1]. Each concurrent version pushes a new element

(2 and 3, resp.) to the queue after the existing element 1. Intuitively, the merged queue should

contain both the new elements ordered after 1. Indeed, this is also what the merged Rmem and

Rob relations suggest. The order between new elements, however, is left unspecified by Rob . As
mentioned earlier, a consistent ordering relation has to be used to order such elements. Choosing

the less-than relation, we obtain the result of the merge as [1;2;3]. In Fig. 6c, there are three

merges: two into R1 and one into R2. For the first merge into R1, the concurrent versions are both

empty queues, and their LCA is the singleton queue [1]. Thus both versions represent a pop of

1, and their merged version, which reconciles both the pops, should be an empty queue, which

is also what the merged relations suggest. The second merge into R1 and the only merge into R2,

both merge an empty queue ([]) and a singleton queue [2], with the LCA version being the initial

queue [1]. While the version [] can be understood as resulting from the popping an element from

LCA, the concurrent version [2] goes one step ahead and pushes a new element 2. Consequently,

the merged version should be a queue not containing 1, but containing the new element 2, i.e., [2],
which is again consistent with the result obtained by merging Rmem and Rob relations. Thus in

all three executions discussed above, the relational merge specification (Eqs. 1 and 2) consistently

guides us towards a meaningful result, imparting a well-defined distributed semantics to the queue

data type in the process.

To operationalize the merge specification discussed above, i.e., to derive a merge function that

implements the specification, we require functions (α and γ resp.) to map a queue to the relational

domain and back. The abstraction function α is simply a pair-wise composition of functions that

compute Rmem and Rob relations for a given list. The eponymous functions are shown in Fig. 7.
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1

1 2
1 3

1 2

3

push 3push 2

mergemerge

(a) Rob relations of merging
queues from Fig. 6b visual-
ized as graphs

1
2

3

(b) The incomplete Rob re-
sulting from the merge is
completed by adding an ar-
bitration edge between 2
and 3 consistent with their
domain ordering

1 2 3

(c) The topological ordering of the com-
pleted Rob graph yields the result of
queue merge

Fig. 8. Concretizing a queue from a subset of its Rob relation resulting from a merge

The Rmem function computes the set of elements in a given list l , which is its unary membership

relation. The function Rob computes the set of all pairs (x,y) such that x occurs before y in l . The
concretization function γ reconstructs a list/queue given a subset of its Rmem and Rob relations

(The subsets are a consequence of underspecification, e.g., Rob specification in Eq. 2). One way

γ can materialize a list from the given subsets of its Rmem and Rob relations is by constructing

a directed graph G whose vertices are Rmem(v), and edges are Rob (v). A topological ordering of

vertices in G, where ties are broken as per a consistent arbitration order (e.g., lexicographic order)

yields the merged list/queue. Fig. 8 demonstrates this approach for the queue merge example in

Fig. 6b.

We have generalized the aforementioned graph-based approach for concretizing ordering rela-

tions, and abstracted it away as a library function γord . Given ord , an arbitration order, the function
γord concretizes an ordering relation of a data structure (not necessarily a total order) as a graph

isomorphic to that structure, using the arbitration order to break ties (as shown in Fig. 8b). More dis-

cussion on γord can be found in Sec. 5. Instantiating ord with less-than relation (<) on integers, the

concretization function of a queue can be written as shown in Fig. 9a. The result of γ<(rmem,robs)
is a list-like graph as shown in Fig. 8c. The function mk_list traverses the graph beginning from

its root to construct a list isomorphic with the graph. Standard library function Set.elements is
returns a list of elements in a set. The DiGraph library is assumed to support a function root that

returns a root (vertex with indegree 0) of a directed graph, and a function succ that returns the list

of successors of the given vertex in the graph.

The γord function thus (mostly) automates the task of concretizing orders, which is usually the

non-trivial part of writing γ . Given both α and γ , the merge function for queues (lists, in general)

follows straightforwardly from the merge specification as shown in Fig. 9b. For brevity, we write

A ⋄ B ⋄C to denote the three-way merge of sets A, B, and C , which is defined thus:

A ⋄ B ⋄C = (A ∩ B ∩C) ∪ (B −A) ∪ (C −A)

3 ABSTRACTING DATA STRUCTURES AS RELATIONS
The various data structures defined by a program differ in terms of the patterns of data access they

choose to support, e.g., value lookups in case of a tree and insertions in case of an unordered list.

Nonetheless, regardless of its access pattern priorities, a data structure can be uniquely characterized

by the contents it holds, and the structural relationships defined among them. This observation lets
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let γ (rmem , robs) =

if robs = ∅

then Set.elements rmem

else

let g = γ< (rmem ,robs) in

let rec mk_list x =

match DiGraph.succ x with

| [] -> [x]

| [y] -> x::( mk_list y)

| _ -> error()

mk_list (DiGraph.root g)

(a) Queue concretization function in OCaml

let merge l v1 v2 =

let (rmem_l , robs_l) = α (l) in

let (rmem_v1 , robs_v1) = α (v1) in

let (rmem_v2 , robs_v2) = α (v2) in

let rmem_v = rmem_l ⋄ rmem_v1 ⋄ rmem_v2

in

let robs_v = (robs_l ⋄ robs_v1 ⋄

robs_v2)

∩ (rmem_v × rmem_v) in

γ (rmem_v , robs_v)

(b) Queue merge composed of abstraction (α ) and con-
cretization (γ ) functions

Fig. 9. (Along with Fig. 7) Relational approach to queue merge materialized in OCaml

us capture salient aspects of an arbitrary data structure using concrete artifacts, such as sets and

relations.

The relational encoding of the list data type has already been demonstrated in Sec. 2. As shown,

membership and order properties of a list l , represented by relations Rmem(l) and Rob (l), characterize
l in the sense that one can reconstruct the list l given these two relations

4
. We call such relations the

characteristic relations of a data type, a notion we shall formalize shortly. Note that characteristic

relations need not be unique. For instance, we could equivalently have defined an occurs-after (Roa )
relation - a dual of the occurs-before relation, that relates the list elements in reverse order, and use

it in place of Rob as a characteristic relation for lists without any loss of generality.

Relational abstractions can be computed for other data types too, but before describing a general

procedure for doing so, we first make explicit certain heretofore implicit conventions we have been

using in the presentation thus far. First, we often use a relation name (e.g., Rmem ) interchangeably

to refer to the relation as well as the function that computes that relation. To be precise, Rmem(l) is
the membership relation for a list l , whereas Rmem is a function that computes such a relation for

any list l . But we prefer to call them both relations, with the latter being thought of as a relation

parameterized on lists. Second, we use relations and sets to characterize data structures in this

presentation, when the proper abstraction is multi-sets, i.e., sets where each element carries a

unique cardinal number. While using sets leads to a simpler formulation and typically does not

result in any loss of generality, we explicitly use multi-sets when they are indeed required.

As another example of a relational specification, consider the characteristic relations that specify

a binary tree whose OCaml type signature is given below:

type 'a tree = | E

| N of 'a tree * 'a * 'a tree

An Rmem function can be defined for trees similar to lists that computes the set of elements in a

tree. A tree may denote a binary heap, in which case an ancestor relation is enough to capture its

4
One might think Rob itself is sufficient, but that is not true. Rob is empty for both singleton and empty lists, making it

impossible to distinguish between them.
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Data Type Characteristic Relations

Binary Heap Membership (Rmem ), Ancestor (Rans ⊆ Rmem × Rmem )

Priority Queue Membership (Rmem )

Set Membership (Rmem )

Graph Vertex (RV ), Edge (RE )
Functional Map Key-Value (Rkv )
List Membership (Rmem ), Order (Rob )
Binary Tree Membership (Rmem ), Tree-order (Rto ⊆ Rmem × label × Rmem )

Binary Search Tree Membership (Rmem )

Table 1. Characteristic relations for various data types

structure (since relative order between siblings does not matter). The definition is shown below:

let rec Rans = function

| E -> ∅

| N(l,x,r) ->

let des_x = Rmem (l) ∪ Rmem (r) in

let r_ans = {x} × des_x in

Rans (l) ∪ r_ans ∪ Rans (r)

type label = L | R

let rec Rto = function

| E -> ∅

| N(l,x,r) ->

let l_des = {x} × {L} × Rmem (l ) in

let r_des = {x} × {R} × Rmem (r ) in

Rto (l) ∪ l_des ∪ r_des ∪ Rto (r)

The full structure of the tree, including the relative order between siblings, can be captured via

as a ternary tree-order relation (Rto shown above) that extends the ancestor relation with labels

denoting whether an element is to the left of its ancestor or to its right.

However, the shape of a data structure may not always be relevant. For instance, given two binary

search trees with the same set of elements, it does not matter whether they have the same shape.

Their extensional behavior is presumably indistinguishable since they would give the same answers

to the same queries. In such cases, a membership relation is enough to completely characterize a

tree. Indeed, different data types have different definitions of extensional equality, so we take that

into account in formalizing the notion of characteristic relations:

Definition 3.1. A sequence of relations RT is called the characteristic relations of a data type T , if

for every x : T and y : T , RT (x) = RT (y) implies x =T y, where =T denotes the extensional equality

relation as interpreted by T .

Our formalization requires the type of each characteristic relation to be specified in order to derive

a merge function for that relation. This type is not necessarily the same as its OCaml type for we

let additional constraints be specified to precisely characterize the relation. The syntax of relation

types and other technicalities are discussed in Sec. 4.

The approach of characterizing data structures in terms of relations is applicable to many

interesting data types as shown in Table 1. The vertex and edge relations of a graph are essentially

its vertex and edge sets respectively. The key-value relation of a functional map is a semantic

relation that relates each key to a value. Concretely, it is just a set of key-value pairs.

Basic data types, such as natural numbers and integers, can also be given a relational interpretation

in terms of multi-sets, although such an interpretation is not particularly enlightening. For example,

a natural number n can be represented as a multi-set {1 : n}, meaning that it is equal to a set

containing n ones. Zero is the empty set {}. Addition corresponds to multi-set union, subtraction

to multi-set difference, and a minimum operation to multi-set intersection.
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4 DERIVING RELATIONAL MERGE SPECIFICATIONS
In Sec. 2, we presented a merge specification for queues expressed in terms of the membership

(Rmem) and order (Rob ) relations of the list data type. The specification realizes the abstract idea

of merging concurrent versions by computing, composing and applying differences to the LCA.

Similar specifications can be derived for other inductive data types, such as trees, graphs, etc.

in terms of their characteristic relations listed in Table 1. Beyond these data types, however,

the approach suggested thus far is presumably hard to generalize as it ignores an important

aspect of data type construction, namely composition. In this section, we first demonstrate the

challenges posed by data structure composition, and subsequently generalize our approach to

include such compositions. We also formalize our approach as a set of (algorithmic) rules to derive
merge specifications for arbitrary data structures and their compositions, given their characteristic

relations, and abstraction/concretization functions.

4.1 Compositionality
Consider an integer pair type - int*int. One might define relations Rf st and Rsnd on int*int as

follows: Rf st and Rsnd comprise the characteristic relations of integer pairs since if the relations

let Rf st = fun (x,_) -> {x} let Rsnd = fun (_,y) -> {y}

are equal for two integer pairs, then the pairs themselves must be equal. Using these relations, one

might try to specify the merge semantics of the pair type by emulating the membership (Rmem)

specification from the queue example of Sec. 2. Let v1 and v2, each an integer pair, denote the

merging versions, and let l be their LCA version. Let v be the result of their three-way merge, i.e.,

v = merge l v1 v2. Substituting Rmem with Rf st (resp. Rsnd ) in queue’s merge specification leads

to the following:

Rf st (v) = Rf st (l) ∩ Rf st (v1) ∩ Rf st (v2)

∪ Rf st (v1) − Rf st (l) ∪ Rf st (v2) − Rf st (l)

Rsnd (v) = . . . (respectively for Rsnd )

Unfortunately, the specification is meaningless in the context of a pair. Fig. 10 illustrates why. Here,

two concurrent int*int versions, (3,4) and (5,6), evolve from an initial version (1,2).

(1,2)
Rfst={1}, Rsnd={2}

(5,6)
Rfst={5}, Rsnd={6}

(3,4)
Rfst={3}, Rsnd={4}

(?,?)
Rfst={3,5}, Rsnd={4,6}

Fig. 10. Incorrect merge of inte-
ger pairs

Their respective Rf st and Rsnd relations are as shown in the figure.

Applying the above specification for the int*int merge function,

we deduce that the Rf st and Rsnd relations for the merged version

should be the sets {3, 5} and {4, 6}, respectively. However, the sets
do not correspond to any integer pair, since Rf st and Rsnd for any

such pair is expected to be a singleton set. Hence the specification

is incorrect.

Clearly, the approach we took for queue does not generalize to

a pair. The problem lies in how we view these two data structures

from the perspective of merging. While the merge specification we

wrote for queue treats it as a collection of unmergeable atoms, such

an interpretation is not sensible for pairs, as the example in Fig. 10

demonstrates. Unlike a queue, a pair defines a fixed-size container

that assigns an ordinal number (“first”, “second” etc) to each of its

elements. Two versions of a pair are mergeable only if their elements with corresponding ordinals

are mergeable. In Fig. 10, if we assume the integers are in fact (mergeable) counters (i.e., Counter.t
objects), we can use Counter.merge to merge the first and second components of the merging

pairs independently, composing them into a merged pair as described below:
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T , τ ∈ Data Types R ∈ Relation Names
ρ ∈ Tuple Types B T | R(ν ) | ρ × ρ
s ∈ Relation Types B {ν : T } → P (ρ)

Fig. 11. Type specification syntax for (functions that compute) relations

let merge l v1 v2 = (Counter.merge (fst l) (fst v1) (fst v2),

Counter.merge (snd l) (snd v1) (snd v2))

Recall that the Counter.merge is the following function:

let merge l v1 v2 = l + (v1 - l) + (v2 - l)

Thus the result of merging the pair of counters and their LCA from Fig. 10 is:

(Counter.merge 1 3 5, Counter.merge 2 4 6) = (7,8)

The pair example demonstrates the need and opportunity to make merges compositional. The

specification of such a composite merge function is invariably compositional in terms of the merge

specifications of the types involved. Let ϕc (l,v1,v2,v) denote the counter merge specification

defined, for instance, thus:

ϕc (l,v1,v2,v) ⇔ v = l + (v1 − l) + (v2 − l)

We can now define a merge specification (ϕc×c ) for counter pairs in terms of ϕc , and the relations

Rf st and Rsnd as follows:

ϕc×c (l,v1,v2,v) ⇔ ∀x,y, z, s . x ∈ Rf st (l) ∧ y ∈ Rf st (v1) ∧ z ∈ Rf st (v2)

∧ ϕc (x,y, z, s) ⇒ s ∈ Rf st (v)

∧ ∀s . s ∈ Rf st (v) ⇒ ∃x,y, z. x ∈ Rf st (l) ∧ y ∈ Rf st (v1)

∧ z ∈ Rf st (v2) ∧ ϕc (x,y, z, s)

∧ . . . (respectively for Rsnd )

The first conjunct on the right hand side essentially says that if (counters) x , y, and z are respec-
tively the first components of the pairs l , v1 and v2, and s is the result of merging x , y and z via
Counter.merge, then s is the first component of the merged pair v . The second conjunct states

the converse. Similar propositions also apply for the second components (accessible via Rsnd ), but
elided. Observe that the specification captures the merge semantics of a pair while abstracting

away the merge semantics of its component types. In other words, ϕa×b , the merge specification

of the type a*b is parametric on the merge specifications ϕa and ϕb of types a and b respectively.
Thus, the merge specification for a pair of queues, i.e., ϕq×q , can be obtained by replacing ϕc with
ϕq , the queue merge specification (Sec. 2) in the above definition. The ability to compose merge

specifications in this way is key to deriving a sensible merge semantics for any composition of data

structures.

A pair is an example of a composite data structure that assigns implicit ordinals to its constituents.

Alternatively, a data structure may assign explicit ordinals or identifiers to its members. For instance,

a map abstract data type (implemented using balanced trees or hash tables) identifies its constituent

values with explicit keys. In either case, the top-level merge is essentially similar to the one described

for pair, and involves merging constituent values that bear corresponding ordinals or identifiers.

Note that this assumes that the values are indeed mergeable. Data structures may be composed

of types that are not mergeable by design, e.g., the keys in a map data type are not mergeable,

although they serve to identify the values which are mergeable. Since the merge strategy of a data

structure should work differently for its mergeable and non-mergeable constituents, we need a way
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to identify them as such. This can be done through the type specification of relations, as described

below.

4.2 Type Specifications for Characteristic Relations
As mentioned in Sec. 3, characteristic relations of a data type need to be explicitly typed. Fig. 11

shows the syntax of type specifications for such relations. We use both T and τ to refer to data

types, with the latter used to highlight that the type being referred to is mergeable. A relation

maps a value ν of a data type T to a set of tuples each of type ρ. A tuple type is specified in

terms of the set from which it is drawn. It could be the set of all values of a (different) type T ,
or the set defined by a (different) relation R on ν , or a cross product of such sets. Note that the

cross-product operator is treated as associative in this context, hence for any three sets A, B and C ,
A × (B ×C) = (A × B) ×C = A × B ×C . The syntax allows the type of a relation R on ν : T to refer

another relation R′
on ν : T to constrain the domain of its tuples. Some examples of relations with

type specifications are given below.

Example 4.1. The characteristic relations of int list data type can be specified thus:

Rmem : {ν : int list} → P (int),

Rob : {ν : int list} → P (Rmem (ν ) × Rmem (ν ))

Example 4.2. The characteristic relations of a map data type with string keys and counter values

can be specified thus:

Rk : {ν : (string ,int) map} → P (string),

Rkv : {ν : (string ,int) map} → P (Rk (ν ) × counter)

Type constraints, as described above, ensure syntactic correctness of relations. However, not all

syntactically valid relations lead to semantically meaningful merge specifications. To identify those

that do, we define a well-formedness condition on type specifications of relations. Let ρR denote the

type of tuples in a relation R defined over ν : T , for some data typeT (i.e., R : ν : T → P (ρR )). Since
tuple types can refer to other relations (see ρ in Fig. 11, and the Rob and Rkv type definitions above),

ρR could be composed of R′(ν ), where R′
is another relation on ν : T . We consider “flattening”

such ρR by recursively substituting every occurrence of R′(ν ) with the tuple type ρR′ of R′
in

ρR (i.e., [ρ ′R/R
′(v)] ρR ). For instance, the flattened tuple types of Rob and Rkv are int × int and

string× int, respectively. In general, the flattened tuple type of ρR (denoted ⌊ρR⌋) is a non-empty

cross product of the form T1 ×T2 × . . .Tn , which we shorten as T . We define the well-formedness

of a relation’s type specification by examining its flattened tuple type as follows.

Definition 4.3. A relation R : {ν : T } → P (ρ) is said to have a well-formed type specification if

and only if there exists a non-empty T and a (possibly empty) τ such that:

• ⌊ρ⌋ = T × τ , and

• Every Ti ∈ T is not mergeable, whereas
• Every τi ∈ τ is mergeable.

Informally, a mergeable type is a data type for which a merge specification can be derived, and a

merge function that meets the specification exists (e.g., queues and counters). Basic data types,

such as strings and floats, are considered not mergeable for the sake of this discussion. The well-

formedness definition presented above effectively constrains relations to be one of the following two

kinds based on the type of their tuples: (a). those containing tuples composed only of non-mergeable

types (i.e., τ = ∅ and ⌊ρ⌋ = T ), and (b). those containing tuples composed of non-mergeable types

followed by mergeable types (i.e., ⌊ρ⌋ = T × τ and τ , ∅). The former are relations that capture the
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contents and the structural relationships among the contents in a data structure (e.g., Rmem , Rob ,
and Rk ), and the latter are those that capture their semantic relationships5 (e.g., Rkv - a relation that

identifies key-value relationship latent in each element of a map). Based on this categorization,

we can now formalize the rules to derive merge specifications of an arbitrary data type from the

well-formed type specification of its characteristic relations.

4.3 Derivation Rules
Fig. 12 shows the derivation rules for merge specifications. The rules define the judgment

ϕT (l,v1,v2,v) ⊇ φ

where ϕT is the merge specification for a typeT parameterized on the merging versions (v1 and v2),
their LCA (l ), and the merge result (v), and φ is a first-order logic (FOL) formula. The interpretation

is that the merge specification ϕT should subsume the FOL formula φ. The rules let us derive

such constraints for every R on type T with a well-formed type specification R : T → P (ρ).
Accumulating the constraints derived over several such applications of the rules (until fixpoint)

results in the full merge specification of type T . The rules invoke the definitions of flattening,

well-formedness, etc. that we introduced above.

Recall that the tuple type of a relation is a cross product involving data types and other relations.

We use its set interpretation in set operations such as intersection. For instance, if the characteristic

relation on int list has the type ν : int list → P (int × Rmem(ν )), then its tuple type ρ =
int × Rmem(ν ) has a natural set interpretation as the cross product of the set of all integers and

Rmem(ν ), and hence can be used in set expressions such as Rob (ν ) ∩ ρ, as the rules in Fig. 12 do. The

notationA⋄B ⋄C denotes three-way merge of setsA, B, andC , defined formally in Sec. 2. We define

an extension operation on relations that relate ordinals or identifiers of non-mergeable type(s) T
with values of mergeable type(s) τ . Let R be such a relation on type T , and let 0i denote the “zero”

or “empty” value of type τi . We call 0 an empty value of a type if R(0) = ∅ for all characteristic

relations R on that type (e.g., an empty list for type list). An extension of R is a relation R+ that
relates ordinals or identifiers not already related by R to empty or zero values. Formally, we define

R+ by defining its containment relation as follows:

∀(k : T ).∀(x : τ ). (k, x) ∈ R+ ⇔ (k, x) ∈ R ∨ (∄(y : τ ). (k,y) ∈ R ∧
∧
i xi = 0i )

A tuple (k, x) is in R+ if and only if it is already in R, or R does not relate k to anything, and each xi
is an empty value. We also define a projection of R, denoted Rk , that is simply the set of ordinals or

identifiers in R. The definition is as follows:

∀(k : T ). k ∈ Rk ⇔ ∃(x : τ ). (k, x) ∈ R

Note that R+ and Rk are merely notations to simplify the rules in Fig. 12, as will be evident shortly.

The rule Set-Merge derives merge constraints for a relation R that is composed of only non-

mergeable types (T ), and do not draw on other relations, i.e., its tuple type ρ is not a cross product

of other relations. Thus, R capture the elements of T rather than their relative order. Examples

include Rmem (list) and Rk (map). The consequent of Set-Merge enforces the set merge semantics

on R, and is an exact specification of the merge result, leaving no room for the merge function to

conjure new elements of its own. As an example, one can apply the Set-Merge rule to the int
list type to obtain a constraint on Rmem as described in Sec. 2.

The rule Order-Merge-1 constrains a relation R whose tuple type ρ involves cross-product of

other relations. Thus the relation R can be construed as an ordering relation over tuples captured

by other relations over the same data structure. Examples include Rob (binary relation on lists) and

5
This categorization corresponds exactly to the properties of interest that were said to uniformly characterize all data

structures (Sec. 3).
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ϕT (l,v1,v2,v) ⊇ φ

R : {ν : T } → P

(
T
)

ϕT (l,v1,v2,v) ⊇ ∀(x : T ). x ∈ (R(l) ⋄ R(v1) ⋄ R(v2)) ⇔ x ∈ R(v)
[Set-Merge]

R : {ν : T } → P (ρ) ⌊ρ⌋ = T

ϕT (l,v1,v2,v) ⊇ ∀(x : T ). x ∈ (R(l) ⋄ R(v1) ⋄ R(v2) ∩ ρ) ⇒ x ∈ R(v)
[Order-Merge-1]

R : {ν : T } → P (ρ) ⌊ρ⌋ = T

ϕT (l,v1,v2,v) ⊇ ∀(x : T ). x ∈ R(v) ⇒ x ∈ ρ
[Order-Merge-2]

R : {ν : T } → P (ρ) ⌊ρ⌋ = T × τ τ , ∅

ϕT (l,v1,v2,v) ⊇ ∀(k : T ).∀(x,y, z, s : τ ). (k, x) ∈ R+(l) ∧ (k,y) ∈ R+(v1) ∧ (k, z) ∈ R+(v2)

∧ k ∈ (Rk (l) ⋄ Rk (v1) ⋄ Rk (v2)) ∧
∧
i ϕτi (xi ,yi , zi , si ) ∧ (k, s) ∈ ρ ⇒ (k, s) ∈ R(v)

[Rel-Merge-1]

R : {ν : T } → P (ρ) ⌊ρ⌋ = T × τ τ , ∅

ϕT (l,v1,v2,v) ⊇ ∀(k : T ).∀(s : τ ). (k, s) ∈ R(v) ⇒ (k, s) ∈ ρ

∧ ∃(x,y, z : τ ). (k, x) ∈ R+(l) ∧ (k,y) ∈ R+(v1) ∧ (k, z) ∈ R+(v2)

∧ k ∈ (Rk (l) ⋄ Rk (v1) ⋄ Rk (v2)) ∧
∧
i ϕτi (xi ,yi , zi , si )

[Rel-Merge-2]

Fig. 12. Rules to derive a merge specification for a data type T

Rto (ternary relation on trees). The conclusion of Order-Merge-1 adds a constraint to ϕT that

merely enforces the set merge semantics over the ordering relation R, while retaining only those

tuples that belong to the set ρ. The constraint is only an implication (and not a bi-implication),

thereby underspecifying the merge result, and letting the merge function add new orders on existing

elements. However, in order to prevent the merge from creating elements out of thin air, we need a

constraint in reverse direction, albeit a weaker one. The rule Order-Merge-2 fulfills this need, by

restricting the tuples in the merged order relation to be drawn from the cross product of existing

relations (ρ). Observe that these two rules together give us the constraints on Rob that we wrote

for the queue data structure in Sec. 2.

The rules Rel-Merge-1 and Rel-Merge-2 are concerned with the last category of relations that

relate a data structure composed of multiple types to the (mergeable) values of those types through

(non-mergeable) ordinals or identifiers. The premise of both rules assert this expectation on R by

constraining its tuple type ρ to be of the form T × τ , where τ stands for a mergeable type. An

example of such an R is the Rkv relation over a map ν that relates its keys to mergeable values. The

Rel-Merge-1 requires a tuple (k, s) to be present in the merged relation if k is related to x , y, and z
of type τ respectively by the (extended) relations R(l), R(v1), and R(v2), and each si is the result of
merging xi ,yi , and zi as per the merge semantics of τi (captured by ϕτi ). The rule thus composes the

merge specification ϕT of T using the merge specifications ϕτ of its constituent mergeable types τ .

Using the extended relation R+ instead of R for l , v1, and v2 lets us cover the case where k is related

to something in one (resp. two) of the three versions, but is left unrelated in the remaining two

(resp. one) versions. The extended relation R+ lets us assume a zero value for x , y, or z, whichever

is appropriate, in such cases. We also ensure that k needs to be related to something in the merged

version by separately merging the sets of ordinals in each merging relation as captured by the

constraint k ∈ Rk (l) ⋄Rk (v1) ⋄Rk (v2). The rule Rel-Merge-2 asserts the converse of the constraint
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added in Rel-Merge-1, effectively making the merge specification an exact specification like in

Set-Merge. Thus, for instance, a merge function of a map cannot introduce new key-value pairs

that cannot be derived from the existing pairs by merging their values.

Example 4.4. The merge specification presented earlier for a pair of counters can now be formally

derived, albeit with a few minor changes: we use the Rpair relation instead of Rf st and Rsnd , which
assigns an explicit (integer) ordinal to each pair component:

let Rpair (x,y) = {(1,x), (2,y)}

The type specification is Rpair : {ν : counter ∗ counter} → P (int × counter). The tuple type is
of the form T × τ , where T is not mergeable and τ is mergeable (an ordinal type can be defined

separately from integers to be non-mergeable). Applying Rel-Merge-1 and Rel-Merge-2 rules

yields the following merge specification for counter pairs (simplified for presentation):

ϕc×c = ∀(k : int).∀(x,y, z, s : counter). (k, x) ∈ Rpair (l) ∧ (k,y) ∈ Rpair (v1)
∧ (k, z) ∈ Rpair (v2) ∧ ϕc (x,y, z, s) ⇒ (k, s) ∈ R(v)

∧ ∀(k : int).∀(s : counter). (k, s) ∈ Rpair (v) ⇒ ∃(x,y, z : counter). (k, x) ∈ Rpair (l)
∧ (k,y) ∈ Rpair (v1) ∧ (k, z) ∈ Rpair (v2) ∧ ϕc (x,y, z, s)

To check that the above is indeed a correct merge specification for counter pairs, one can observe

that a function that directly implements this specification would correctly merge the example in

Fig. 10.

5 DERIVING MERGE FUNCTIONS
We have thus far focused on deriving a merge specification for a data type, given the type specifica-

tion of its characteristic relations.We now describe how to synthesize a function that operationalizes

the specification, given these relation definitions. The synthesis problem is formalized thus:

Definition 5.1 (Merge Synthesis Problem). Given a data type T , a function α that computes the

characteristic relations for values of T , a function γ that maps the characteristic relations back to

instances of T , and a (derived) merge specification ϕT of T expressed in terms of its characteristic

relations, synthesize a function F such that for all l , v1, and v2 of type T , ϕT (l,v1,v2, F (l,v1,v2))
holds.

The synthesis process is quite straightforward as the expressive merge specification ϕT already

describes what the result of a relational merge should be. For each FOL constraint φ in ϕT that

specifies the necessary tuples in the merged relation (i.e., of the form . . .⇒ x ∈ R(v) or . . .⇔ x ∈

R(v) in Fig. 12), we describe its operational interpretation JφK that computes the merged relation

in a way that satisfies the constraint. We start with the simplest such φ, which is the constraint

added to ϕT by Set-Merge. Recall that α is a pair-wise composition of characteristic relations of

typeT (i.e., α = λx .R(x)). Let R be a characteristic relation, which we obtain by projecting from α ,
and let r_l, r_v1, and r_v2 be variables denoting the sets R(l), R(v1), and R(v2), resp. Using these

definitions, we translate the Set-Merge constraint almost identically as shown below:

J∀(x : T ). x ∈ (R(l) ⋄ R(v1) ⋄ R(v2)) ⇔ x ∈ R(v)K = r_l ⋄ r_v1 ⋄ r_v2

Order-Merge-1 can be similarly operationalized. One aspect that needs attention is the intersection

with the set ρ denoting the tuple space of R. Since ρ could be composed of an infinite set like int,
intersection with ρ cannot be naïvely interpreted. Instead, we synthesize a Boolean function Bρ
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that returns true for elements present in the set ρ, and implement the intersection in terms of a

Set.filter operation that filters a set to contain only those elements that satisfy this predicate:

J∀(x : T ). x ∈ (R(l) ⋄ R(v1) ⋄ R(v2) ∩ ρ) ⇒ x ∈ R(v)K =
let x = r_l ⋄ r_v1 ⋄ r_v2 in

Set.filter Bρ x

Rel-Merge-1 covers the interesting case of compositional merges. In this case, the tuples in

R have a sequence of ordinals or identifiers (k : T , which we call keys) followed by values of

mergeable types (τ ). Each τi is required to have a zero value 0i for which each characteristic

relation has to evaluate to ∅. In practice, this is enforced by requiring the module M that defines
τi (i.e., M.t = τi ) to have a value empty:t, and checking if R(empty) evaluates to ∅ for each R.

let ks_r_l = Set.map fst r_l in

let ks_r_v1 = Set.map fst r_v1 in

let ks_r_v2 = Set.map fst r_v2 in

let ks = ks_r_l ⋄ ks_r_v1 ⋄ ks_r_v2 in

let zero = M.empty in

let r_l ' = r_l ∪

(ks - ks_r_l) × {zero} in

let r_v1 ' = r_v1 ∪

(ks - ks_r_v1) × {zero} in

let r_v2 ' = r_v2 ∪

(ks - ks_r_v2) × {zero} in

Set.map (fun (k,x) ->

let (x,y,z) =

(r_l(k), r_v1(k), r_v2(k)) in

let s = M.merge x y z in

(k,s)) ks

Fig. 13. Operational interpretation of the constraint
imposed by Rel-Merge-1 rule from Fig. 12

Since τi is a mergeable type, its implementation

M should contain a merge function for τi . The
R+ definition used by Rel-Merge-1 effectively

homogenizes the keys of R(l), R(v1), and R(v2),
mapping new keys to empty. The values with
the corresponding keys are then merged using

M.merge to compute the key-value pairs in the

merged relation. Fig. 13 shows the operational

interpretation. For brevity, we assume R to be a

binary relation relating a single key to a value.

Set.map is the usual map function with type:

’a set→ (’a→ ’b)→ ’b set.
The operational interpretation of derivation

rules from Fig. 12 let us merge characteristic

relations. Applying the concretization function

γ on merged relations maps the relations back

to the concrete domain, thus yielding the fi-

nal merged value. Letting ♦ denote relational

merges as described above, the whole process

can be now succinctly described:

let merge l v1 v2 = γ (α (l) ♦ α (v1) ♦ α (v2))

5.1 Concretizing Orders
The concretization function γord aids in the process of concretizing orders, such as Rob , into data

structures. An inherent assumption behind γord is that there is a single ordering relation (e.g., Rob
or Rto ) that guides concretization. This is indeed true for the data structures listed in Table. 1. The

ordering relation is required to be ternary, and is naturally interpreted as a directed graphG where

each tuple (u,a,v) denotes an edge from u to v with a label a. Binary orders, such as Rob , are a
special case where the labels are all same

6
Concretization works in the context G. The first step is

transitive reduction, where an edge (u,v) is removed if there exists edges (u,v ′) and (v ′,v) for some

v ′
. A transitively reduced graph is said to be conflict-free if for every vertex u, there do not exist

more than n edges with the same label a, where n is determined uniquely for each data structure.

The basis for defining n is the condition that the ordering relation computed by the data structure’s

abstraction function α has to be conflict-free for any instance of the data structure. For instance,

n = 1 for lists and trees as, for any list l and tree t , there do not exist two or more adjacent edges

6
We shorten (u , a, v) in the presentation to (u , v) when appropriate.
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with the same label in the transitively-reduced graph of Rob (l) and Rto(t), respectively. On the

other hand, n = 2 for the binary heap data structure as the transitively reduced ancestor relation
Rans (h)of a heap h never contains more than two adjacent edges with the same label.

The second step of concretizing an ordering relation resulting from a merge is to check if the

relation is conflict-free. If it indeed is, then its (transitively-reduced) graph G is already isomorphic

to the merged data structure, which can be recovered fromG by simply traversing the graph starting

from its root while applying appropriate data type constructors (as demonstrated for list/queue data

type in Fig. 9a). On the other hand, if the graphG has conflicts, i.e., it has more than n adjacent edges

with the same label, then the conflicts need to be resolved beforeG becomes isomorphic to a valid in-

stance of the data structure. Conflicts that may arise due to a merge are resolved by inducing an order
among the distinct vertices of conflicting edges using a provided arbitration relation. For instance,
consider a case where there are two conflicting edges, (u,a,v) and (u,a,v ′), in the transitively-

reduced ordering graph G of a data structure whose n = 1. The conflict is resolved by inducing an

order between v and v ′
using the provided arbitration relation ord, which adds either a (v,b,v ′) or

(v ′,b,v) edge for some labelb. Transitive reduction at this point removes one of the conflicting edges,

thus resolving the conflict. This process is repeated until all conflicts are resolved, at which point

the graph is isomorphic to the merged data structure, and the latter can be reconstructed by simply

a

cb

d e

RL

R
R

a

cb

d

e

RL

R

L

Fig. 14. Resolving conflicts while con-
cretizing Rto

traversing the former. The process is illustrated for the Rto
relation shown in Fig. 14. On the left hand side of the figure

is the graphG of the Rto relation that is obtained by merging

theRto relations of two trees. Both trees addd and e (resp.) as
a right child to b, which results in tuples (b,R,d) and (b,R, e)
in Rto . The tuples translate into conflicting edges shown

(with colored vertices) inG . To resolve conflicts and generate
an Rto relation consistent with the tree structure, we can

invoke γord with (for instance) the following definition of

ord:

let ord x y = if x<y then (y,L,x) else (x,L,y)

Assuming d < e , ord adds an edge (e, L,d), which lets (b,R,d) to be removed during transitive

reduction, resulting in the graph shown on the right, which is clearly a tree. The γord helper

function thus aids in reifying ordering relations into concrete data structures. It is available to

MRDT developers as a library function named concretize_order that takes the set representation
of an ordering relation and returns a graph isomorphic to a data structure whose ordering relation

subsumes the given set. An arbitration order and an n value (as described above) are also expected

to help concretizes_order resolve conflicts and extend the ordering relation as necessary.

Having described the abstraction functions (Sec. 3), relational merge derivation (Sec. 4 and Sec. 5),

and subsequent concretization (Sec. 5.1), we can now put these together to obtain a complete picture

of how MRDTs are derived from ordinary OCaml data types. Examples are shown in Figures 15

and 16. The syntax is as close to the real syntax as possible barring minor technical differences.

Fig. 15a shows how MRBSet.t – a mergeable replicated variant of a set data type based on a

Red-Black binary search tree, is derived from RBSet.t – its sequential non-replicated counterpart.

MRBSet developer is expected to write the module shown in Fig. 15a. The signature MERGEABLE
indicates that the module is that of an MRDT, i.e., it defines a data type and a merge function on

the data type
7
. In Fig. 15a, we reproduce ’a RBSet.t definition as ’a MRBSet.t for perspicuity,

which otherwise would have followed by including RBSetmodule in MRBSet. In general, MERGEABLE

7
There are nuances to MERGEABLE signature to accommodate data types with multiple type variables (e.g., ’a t, (’a,’b) t
etc.), and to expose data type-specific library functions. Such nuances are not discussed here.
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module G = DiGraph

module E = G.Edge

module MRBSet:MERGEABLE =

struct

(* 'a RBSet.t reproduced below *)

type 'a t =

| Black of 'a t * 'a * 'a t

| Red of 'a t * 'a * 'a t

| Empty [@@deriving merge]

let r_mem t = Set.of_list @@

RBset.elements t

let abstract t = r_mem t

let concretize s_mem = Set.fold

RBSet.add s_mem Empty

end

(a) Mergeable Set

module MRBMap(V:MERGEABLE):MERGEABLE =

struct

(* ('a,V.t) RBMap.t reproduced below *)

type 'a t =

| Black of 'a t * 'a * V.t * 'a t

| Red of 'a t * 'a * V.t * 'a t

| Empty [@@deriving merge]

let r_mem t = Set.of_list @@

RBMap.all_pairs t

let abstract t = r_mem t

let concretize s_mem = Set.fold

(fun (k,v) t -> RBMap.add k v t)

s_mem Empty

end

(b) Mergeable Map

Fig. 15. Red-Black Tree-based Set and Map data structure annotated with their respective abstraction and
concretization functions. The corresponding merge functions are derived automatically.

module definitions include the corresponding non-mergeable (ordinary) modules, thus highlighting

that mergeable data types are extensions of ordinary OCaml data types with merge logic. The merge

logic is derived automatically when prompted by the @@deriving merge annotation, which was

added to the OCaml syntax with help of a PPX extension [PPX 2017] as a part of our development

(Sec. 6 contains details). The merge derivation looks for abstraction and concretization functions

in the module definition, and uses them to derive a merge function as described in previous

sections and summarized in Fig. 3. The abstraction function is simply is a pair-wise composition

of characteristic relations. In Fig. 15a, the abstraction function (named abstract) for Red-Black
binary search tree is composed of a single characteristic relation

8
– Rmem , whose definition (named

r_mem in Fig. 15a) is is similar to the corresponding definition for list/queue (Rmem in Fig. 7), except

that it is uses concrete syntax and standard library functions in place of abstract notations. The

concretization function concretize reconstructs a tree from its membership relation by repeatedly

inserting elements starting with an empty tree. Assuming that RBSet’s insert function is correct,

i.e, it returns a valid Red-Black tree, the function concretize is also guaranteed to be correct.

Fig. 15b shows a minor variation of MRBSet – an implementation of mergeable replicated map,

MRBMap, based on Red-Black binary search tree. Unlike MRBSet, MRBMap is a functor parametric on

on the type of values (V.t), which is also required to be mergeable. The merge function derived

in this case would be a composed of V.merge as described by the composition rule Rel-Merge-1

from Fig. 12.

In Fig. 16, we show how one would write a mergeable binary tree module, MBinaryTree, starting
from BinaryTree. Like in Fig. 15, we reproduce the data type definition for clarity. Characteristic

relations include a membership relation r_mem and a tree-order relation r_to, which is essentially

the Rto relation (Sec. 3) in concrete syntax. The abstraction function abstract is simply a pair-wise

8
Recall from Sec. 3 thatmembership relation is enough to determine the extensional equality of binary search trees, balanced

or otherwise.
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module G = DiGraph

module E = G.Edge

module MBinaryTree:MERGEABLE =

struct

(* 'a BinaryTree.t reproduced

below *)

type 'a t =

| N of 'a t * 'a * 'a t

| E [@@deriving merge]

let r_mem t = Set.of_list @@

BinaryTree.elements t

let r_to = function

| E -> Set.empty

| N(l, x, r) ->

let s1 = Set.times3

(Set.singleton x)

(Set.singleton `Left)

(r_mem l) in

let s2 = Set.times3

(Set.singleton x)

(Set.singleton `Right)

(r_mem r) in

List.fold_left Set.union

(r_to l)

[s1; s2; r_to r]

let abstract t =

(r_mem t, r_to t)

let concretize (s_mem , s_to) =

if Set.is_empty s_to

then

match Set.elements s_mem with

| [] -> E

| [x] -> N(E, x, E)

| _ -> error()

else

let g = concretize_order

s_to ~n:1 (<) in

let rec mk_tree x = match G.succ x with

| [] -> N(E,x,E)

| [y] ->

(match E.label @@ G.find_edge g x y

with

| `Left -> N(mk_tree y, x, E)

| `Right -> N(E, x, mk_tree y))

| [y;z] ->

(match (E.label @@ G.find_edge x y,

E.label @@ G.find_edge x z)

with

| (`Left , `Right) ->

N(mk_tree y, x, mk_tree z)

| (`Right , `Left) ->

N(mk_tree z, x, mk_tree y))

| _ -> error() in

mk_tree (G.root g)

end

Fig. 16. Binary Tree data structure annotated with abstraction and concretization functions. The merge
function is derived automatically.

composition of these relations. Along with the abstraction function, the developer is expected to

write the concretization function concretize, which in this case uses the aforementioned library

function concretize_order to concretize the Rto ordering relation. If the set representing the

tree-order, s_to is empty, then there is at most one element in the tree. The function concretize
returns an appropriate tree in such case. Otherwise it calls concretize_order, providing < as the

arbitration order, to obtain a graph isomorphic with the final (merged) tree. Note that n = 1 in

this case as each tree node has no more than one left (‘Left) or right (‘Right) adjacent nodes in
(transitively-reduced) Rto relation. The remainder of the concretize function following the call to

concretize_order is the definition of mk_tree, which simply traverses the graph g returned by

concretize_order, and constructs an isomorphic binary tree.

6 IMPLEMENTATION
The infrastructure necessary to implement MRDTs, and execute them in a asynchronously repli-

cated setting has been developed in terms of three major components collectively referred to

as Quark. The first component of Quark is a library of MRDT modules corresponding to ba-

sic data structures, such as lists and binary trees, along with a collection of signatures (e.g.,
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MERGEABLE) and functions (e.g., concretize_order), that aid in the development of new MRDTs.

The second component is an OCaml compiler extension, developed modularly using PPX [PPX

2017], that performs a dual function. Firstly, aided by module signatures and compiler directives

(e.g., @@deriving merge), the PPX extension identifies the OCaml type definitions of MRDTs,

along with their abstraction and concretization functions, and composes them together, as de-

scribed in Sections 4 and 5, to generate the corresponding merge functions. While adding a merge

function makes an OCaml data type mergeable, it is however not replicated for replication re-

quires addressing low-level concerns, such as serialization, network fault tolerance etc. The third

component of Quark is a content-addressable distributed storage abstraction, called the Quark

Quark 
Library

{λ,α,γ}
Quark

Compiler
Extension

{λ,α,γ,
merge,…}

Quark 
Store

Fig. 17. Quark architecture: Programmer ex-
tendsOCaml data types (λ) with abstraction
(α ) and concretization (γ ) functions. Quark
compiler extension generates merge¸ and
low-level code to interface with theQuark
store, which handles replication.

store, that addresses these concerns, and the secondary

function of the PPX extension is to generate the code that

translates between the high-level (OCaml) representation

of a data type, and its corresponding low-level represen-

tation in the Quark store. The schematic diagram of this

workflow is shown in Fig. 17. The following sub-section

describes theQuark store in detail.

6.1 Quark store
The key innovation of theQuark store is the use of a stor-
age layer that exposes a Git-like API, supporting common

Git operations such as cloning a remote repository, fork-

ing off branches and merging branches using a three-way

merge function. Quark builds on top of these features to

achieve a fault-tolerant, highly-available geo-replicated

data storage system. For example, creating a new replica

is realized by cloning a repository, and remote pushes and

pulls are used to achieve inter-replica communication.

Quark store also supports a variety of storage backends

including in-memory, file systems and fast key-value stor-

age databases, and distributed data stores. We have built

a programming model around Quark store’s Git-like API

to build distributed applications using MRDTs, which is

discussed elsewhere [Kaki et al. 2019].

The main challenge in realizing MRDTs as a practical programming model is the need to effi-

ciently store, compute and retrieve the LCA given two concurrent versions. Quark uses a content-

addressable block store for storing the data objects corresponding to concurrent versions of the

MRDT as well as the history of each of the versions. Given that any data structure is likely to share

most of the contents with concurrent and historical versions, content-addressability maximizes

sharing between the different versions.

Consider the example presented in Fig. 18a which shows an execution trace on a stack MRDT.

There are two versions A and B. Version B is forked off from A and is merged on to A. Since B
pops the element 2, it is no longer present in the merged version. B is of course free to further

evolve concurrently with respect to A. The diamonds represent the commits that correspond to

each historical version of the stack and circles represent data objects.

Fig. 18b and Fig. 18c represent the layout of the Quark store before and after the merge. Quark
uses a content-addressable append-only block store for data and commit information. Objects in

the block store are addressed by the content of their hashes. Correspondingly, links between the

objects are hashes of the contents of the objects. The reference to the two versions A and B are
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1

2 1

2 13

3 1

1

push(2)

pop(2)

push(3)

merge(B)

c1

c2

c3

c5

c4

A B

…
(a) An execution trace for stack MRDT.

2 13

c1c2c3

c4

A B

Block store 

Ref store 

(b) Quark store before merging
the commit c4 into c3.

2 13

c1c2c3

c4

A B

c5

3

Block store 

Ref store 

(c)Quark store after merging the
commit c4 into c3.

Fig. 18. The behavior of Quark content-addressable storage layer for a stack MRDT. A and B are two versions
of the stack MRDT. Diamonds represent the commits and circles represent data objects.

Data Structure Description

Set From OCaml stdlib. Implemented using AVL Trees.

Heap Okasaki’s Leftist Heap [Okasaki 1998]

RBSet & RBMap Okasaki’s Red-Black Tree with Kahrs’s deletion [Kahrs 2001]

Graph From the Functional Graph Library [Erwig 2001; Functional Graph 2008]

List Standard implementation of a cons list

Queue From OCaml stdlib.

Rope A data structure for fast string concatenation from [Boehm et al. 1995]

TreeDoc A CRDT for collaborative editing [Preguica et al. 2009] but

without replication awareness.

Canvas A data structure for collaborative freehand drawing

Table 2. A description of data structure benchmarks used in the evaluation.

stored in a mutable ref store. The versions point to a particular commit. The commits in turn may

point to parent commits (represented by dashed lines between the diamonds), and additionally may

point to a single data object. Data objects stored in the block store may only point to other data

objects.

Observe that in Fig. 18b, there is only one copy of the stack which is shared among both the

concurrent and historical versions. Notice also that the branching structure of the history is apparent

in the commit graph. In this example, we are merging the commits c3 and c4.Quark traverses the

commit graph to identify the lowest common ancestor c2 and fetches the version of the stack that

corresponds to the commit. After the merge, a new commit object c5 is added along with a new

data object for 3 which points to the existing data object 1 in the block store. The version ref for A
in the ref store is updated to point to the new commit c5. As our experimental results indicate, the

use of a content-addressable store makes it efficient to implement MRDTs in practice.

7 EVALUATION
We have evaluated our approach implemented in Quark on a collection of data structure and

applications.

7.1 Data Structure Benchmarks
The summary of data structures that we consider is given in Table. 2. Some of these benchmarks are

taken directly from the standard library, and span over 500 lines of code defining tens of functions.
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Quark lets these data structures be used as MRDTs as such with just a few (less than 10) additional

lines of code to define a relational specification and derive merges. To evaluate how these MRDTs

fare under the version control-inspired asynchronous model of replication that is central to our

approach, we constructed experiments that specifically answer two questions:

(1) How does the size of the diff between versions change relative to the size of the data structure

as the latter grows over time, and

(2) How much is the overhead of merge relative to the computational time on the data structure.

As replicas periodically sync, they perform three-way merges to reconcile their versions, which

requires both remote and local versions be present. Since transmitting a version in its entirety for

each merge operation is redundant and inefficient,Quark computes the diff between the current

version and the last version that was merged (using the content-addressable abstraction from Sec. 6),

and transmits this diff instead. Smaller diff size (relative to the total size of the data structure)

indicates that the data structure is well-suited to be a mergeable type, and the corresponding MRDT

can be efficiently realized over Quark.

25 50 75 100 125 150
Number of ops per round
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150
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total size(KB)
gzip diff size(KB)

(a) Heap
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(b) List

Fig. 19. Diff vs total-size for Heap and List

To measure the diff size relative to the data structure

size for each data type, we conduct controlled experi-

ments where a single client performs a series of ran-

domly distributed operations on the data structure and

commits a version. The exact nature of operations is dif-
ferent for different data types (insertion and deletion for a

tree, remove_min for a (min) heap etc), but in general the

insertion-deletion split is 75%-25%, which lets the data

structure grow over time. Since a client can perform any

number of operations before synchronizing, we conduct

experiments by gradually increasing the number of oper-

ations between two successive commits (called a round)
in steps of 10 from 10 to 150. For every experiment, at

the end of each round, we measure the size of the data

structure and the diff size between the version being com-

mitted and the previous version (computed byQuark’s
content-addressable abstraction). The experiments were

conducted for all the data structures listed in Table. 2,

and the results for the best and worst performing ones

(in terms of the relative diff size are shown in Fig. 19. The

graphs also show the size of the gzipped diff size since

this is the actual data transmitted over the network by

Quark.
Heap performs the best, which is not surprising con-

sidering that its tree-like structure lends itself to natural

sharing of objects between successive versions. Inserting

a new element into a heap, for instance, creates new objects only along the path from the root

to that element, leaving the rest same as the old heap (hence shared). Other tree-like structures,

including red-black and AVL trees, ropes, and document trees, also perform similarly, with their

results being only slightly worse than heap. List performs the worst, again an unsurprising result

considering that its linear structure is not ideal for sharing. For instance, adding (or removing) an

element close to the end of a list creates a new list which only shares a small common suffix with

the previous list. Nonetheless, as evident from Fig. 19b, its diff size on average is still less than the
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Application SLOC Types Txns DB Size (MB) Avg. diff size (KB)

TPC-C 1081 9 3 37.9 - 47.19 19.37

TPC-E 1901 19 5 93.3 - 124.30 22.89

RUBiS 998 8 5 9.69 - 11.06 2.62

Twissandra 870 5 4 1.34 - 3.69 4.612

Table 3. Application Benchmarks

total size of the list, and grows sub-linearly relative to the latter. In summary, diff experiments

show that version control-inspired replication model can be efficiently supported for common data

structures by transmitting succinct diffs over the network rather than entire versions.

To measure the overhead of merges relative to the computational time, we performed another

set of experiments involving three replicas, each serving a client, connected in a ring layout over

a (virtual) network with latency distributed uniformly between 10ms and 200ms. Each client
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Fig. 20. Computation vs merge time for List
and Red-Black Tree

behaves the same as with the previous (diff) experiments,

except that there is a synchronization that follows the

commit at the end of each round that merges the com-

mitted version with the remote version and returns the

result (remote version comes from the replica upstream in

the ring). We record the time spent merging the versions

(“merge time”), and also the time spent performing op-

erations in each round. As before, we gradually increase

the number of operations per round, which inevitably

increases the computational time and may increase the

merge time depending on the data structure. A better

performing data structure is one whose merge time in-

creases sub-linearly, or remains constant, with the in-

crease in computation time. A worse performing one is

where merge time increases linearly or more. The results

for best and worst performing data structures. in this

sense, are shown in Fig. 20. A list performs the best here

as its insertion and deletion operations are O(n), making

its computational time degrade faster with the increase in

number of operations (kn time for computation vs n time

for merge in a round of k operations). Red-Black tree (-

based set) performs the worst as its O(log(n)) operations
are asymptotically faster than O(n) merge. Nonetheless,

both metrics are the same order of magnitude, which is

several orders of magnitude less than the mean network

latency. Moreover, since MRDTs do not require any coor-

dination, synchronization (hence merges) can always be

performed off the fast path, thus avoiding any latency overhead due to a merge.

7.2 Application Benchmarks
We have also implemented four large application benchmarks by composing several mergeable data

types derived from their relational specifications. Table 3 lists their attributes, and the summary of

diff experiments we ran on them.

TPC-C and TPC-E are well-known online transaction processing (OLTP) benchmarks in the

database community [TPC 2018]. TPC-C emulates a warehouse application consisting of multiple
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warehouses with multiple districts, serving customers who place orders for items in stock. Each
such application type (e.g., customer) is implemented as a record with multiple fields, some of

which are mergeable. For instance, c_ytd_payment field of customer record is a mergeable counter

recording the customer’s year-to-date payment. Such records themselves are made mergeable

type warehouse = {w_id: id; w_ytd: counter}

type customer =

{c_w_id: id; c_d_id: id; c_id: id;

c_name: string; c_bal: counter;

c_ytd_payment:counter ;}

type db =

{warehouse_table: (id, warehouse) rbmap;

customer_table: (id*id*id, customer) rbmap;

...}

Fig. 21. Composition of mergeable data structures in TPC-C (sim-
plified for presentation). Database (db) is composed of mergeable
RBMap, which is composed of application-defined types, and
ultimately, mergeable counters.

through a relational specification sim-

ilar to that of a pair type (Sec. 4). In

TPC-C, there are a total of 9 such

record types (Types column in Ta-

ble 3). A mergeable red-black tree-

based map (“RBMap”) performs the

role of a database table in our case.

The database, which is otherwise a

collection of (named) tables, is simply

another mergeable record in our case

that relates named fields to RBMaps

corresponding to each table. The type

design is shown in Fig. 21. TPC-C has

3 transactions that we implemented

in our model as functions that map

one version of the database to other,

returning a result in the process. Concretely:

type 'a txn = db -> 'a*db

Since the database is not in-place updated, transactions are isolated by default. A transaction

commit translates to the commit of a new version of type db, which is then merged with concurrent

versions of db created by concurrently running transactions. We evaluated our TPC-C application

composed of mergeable types by first populating the database (db) as per the TPC-C specification,

and then performing the diff experiments as described above with 500 transactions. The database

size grew from 37.9MB to 47.19MB during the experiment (DB Size column in Table 3), with the

average size of diff due to each transaction being constant around 20KB (Avg. diff size column).

We have implemented three other applications, including the TPC-E and RUBiS [RUBiS 2014]

benchmarks, and a twitter-clone called Twissandra [Twissandra 2014]. Our experience of building

and experimenting with these applications has been consistent with our earlier observations that

(a). complex data models of applications can be realized by composing various mergeable data types

(b). the resultant application state lends itself to efficient replication under Quark’s replication
model with well-defined and useful semantics.

8 RELATEDWORK & CONCLUSION
Our idea of versioning state bears resemblance to Concurrent Revisions [Burckhardt et al. 2010,

2012], a programming abstraction that provides deterministic concurrent execution, and Tardis [Crooks

et al. 2016], a key-value store that also supports a branch-and-merge concurrency control abstraction.

However, unlike these previous efforts which provide no principled methodology for constructing

merge functions, or reasoning about their correctness, our primary contribution is in the develop-

ment of a type-based compositional derivation strategy for merge operations over sophisticated

inductive data types. We argue that the formalization provided in this paper significantly alle-

viates the burden of reasoning about state-based replication. Furthermore, the integration of a

version-based mechanism within OCaml allows a degree of type safety and enables profitable use

of polymorphism not available in related systems.
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[Burckhardt et al. 2015] also presents an operational model of a replicated data store that is

based on the abstract system model presented in [Burckhardt et al. 2014]; their design is similar to

the model described in [Sivaramakrishnan et al. 2015]. In these approaches, coordination among

replicas involves transmitting operations on replicated objects that are performed locally on each

replica. In contrast, Quark fully abstracts away such details - while programmers must provide

abstraction and concretization functions that map datatype semantics to the language of relations

and sets, the reasoning principles involved in performing this mapping are not dependent upon any

specific storage or system abstraction, such as eventual consistency [Burckhardt et al. 2014; Shapiro

et al. 2011b]. Given a library of predefined functions for common data types, and a methodology

for deriving their composition, the burden of migrating sequential data types to a replicated setting

is substantially reduced.

Modern distributed systems are often equipped with only parsimonious data models (e.g., key-

value model) that complicate program reasoning, and make it hard to enforce application integrity.

Some authors [Bailis et al. 2013c] have demonstrated that it is possible to bolt-on high-level

consistency guarantees (e.g., causal consistency) [Bouajjani et al. 2017; Lloyd et al. 2011] as a shim
layer service over existing stores, but these approaches do not consider integration of these services

within the type abstractions provided by a high-level client-facing language.

A number of verification techniques, programming abstractions, and tools have been proposed

to reason about program behavior in a geo-replicated weakly consistent environment. These

techniques treat replicated storage as a black box with a fixed pre-defined consistencymodel [Alvaro

et al. 2011; Bailis et al. 2014; Balegas et al. 2015; Gotsman et al. 2016; Li et al. 2014b, 2012b]. On the

other hand, compositional proof techniques and mechanized verification frameworks have been

developed to rigorously reason about various components of a distributed data store [Kaki et al.

2017; Lesani et al. 2016; Wilcox et al. 2015]. Quark is differentiated from these efforts in its attempt

to mask details related to distribution but unnecessary for defining meaningful (convergent) merge

operations. An important by-product of this principle is thatQuark does not require algorithmic

restructuring to transplant a sequential or concurrent program to a distributed, replicated setting;

the only additional burden imposed on the developer is the need to provide abstraction and

concretization functions for compositional data types that can be used to derive well-formed

merge functions, actions that we have demonstrated are significantly simpler than reasoning about

weakly-consistent behaviors.

Quark shares some resemblance to conflict-free replicated data types (CRDT) [Shapiro et al.

2011a]. CRDTs define abstract data types such as counters, sets, etc., with commutative operations

such that the state of the data type always converges. Unlike CRDTs, the operations on mergeable

types inQuark need not commute and the reconciliation protocol is defined by merge functions

derived from the semantics of the data types whose instances are intended to be replicated. The lack

of composability of CRDTs is a major hindrance to their utility that forms an important point of

distinction with the approach presented here. A CRDT’s inability to take advantage of provenance

information (i.e., LCAs) is another important drawback. As a result, constructing even simple data

types like counters are more complicated using CRDTs [Shapiro et al. 2011a] compared to their

realization in Quark.
Finally, on the language design front, there have been approaches where relations feature

prominently, e.g., Datalog [Maier et al. 2018] and Prolog [Bowen 1979]. In such languages, data is

represented as “facts” described by relations, and computation on data is structured as relational

queries. In contrast,Quark does not advocate a new style of programming, but rather uses relations

to augment capabilities of data structures in an existing model of programming. Relations have been

employed to reason about programs and data structures, for example in shape analysis [Chang and
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Rival 2008; Jeannet et al. 2010; Kaki and Jagannathan 2014], but the focus is always on using relations

to prove correctness of programs, not on using them as convenient run-time representations.
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