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Abstract

Geo-distributed web applications often favor high availability over strong consistency. In response to
this bias, modern-day replicated data stores often eschew sequential consistency in favor of weaker even-
tual consistency (EC) data semantics. While most operations supported by a typical web application can
be engineered, with sufficient care, to function under EC, there are oftentimes critical operations that
require stronger consistency guarantees. A few off-the-shelf eventually consistent key-value stores of-
fer tunable consistency levels to address the need for varying consistency guarantees. However, these
consistency levels often have poorly-defined ad hoc semantics that is usually too low-level from the
perspective of an application to relate their guarantees to invariants that must be respected by the ap-
plication. Moreover, these guarantees are often defined in way that is strongly influenced by a specific
implementation of the data store. While such low-level implementation-dependent solutions do not read-
ily cater to the high-level requirements of an application, relying on ill-defined guarantees additionally
complicates the already hard task of reasoning about application semantics under eventual consistency.

In this paper, we describe QUELEA, a declarative programming model for eventually consistent
data stores. A novel aspect of QUELEA is that it abstracts the actual implementation of the data store
via high-level programming and system-level models that are agnostic to a specific implementation of
the data store. By doing so, QUELEA frees application programmers from having to reason about their
application in terms of low-level implementation specific data store semantics. Instead, programmers
can now reason in terms of an abstract model of the data store, and develop applications by defining
and composing high-level replicated data types. QUELEA is equipped with a formal specification lan-
guage that is capable of expressing precise semantics of high-level consistency guarantees (e.g., causal
consistency) in the abstract model. Any eventually consistent key-value store can support QUELEA by
implementing a thin shim layer and a choosen set of high-level consistency guarantees on top of its ex-
isting low-level interface. We describe one such instantiation on top of Cassandra, that includes support
for causal and sequential consistency guarantees, and coordination-free transactions. We present a case
study of a large web application benchmark to demonstrate QUELEA’s practical utility.
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1 Introduction

Eventual consistency facilitates high availability, but can lead to surprising anomalies that have been well-
documented [4, 15, 18, 8, 12]. While applications can often tolerate many of these anomalies, there are some that
adversely effect the user experience, and hence need to be avoided. For instance, a social network application
can tolerate out-of-order delivery of unrelated posts, but causally related posts need to be delivered in causal
order; e.g., a comment cannot be delivered before the post itself. The view count of a video on YouTube need
not necessarily reflect the precise count of the number of views, but it should not appear to be decreasing. A
bank account application may not always show the accurate balance in an account, but neither should it let the
balance go below zero, nor should it admit operations that would lead it to display a negative balance.

Bare eventual consistency is often too weak to ensure such high-level application invariants; stronger con-
sistency guarantees are needed. To help applications enforce such high-level invariants, off-the-shelf replicated
data stores, such as Cassandra and Riak, offer tunable consistency levels on a per-operation basis: applications
can specify the consistency level for every read and write operation they perform on the data store. However,
consistency levels offered by these off-the-shelf stores are often defined at a very low-level. For example, consis-
tency levels in Cassandra and Riak assume the values of ONE, TWO, QUORUM, ALL etc., describing how many
physically distributed nodes comprising the store must respond before a read or write operation is declared suc-
cessful. It is not immediately apparent what permutation of these low-level consistency guarantees would let the
application enforce its high-level level invariants. For instance, what should be the consistency level of reads
and writes to the posts table to guarantee causal order delivery of posts in the aforementioned social network
application?

Furthermore, the semantics of low-level consistency guarantees are not uniform across different store im-
plementations. For instance, while QUORUM means strict quorum (i.e., Lamport’s quorum [11]) in the case of
Cassandra, it means a sloppy quorum [8] in Riak. Complicating matters yet further, consistency semantics is
often imprecisely, or even inaccurately, defined in the informal vendor-hosted documentations. For instance,
Datastax’s Cassandra documentation [7] claims that one can achieve “strong consistency” with “quorum reads
and writes” in Cassandra. While this claim appears reasonable superficially (because a pair of quorum opera-
tions are serialized at least at one node), it is incomplete, at best, and inaccurate at worst.1 Another example of
a low-level consistency enforcement construct with vaguely defined semantics is Cassandra’s Compare-and-Set
(CAS) operation, which is advertised as a “lightweight transaction” and exposed as a conditional write query
(e.g., INSERT INTO users VALUES ... IF NOT EXISTS ). The addition of CAS to Cassandra was
coupled with the introduction of a new consistency level named SERIAL. Surprisingly, SERIAL is not a valid
query-level consistency parameter for a write (conditional or not), while the others (e.g., ONE) are valid.2 Fur-
thermore, Cassandra accepts a new protocol-level consistency parameter for a CAS operation that can be set to
SERIAL, but its informal description doesn’t explain how this parameter interacts with the query-level consis-
tency parameter. The only way to unravel this complexity is to understand low-level details of the operator’s
underlying Paxos-based implementation. Mired in this quagmire of low-level implementation details, it is easy
to lose track of our original goal - ensuring the high-level semantics guarantees required by the application are
met as efficiently as possible by the implementation.

In this paper, we describe QUELEA, a declarative programming framework for eventually consistent data
stores that was built to address the issues discussed above. QUELEA can be realized as a thin layer on top of any
off-the-shelf eventually consistent key-value store, and as such, provides a uniform implementation-independent

1The devil is in the details of the timestamp-based last-writer-wins conflict resolution strategy in Cassandra, which need not neces-
sarily pick the last writer due to inevitable clock drift across nodes. [9] presents a counterexample.

2Given the advertised use cases for lightweight transactions (such as maintaining uniqueness of usernames), one might expect a CAS

to be SERIAL by default. It is therefore unintuitive that CAS accepts a consistency parameter, at least to the developers of cassandra-cql, a
popular Haskell library for programming with Cassandra, whose API for CAS operation incorrectly hardcodes the parameter to SERIAL.
This bug has been reported and fixed.
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Figure 1: QUELEA system model.

interface to the data store. QUELEA programmers reason in terms of an abstract system model of an eventually
consistent data store (ECDS), and any functionality offered by the store in addition to bare eventual consistency,
including stronger consistency guarantees, transactions with tunable isolation levels etc., is required to have a
well-defined semantics in the context of this abstract model. We show that various high-level consistency guar-
antees (eg., causal consistency) and various well-known isolation levels for transactions (eg., read committed)
indeed enjoy such properties. QUELEA is additionally equipped with an expressive specification language that
lets data store developers succinctly describe the semantics of the functionality they offer. A similar specifi-
cation language is exposed to application programmers, who can declare the consistency requirements of their
application as axiomatic specifications. Specifications are constructed using primitive consistency relations such
as visibility and session order along with standard logical and relational operators. A novel aspect of QUELEA

is that it can directly compare the specifications written by application programmers and data store developers
since both are written within the same specification language, and can thus automatically map application re-
quirements to the appropriate store-level guarantees. Consequently, QUELEA programmers can write portable
code that automatically adapts to any data store that can express its functionality in terms of QUELEA’s abstract
system model.

Another key advantage of QUELEA is that it allows the addition of new replicated data types to the store,
which obviates the need to support data types with application-specific semantics at the store level. Replicated
data types (RDTs) are ordinary data structures, such as sets and counters, but with their state replicated across
multiple replicas. As such, they offer useful high-level abstractions to build applications on top of weakly consis-
tent replication. Weak consistency admits the possibility of concurrent conflicting updates to the state of the data
structure at different replicas. The definition of an RDT must therefore specify its convergence semantics (i.e.,
how conflicting updates are resolved), along with its consistency properties (i.e., when updates become visible).
QUELEA achieves a clean separation of concerns between these two aspects of the RDT definition, permitting
operational reasoning for conflict resolution, and declarative reasoning for consistency. The combination of
these techniques enhances overall programmability and simplifies reasoning about application correctness.
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2 System Model

Figure 1 summarizes the abstract system model of a data store exposed to the QUELEA programmer. The store
is a collection of replicas, each storing a set of objects (x, y, . . .) of a replicated data type. For the sake of an
example, let x and y represent objects of an increment-only counter replicated data type (RDT) that admits inc
and read operations. The state of an RDT object is represented as the set of all updates (effectful operations, or
simply effects) performed on the object. In Fig. 1, the state of x at replica 1 is the set {incx1 , incx2}, where each
incxi denotes an inc effect on x.

Clients interact with the data store via concurrent sessions, where each session is a sequence of operations
that a client invokes on any of the objects contained in the store. Note that clients have no control over which
replica an operation is applied to; the data store may choose to route the operation to any replica in order to
minimize latency, load balance, etc. For example, the inc and read operations invoked by the same session on
the same object, may be applied on different replicas because replica 1 (to which the inc operation is applied,
say) might be unreachable when the client invokes a subsequent read.

When an operation is applied to a replica, it is said to witness the state of its object at that replica. For
example, x.inc applied to replica 1 witnesses the state of x as {incx1 , incx2}. We say that the effects incx1 and
incx2 are visible to the effect (incx4) of x.inc, written logically as vis(incx1 , inc

x
4) ∧ vis(incx2 , inc

x
4), where vis

stands for the irreflexive and asymmetric visibility relation between effects over the same object. The notion of
visibility is important since the result of an operation often depends on the set of visible effects3. For instance, a
read on x applied to the last replica in Fig. 1 returns 1 since it only witnesses the effect (incx3) of a single x.inc
operation.

A visibility relation between two effects implies that the former operation has happened before the latter
(since the latter has witnessed the effect of the former). However, visibility is not enough to capture a happens-
before order between operations. As Fig. 1 demonstrates, a pair of operations from the same session, although
one happens before the other, need not be visible to each other. To capture happens-before, we define an
irreflexive transitive session order relation that relates the effects of operations arising from the same session.
For example, in Fig. 1, incx4 and incx5 are in session order (written logically as so(incx4 , inc

x
5)).

The effect added to a particular replica is asynchronously sent to other replicas, and eventually merged into
all other replicas. Observe that this model is independent of the resolution strategy for concurrent conflicting
updates, and instead preserves every update. Update conflicts are resolved when an operation reduces over the
set of effects on an object at a particular replica. The model, however, admits all the inconsistencies associated
with eventual consistency, some of which could adversely impact the usability of the application. We call such
unacceptable inconsistencies as anomalies. Stronger consistency guarantees are needed to prevent unwanted
anomalies.

In the next section we concretize, in QUELEA, the counter application described informally above, followed
by the anomalies the application admits under our model. Next, we show that strengthening the model with
a few simple guarantees is enough to prevent these anomalies. We introduce a specification language that lets
us naturally express such additional requirements. Finally, we show that well-known high-level consistency
guarantees have precise semantics under our model, and hence can be expressed as formulas in our specification
language. This makes it straightforward to compare application requirements with consistency guarantees, and
determine the appropriate consistency semantics required to prevent anomalies.
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−− C t r E f f i s t h e da ta t y p e o f c o u n t e r e f f e c t s .
−− I n c i s i t s o n l y i n h a b i t a n t .
data C t r E f f = I n c
−− Counter ( r a t h e r , i t s s t a t e ) i s d e f i n e d s i m p l y
−− as a l i s t o f c o u n t e r e f f e c t s .
type Coun te r = [ C t r E f f ]
−− A read o p e r a t i o n r e a d s t h e v a l u e o f t h e c o u n t e r
−− by c o u n t i n g t h e number o f I n c e f f e c t s .
read : : Coun te r → ( ) → ( Int , Maybe C t r )
read h i s t = ( l e n g t h h i s t , Nothing )
−− An i n c o p e r a t i o n s i m p l y g e n e r a t e s an I n c e f f e c t .
i n c : : Coun te r → ( ) → ( ( ) , Maybe C t r )
i n c h i s t = ( ( ) , Jus t I n c )

Figure 2: Definition of a counter expressed in Quelea (Haskell syntax).

3 Programming with QUELEA

3.1 RDT Definition

Figure 2 shows the implementation of a counter RDT in QUELEA. The data type Ctr represents the counter’s
effect type. Every RDT in QUELEA is associated with an effect type that specifies the effects allowed on the
objects of that type. An RDT is defined merely a list of its effects. The type of an RDT operation is an instance
of the following type, written in Haskell syntax as:

type O p e r a t i o n e a r = [ e ] → a → ( r , Maybe e )

An operation on an RDT accepts a list of effects (the history of updates representing the state of the object at
some replica), and an input argument, and returns a result along with an optional effect. While a read-only
operation (eg., read) generates no effect (i.e., it returns Nothing), a write-only operation (eg., inc) returns a
new effect.

3.2 Anomalies under Eventual Consistency

inc

Session 1

read → 1

read → 0
so

vis 

Session 2

(a)

read → 0

read → 1
so

vis 

Session 1

inc
so

(b)

Figure 3: Anomalies possible under eventual consistency for the counter read operation.

Observe that the counter RDT does not admit a decrement operation. Therefore, the value of a counter should
appear to be monotonically increasing. Indeed, this property is what makes the RDT useful to implement, for

3We abuse the visibility relation by informally extending it to operations (including read-only operations, which produce no effects).
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a, b ∈ EffVar Op ∈ OperName

ψ ∈ Spec ::= ∀(a : τ).ψ | ∀a.ψ | π
τ ∈ EffType ::= Op | τ ∨ τ
π ∈ Prop ::= true | R(a, b) | π ∨ π | π ∧ π | π ⇒ π

R ∈ Relation ::= vis | so | sameobj | = | R ∪R | R ∩R | R+

Figure 4: Syntax (Context-Free Grammar) of the specification language.

example, a video view counter on YouTube. Unfortunately, the monotonicity invariant can be violated in an
eventually consistent execution.

Consider the execution shown in Figure 3a. Session 1 performs an inc operation on the counter, while
Session 2 performs two read operations. The first read witnesses the effect of inc from Session 1, hence
returns 1. The second read, however, does not witness inc, possibly because it was served by a replica that has
not yet merged the inc effect. It returns 0, thus violating the monotonicity invariant.

In order for counter’s value to appear monotonically increasing, the second read should also witness the
effect of inc, because it was witnessed by the preceding read. Because eventually consistent read operations
do not ensure this property, read operations need to be executed at a stronger consistency level. The choice of
consistency level must guarantee that if a read witnesses an inc effect, all the subsequent read operations on
the same counter object also witness that effect. If we let sameobj relate effects over the same object, we can
formalize this requirement using visibility (vis) and session order (so) relations:

∀(a : inc), (b, c : read). vis(a, b) ∧ so(b, c) ∧ sameobj(b, c)⇒ vis(a, c)

The above formula is in fact a valid specification that can be associated with counter RDT operations in QUELEA.
Note that the specification captures the guarantees required to enforce the monotonicity invariant with respect
to the abstract model of the store described in § 2. In particular, the specification does not refer to the low-level
details of any specific data store. Our observation is that if consistency levels can also be specified in a similar
manner, we can eliminate the need for the application programmer to understand the low-level nuances of the
data store to enforce the required invariants; understanding their semantics in the abstract model is enough. In
the following sections, we demonstrate that this is indeed possible. We first introduce our specification language.

3.3 Specification Language

The syntax of our specification language is shown in Figure 4. The language is based on first-order logic
(FOL), and admits prenex universal quantification over typed and untyped effect variables. We use a special
effect variable (η̂) to denote the effect of the current operation - the operation for which a specification is
being written. The type of an effect is simply the name of the operation (eg: inc) that induced the effect.
We admit disjunction in types to let an effect variable range over multiple operation names. The specification
∀(a : τ1 ∨ τ2). ψ is just syntactic sugar for ∀a.(oper(a, τ1) ∨ oper(a, τ2)) ⇒ ψ. An untyped effect variable
ranges over all operation names.

The syntactic class of relations is seeded with primitive vis, so, and sameobj relations, and also admits
derived relations that are expressible as union, intersection, or transitive closure of primitive relations. Com-
monly used derived relations are the same object session order (soo = so ∩ sameobj), happens-before order
(hb = (so ∪ vis)+) and the same object happens-before order (hbo = (soo ∪ vis)+). For example, the same
object session order (soo) can be used to succinctly represent the specification of counter RDT’s consistency
requirement:

∀(a : inc), (b, c : read). vis(a, b) ∧ soo(b, c)⇒ vis(a, c)
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Same object happens-before order (hbo) captures causal order among operations on same object. For example,
if an inc is visible to a read, and the read precedes another read in session order (all operations on the same
counter object), then the inc and the second read are related by hbo, although they may not be directly related
by vis or soo. The causal relationship is transitive, via the first read. As such, hbo is useful to capture the causal
consistency condition, which requires an operation to witness all the causally preceding operations perfomed on
the same object (i.e., operations that precede the current operation in hbo). This condition is formalized in the
following section.

3.4 Consistency Guarantees
To help programmers eliminate certain classes of anomalies in their applications, Terry et al. equip their data
store Bayou [17] with four incomparable consistency levels called session guarantees [18]. While Terry et
al. realize efficient implementations of session guarantees making use of low-level properties of their store,
the semantics of these guarantees can nonetheless can be captured succinctly within QUELEA’s abstract model
thus:

Read Your Writes (RYW) ::= ∀a, b. soo(a, b)⇒ vis(a, b)
Monotonic Reads (MR) ::= ∀a, b, c. vis(a, b) ∧ soo(b, c)⇒ vis(a, c)

Monotonic Writes (MW) ::= ∀a, b, c. soo(a, b) ∧ vis(b, c)⇒ vis(a, c)
Writes Follow Reads (WFR) ::= ∀a, b, c, d. vis(a, b) ∧ vis(c, d) ∧ (soo ∪ =)(b, c)⇒ vis(a, d)

Consider a Monotonic Reads (MR) session guarantee. The semantics of MR guarantees that if the effect of an
operation a is visible to the effect of b, and b precedes c in (same object) session order, then a will also be made
visible to c. Recall that this is precisely the guarantee required by the counter to enforce monotonicity. In fact,
by restricting the bound variable a in MR’s specification to range over inc effects, and bound variables b and c
to range over read effects, we can easily conclude that executing read at an MR consistency level is sufficient
to enforce the monotonicity invariant.

Like MR, the semantics of other session guarantees are categorically stated by their specifications. Read-
Your-Writes (RYW), for example, guarantees that an operation (b) witnesses the effect of every preceding opera-
tion (a) in the session. A read operation executed at RYW consistency level therefore witnesses every previous
inc operation from the same session. This guarantee is necessary to avoid the anomaly shown in Fig. 3b, where
a read that succeeds an inc fails to witness the effect of inc, but a later read witnesses the effect. The anomaly
can also be avoided by running inc and read under the QUORUM consistency level offered by some off-the-
shelf key-value stores, but doing so requires non-trivial reasoning over the semantics of quorum operations (e.g.,
strict/sloppy) and conflict resolution strategies (eg., LWW) to arrive at this conclusion. In contrast, reasoning
with high-level consistency guarantees, such as MR and RYW, circumvents this complexity.

The precise characterization of guarantees as specifications facilitates the use of automatic analyses to de-
termine if a consistency level meets application requirements. For instance, consider a data store that offers the
following three consistency levels:

Causal Visibility (CV) ::= ∀a, b, c. hbo(a, b) ∧ vis(b, c)⇒ vis(a, c)
Causal Consistency (CC) ::= ∀a, b, c. hbo(a, b)⇒ vis(a, b)
Strong Consistency (SC) ::= ∀a, b. sameobj(a, b)⇒ vis(a, b) ∨ vis(b, c)

It is not immediately apparent which among CV, CC and SC meet the requirements of a counter (CR). Fortu-
nately, we can leverage the power of automated theorem provers (e.g., Z3) to prove that the specification of CR
is stronger than CV, but weaker than CC and SC, thus letting us deduce that counter’s requirements can be met
both under causal and strong consistency levels. A theorem prover can also be used to prove that among CC and
SC, CC is weaker. Assuming that weaker guarantees incur lower cost to enforce availability, it is reasonable to
conclude that counter’s read operations should be executed under causal consistency to enforce monotonicity.
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The analysis described informally above is formalized as a classification scheme [15] in QUELEA. This
scheme completely automates the choice of consistency levels in QUELEA, thus eliminating the need for pro-
grammers to understand the semantics of different consistency levels. The ease of reasoning with precisely stated
high-level guarantees demonstrates the advantage of exposing the functionality of the data store via QUELEA,
as against the low-level ad hoc interfaces currently offered by many ECDS.

4 Transactions

Real-world applications often need to perform atomic operations that span multiple objects. An example is
a transfer operation on bank accounts, which needs to perform a withdraw operation on one bank
account, and a deposit operation on another. Transactions are usually the preferred means to compose
sets of operations into a single atomic operation. However, a classical ACID transaction model requires inter-
replica coordination, leading to the loss of availability. To address this problem, several recent systems [16, 3, 1]
have proposed coordination-free transactions that offer atomicity, remain available under network partitions,
but only provide weaker isolation guarantees. Several variants of coordination-free transactions have subtly
different isolation semantics and widely varying runtime overheads. Fortunately, the semantics of a large subset
of such transactions can be captured elegantly in the abstract model of QUELEA. Towards this end, we extend
the contract language with a new term under quantifier-free propositions - txn S1 S2, where S1 and S2 are sets
of effects, and which introduces a new primitive equivalence relation sametxn that holds for effects from the
same transaction. txn{a, b}{c, d} is just syntactic sugar for sametxn(a, b) ∧ sametxn(c, d) ∧ ¬sametxn(a, c),
where a and b considered to belong to the current transaction. Since atomicity is a defining characteristic of a
transaction, we extend our formal model with the following axiom, which guarantees that a transaction is visible
in its entirety, or it is not visible at all:

∀a, b, c. txn{a, b}{c} ∧ sameobj(a, b) ∧ vis(a, c)⇒ vis(b, c)

4.1 Isolation Requirements

§ 3.2 demonstrates how the consistency requirements of a counter RDT’s read operation can be expressed
in QUELEA. In a similar manner, QUELEA’s specification language allows applications to declare isolation
requirements for their transactions.

Consider an implementation of a bank account RDT in QUELEA with three operations – withdraw, deposit,
and getBalance, each with straightforward semantics. Additionally, we define two transactions – save(amt),
which transfers amt from current (c) to savings (s), and totalBalance, which returns the sum of the balances
of individual accounts. Our goal is to ensure that totalBalance returns the result obtained from a consistent
snapshot of the object states. The QUELEA code for these transactions is given below:

save amt = a t o m i c a l l y do
b ← withdraw c amt
−− b i s t r u e i f f wi thdraw s u c c e e d s .
when b $ d e p o s i t s amt

t o t a l B a l a n c e = a t o m i c a l l y do
b1 ← g e t B a l a n c e c
b2 ← g e t B a l a n c e s
re turn b1 + b2

The atomically construct ensures that the effects of the operations are made visible atomically. How-
ever, atomicity itself is insufficient in this case, as it does not guarantee that both getBalance operations (in
totalBalance) witness the effects of save. Consequently, getBalance on s may not witness the deposit
on s from save, although getBalance on c witnesses the withdraw on c, resulting in totalBalance re-
porting an inconsistent balance.

8



Observe that the aforementioned anomaly can be averted by requiring that both getBalance operations in a
totalBalance transaction witness the same set of save actions. This requirement can be captured succinctly
in our specification language:

∀(a, b : getBalance), (c : withdraw ∨ deposit), (d : withdraw ∨ deposit).
txn{a, b}{c, d} ∧ vis(c, a) ∧ sameobj(d, b)⇒ vis(d, b)

The key idea in the above definition is to use the txn primitive to relate operations on different objects performed
in a single transaction.

4.2 Isolation Guarantees

The isolation semantics of a transaction determines how the transaction witnesses the effects of previously
committed transactions4. As mentioned previously, the isolation semantics of many variants of coordination-
free transactions can be expressed in QUELEA’s specification language. For demonstration, we pick three well-
understood coordination-free transactions – Read Committed (RC) [2], Monotonic Atomic View (MAV) [1] and
Repeatable Read (RR) [2], and express their isolation semantics in QUELEA.

ANSI RC isolation level guarantees that a transaction only witnesses the effects of committed transaction:

∀a, b, c. txn{a}{b, c} ∧ sameobj(b, c) ∧ vis(b, a)⇒ vis(c, a)

Note that RC is the dual of atomicity; it can be guaranteed with no additional effort if all transactions in the
system are atomic.

MAV semantics ensures that if some operation in a transaction T1 witnesses the effects of another transaction
T2, then subsequent operations in T1 will also witness the effects of T2:

∀a, b, c, d. txn{a, b}{c, d} ∧ so(a, b) ∧ vis(c, a) ∧ sameobj(d, b)⇒ vis(d, b)

MAV semantics is useful for maintaining the integrity of foreign key constraints, materialized views and sec-
ondary updates [1].

ANSI RR semantics requires that the transaction witness a snapshot of the data store state. More concretely,
RR requires that if an operation in transaction T1 witnesses the effects of transaction T2, then all the remaining
operations should also witness the effects of T2:

∀a, b, c, d. txn{a, b}{c, d} ∧ vis(c, a) ∧ sameobj(d, b)⇒ vis(d, b)

Note that this is precisely the semantics required by the totalBalance transaction to ensure that it returns a
balance that reflects a consistent snapshot of the data store. Hence, it is sufficient to execute totalBalance at
RR isolation level.

The ease of reasoning with precisely stated high-level guarantees thus extends to transactions as well. Fur-
thermore, the ability to express the isolation requirements of an application, along with the semantics of various
isolation guarantees provided by the store in the QUELEA’s specification language allows us to define a classifi-
cation scheme [15], similar to the one in § 3.4, to automatically map requirements to guarantees.

5 Implementation

The abstract model of QUELEA, optionally extended with a chosen set of high-level consistency and isolation
guarantees, can be instantiated on top of any eventually consistent key-value store. We now describe a reference
implementation of QUELEA on top of Cassandra’s key-value store [10]. Our implementation supports CV, CC,

4It is informative to compare isolation with atomicity. While the former constrains how the current transaction witnesses the effects
of other transactions, the later determines how other transactions witness the effects of the current transaction.
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and SC consistency levels (§ 3.4) for data type operations, and RC, MAV, and RR isolation levels (§ 4.2) for
transactions. This functionality is implemented entirely on top of the standard interface exposed by Cassandra.
From an engineering perspective, leveraging an off-the-shelf data store enables an implementation comprising
roughly only 2500 lines of Haskell code, which is packaged as a library [13].

5.1 Object State

Cassandra adopts a data model similar to that of BigTable [5]. Each row is identified by a composite pri-
mary key, whose first component is the partition key, and remaining components are clustering columns. Like
Dynamo [8], Cassandra uses consistent hashing on partition keys to map rows to machines in the cluster that
maintain a replica. Hence, rows with the same partition key (together referred to as a partition) are mapped to the
same machine5. Within each partition, rows are clustered and sorted on the values of their clustering columns.
QUELEA relies on these properties to minimize the latency of querying object state stored in Cassandra.

Recall that the state of an object in QUELEA is represented as a set of effects. An effect generated as a
result of executing an effectful operation (eg.,inc or withdraw ) inserts a new row (o, s, i, txn, val, deps),
where o is the identifier of the object on which the operation is performed, s is the identifier of the session
that issued the operation, and i is operation’s sequence number within its session. The optional txn column
identifies the transaction (if any). The column val is the value associated with the effect (eg: Withdraw 50).
deps is the set of identifiers of dependencies of this operation and is defined as deps(e) = {e1 | vis(e1, e) ∧
¬(∃e2.vis(e1, e2) ∧ vis(e2, e))}. The primary key of this row is a composite of (o, s, i), making o the partition
key, and s and i clustering columns. Thus, effects on the same object belong to the same partition, minimizing
the latency of reading its state. Within the partition, effects are clustered (and sorted), first on s, then on i.
Consequently, range queries on s and i, such as the set of effects that precede a given effect in the same session
(i.e., effects with same o and s, but lesser i), are efficient. This data model has been crafted to enable efficient
implementations of consistency guarantees, such as session guarantees described in § 3.4.

5.2 Operation Consistency

The consistency semantics of replicated data types are implemented and enforced in the shim layer above Cas-
sandra. The overall system architecture is shown in Fig. 5. Note that the shim layer node simply acts as a
soft-state write-through cache and can safely be terminated at any point. Similarly, new shim layer nodes can be
spawned on demand.

The shim layer maintains a causally-consistent in-memory state of a subset of objects in the system. A
causally-consistent state of an object is a subset of effects on the object that are closed under the hbo relation.
In other words, the shim layer includes an effect e over an object o, only if it also includes all effects e′ over o
that happened before e (i.e., hbo(e′, e)). Since all read operations are served by the shim layer, a read operation
only ever witnesses a causally-consistent state of its object. Recall that this is precisely the CV consistency level
described in § 3.4. Thus, CV is the default consistency level in this implementation of QUELEA.

The shim layer nodes periodically fetches updates from the backing store, thereby ensuring that later opera-
tions witness more recent CV-consistent state. For causally consistent operations, however, updates need to be
fetched on-demand. For example, if a causally consistent operation op on o is the ith operation in session s, and
if the effect of i− 1th operation in s is not present in the shim layer state of o, then a blocking read query for a
row with primary key (o, s, i− 1) needs to be issued by the shim layer.

Strongly consistent operations are performed after obtaining a distributed global lock. Distributed lock is
implemented with the help of Cassandra’s conditional updates (lightweight transactions). To prevent deadlocks
due to crash failures of the lock owner, the lock is leased only for a pre-determined amount of time. Lease
functionality is implemented using Cassandra’s support for expiring columns.

5Dynamo’s consistent hashing maps a partition key to a vnode, which, in common case, maps to a single physical machine.
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Figure 5: Implementation Model.

5.3 Transactions

Multi-key coordination-free transactions are implemented in QUELEA by exploiting the shim layer’s default CV
consistency guarantee. Recall that the shim layer does not include an effect unless all its dependencies are also
included. For every transaction, QUELEA instantiates a special transaction marker effect m that is included as
a dependence to every effect generated in the transaction. Importantly, the marker m is not inserted into the
backing store until and unless the transaction finishes execution. Now, any replica which includes one of the
effects from the transaction must includem, and transitively must include every effect from the transaction. This
ensures atomicity and satisfies the RC requirement.

MAV semantics is implemented by keeping track of the set of transaction markers M witnessed by the
transaction, and before performing an operation at some replica, ensuring that M is a subset of the transaction
markers included at that replica. If not, the missing effects are synchronously fetched. RR semantics is realized
by capturing an optimized snapshot of the state of some replica; each operation from an RR transaction is applied
to this snapshot state. Any generated effects are added to this snapshot.

5.4 Summarization

Observe that the state of an object in QUELEA grows monotonically as more effectful operations are performed
on the object. Unbounded growth of state would make querying prohibitively expensive at some point. To keep
state size in check, QUELEA summarizes object state both in the shim layer node and the backing store, typically
when the number of effects on an object crosses a tunable threshold. QUELEA’s summarization is similar in
nature to the major compaction operation on SSTables in BigTable. While BigTable’s compaction summarizes
reads and writes at the storage layer, QUELEA summarizes effects with application-specific semantics at the
application layer. Hence, the semantics of summarization in QUELEA is application-specific. QUELEA therefore
requires its applications to implement a special summarize function that is called whenever the state needs to
be summarized. For example, a bank account RDT’s summarize function may summarize a state comprising
multiple withdraw and deposit effects into a single deposit effect, thus drastically reducing the number of
effects that need to be kept track of by the shim layer and the store.
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6 Evaluation

We have used QUELEA to implement various applications, which include individual RDTs as well as larger
applications composed of several RDTs. In order to ensure certain high-level invariants, these applications re-
quire various kinds of consistency and isolation guarantees from the data store. For instance, the microblogging
application requires causal consistency for its getTweet operation to ensure the causal order delivery of tweets
(§ 1). RUBiS [14], an eBay-like auction site, requires MAV isolation level for its cancelBid transaction to
maintain the integrity of data in its materialized views. If an application developer were to implement these
applications on top of the default interfaces exposed by a typical off-the-shelf data store, she would either have
to rely on ill-specified low-level functionality of the store, or build the required high-level functionality herself.
With QUELEA, we were able to derive the high-level guarantees required by these applications by merely stating
their requirements as specifications with respect to the abstract model6.

For performance evaluation, we commissioned Amazon EC2 instances, and deployed QUELEA applications
in an environment similar to the production environment of medium-scale web applications. We then ran these
applications on realistic workloads constructed from standard benchmarks, such as YCSB [6] and RUBiS bid-
ding mix. Our experiments [15] show that (a). QUELEA’s expressive programming model incurs no more than
30% (resp. 20%) of latency (resp. throughput) overhead when compared to the native implementation on top of
Cassandra (both run under default consistency levels) with 512 concurrent clients, and (b). with a distribution
of 50% SC, 25% CC, and 25% EC operations, QUELEA incurred 41% (18%) higher latency (lower throughput)
than 100% EC operations, when compared to 162% (52%) higher latency (lower throughput) incurred by 100%
SC operations. These experiments demonstrate that the performance penalty of supporting QUELEA on top of
an existing key-value stores is within reasonable limits, and that there is a significant performance incentive
for applications to rely on QUELEA to enforce their high-level invariants rather than choosing SC for every
operation.

7 Conclusion

Although modern web applications settle for eventual consistency in return for high availability, they nonethe-
less need stronger consistency guarantees to support small, yet significant, fraction of their functionality. The de
facto interfaces exposed by well-known eventually consistent data stores are often ill-specified and too low-level
from the perspective of an application developer. There currently exists a wide chasm between the high-level
application-specific consistency requirements, and low-level store-specific tunable consistency levels. This pa-
per describes QUELEA, a programming framework and a system that proposes to address this gap by lifting and
standardizing the interface to an eventually consistent data store. We present many examples that demonstrate
the advantage of reasoning with high-level interface exposed by QUELEA, when compared to the low-level in-
terfaces offered by off-the-shelf data stores. We realize an instantiation of QUELEA on top of Cassandra, and
illustrate the performance implications of using QUELEA, for both, applications and data stores.
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