
Macroprogramming Heterogeneous Sensor Networks Using
COSMOS

Asad Awan Suresh Jagannathan Ananth Grama
Department of Computer Science, Purdue University, West Lafayette, IN 47906

awan,suresh,ayg@cs.purdue.edu

Abstract
In this paper, we present COSMOS, a novel architecture for macro-
programming heterogeneous sensor network systems. Macropro-
gramming entails aggregate system behavior specification, as op-
posed to device-specific applications that indirectly express dis-
tributed behavior through explicit messaging between nodes. COS-
MOS is comprised of a macroprogramming language, mPL, and an
operating system, mOS. mPL macroprograms specify distributed
system behavior using statically verifiable compositions of reusable
user-provided, or system supported functional components. mOS
provides component management and a lean execution environ-
ment for mPL in heterogeneous resource-constrained sensor net-
works. COSMOS facilitates composition of complex real-world ap-
plications that are robust, scalable and adaptive in dynamic data-
driven sensor network environments. The mOS architecture allows
runtime application instantiation, with over-the-air reprogramming
of the network. An important and novel aspect of COSMOS is
the ability to easily extend its component basis library to add
rich macroprogramming abstractions to mPL, tailored to domain
and resource constraints, without modifications to the OS. A fully
functional version of COSMOS is currently in use at the Bowen
Labs for Structural Engineering, at Purdue University, for high-
fidelity structural dynamics measurements. We present comprehen-
sive experimental evaluation using macro- and micro- benchmarks
to demonstrate performance characteristics of COSMOS.

1. Introduction
As the applications of sensor networks mature, there is increasing
realization of the complexity associated with programming large
numbers of heterogeneous devices, operating in highly dynamic
environments. Much of the complexity arises due to programming
coordinated activity of nodes in order to yield system behavior of
the sensor network as a whole. Even conceptually straightforward
tasks, from the view point of unified-system behavior, such as
data acquisition, processing and aggregation require non-trivial
programming effort, especially when accounting for scalability,
failures, and constraints on node and network resources.

Traditional approaches to programming sensor networks in-
volve developing “network-enabled” applications for individual
nodes. Such applications encode distributed system behavior via

[Copyright notice will appear here once ’preprint’ option is removed.]

explicit messaging between nodes. Furthermore, application devel-
opment often requires implementation of low-level system details,
or reliance on inflexible or inefficient underlying platforms. Con-
sequently, application development is time- and effort-intensive,
error-prone, and has limitations with respect to scalability, het-
erogeneity, and performance. In contrast, macroprogramming en-
tails direct specification of the behavior of a distributed ensemble.
Through suitable abstractions, macroprogramming explicitly sup-
ports heterogeneity, optimized performance, and scalability and
adaptability w.r.t. to network and load dynamics. Furthermore, be-
havioral specifications can often be statically verified to ensure
robust behavior.

Use of a few low-cost and low-power, yet relatively powerful
devices (such as X-Scale based Intel Stargate) can greatly aug-
ment sensor network performance [29]. Existing development plat-
forms either focus on the development for a network of mote-scale
devices (e.g., [9, 8]) or for networks of higher performance ma-
chines in the sensor network (e.g., [13]). The lack of vertical in-
tegration across heterogeneous devices in existing platforms and
programming models leads to development complexity and dupli-
cated effort. Thus, there is a need for a unified macroprogramming
model that capitalizes on benefits due to heterogeneous environ-
ments. This also requires an underlying runtime environment that
can execute on resource constrained motes, such as Mica2, and al-
lows utilizing capabilities (e.g., multi-threading) of resource rich
nodes.

The goal of supporting easy-to-use high-level abstractions that
hide system-level details is often at odds with requirements on low
overhead and flexibility. This tradeoff is the primary determinant
of the design choices associated with a realizable macroprogram-
ming architecture. We believe that the underlying architecture must
provide a low overhead execution environment for fundamental
macroprogram primitives, while naturally supporting rich exten-
sions based on the system’s operational requirements or application
domain. Among other design objectives for a macroprogramming
architecture, the reuse of software components across applications
is an important engineering aspect, specially as sensor systems be-
come more commonplace.

With these motivating objectives, we have developed COS-
MOS, an architecture for macroprogramming heterogeneous sen-
sor networks. This paper details the COSMOS architecture, which
is comprised of a lean operating system, mOS, and an associated
programming language, mPL. COSMOS supports developing com-
plex applications, based on reusable components. In the COSMOS
architecture, aggregate system behavior is specified in terms of dis-
tributed data processing. This specification consists of functional
components (FCs) and an interaction assignment (IA), which spec-
ifies distributed dataflow through FCs. An FC provides a typed
declaration in mPL and a C code corresponding to the function.
Node capability constraints associated with each FC allow the pro-

1

grammer to effectively and safely utilize heterogeneous devices in
the network. Furthermore, mPL applications can be reprogrammed
over-the-air.

mPL supports the expression of IAs as a fundamental primitive
with support for static program verification. Synergistically, mOS
provides a low-footprint runtime environment providing dynamic
instantiation of FCs and IAs along with other requisite OS sub-
systems. Building on the simple primitive of expressing behavior
through composition of FCs, the COSMOS architecture exports the
ability to easily append rich high-level macroprogramming abstrac-
tions in mPL, without modification to the OS. This is achieved by
implementing new semantics as FCs and integrating them through
the compiler infrastructure as contracts [16] in mPL. This exten-
sibility gives COSMOS architecture the power to seamlessly cater
to widely varying operational and domain specific requirements.
Illustrative examples in mPL, presented in this paper, include ab-
stractions for data presentation operators, dynamic load condition-
ing, and region based aggregation.

We have a fully functional implementation of COSMOS sup-
porting Mica2 and POSIX platforms. On Mica2 motes, mOS runs
directly atop the underlying hardware. On the other hand, on
POSIX platforms mOS provides a transparent execution environ-
ment for COSMOS applications and utilizes the capabilities of
the host OS. In addition, mPL programming model allows seam-
less integration across platforms. We demonstrate the prowess of
COSMOS for sensor network development through comprehen-
sive evaluation using macro- and micro benchmarks. COSMOS is
currently in use in experiments measuring structural response of
buildings to external stimuli at Bowen Labs for Structural Engi-
neering, in Purdue University.

2. Macroprogramming Architecture
The overall goal of COSMOS is to enable an efficient and seam-
less macroprogramming environment for sensor networks. In this
section, we first discuss the macroprogramming abstraction, scope,
and rationale for our design choices. We then present the program-
ming model, which allows application programmers to specify ag-
gregate behavior. Finally, we describe the COSMOS runtime sys-
tem.

2.1 Design Principles
Macroprograms, in the COSMOS architecture, specify distributed
sensor network behavior based on the abstraction of distributed
dataflow and processing in the heterogeneous network. Heteroge-
neous sensor networks consists of nodes with varying sensing, pro-
cessing and communication capability, where failures are a norm.
COSMOS comprises of mPL programming language and mOS op-
erating system. As a basic primitive, mPL allows specifying dis-
tributed data processing in terms of dataflow through functional
components (FCs). FCs implement an isolated data processing task,
for example an averaging function, using C. mOS provides the un-
derlying runtime for COSMOS macroprograms on heterogeneous
platforms.

Basic design principles of COSMOS are:
Macroprogram composition and validation. The macroprogram
is composed of reusable components with typed interfaces. The re-
sulting composition is statically verifiable.
Dataflow between FCs. Facilitating dataflow, both local and over
the network, between FCs is transparently supported as a runtime
primitive. Dataflow is asynchronous. As in most dataflow systems,
execution of a component is triggered in response to asynchronous
data being available on its inputs.
Transparent abstractions and low-level control. High level ab-
stractions and semantics in mPL language are simply implemented
as compositions of FCs. Through the implementation of the FC,

accel

timer
max disp2

max

thresh
craw_tcraw_t

cpress
raw_t

craw_t

fft freq_t

ctrlctrl_t

max_t

disp1

max
max_t

Figure 1. A macroprogram and its instantiation. This program dis-
plays max acceleration values for a building and evaluates fre-
quency response of the building, and displays the resulting spectro-
gram if the acceleration is above a specified threshold. A controller
(ctrl) feedbacks the threshold value, based on aggregate data from
the network. This conserves system resources untill an interesting
event triggers the need for a high fidelity view.

low-level details of these abstractions can be controlled. However,
these details are transparent to the application. For example, while
dataflow over the network is transparent to applications, the net-
work protocol is in fact implemented as an FC that is spliced into
the application at compile-time. Other examples of high level ab-
stractions are region communication, load conditioning, and han-
dling failures. A key benefit of this approach is that the underlying
mOS remains unaltered when abstractions are added.
Heterogeneity. mPL syntax allows effectively utilizing heteroge-
neous nodes in the network based on their capabilities (e.g., if a
node has a sensor, or has large memory). This provides a unified
programming model that is aware of hardware capabilities. In con-
gruence, mOS is also capability-aware and provides a platform in-
dependent runtime for the applications.
Reprogramming. Applications (given as dataflow graphs) can be
loaded at runtime by mOS. This allows low-overhead over-the-air
reprogramming of the sensor network.

2.2 The mPL Programming Model
An mPL macroprogram provides a distributed behavioral specifi-
cation, and constraints relating to the instantiation of this specifica-
tion on physical nodes in the network. The specification consists of
functional components (FCs) and an interaction assignment (IA),
which is a directed (possibly cyclic) graph that specifies dataflow
through FC instances. Each FC has typed data inputs and outputs,
and represents a specific data processing function. FCs are inter-
connected via logically asynchronous data channels (this allows
cyclic graphs). An output of an FC may be connected to the in-
put of another FC, in an IA, only if their types match. Thus, an
IA can be statically type-checked. In addition to dataflow, an IA
also specifies data producers and consumers, which correspond to
source and sink device ports, respectively. Device ports are logi-
cal and may not always correspond to hardware devices. Figure 1
illustrates an mPL macroprogram used for structural monitoring.
We will use this as a running example in this section. Note that
each component in this program is instantiated on every node that
fulfills the component’s capability constraint (depicted in distinct
dashed-line boxes). Distributed (dynamic) dataflow is established
by the system.

2

2.3 Functional Components
Functional Components are composed of a typed interface defini-
tion and a handler written in C, corresponding to its function. Fol-
lowing are the key features of FCs.
Isolation and concurrency. Logically, an FC is an elementary unit
of execution. It is isolated from the state of the system and other
FCs in an IA. An executing FC has access to stack variables and
a private state memory allocated on the heap at instantiation (i.e.,
no access to system global variables). This memory model and the
isolation properties of an FC naturally allow safe concurrent exe-
cution of FCs. As FCs are isolated from the OS, they are insulated
from the side-effects of preemption due OS events such as interrupt
handling by mOS running on mote-scale devices.

Functional components are non-blocking tasks. Asynchronous
data to FCs is received through its inputs interface. If data is avail-
able on its inputs an FC is scheduled for execution. This allows a
very low-footprint scheduler in mOS that does not need to maintain
blocked task lists and thread stacks or provide context switching,
which consume precious memory (e.g., 4KB on Mica2) and CPU
resources. Similar, design patterns are used by most sensor operat-
ing systems, e.g., TinyOS [9] and SOS [8]. Additionally, in COS-
MOS, the architecture of mOS capitalizes on the isolation prop-
erties of FCs to execute components as independent threads on re-
source rich nodes (relying on the underlying host OS). Thus, syner-
gistically, FC and mOS design imposes low-overhead on resource
constrained nodes and achieves performance scaling on resource
rich nodes, while maintaining a clean abstraction—FC as an ele-
mentary unit of functionality and execution—for the developer.
Memory model. At runtime, an FC cannot dynamically request
memory. This memory model has two benefits. First, it eliminates
memory related failure modes in FC implementations. Second, it
simplifies, and hence reduces the overhead of the underlying mem-
ory management subsystem. Note that the memory for the data ar-
riving at the FC inputs is dynamically managed by the underly-
ing mOS and is separate from the state memory (cf. § 3.1). Thus,
restriction against dynamic memory allocation does not effect FC
scalability in face of dynamic load (dataflow) variations. This mem-
ory model arises from our experiences in designing FCs — rely-
ing only on state memory without worrying about memory fail-
ure modes greatly simplifies FC implementation and, in general,
increases robustness. If FC implementations were auto-generated
from statically verifiable models the restriction against dynamic al-
location can be relaxed (cf. § 2.5).
Reusability. FCs are reusable components since they only spec-
ify functionality and typed inputs and outputs. Thus, an FC that
computes a Fast Fourier Transform, for example, can be plugged
into any application as long the type requirements of its inputs and
outputs are consistent, and network has nodes that satisfy the ca-
pability requirement of the FC. Therefore, FCs provide a robust
abstraction for implementing reusable data transformation and ag-
gregation functions that can be applied on data streams.
Extensions. Beyond FCs, with the basic properties described
above, COSMOS supports two more types of FCs with extended
features. These are service FCs (SFCs) and language FCs (LFCs).
SFCs implement system services (e.g., network service) and exist
independent of applications. SFCs are linked into the dataflow of
applications requiring them at application instantiation time. LFCs
manifest themselves as high-level programming abstractions in
mPL and are not directly visible to the macroprogram developers.
The developer simply uses the high-level programming abstrac-
tions provided in mPL, while the compiler transparently selects and
inserts requisite LFCs in the application IA during macroprogram
static analysis. Further, details on LFCs and SFCs are deferred to
Sections 2.5 and 4.3, respectively.

%fft : {
mcap= MCAP_FAST_CPU,
fcid=FCID_FFT,
in[craw_t],
out[freq_t]

};

freq_t
fft

craw_t

Figure 2. Description of the fft FC meta-information and its graph-
ical representation.

2.3.1 FC Specification and Implementation
The syntactic definition of an FC consists of two parts. The first
part contains the FC declaration, specified at design time. The
second part is an implementation expressed in a C subset. For
a macroprogram developer, only the FC declaration is important.
A repository of implementations is assumed to be available as a
library. Furthermore, new FCs are straightforward to design and
implement. A description of the meta-information (i.e., declaration)
of fft FC is provided in Figure 2. This FC can be executed only on
machines with fast CPUs, has a unique ID (FCID_FFT), an inputs
of type craw_t (compressed raw), and an output of type freq_t
(frequency domain data). The C implementation of this FC is given
in Figure 3. Briefly, the C implementation simply involves writing
a handler (fft_fc()). This handler receives three parameters from
mOS, when it is invoked. The ind parameter gives the index of the
input of the FC on which data was received, and the pbqn pointer
points to the input data block, generated by the preceding FC in the
IA, wrapped in a generic data structure. In this example it contains
data of type craw_t. The craw_t data (that represents a vector
of sensor readings, each of which is of type uint8_t) is fed to a
public domain FFT implementation [4] (modified to remove global
variables and malloc calls). The resulting frequency domain data
along with other fields of freq_t type are transfered as single
block to the 0th index output using out_data() non-blocking
system call (cf. § 3.4). This call enqueues data to the inputs of
succeeding FCs in the IA and schedules them if necessary. Further
discussion on the features of the handlers and facilities provided
to them is deferred to Section 3.4. This example demonstrates
the relative ease with which complex data processing functions
can be integrated into COSMOS. It also illustrates the modular
nature of FCs, that enables them to be plugged into any application
conditioned on typed-interface and machine capability definitions.

2.4 mPL Language
A macroprogram in mPL is composed of the following fundamen-
tal types of expressions.
Enumerations. Enumerations associate integer values with iden-
tifiers. These are typically used for providing globally unique IDs.
Enumerations follow C enum expressions and are automatically im-
ported from COSMOS C header files by the compiler.
Declarations. These expressions allow declarations of devices and
FCs. These are also directly imported from C header files, where
they are specified in comments using formal syntax.
Instances. Much like declaring objects as instances of classes,
these expressions allow creation of logical instances of FCs and de-
vices, and providing instantiation parameters. However, note that,
for each logical instance a physical instance is created, at runtime,
on each node that fulfills the capability requirement for the compo-
nent.
Capability constraints. FC (or device) instances inherit capability
constraints from FC (or device) declarations. These constraints can
be made stricter for individual instances using constraint expres-
sions.
IA description. This section comprehensively describes the con-
nections of the inputs and outputs of FC and device instances used

3

static fc_header_t fc_hdr DECLARE_HDR = {
fcid: FCID_FFT,
state_sz: sizeof(fft_state_t)

};

cp_return_t
fft_fc(cp_param_t *param, bq_node_t*pbqn, num_conn_t ind)
{

kiss_fftr_cfg pc; // using kiss fft implementation
int nfft;
uint8_t *d;
fft_state_t *pfs = (fft_state_t*) param->state;

if (ind == 0) {
// craw input.
register int i;
nfft = GET_DATA_LEN_CRAW(pbqn);
d = GET_DATA_POINTER_CRAW(pbqn);
for (i=0; i<nfft; i++) {

pfs->in[i] = d[i]; // copy uchar to in type.
}
pc = kiss_fftr_minit(nfft, 0, pfs->fft_cfg, CFG_SZ);
if (pc != NULL) {

kiss_fftr(pc, pfs->in, pfs->out_freq.data);
pfs->out_freq.id = GET_ID_CRAW(pbqn);
out_data(param, 0/*out index*/, &(pfs->out_freq),

ID_SZ+sizeof(kiss_fft_cpx)*(nfft/2+1));
}

}
return FC_RETURN_OK;

}

Figure 3. Implementation of the fft FC in C.

in the macroprogram. The mPL compiler flags type mismatches
and illegal linkages.
Contract predicates. These allow utilization of high-level abstrac-
tions in the IA description.

Figure 4 presents the mPL code for the macroprogram in Fig-
ure 1. Contract predicates used in this program are not shown; dis-
cussion on their usage is deferred to Section 2.6. Device and FC
declarations are shown for clarity and, in general, are not written
in an mPL code file. Note that the constraints for fft imply that
its instance should also be present on the server (because they have
FAST_CPUs as well), however, Figure 1 does not show this detail to
maintain clarity.

In the program, two logical instances of the display device are
declared using instance expression. This corresponds to displaying
two separate windows on the server screen. The input for disp is
of type “*”, which is a supertype for all types. The accelerometer
is declared using a parameter, which is explained in Section 4.2.
In the instance expression for thresh_fc we note that a parameter
is provided. This is interpreted by the thresh_fc as the default
threshold value to use.

An IA description is a representation of the IA graph. timer
is a keyword in mPL. Its parameter (which is tunable at runtime)
gives the firing interval in milliseconds. An FC instance on left
side of an arrow needs to provide the index of its output for which
adjacency is being established. Similarly, FC instances on the right
provide the consumer input index. Thus, in the example IA, the
first output of ctrl[0] is to be connected to the second input of
thresh[1]. Devices do not need these indices since they have
only one input or output. Use of “->” indicates local or one-
to-one network communication (the optimal choice is discerned
automatically by the compiler), while “-->” indicates one-to-all
communication. The use of “|” allows “merge and update” data
processing. While generating subgraphs for different node types,

// declarations (auto import)
%accel_x : mcap = MCAP_ACCEL_SENSOR,

device = ACCEL_X_SENSOR, out[raw_t];
%cpress_fc : { mcap = MCAP_ANY, fcid = FCID_CPRESS,

in[raw_t], out[craw_t] };
%thresh_fc : { mcap = MCAP_ANY, fcid = FCID_THRESH,

in[craw_t, ctrl_t], out[craw_t] };
%ctrl_fc : { mcap = MCAP_ANY, fcid = FCID_CTRL,

in[max_t], out[ctrl_t] };
%max_fc : { mcap = MCAP_ANY, fcid = FCID_MAX,

in[craw_t, max_t], out[max_t]};
%disp : mcap = MCAP_UNIQUE_SERVER,

device = DISPLAY, in[*];
%fft_fc : { mcap = MCAP_FAST_CPU, fcid = FCID_FFT,

in[craw_t], out[freq_t] };

// logical instances
accel_x : accel(12);
disp : disp1, disp2;
cpress_fc : cpress;
thresh_fc : thresh(250);
max_fc : max;
fft_fc : fft;
ctrl_fc : ctrl;

// refining capability constraints
@ on_mote = MCAP_ACCEL_SENSOR : thresh, cpress;
@ on_srv = MCAP_UNIQUE_SERVER : ctrl;

start_ia
timer(30) -> accel;
accel -> cpress[0];
cpress[0] -> thresh[0], max[0];
thresh[0] -> fft[0];
fft[0] -> disp1;
max[0] -> ctrl[0], disp2 | max[1];
ctrl[0] --> thresh[1];
end_ia

Figure 4. mPL code for the macroprogram in Figure 1.

the mPL compiler checks if the consumers on the left side of “|”
are present on the same node as the producer. If so, it creates a
local dataflow, otherwise it provides instructions to setup a network
dataflow to the consumers on the right side of “|”.

This example illustrates that an mPL program can easily and
directly specify distributed system behavior using simple syn-
tax. Composing applications with reusable components allows the
mcaroprogrammer to focus on the application specification rather
than low-level details or inter-node messaging. Furthermore, high-
level abstractions 2.5 can be used to refine and fine-tune the se-
mantics of the applications (some of which the reader might have
noticed missing in our example code) and provide rich features
such as neighborhood communication and load conditioning.

2.4.1 Application Instantiation
The COSMOS compiler reads the mPL code and generates an
annotated directed graph representation. To execute an application,
this graph is communicated over the network nodes running mOS.
It is assumed that the requisite FCs are available at the nodes. FCs
are placed in the program memory of the nodes either when mOS
is being flashed or by downloading them over-the-air. The node
capability constraint determines if a node receives a particular FC
or not. Each node in the network receives a subgraph of the IA,
consisting only of FCs that can be instantiated at the node. Dataflow
with remaining FCs is transparently handled through the network
SFC (cf. § 3.3). Local dataflow (cf. § 3.1) is established by the mOS
runtime.

2.5 High Level Abstractions
Language functional components (LFCs) are used to implement se-
mantics for high-level abstractions in mPL. These abstractions are

4

specified as contract expressions. Benefits of design-by-contract
are well-articulated in both the software engineering [16] and
programming languages [5] literature. Contracts are applied on
dataflow paths in a macroprogram and are transparent to the under-
lying OS. A contract expression has the following syntax:
identifier property=const[, stream,...][exception:stream,...][out:stream,...]
The identifier and the property are used by the compiler to lookup
the LFC(s) that implement the required semantics. These LFCs
evaluate the predicate expression as well as provide mechanisms
to meet the specified contract. LFCs are automatically spliced into
the user program at compile time. In the above contract expression
the constant is an instantiation parameter for the LFC(s), while
input, exception, and output streams can be optionally provided.
For example, an input stream would be the output of a user FC
such as efcee[0]. Similarly exception and output streams feed to
user FCs’ inputs. The type required for the streams (including the
one on which the contract is applied) depends on the high-level
abstraction used. In the COSMOS architecture LFCs are generated
automatically from a temporal logic based program. As these LFCs
are verifiable they are allowed to use dynamic memory (which is
not allowed for user FCs). A complete description of the program-
ming and the performance of these LFCs is beyond the scope of
this paper and is the topic of a separate technical report [3]. In this
section, we present a few examples of the use of contract based ab-
stractions supported in mPL. This demonstrates the ability of mPL
to seamlessly enable high-level abstractions without modification
to the runtime.

2.6 Data Presentation
To motivate the use of data presentation abstractions we continue
with our example macroprogram of Figure 1. The fft component
requires a data vector of specified length. This would require the
fft component to first build a vector of its required length. This
task is further complicated by the fact that fft receives an arbitrary
number of virtual streams (one from each source node). Segregat-
ing these streams and generating required length vectors is orthog-
onal to the function of the fft component. Thus, mPL provides the
following generic contract based abstractions that can be used to
express its connection with thresh:
thresh[0] (buffer length=NET_LENGTH) ->

(buffer length=FFT_LENGTH out: fft[0])

Use of NET_LENGTH prevents small packets (FFT_LENGTH is usu-
ally too large and not suitable for transmission in a wireless en-
vironment). In response to the use of this contract, the compiler
simply places buffer LFC at appropriate links in the IA graph dur-
ing IA graph generation. The buffer LFC provides semantics, i.e.,
buffering and binning, to enforce this contract. Related data presen-
tation abstractions include geographic_align and time_align
property based contracts to align multiple virtual streams (in many-
to-one communication) through buffering. In our example program
time_align is used to sort time sequenced data to the second input
of the max FC.

2.7 Region Communication
Region communication allows all-to-all communication within a
given region. Thus, instead of using a single controller for thresh,
one could use a local controller that makes its decision based on
regional data, e.g., based on data from neighbors in 2-hop radius.
The following expressions would achieve this:
max[0] -> (region hops=2, local_ctrl[1] out:max2[1])

max2[0] -> local_ctrl[0]

Here, we assume that local_ctrl has two outputs, one to control
threshold and the other to control the fidelity of its source – in this
case to control the diameter of the region. This is also an example
of developing sensor network applications that trade off fidelity and

net

l ctrlthresh
rc

max
max2

Figure 5. Part of the compiler generated IA for threshold control,
using region communication, on sensor nodes.

resource utilization (radius of neighbors affects network overhead).
Figure 5 depicts a part of the IA generated by the compiler for
nodes with capability MCAP_ACCEL_SENSOR, for this example.

2.8 Load Conditioning
In a large self-organized distributed system, the number of peers
of a given node may not be predictable. Consequently, the input
data rate and resource utilization on a node may be arbitrary. Con-
tracts provide system performance control in such environments.
Load conditioning LFCs implement simple load-shedding tech-
niques and use the exception feature of contract expressions to al-
low users to handle contract breaches. Contracts for load condition-
ing can be based on CPU usage, memory watermark, or network
utilization properties.

3. Runtime
In this section we describe the runtime environment, including var-
ious features and mechanisms required to support the execution of
the macroprogram. We also discuss how the design choices made
for the programming model tie to the efficient and robust construc-
tion of the underlying environment. The fundamental design pat-
tern in architecting our runtime is to achieve a low-footprint, in
terms of CPU and memory, and allow performance scaling on re-
source rich nodes.

3.1 Dataflow
A macroprogram specifies connections between FC and device port
instances using abstract asynchronous data channels. Abstract data
channels are realized as data queues, whose nodes encapsulate data.
Each device port or an FC instance has an individual queue associ-
ated with each of its outputs. During application initialization, these
queues are attached to the inputs of the succeeding component as
specified by the IA. The two relevant design choices here are – the
use of output queuing, and using multiple queues instead of a sin-
gle multiplexed system wide message queue (which is a simpler
alternative, e.g., as used in SOS operating system [8]).

We choose output queuing for our system because it minimizes
the memory used by queued data objects. A common case in data
processing systems is to extract multiple views of the same data
(e.g., finding the average and the maximum of a stream of sensor
readings). This requires one-to-many connection of components in
the IA. A single output queue shared by all consumers maintains
only one copy of the data, thus optimizing a common usage of the
system. Of course, the data node is deleted only when all consumers
have absorbed the data. However, negative side-effect of having
a shared queue requires that the consumers treat inputs as read-
only. Given that motes usually have very limited data memory (e.g.,
Mica2 motes have a 4KB RAM) the memory saving is substantial
in practice, and justifies our approach.

The use of individual queues for each output has two key advan-
tages: low CPU overhead, and possibility for concurrency between
executing components. Low CPU overhead is a key benefit for re-
source constrained nodes, while possibility of concurrency allows
efficient utilization of resources at resource-rich nodes in a hetero-
geneous environment.

5

A single message queue architecture requires source and desti-
nation module IDs to be specified in the message. Given that our
FCs do not know about the FCs they are connected to, the system
would need to include these IDs for every message. This would
also require a lookup on the destination FC each time (which also
generates more runtime failure modes). On the other hand, only a
one-time lookup is required if queues between connected FCs are
setup during application initialization. The memory overhead of us-
ing multiple queues is compensated by avoiding source and desti-
nation component ID fields in each message and instead storing this
information only in the queue data structure. Note that a single data
object might be destined for multiple FCs and must carry the IDs
of each of these FCs. The overhead breaks-even if a few objects are
queued. In fact, in high utilization periods, when memory is scarce,
we also save memory.

The runtime system also handles network data flow transpar-
ently. If the components are not on the same node, output queues
connect to a transparent network service of the source nodes. An
output queue from the network service of the receiving node to
the destination component completes the virtual data channel. The
asynchronous semantics ideally suit the network data channel and
impose few restrictions on the semantics of the underlying network
communication, eventually allowing the use of simple low over-
head protocols. COSMOS provides a default network service dis-
cussed in Section 3.3.

3.2 Locking and Concurrency Model
COSMOS supports both multi-threaded and non-preemptive envi-
ronments. On motes, where mOS scheduling is non-preemptive,
interrupt handlers can preempt scheduled tasks. To protect globally
shared data, the only locking mechanism is to disable interrupts.
By reducing the scope of shared data to queues between connected
components, we completely eliminate locking on the dataflow path
(in a non-preemptive environment). Recall that FCs do not use any
global variables. Hence, the only time locks are acquired while ex-
ecuting an application is while scheduling components using the
system schedule queue, and during execution of device (including
timer) driver routines that share global system data.

On resource rich nodes, where multi-threading is possible, the
isolation properties of FCs naturally support parallel execution.
However, locks are required between concurrently executing FCs
that share a data queue. Our optimization here is to hold the lock for
a queue only when enqueuing, dequeuing, or traversing the queue.
Thus, while the head object on a queue is read by an executing FC,
it does not need to hold the lock for the queue. This allows the
FC owning the queue to concurrently enqueue data to the queue.
Similarly, as discussed earlier, each queue might have multiple
readers. Each of the readers may be reading an object (or different
objects) in the queue in parallel. Using a reader bit mask for each
object the system knows if an object has already been consumed by
an FC. If all readers have consumed the object, it is dequeued and
deleted.

3.3 Network Service
The network SFC implements the network communication seman-
tics of macroprograms to enable distributed data flow. During static
analysis of mPL program code, the compiler also places the net-
work FC in the generated IA graph if network dataflow is required
between the producer and consumer components (i.e., FCs or de-
vice components). It is the task of the routing implemented in the
network SFC to deliver the data to the destination machine that has
consumer components.

We provide a default routing implementation called hierarchical
tree routing (HTR). HTR is a simple variation over tree routing in
that the nodes near the root are more powerful (in terms of CPU,

memory and bandwidth). Tree routing is commonly provided in
most sensor network platforms (e.g., [9, 20, 8]). It is scalable, re-
silient in dynamic environments and is suitable for a wide array of
data-driven applications. HTR, in addition, allows easily locating
nodes with a particular capability, which is required in our archi-
tecture.

HTR provides the following communication semantics. Dataflow
between FCs connected over the network can be one-to-all (e.g.,
ctrl (controller) to thresh (threshold) FC in Figure 1), one-to-
one (e.g., thresh to fft FC, which yields a many-to-one aggrega-
tion at fft), or local broadcast (which is used by region commu-
nication LFC). By defining group membership based on capability,
multicast can be used instead of broadcast. On mote devices com-
munication is best-effort (unreliable), whereas on resource rich
nodes TCP is used for data1 communication. Extensions to these
semantics to provide richer (and possibly stricter) abstractions is
possible by adding new LFCs transparently. This is exemplified by
the region communication LFC that allows neighborhood commu-
nication (i.e., all-to-all in bounded region) irrespective of the tree
routing.

In general it is difficult to envision a network SFC that would be
efficient for all application domains. Thus, while HTR is suitable
for data-driven applications, geographical routing may be more
suitable for in-network storage based applications (e.g., [21]). A
key feature of COSMOS architecture is that the network SFC
can be easily modified to adapt to different application domains,
without affecting the programming model.

3.4 FC and Runtime Interactions
Runtime parameters. The runtime invokes the FC handler with
three parameters (see Figure 3). As described earlier, ind gives the
input index on which the data is received, while pbqn gives the
pointer to the input data block wrapped in a generic OS data struc-
ture. The param argument points to a structure that contains notifi-
cations from the operating system, a pointer to the state memory, in-
stance parameters, and (possibly) platform dependent information.
Currently, the notifications from the OS include the input queue
length. This allows the FC to possibly adept its behavior based on
input load.
System calls. mOS supports non-blocking system calls from the
FC to the kernel. For example, the out_data() function that en-
queues data to the output of an FC is a system call. Note that non-
blocking system calls suffice in our architecture because all asyn-
chronous data (e.g., data from sensors, network, timers, etc.) is re-
ceived through the input interface of components. Avoiding block-
ing calls yields a low-footprint scheduler in mOS, as discussed ear-
lier.

Most system calls used in user FCs pertain to getting informa-
tion from the OS, such as hardware type, wall-clock time, node id,
etc. An exception is the out_data() call. Service FCs and lan-
guage FCs, have a wider range of accessible system calls. For ex-
ample, network SFC can enqueue data to the network driver, while
LFCs can allocate dynamic memory. SFCs and LFCs use the ex-
tended system call set to provide low-level control of the underly-
ing hardware and the OS.

FCs are dynamically loadable, hence, a mechanism to enable
FCs to access the system call table (which contains pointers to
system functions) is required. On motes, this is achieved by placing
the table at a known address in the ROM and providing wrappers in
a header file to call the actual functions. This technique is adapted
from the SOS operating system [8]. In the POSIX environment
we simply pass a pointer to the system call table in the param

1 UDP broadcasts are used for routing messages

6

argument to the handler. Wrappers that transparently invoke system
calls based on the underlying platform are provided.

To allow the system to identify the calling FC, an FC is required
to pass its system provided parameter (param, c.f. Figure 3) in
every system call.
Return values. Return values from an FC handler allow it to
flexibly control the input queue (on which data arrived causing
the invocation of the handler). These “commands” include the
following notifications:
1. Current node is no longer needed (FC_RETURN_OK as in Fig-

ure 3). Recall that a node is deleted only if all its consumers
send deletion notification.

2. Transfer the current node without modification to a given output
of the FC. If the current FC is the only consumer of the queue a
low-overhead pointer transfer is performed otherwise a copy is
transfered.

3. Resend the current node to the FC when new data on the current
input arrives.

4. Resend the current node to the FC when new data arrives on
another input arrives. This allows the FC to synchronize its
inputs.

Dynamic memory management of the queues greatly simplify the
design of the FCs and enable scalability – they allow the design
of the FC to be independent of the data input rate. Data input rate
may vary because of the number of nodes in the network or the
sampling rate of sensors. Recall that queue length notifications (in
the parameters to the handler) can be used to estimate “forward
pressure” on the FC so they can adept their behavior if necessary.
Alternatively, load-conditioning abstractions can be developed and
applied on the dataflow paths.

4. Operating System Architecture
The mOS operating system provides a low overhead implemen-
tation of the runtime system for COSMOS based macroprogram-
ming. Architecturally, mOS consists of a core kernel, which is
logically divided into a platform independent core and hardware
specific drivers and routines. The key subsystems of the platform
independent core include the scheduler, timer, dynamic memory
manager, dynamic component loading and dataflow setup manager,
dataflow API, device abstraction layer, and a system information
and control API. We have implemented the mOS operating system
on Mica2 and POSIX platforms. On motes, mOS is a full-fledged
operating system directly running atop the underlying hardware.
On resource rich nodes (e.g., in our case, Stargate SBC devices
and PCs running Linux), mOS sits atop the POSIX layer, and pro-
vides a transparent environment for executing macroprogram appli-
cations, which are, by design, platform independent. To execute a
macroprogram, on POSIX, the mOS management thread loads FCs
(which may be a part of the binary of mOS or compiled as individ-
ual loadable libraries), and executes the FCs (waiting for inputs)
each in an individual thread. Both on POSIX, and on the motes,
mOS is accessible to the dynamically loaded components through
a system call pointer table.

4.1 mOS Subsystems
The key subsystems of the platform independent core include the
scheduler, timer, dynamic memory manager, application initializa-
tion manager, application execution manager, device manager, a
network API, and a system information API. Here, we provide a
brief overview of a few key subsystems.

The timer subsystem uses a delta list to trigger registered events.
On timeout the timer invokes a callback function, or schedules the
callback function depending on the usage of the timer API.

The memory manager provides an O(1) free-list implementa-
tion to allocate fixed small size blocks, and an O(n) first-fit imple-
mentation for arbitrary size memory allocation. If there are no free
blocks in the free-list the implementation always falls back to the
first-fit implementation. On resource rich nodes, mOS falls back to
malloc(), if the initially allocated memory chunk is not sufficient.

The network API provides a wrapper function, which is invoked
by the drivers when a packet is received. This wrapper invokes the
network SFC asynchronously, transparently hiding the underlying
driver. Similarly, a single system call to send packets to either of
the network interfaces of the node is provided. On Mica2 motes,
communication drivers include a driver for the UART and CC1K
radio. On POSIX platform an IP driver (that wraps UDP and TCP
sockets) and the serial port (UART) driver are provided.

The system information API provides a simple API to access
the current node’s capabilities, system time, and a unique node ID,
among other system information.

4.2 Device Ports
mOS supports an abstraction of device ports. Given a device name,
which identifies a device driver, the device subsystem binds a vir-
tual device port to the device driver. This may be associated with a
specific hardware device, such as ADC, or a virtual device, e.g.,
graph plotting application. Each device port has an output data
queue, linking it in the IA. It is not possible to insert data in this
queue in an interrupt service routine. If this were allowed, access to
this queue by consumers would require disabling interrupts. Thus,
once a data object is created, a function to enqueue it is scheduled.
We allow the macroprogram to specify the number of data samples
that can be packed into a single data object before it is enqueued.
This provides substantial performance improvement at high sam-
pling rates. In the mPL code this specification is expressed as a
parameter to the device port instance declaration. Furthermore, this
parameter is tunable at runtime. An example instance declaration
specifying the requirement to pack 12 samples per output node is
as follows:
accel_x : accel(12);

4.3 Supporting Services
Service FCs (SFCs) have access to low-level system functions
through an extensive set of system calls that enable them to in-
teract with the system. The key difference between user FCs and
SFCs is that service FCs can exist without being a part of an appli-
cation and are initialized at boot-time. By default, each service has
a queue attached to its (0th) input. This queue enables the OS to
communicate with the SFCs asynchronously. The above two fea-
tures allow SFCs to perform low-level management that does not
directly involve user data processing.

Alternatively, SFCs can be spliced into user applications when
the macroprogram is loaded. The inputs (except 0th input) (and
similarly outputs) of a service FC are of the same type. A service
can support arbitrary number of inputs and outputs (which is unlike
user FCs where the number of FCs are defined at design time).
Therefore, only one instance of a service is required on each node.

Usually, SFCs are used to implement complex interaction with
sophisticated devices or perform hardware management.

4.4 Application Loading
To instantiate an application both the loadable binary of the FC
and a part of the IA corresponding to the current node’s capability
should be present on the node. Note that upon over-the-air down-
load the binaries of the FC implementation need to be loaded to the
program memory. On POSIX based environments, we use the host
OS provided dynamic library loading functions (e.g., dlopen), and
get a handle. On motes, specific drivers are needed to write to the

7

program ROM at runtime. For Mica2 we adapt this implementation
from SOS [8].

The application initialization manager reads the IA and creates
data structures for the FCs and device ports and connects them us-
ing data queues. Where required, it also connects the FCs (or device
ports) to the network service providing a virtual continuation of the
IA to the rest of the distributed system. Each FC is represented in
the kernel using a connection point (CP) data structure. This dy-
namically allocated structure keeps pointers to the input and output
queues, pointer to the handler function of the FC, pointer to the
runtime parameter for the FC (i.e., cp_param_t) and scheduling
information. The initialization manager is also responsible for ini-
tializing and managing service FCs.

Once the initialization of the local IA is complete, the appli-
cation is launched. Starting an application involves enabling data
input to the local IA. This entails calling the start function of the
device ports and/or marking the output queues of the network ser-
vice that connect to FCs in the IA as ready.

4.5 Scheduling
Scheduling responsibilities of the mOS operating system involve
scheduling FCs that have data ready on their inputs, and to schedule
the internal tasks of the operating system. Our scheduler provides
light weight, two-level priority scheduling of callback function
pointers. mOS scheduler by itself is non-preemptive and dispatch
involves invoking the callback function. High priority is used only
for system related tasks.

FCs are scheduled on motes as follows – Each time data is in-
serted into an output queue a system function, run_cp(), is sched-
uled. This function invokes the handler of FC’s consumers. Sim-
ilarly, if the consumer of the queue is a device, a uniform device
execution function, run_dev(), is scheduled. Timer based execu-
tion of device ports or FCs involves scheduling these run_xxx()
functions on timer interrupts.

In the POSIX environment COSMOS utilizes the underlying
host OS scheduler and POSIX threads for concurrency. Each FC
has a wrapper that invokes the FC. The wrapper function is exe-
cuted in a POSIX thread. This function continually performs a con-
ditional wait to block for data. When data is enqueued to an empty
queue that feeds an FC, the corresponding FC thread is signaled
by calling a POSIX aware run_cp() implementation. If the thread
is not in a wait state, no signaling needs to be performed. Since
enqueue and dequeue operations are atomic (on POSIX platforms
we use mutex locks) race conditions are avoided. Similarly, device
driver implementations also execute as threads. For example, the IP
driver and the UART driver use receive and send threads.

4.6 Implementation
We have implemented the mOS operating system on Mica2 and
POSIX platform. The platform independent code consists of ap-
proximately 9, 000 lines of C code. The core is implemented to
be lean in terms of program size, and CPU / memory usage. We
have deployed and are using COSMOS on a real-world three-story
building testbed to study structural response to ground motion, in
the Bowen Labs [1] at Purdue University.

Since the core of the OS is platform independent it is relatively
straightforward to port mOS to new platforms. This involves pro-
viding drivers matching the uniform device subsystem of mOS. On
Mica2, mOS (including drivers) compiles down to a 25KB binary
(the total available ROM size is 128KB), leaving around 100KB for
functional components. Out of the 4KB RAM the OS uses around
900B of RAM and has 1748B available in the heap after the OS
boots up. Almost 70% of the Mica2 platform dependent code and
drivers have been ported from TinyOS [9] and SOS [8] operating

systems. These include drivers for the ADC, UART, and routines to
access the program memory.

While COSMOS allows user to implement efficient data pro-
cessing applications, users may want to use external applications
in conjunction with COSMOS on the POSIX platform – for exam-
ple, using a database server application to store results. To achieve
this, users only need to develop a driver that communicates with
such applications and provide a service FC to control the device.
They can then integrate the service FC into the macroprogram IA
seamlessly.

5. Experimental Evaluation
COSMOS provides a low-overhead platform for macroprogram-
ming sensor networks. In this section, we present a comprehensive
experimental evaluation of various operational aspects. They layout
of this section is as follows.

As a macro benchmark, we study the performance of the ex-
ample program shown in Figure 1. The example application is a
real-world structural health monitoring application with high data
rate and processing requirements. COSMOS allows a robust im-
plementation of this application in heterogeneous sensor networks.
The results demonstrate the advantage of vertical integration across
heterogeneous nodes, which is seamlessly enabled by the mPL pro-
gramming model in congruence with mOS operating system. Next,
we demonstrate that COSMOS allows low-overhead over-the-air
application reprogramming.

We provide detailed micro-benchmarks to evaluate the footprint
of mOS operating system. The footprint of mOS matters the most
on resource constrained nodes. Therefore, our micro-benchmarks
are focused on Mica2 motes. We evaluate the performance of mOS
using benchmarks that stress operating system primitives. We com-
pare mOS with TinyOS [9] and SOS [8], based on CPU utilization.
The results show that mOS performs slightly better than SOS. The
CPU utilization of TinyOS is lesser than mOS by a fixed absolute
difference of 1%, which is low. We show the breakdown of pro-
cessing costs incurred on the data path on mOS. Finally, we show
that complex FC interaction assignments—with several FCs con-
nected in series—have a low footprint on mOS.

5.1 Hardware Setup
We use the following hardware in our macroprogram evaluation
benchmarks. Mica2 with MTS310 multi sensor board [2] is used
a sensor node. Mica2 has an ATmega128 micro-controller running
at 7.37MHz, with a 128KB program ROM, 4KB data RAM, and
Chipcon CC1000 radio. MTS310 board supports a wide variety of
sensors including a 2-D accelerometer, which is used in our exper-
iments. Stargate [2] is used as a low-power gateway. Stargate has a
400MHz Intel X-Scale (PXA255) processor and provides a 64MB
SDRAM and a 32MB Flash. It runs a Linux 2.4.19 kernel. Wire-
less networking is achieved using AmbiCom Wave2Net 802.11b
CF-slot wireless card. To interface the Stargates with the Mica2
radio network we attach a Mica2 mote to the Mica2 slot (which
uses UART for communication) on the Stargate. This Mica2 node
(network interface mote, or NIM) simply forwards radio packets
to the Stargates and messages from the Stargate to radio. Hence,
NIMs are transparent to the network and do not perform any sens-
ing. Finally, in our hardware setup an Intel Pentium 4 1.70GHz
PC with 512MB RAM is used as a server. The server runs Linux
2.6.17.7 kernel. Wireless networking is provided through a 3COM
802.11a/b/g PCI card. The server can interface to the Mica2 radio
network using a MIB510 [2] board connected to the serail port. The
MIB board hosts a Mica2 NIM, which acts as a transparent inter-
face to the radio network.

8

m58

m56

m57
m55

m59 m53

m50

m52
m54

server
1

m51

sg2sg1

m58

m56

m57
m55

m59 m53

m50

m52
m54

m51

server
1

Figure 6. The figure on the left shows the routing tree for a het-
erogeneous network with two Stargate devices. Figure on the right
shows the tree for a network with the server directly communicat-
ing with the motes.

5.2 Macro Evaluation
We evaluate the macroprogram illustrated in Figure 1. The code
for the macroprogram (cf. Figure 4) was changed so that output
from the fft and the max components, at the server, is stored in
a file using the fs driver of mOS, which replaces the disp driver
components in the provided code. This example represents a real-
world application for structural engineering with high performance
and fidelity (> 33Hz sampling) requirements.

5.2.1 Setup and Objectives
The experiment uses 10 Mica2 nodes, 2 Stargates (with NIMs),
and a unique server. For this experiment the macroprogram ap-
plication is “flashed” into the devices (i.e., not programmed over-
the-air, which is dealt in Section 5.3). The experiment is run in a
large laboratory environment. One of the key features of COSMOS
macroprogramming model is that it provides seamless vertical in-
tegration over heterogeneous devices. Through our evaluation we
motivate heterogeneous sensor network by running the same set
of experiments with and without the Stargates. These two setups
are referred to as the “heterogeneous” and “single-server” setups,
respectively. When the Stargates are not used the server commu-
nicates to the radio network using the MIB and its NIM. Our ob-
jective is to study the performance in terms of the participation of
the nodes in the network, system yield of the processed data, and
the response (to the ctrl controller) of the network. We study the
performance by varying the number of Mica2 nodes in the network
from one to ten. Over the experiments the layout is kept uniform.
The order of switching on the motes follows ascending order of
their ids (m50 − m59). Thus, in an experiment that uses 8 motes,
nodes m50 to m57 are turned on. The radius of the network is less
than 30 feet.

5.2.2 Self-Organized Tree Routing
When the sensor system is turned, on the wireless sensor network
self-organizes into tree based on the HTR implementation of the
network service FC that runs on each node. The resulting tree
formed for a 10 mote network is shown in Figure 6. The tree
on the left includes the Stargates in the network and represents a
hierarchical heterogeneous network. In the tree on the right, the
motes in the network connect to the server using the NIM on the
MIB. The layout of the illustrations also indicate the approximate
geographical layout of the nodes in the lab. Note the formation of
child relationships, which are denser in the single-server setup.

5.2.3 Quality ofMax Data
The max FC provides non-overlapping time window max values. In
our program the length of this time window is 30 × 12 = 360ms

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

av
er

ag
e

pa
rti

ci
pa

tio
n

(n
o.

 o
f n

od
es

)

number of nodes

heterogeneous
single-server

Figure 7. Average participation of nodes in performing max data
merging over the system. The higher the participation, the higher
the quality of the max data recorded.

(where 30ms is the sampling interval and 12 is the length of buffers
(cf. §4.2) produced by the accel device component. Merging val-
ues in time windows requires alignment of data in global time win-
dows. Thus, the max data stream is passed through a time-align
contract (i.e., a language FC that implements time-align sequenc-
ing and buffering). This LFC utilizes a simple flooding based time
synchronization protocol implemented through the network SFC
of mOS. The quality of the max data depends on the participants in
calculating the merged value (observed at the root) that represents
the system max (note that the max FC also counts the participants
used for each windows and sends it in the max_t stream). The num-
ber of participants can be lower than the nodes in the network due
to (1) packet losses, and (2) time misalignment between nodes.

The plot in Figure 7 illustrates the system performance of max-
processing in terms of average node participation in each time
window over which max was evaluated. The average was calculated
based on the count of participants in each max packet recorded
over a period of 60 seconds. This represents the quality of max
data generated by the macroprogram. We see that with up to five
nodes in the network both the heterogeneous setup and the single-
server setup provide nearly 100% participation. As the number
of nodes increase the single server setup starts to lag. While the
heterogeneous system gives nearly a perfect participation till there
are 7 nodes in the network. In the worst case it gives almost 90%
average participation while a single-server system reduces down to
75% average participation. As the number of nodes in the network
increase and geographical span of the network increases more
packet losses and time mis-alignment is expected. The use of two
Stargates reduces this, because they are geographically close to the
motes.

To provide detailed view into the participation distribution for
max merging per time window we plot the complete sequence of
counts for an ≈ 60 seconds run. The results, shown in Figure 8
pertain to a 10 Mica2 node system in the heterogeneous setting.

5.2.4 Response Time
A key feature of our example program is that it uses a controller to
conserve resources. High fidelity view of a accelerometer readings
is triggered through feedback on detection of “interesting” activ-
ity. The time from the point where a triggering message is released
from the controller, to the time where the requisite high fidelity data
is received at the server is called the data response time. Data re-
sponse time can be easily and accurately measured at the root node
of the tree. Note that the reception of the data includes the time
spent buffering (and processing) the data as well. In our example,
the data buffer for FFT is set to 120 samples, which translates to

9

 0

 2

 4

 6

 8

 10

 0 10000 20000 30000 40000 50000 60000

nu
m

be
r o

f p
ar

tic
ip

an
ts

relative time (ms)
Figure 8. Participation over time per max merge window observed
at the root (server) for a network with 10 nodes, 2 Stargates and a
server.

 0

 500

 1000

 1500

 2000

 2500

 3000

 1 2 3 4 5 6 7 8 9 10

re
sp

on
se

 ti
m

e
(m

s)

number of nodes

heterogeneous
single-server

Figure 9. Event response time.

120 × 30 = 3600ms. The data response time less data buffering
time is an estimate of event response time, which is of interest to us.
This estimate of event response includes processing time. It is also
affected by packet losses, because the data response is affected due
to packet losses. As a metric of system performance we measure
the minimum event response time. From a structural engineer’s per-
spective the minimum time is most important because it determines
when the first view of the building “activity”, in our case frequency
response, is observable. The last response (i.e., max response time)
response is more or less redundant.

The plot in Figure 9 shows the estimated event response time for
the heterogeneous and single-server setups as the number of Mica2
nodes in the network are varied. The results show that irrespective
of network size the event response time stays almost constant. For
the network without Stargates, the response time is almost 50%
higher. This can be attributed to the more reliable and faster data
paths offered by the Stargates. One anomaly is the high response
times for a single Mica2 node network. After further investigation
this was found to be caused by the loss of several initial packets
when transmission of packets at a high rate is initiated by a Mica2
mote when it is relatively idle. However, the reason for these initial
correlated losses is still under investigation.

The maximum event response time (and even the average)
varies highly because some nodes may miss the trigger broad-
casted down the tree from the controller. This observation shows
the importance of re-enforcing triggers in the network to increase
system yield. The controller FC implementation periodically re-
freshes triggers given continued variations or high values of max
data.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1 2 3 4 5 6 7 8 9 10

sy
ste

m
 y

ie
ld

 (n
or

m
al

iz
ed

)

number of nodes

heterogeneous
single-server

Figure 10. System frequency response data yield as the number of
nodes in the network increase. Frequency response requires high-
fidelity sampling, which results in high contention in the shared
radio medium. Trends using linear extrapolation and bezier curves
are illustrated.

5.2.5 Yield of High Resolution Data
Our macroprogram application requires generating a frequency
response of the building under external stimuli. This requires the
performing FFT over high-fidelity accelerometer readings. With
≈ 33Hz sampling a large amount of data is produced, which needs
to be transmitted over an un-reliable Mica2 radio network. The use
of a large number of nodes in the system enables a redundant and
reliable view of the building oscillations. We evaluate the yield of
the system as whole for our macroprogram.

When the sensor system is run using a single Mica2 mote, on
average, ≈ 91% of expected FFT results are retrieved, as compared
to an ideal system. This retrieval rate is used as the base yield of
the system (i.e., it represents a yield of 1). The system yield, as the
number of nodes are varied, is show in the plot in Figure 10. The
results for the heterogeneous and single-server setup are presented.
Trends in the plot are illustrated using two bezier curves and a line.
The plots show several interesting features. First, the system with
Stargates outperforms the system without Stargates even when the
number of nodes is low. This is because the Stargates are closer to
motes, and hence, prove to be more reliable specially when data
rates are high. Second, the system with Stargates initially gives
an almost linear scaling (as illustrated by the line) as the number
of nodes increase. This is in agreement with the linear increase
in the number of nodes in the network. Third, after the number
of nodes in the network grows beyond 5 the performance of both
setups deteriorate badly. We attribute this to increased interference
in the shared radio channel. We draw this conclusion from the
observation that if m55 to m58 and sg1 are moved away from
the rest of the nodes the performance of the heterogeneous setup
increases (alternatively, the separation can be achieved by reducing
radio power). This provides a practical lesson on the performance
implication of radio interference and the need to control radio
range. Considering, the yield of 3.5 with a network of size 5 (i.e.,
91% × 3.8 ÷ 5 ≈ 70% reliability) believe that the performance of
the system makes it practically feasible for our application domain.

The ease of development of this complex application and its
robust performance demonstrates the prowess of COSMOS as an
architecture for macroprogramming sensor network systems. Our
evaluation also demonstrates the performance gains due to use
of heterogeneous devices—a feature that the mPL macroprogram-
ming model and the underlying mOS synergetically enable.

10

5.3 Reprogramming
COSMOS allows reprogramming of applications over-the-air. To
launch an application, each node needs a subgraph (based on the
node’s capability) of the IA. The mPL compiler generates m-
messages for each FC and device component instance in the ap-
plication IA graph (including the LFCs and SFCs that are trans-
parently spliced into user provided IA description). m-messages
describe the output connections of an FC or device component.
Each m-message also contains the machine capability constraint
associated with the component that it describes. Thus, this message
is only used by machines that have the requisite capability. For
this reason, multiple messages may also be produced for a single
FC (e.g., for the program in Figure 1, max FC connects to the net-
work SFC on motes, while it connects to the disp2 driver at the
server). Each m-message is encapsulated in a network message,
which is transmitted during reprogramming. Thus, the fundamen-
tal overhead, due to COSMOS architecture, for application repro-
gramming is the size of m-messages. Table 1, provides the size of
m-message for the application in Figure 1. Note that the sizes are
very small and usually fit in a single network packet (even over the
radio). The size of an m-message increases as the number of output
connections of a component increase.

Component Machine Size
name capability bytes
accel MCAP_ACCEL_SENSOR 13
cpress MCAP_ACCEL_SENSOR 13
thresh MCAP_ACCEL_SENSOR 11
max MCAP_ACCEL_SENSOR 11
max MCAP_UNIQUE_SERVER 13
max NOT(MCAP_ACCEL_SENSOR)

& NOT(MCAP_UNIQUE_SERVER) 11
fft MCAP_FAST_CPU 11
ctrl MCAP_UNIQUE_SERVER 11
disp1 MCAP_UNIQUE_SERVER 11
disp2 MCAP_UNIQUE_SERVER 11
net(SFC) MCAP_ACCEL_SENSOR 16
net(SFC) MCAP_UNIQUE_SERVER 21
net(SFC) NOT(MCAP_ACCEL_SENSOR)

& NOT(MCAP_UNIQUE_SERVER) 17
buff-len(LFC)-fft MCAP_FAST_CPU 11
buff-time(LFC)-max NOT(MCAP_ACCEL_SENSOR) 11

Table 1. Size of m-messages for components of the application in
Figure 1.

In addition to m-messages an application initialization message
and an application start message is also transmitted. The applica-
tion initialization message is 7 bytes long and summarizes the IA
sub-graph, for each machine capability type that the compiler dis-
covers. This message contains the number of device components
and FCs that the node must expect for its IA sub-graph. Applica-
tion initialization message precedes the m-messages. The applica-
tion start message, which is 4 bytes long, signals the start of an
application. Multiple independent applications can be run concur-
rently. As the IA-sub graph is kept in data RAM no power overhead
due to writing to external flash, or instruction ROM is spent. To
stop an application, identified by an id, the user gives a command
to the server node, which transmits a 4 byte application stop mes-
sage. On receiving the message a node, stops running components
and drivers, deletes its IA sub-graph. Note that in the current imple-
mentation an application must be reprogrammed as a whole (i.e., to
modify an application, the user must stop and reinstall it). We plan
to change this in the future to include difference based updates.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 2 4 6 8 10 12 14 16

pe
rc

en
ta

ge
 C

PU
 u

til
iz

at
io

n

sampling rate (= packet rate)

mOS
TinyOS

SOS

Figure 11. CPU utilization of COSMOS, TinyOS and SOS for a
simple data sampling and transmission application.

For transmission of m-messages, machine capability based
flooding (i.e., a packet is broadcasted only if the descendents of
a node include the requisite capability) is used. Once a node re-
ceives the start message it knows how many messages to expect
and uses timer based NACKS to request messages from neighbors.
To reprogram a 13 node network with (10 Mica2 nodes, 2 Star-
gates, and 1 server) on average 80 messages over the mica2 radio
network, and 25 messages over the 802.11 network were commu-
nicated. This is insignificant compared to the amount of data traffic
even in 10s of hours of low duty cycle operation. Note that the net-
work protocol overhead is orthogonal to the design of COSMOS
and details are skipped here. Other protocols, e.g., Trickle [11], can
be easily implemented as a service FC. Updating or launching ap-
plications may require updating the binary of FCs. This mechanism
has been borrowed from SOS operating system and a discussion on
its overhead can be found in [8].

5.4 Micro Benchmarks
In this section, we present micro-benchmarks to evaluate the foot-
print of mOS on resource constrained nodes. We use Mica2 as the
hardware platform. We evaluate the processing costs of mOS using
Avrora [23]. Avrora provides a faithful cycle accurate simulation
of the Mica2 platform. Monitors provided by Avrora can be used
to accurately profile executions, track hardware I/O (e.g., packet
transmission) and monitor CPU utilization. The simulated time of
all benchmarks is 200 seconds.

5.4.1 CPU Utilization
We study the CPU utilization using a simple remote sensing macro-
program that takes a sensor reading, which is packetized and trans-
mitted over the radio. This application stresses the OS as no appli-
cation processing is involved. A similar application implemented
for TinyOS and SOS allows comparison with these platforms.
TinyOS is a low-overhead operating system popularly used for
sensor networks. SOS allows use of extended features (beyond
TinyOS) such as separation of the OS and the application, and
dynamic memory, similar to mOS.

Figure 11, shows the CPU utilization of COSMOS and SOS op-
erating systems with varying sampling rates. In this experiment, we
do not use any sample buffering, hence, the packet rate is the same
as the sampling rate. The results show that when no sampling is
performed, SOS and mOS have similar overheads. With increasing
sampling rates, CPU utilization on both systems increases linearly,
while CPU utilization on mOS is slightly lower. TinyOS performs
better than mOS by an absolute difference of 1%, which is low.
However, nither TinyOS nor SOS allow macroprogramming. These

11

 4

 6

 8

 10

 12

 14

 16

 18

 0 20 40 60 80 100 120 140 160 180

pe
rc

en
ta

ge
 C

PU
 u

til
iz

at
io

n

sampling rate

cosmOS-20
cosmOS-10

SOS-20
SOS-10

Figure 12. Effect of buffering data samples on CPU utilization.
Buffer sizes of 10 and 20 samples are used.

Start End Cycles
1 Timer fire Driver data req 960
2 Driver data req Data rcvd 993
3 Data rcvd Sched FC 526
4 Sched FC Start FC exec 397
5 Start FC exec Inside FC 198
6 Send net call - 622

Table 2. Time elapsed between various operations of COSMOS on
Mica2.

result shows that COSMOS provides a more powerful macropro-
gramming model without sacrificing performance.

Application developers for COSMOS can request device ports
to buffer samples. The performance benefit of this strategy is illus-
trated in Figure 12. Two buffer sizes, 10 and 20, were used (thus,
packet rates are reduced by a factor of 10 and 20, respectively). The
application for SOS was modified to buffer at the “sensor driver
module” (which provides the only opportunity for application de-
velopers to affect sample buffering). We note that both platforms
benefit from buffering, however, COSMOS offers much more sig-
nificant savings with increasing sample buffering. The limit of
171sps is imposed because the timer subsystems on both systems
imposes a lower limit of 5ms firing interval.

5.4.2 Detailed Processing Costs
Using the profiling features of Avrora, we study the low-level foot-
print of mOS for our remote sensing application (without buffer-
ing). Table 2 summarizes the average elapsed cycles for different
operations in the execution of the application. The sampling rate
is set to 8sps (thus, the system is under suitably low load), which
yields 1600 points in each data set. The results show an average
over these points for each set.

Item 1 is the number of cycles elapsed from the instant the timer
fires to the scheduling of the device port, which is observed to be
960 cycles. This is equal to 0.13ms, given the processor speed
of 7.3728MHz. This operation involves timer delta queue opera-
tions, enqueue of the component execution request to the sched-
uler queue, and finally the dispatch leading to the execution of the
device component. On execution, the device component allocates
memory for the requested data object and calls the hardware data
request function.

Item 2 corresponds to the cycles elapsed from this request till
the time data is made available to be enqueued to the next FC in
the IA. This time includes a request to the ADC, firing of the ADC
interrupt, and depositing the data in the data object memory. Once

the object is ready it leads to the scheduling of the next FC. Item
3 shows this cost. Item 4 shows the elapsed cycles from the time
of enqueuing of the request to execute an FC on the scheduler to
the scheduler dispatch leading to the execution of the FC. In this
experiment, the scheduler queue is empty, hence, this approximates
the actual cost of scheduling and dispatching a request using the
system scheduler. If data buffering is requested, the cost of tasks in
items 3 and 4 is reduced to once per buffer, instead of once per each
sample. Further, memory allocation (of the data object) in item 1
is also performed once per buffer. Item 5 shows that the cost of
preparing parameters to be passed to the handler of the FC and its
invocation is only 198 cycles (or 26.8µs). If the FC has multiple
inputs for which data is ready, 153 cycles are used for preparing
each additional invocation.

Finally, we show the cost of a system call to transmit a data
object in item 6. Recall, that this call is made only from network
service FC. This system call involves allocating a packet header,
linking the object (to be transmitted) to this header and a call to the
radio stack driver. In all, the time elapsed from the timer event to
the radio is approximately 3, 800 cycles or ≈ 0.5ms. This value
is small, relative to the data processing operations. We conclude
from these micro-benchmarks that mOS provides a low footprint
environment for macroprogram execution.

5.5 Cost of FC Chains

 0

 2

 4

 6

 8

 10

 12

 0 1 2 3 4 5 6

pe
rc

en
ta

ge
 C

PU
 u

til
iz

at
io

n

number of FCs

2 pps
4 pps
8 pps

16 pps

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5

la
te

nc
ym

e
(m

s)

number of FCs

cosmOS: 2pps
cosmOS: 8pps

Figure 13. Effect of increasing the number of FCs on the data path.

The design of COSMOS promotes the use of small specialized
FCs rather than large FCs (both in terms of size and processing
time). Figure 13 illustrates the effect, in terms of CPU utilization
and data latency, of increasing the number of FCs on the data path
of the remote sensing application. The application used in earlier
sections had 1 FC (in addition to the network service FC). Note
that 0 FCs means that the sensor driver port is directly connected
to the network service FC. The additional delay added to the data
path is less than 0.2ms per FC, and does not vary with increasing
packet rates. At low packet rates, the added processing due to FCs
in the data path increases the CPU utilization negligibly. At higher
rates the increase in CPU utilization is small, e.g., at 16pps, adding
5 FCs increases the overall CPU utilization by an absolute value

12

of 1% in comparison to the CPU utilization when 0 FCs are used,
given the same packet rate. We also evaluate the effect of number
of FCs on the path of data being forwarded through the node. The
results (not shown) reflect identical qualitative behavior.

6. Related Work
TinyOS [9], together with NesC [6], is among the most popular
platforms for sensor network development. It represents a holistic
approach, where the OS is a part of the application. Therefore, de-
veloping applications in TinyOS requires handling low-level issues.
To ease application development in TinyOS, high-level languages
such as SNACK [7], Mottle [20], and TinyScript [20] can be used.
Unlike macroprogramming, though, these languages rely on explic-
itly programming inter-node messaging to encode system behavior.

In contrast to TinyOS, SOS [8] separates the OS and the applica-
tion. Applications developed as message handling modules can be
loaded at runtime providing ease of development and reprogram-
ming. However, application development involves explicit messag-
ing, which is different from COSMOS. This may result in hidden
intermodule dependencies and related failure modes. COSMOS, on
the other hand, uses functional components (FCs), which are stand-
alone modules that can be reused across applications. Through
composition of FCs, COSMOS allows direct specification of aggre-
gate system behavior. Furthermore, the macroprogramming model
of COSMOS provides vertical integration over a heterogeneous
sensor network unlike TinyOS and SOS.

Similar to COSMOS, MagnetOS [12] views the entire sensor
network as a single entity and provides a unified Java VM that
transparently encompasses the network nodes. However, Magne-
tOS is targeted at a different application domain with more power-
ful machines (such as laptops and PocketPCs).

Regiment [19] is a high-level functional macroprogramming
language, based on the idea of manipulating region streams that are
spatially distributed, time-varying collections of node states. Reg-
iment programs are compiled down to an intermediate language
called Token Machine Language (TML) [18]. Execution of TML-
based programs involve message passing to coordinate computa-
tion across nodes. Hood [27] and abstract regions [25] provide geo-
graphic neighborhood based communication and programming ab-
stractions that use spatially distributed shared variables. While well
suited to specific application domains, the applicability of these
systems as general sensor network development models is still the
subject of current investigations. These languages involve sharing
state and coordinating computation in a distributed environment. In
contrast, COSMOS is data-centric and provides dataflow through a
graph of data processing functional components.

Semantic Streams [26], TAG [15], TinyDB [14], and Cougar [28]
view the sensor network as a stream database and determine global
system behavior using queries. However, these are not macropro-
gramming environments as such, rather, they represent a macropro-
gram application that allows generic (e.g., SQL based) queries. We
believe that various generic or high performance domain-specific
query based stream processing systems can be rapidly implemented
using macroprogramming in COSMOS.

The idea of using graphs of processing components to develop
complex and robust applications is well known in systems litera-
ture. UNIX System V STREAMS [22], FreeBSD Netgraph sub-
system, Click router [10], Scout OS [17], and Seda [24] are exam-
ples of high performance systems that exploit this paradigm. COS-
MOS extends the idea of connected graphs of functional compo-
nents to provide a low-footprint platform for macroprogramming
sensor networks.

7. Concluding Remarks
COSMOS, comprising of mPL and mOS, offers a novel platform
for macroprogramming heterogeneous sensor networks. The asso-
ciated macroprogramming model allows explicit specification of
distributed system behavior using interaction graphs, which can be
statically checked for correctness. Additionally, mPL provides con-
tract expression based rich abstractions to develop robust, scalable
and adaptive macroprograms for self-organized sensor network en-
vironments. COSMOS is available for public release.

References
[1] Bowen labs. https://engineering.purdue.edu/CE/BOWEN/

Facilities.
[2] Crossbow Inc. http://www.xbow.com/wireless_home.aspx.
[3] AWAN, A., JAGANNATHAN, S., AND GRAMA, A. Verifiable

high-level abstractions for macroprogramming sensor networks.
Unpublished manuscript.

[4] BORGERDING, M. Kiss FFT. http://sourceforge.net/
projects/kissfft/.

[5] FINDLER, R., AND FELLEISEN, M. Contracts for higher-order
functions. In Proc. of ICFP ’02 (October 2002).

[6] GAY, D., LEVIS, P., VON BEHREN, R., WELSH, M., BREWER,
E., AND CULLER, D. The nesC Language: A Holistic Approach to
Networked Embedded Systems. In Proc. of PLDI ’03 (June 2003).

[7] GREENSTEIN, B., KOHLER, E., AND ESTRIN, D. A sensor network
application construction kit (SNACK). In Proc. of SenSys ’04
(November 2004).

[8] HAN, C.-C., RENGASWAMY, R. K., SHEA, R., KOHLER, E., AND
SRIVASTAVA, M. SOS: a dynamic operating system for sensor
networks. In Proc. of MobiSys ’05 (June 2005).

[9] HILL, J., SZEWCZYK, R., WOO, A., HOLLAR, S., CULLER, D.,
AND PISTER, K. System architecture directions for networked
sensors. In Proc. of ASPLOS-IX (November 2000).

[10] KOHLER, E., MORRIS, R., CHEN, B., JANNOTTI, J., AND
KAASHOEK, M. F. The click modular router. ACM Transactions on
Computer Systems 18, 3 (August 2000), 263–297.

[11] LEVIS, P., PATEL, N., CULLER, D., AND SHENKER, S. Trickle:
A self-regulating algorithm for code propagation and maintenance in
wireless sensor networks. In Proc. of NSDI ’04 (March 2004).

[12] LIU, H., ROEDER, T., WALSH, K., BARR, R., AND SIRER, E. G.
Design and implementation of a single system image operating
system for ad hoc networks. In Proc. of MobiSys ’05 (June 2005).

[13] LIU, T., AND MARTONOSI, M. Impala: a middleware system for
managing autonomic, parallel sensor systems. In Proc. of PPoPP ’03
(June 2003).

[14] MADDEN, S., FRANKLIN, M., HELLERSTEIN, J., AND HONG,
W. TinyDB: an acquisitional query processing system for sensor
networks. ACM Transactions on Database Systems 30, 1 (March
2005), 122–173.

[15] MADDEN, S. R., FRANKLIN, M. J., HELLERSTEIN, J. M., AND
HONG, W. TAG: a Tiny AGgregation Service for Ad-Hoc Sensor
Networks. In Proc. of OSDI ’02 (December 2002).

[16] MEYER, B. Applying design by contract. IEEE Computer 25, 10
(October 1992), 40–51.

[17] MOSBERGER, D., AND PETERSON, L. L. Making paths explicit in
the Scout operating system. In Proc. of OSDI ’96 (October 1996).

[18] NEWTON, R., ARVIND, AND WELSH, M. Building up to
macroprogramming: An intermediate language for sensor networks.
In Proc. of IPSN ’05 (April 2005).

[19] NEWTON, R., AND WELSH, M. Region Streams: functional
macroprogramming for sensor networks. In Proc. of DMSN ’04
(August 2004).

13

[20] P. LEVIS ET. AL. Maté: Programming Sensor Networks with Ap-
plication Specific Virtual Machines. http://www.cs.berkeley.
edu/~pal/mate-web/.

[21] RATNASAMY, S., KARP, B., SHENKER, S., ESTRIN, D., GOVIN-
DAN, R., YIN, L., AND YU, F. Data-centric storage in sensornets
with ght, a geographic hash table. Mobile Networks and Applications
8, 4 (2003).

[22] RITCHIE, D. M. A stream input-output system. AT&T Bell
Laboratories Technical Journal 63, 8 (October 1984), 1897–1910.

[23] TITZER, B., LEE, D., AND PALSBERG, J. Avrora: Scalable sensor
network simulation with precise timing. In Proc. of IPSN ’05 (April
2005).

[24] WELSH, M., CULLER, D., AND BREWER, E. SEDA: an architecture
for well-conditioned, scalable internet services. In Proc. of SOSP-18
(October 2001).

[25] WELSH, M., AND MAINLAND, G. Programming sensor networks
using abstract regions. In Proc. of NSDI ’04 (March 2004).

[26] WHITEHOUSE, K., LIU, J., AND ZHAO, F. Semantic Streams: a
framework for composable inference over sensor data. In Proc. of
EWSN ’06 (February 2006).

[27] WHITEHOUSE, K., SHARP, C., BREWER, E., AND CULLER, D.
Hood: a neighborhood abstraction for sensor networks. In Proc. of
MobiSys ’04 (June 2004).

[28] YAO, Y., AND GEHRKE, J. The cougar approach to in-network
query processing in sensor networks. ACM SIGMOD Record 31, 3
(September 2002), 9–18.

[29] YARVIS, M., KUSHALNAGAR, N., SINGH, H., RANGARAJAN,
A., LIU, Y., AND SINGH, S. Exploiting heterogeneity in sensor
networks. In Proc. of INFOCOM ’05 (March 2005).

14

