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Abstract. Transactional memory (TM) has recently emerged as an ef-
fective tool for extracting fine-grain parallelism from declarative criti-
cal sections. In order to make STM systems practical, significant effort
has been made to integrate transactions into existing programming lan-
guages. Unfortunately, existing approaches fail to provide a simple imple-
mentation that permits lock-based and transaction-based abstractions to
coexist seamlessly. Because of the fundamental semantic differences be-
tween locks and transactions, legacy applications or libraries written us-
ing locks can not be transparently used within atomic regions. To address
these shortcomings, we implement a uniform transactional execution en-
vironment for Java programs in which transactions can be integrated
with more traditional concurrency control constructs. Programmers can
run arbitrary programs that utilize traditional mutual-exclusion-based
programming techniques, execute new programs written with explicit
transactional constructs, and freely combine abstractions that use both
coding styles.

1 Introduction

Over the last decade, transactional memory (TM) has emerged as an attractive
alternative to lock-based abstractions by providing stronger semantic guarantees
(atomicity and isolation) as well as a simpler programming model. Transactional
memory relieves the burden of reasoning about deadlocks and locking protocols.
Additionally, transactional memory has also been utilized to extract fine-grain
parallelism from declarative critical sections. In particular, software transactional
memory (STM) systems provide scalable performance surpassing that of coarse-
grain locks and a simpler, but competitive alternative to hand-tuned fine-grain
locks [3, 10, 12, 25, 30].

In order to make STM systems practical, significant effort has been made to
integrate transactions into existing programming languages, virtual machines,
and run-time systems. Since languages such as Java already provide concurrency



control primitives based on mutual exclusion, seamlessly integrating transac-
tions into these languages requires rectifying the semantics and implementation
of the two constructs. Existing approaches that attempt to support different
concurrency control mechanisms [10, 30] do not provide a uniform implementa-
tion. Therefore, complex programs that make use of mutual-exclusion cannot
be executed on a system providing transactional support without breaking com-
posability and abstraction – to be assured that it is safe to execute a code re-
gion transactionally requires knowing that methods invoked within the dynamic
context of this region do not make use of mechanisms that violate transactional
semantics such as I/O or communication. Such disparities between different con-
currency control mechanisms have prevented the integration of transactions into
large, complex programs and limited mainstream deployment. As a result, pro-
grammers cannot easily compose transactions with other concurrency primitives.

In this paper, we describe a uniform transactional execution environment for
Java programs in which transactions and other concurrency control constructs
can be seamlessly integrated, interchanged, and composed. Programmers can run
arbitrary programs that utilize traditional mutual-exclusion-based programming
techniques, execute new programs written with explicit transactional constructs,
and freely combine abstractions that use both coding styles. Our framework
allows programmers to write modular transactional code without having to hand-
inspect all calls within a transactional region to guarantee safety. The uniform
transactional execution environment is composed of two mutually co-operating
implementations, one for locks and the other for transactions, and allows for
dynamic handoff between different concurrency control primitives.

Our paper makes the following contributions:

1. We describe how explicit transactional constructs can be seamlessly inte-
grated into Java. We present a programming model which provides both
synchronized and atomic primitives, and a uniform semantics for composing
and interchanging the two.

2. We provide an in-depth exploration of how transactions can be used to sup-
port execution of lock-based synchronization constructs. Our study includes
issues related to language memory models, and concurrency operators which
inherently break isolation such as wait and notify. We explore properties
that must be satisfied by a transactional implementation striving to address
these issues. We present the theoretical foundations of such an implementa-
tion we call P-SLE (pure-software lock elision).

3. We present the design and implementation of the first fully uniform execution
environment supporting both traditional (locks) and new (atomic blocks)
constructs.

4. We evaluate the performance of our system on a set of non-trivial bench-
marks demonstrating scalability comparable to programs using fine-grained
mutual-exclusion locks, and improved performance over coarse-grain locks.
Our benchmarks perform I/O actions, inter-thread communication, thread
spawns, class loading, and reflection, exercising a significant portion of Java
language features.



T1 T2

synchronized(hmap1) {
synchronized(hmap2) {

synchronized(hmap1) {
hmap2.move(hmap1);

hmap1.get(x);

} }
}

Fig. 1. An example program where locks can be elided, allowing for additional concur-
rency.

2 Motivation

Locks are the most pervasive concurrency control mechanism used to guard
shared data accesses within critical sections. Their semantics is defined by the
mutual exclusion of critical sections. In addition to providing thread synchro-
nization and preventing interference between locked regions, lock operations act
as memory synchronization points providing ordering and visibility guarantees
[16]. Software transactional memory, advocated as a lock replacement mecha-
nism, unfortunately provides different semantics. STMs guarantee atomicity and
isolation of operations executed within critical sections (also known as atomic
regions or atomic blocks) to prevent interference. The exact semantics provided
by an STM is defined in terms of an underlying transactional implementation.
For example, STMs with weakly atomic and strongly atomic semantics [4, 26]
are implemented differently. STM systems also typically define their own notions
of ordering and visibility (e.g., closed vs. open nesting [21]). Due to differences
in both semantics and implementations, locks and transactions cannot easily be
composed or interchanged. For example, mutual exclusion may hinder extrac-
tion of additional scalability, whereas semantic properties of atomic regions may
violate visibility guarantees provided by lock-based synchronized blocks.

To provide composability, differences in semantics and implementations must
be rectified. The semantics of locked regions and atomic blocks must be consis-
tent and their implementations uniform. Observe that the semantics of locks
may be supported by an implementation different from mutual exclusion and,
similarly, alternative implementations can be used to implement the semantics
dictated by transactions. The following examples illustrate some of the issues
that arise in defining a uniform implementation and consistent semantics for
both constructs.

Consider the example Java program in Figure 1 which consists of two threads
operating over two different hashmaps hmap1 and hmap2. Although highly con-
current lock-based Java implementations of hashmap exist, exclusively locking
the hashmap object to perform operations on the hashmap as a whole fundamen-
tally limits scalability. In the example in Figure 1 thread T1 moves the content of
hashmap hmap1 into hmap2, locking both hashmaps and thus preventing thread



synchronized(m) {

count--;

if (count == 0) m.notifyAll();

while (count != 0) {

m.wait();

}

}

Fig. 2. Barrier Example

T2 from concurrently accessing hmap1. In some cases, as seen in the example in
Figure 1, locks can be elided – their implementation, mutual exclusion of critical
sections, can be replaced by a transactional one. This can be accomplished by
rewriting source code to utilize transactions without changing the semantics of
the original program. If locks were elided, thread T2 in Figure 1 would be able
to perform its operations concurrently with thread T1. The underlying transac-
tional machinery would guarantee correctness and consistency of the operations
on hmap1 and hmap2. To summarize, in this example either transactions or locks
may be utilized with no change to the underlying program semantics.

Lock elision, however, is not always possible. Consider an example program
that spawns multiple worker threads that perform work over a collection of
shared structures. Data computed by those threads is then collected and aggre-
gated (SPECjbb2000 [29] is an example of such a program). Such programs use
coordination barriers to synchronize the worker threads so that data may be com-
piled. Coordination barriers typically use a communication protocol that allows
threads to exchange information about their arrival at the barrier point. Consider
a simple counter-based Java implementation that notifies all threads waiting on
the barrier when the counter (initialized to the total number of threads) reaches
zero (Figure 2).

A naive translation of the synchronized block in Figure 2 to use transactions
is problematic for multiple reasons. First, the execution of the wait and notify
methods inside of atomic regions is typically prohibited by STMs [3, 10]. Second,
even if an STM defined meaningful behavior for the invocation of such methods
inside atomic regions, the execution of the barrier would not complete. The
update to the internal counter would never become visible because transactions
impose isolation requirements on the code they protect.

A potential solution to translating the example in Figure 2 to use atomic re-
gions must therefore not only support wait/notify but also allow updates to the
internal counter to become visible to other threads. One solution, suggested by
[27], is to expose the value of the internal counter by explicitly violating isolation
of the original atomic region – splitting the atomic region into multiple separate
regions without altering the behavior of the program. Isolation would also have
to be broken to support wait/notify primitives. Breaking isolation in such a
manner creates a race condition on accesses to the shared counter because it is
no longer protected within the same contiguous critical region. Alternatively, we



T1 T2

atomic {
synchronized(m) {

synchronized(m) {
foo();

} bar();

... }
}

Fig. 3. Composition of synchronized blocks and atomic regions

can leave the synchronized block unmodified. Such a solution requires reasoning
about all possible interactions between the synchronized blocks and the atomic
regions present in the program.

Although it may be possible to translate the example code in Figure 2 with
extensions to an STM, previous work [4] suggests that even with access to all
source code a translation of synchronized blocks to atomic regions that retains
the original program’s semantics is not always feasible. At best, such a trans-
lation requires careful analysis of the original program’s source code. However,
source code may not always be available, might be complex, and may need to
be re-engineered for transactions. Our own experience in translating lock-based
versions of some well-known benchmarks into their transactional equivalents [26]
mirrors these findings. Even with STM extensions, it is still unclear if certain
synchronized blocks can even be translated at all, motivating the necessity of
supporting composability between synchronized blocks and atomic regions.

Unfortunately, composability of different concurrency control primitives is
not easily achieved. Since atomic regions and synchronized blocks provide dif-
ferent semantic guarantees on visibility and isolation, composition of the two
constructs can yield non-intuitive and potentially erroneous behavior. Consider
the program in Figure 3. In the common case, locks protecting synchronized
blocks in both threads might be elided allowing execution to proceed fully under
transactional control. However, consider a situation when method foo() exe-
cutes a native call and prints a message to the screen. In order to prevent the
message from being printed more than once, a possibility that could arise if the
synchronized block is implemented transactionally, the block must be expressed
using mutual exclusion semantics. Additionally, once thread T1 acquires lock m,
the synchronized block executed by thread T2 must also be implemented using
mutual exclusion. Moreover, an abort may still be triggered after thread T1 fin-
ishes executing its synchronized block but before it finishes executing the outer
atomic region. As a result, the entire atomic region in thread T1 must also be
prevented from aborting, and thus must be implemented using mutual exclusion.

To address these issues, this paper presents a uniform execution environment
that allows safe interoperability between lock-based and transaction-based con-
currency primitives. The execution environment dynamically switches between
transactional and lock based implementations to provide consistent semantics for



both constructs. This allows for arbitrary composition and interchangeability of
synchronized blocks and atomic regions.

3 Programming and Execution Model

Our system supports concurrent programming in Java by offering two basic
primitives to programmers: synchronized providing lock semantics and atomic
providing transactional semantics. The system imposes no constraints on how
the two primitives may interact. Programmers may utilize both primitives for
concurrency control and can compose them arbitrarily. Additionally, there are
no restrictions on what code can be executed within the dynamic context of a
transaction, allowing support for I/O, legacy and native code.

Both primitives are realized using a transactional implementation. In our
system, synchronized blocks are automatically and transparently transformed to
implicitly use a transactional implementation we call pure-software lock elision
(P-SLE), rather than an implementation based on mutual exclusion. We explore
properties that the P-SLE implementation must satisfy in order to preserve lock
semantics in Section 4. User-defined atomic regions are already implemented
using transactions and thus require no additional support under P-SLE (details
are given in Section 5).

Since transactions and locks differ in their semantic definitions, execution
of lock-based critical sections using P-SLE may not always be possible. When
such situations are detected, our system seamlessly reverts critical sections to
use an implementation based on mutual exclusion. This is accomplished through
a fallback mechanism discussed in Section 4. Fallback has a natural definition
for transactions translated from critical sections: acquire the original lock as
defined by the input program. User injected atomic regions, however, are not
defined with regard to locks. Thus, we present a new mechanism called atomic
serialization which allows for the execution of user-defined transactions under
mutual exclusion. Conceptually, atomic serialization works by effectively serial-
izing execution of atomic regions using a single global lock. Atomic serialization
aborts a transaction which must fallback and acquires a global lock prior to
re-executing the critical region protected by the user-defined transaction.

Our system thus optimistically executes all concurrency control primitives
transactionally. In situations where such an execution is infeasible (e.g., eliding
locks violates lock semantics), the implementation switches back to using mu-
tual exclusion. This transition is one-directional – once execution of a critical
section reverts to using mutual exclusion, it will run in this execution mode until
completion. Figure 4 illustrates the system depicting both concurrency control
primitives and the transitions supported by the implementation.

4 Pure-Software Lock Elision (P-SLE)

Our first step to constructing a uniform transactional execution environment
for Java programs is replacing the existing implementation for Java’s synchro-
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Fig. 4. Execution model for a program containing both synchronized blocks and atomic
regions. The uniform execution environment utilizes both a lock-based implementation
and a transactional one. Double arrows represent the fallback mechanism, while single
arrows show the initial implementation underlying both concurrency control primitives.

nized blocks (i.e., mutual exclusion) with P-SLE. Because in doing so we are
obligated to preserve lock semantics, P-SLE must provide properties mirroring
mutual exclusion, that is, both thread and memory synchronization effects of
lock operations. The JMM uses these lock properties to define valid executions
for Java programs.

4.1 Correctness

Clearly, in order for one implementation to be correctly replaced by the other
we must define a correlation between their semantics. We do so in terms of pro-
gram schedules produces by each implementation. A program schedule reflects
the execution of a concurrent program on a single-processor machine and de-
fines a total order among program operations. This notion of a schedule can be
easily generalized to a multi-processor case – operations whose order cannot be
determined when analyzing the execution of a program are independent and can
be executed in arbitrary order. For schedules generated under a transactional



implementation, only operations of the last successful execution of a transaction
become part of the program schedule.

Our first step in defining the correctness property is to determine what it
means for two schedules to be equivalent under the JMM. The JMM defines a
happens-before relation (written hb→) among the actions performed by threads in
a given execution of a program. For single-threaded executions, the happens-
before relation is defined by program order. For multi-threaded executions, the
happens-before relation is defined between pairs of synchronization operations,
such as the begin and end of a critical section, or the write and read of the same
volatile variable. The happens-before relation is transitive: xhb→y and y

hb→z imply
x

hb→z.

The JMM uses the happens-before relation to define visibility requirements
for operations in a given schedule. Consider a pair of read and write operations,
rv and wv, accessing the same variable v and ordered by the happens-before
relation (wv

hb→ rv). Assume further that no intervening write exists such that
wv

hb→ w′
v

hb→ rv. In other words, wv is the “latest” write to v preceding rv in the
order defined by the happens-before relation. Then, rv is obligated to observe
the effect of wv, unless intervening writes to v unordered by the happens-before
relation, exist between wv and rv. In this case, rv may observe either a value
produced by wv or a value produced by any of the intervening writes. We say that
two schedules are identical if all happens-before relations are preserved between
the same operations in both schedules.

The JMM has been defined under an implicit assumption that critical sec-
tions are implemented using mutual exclusion locks. Given a program P , the
JMM defines a set of possible schedules, S, that characterizes P ’s runtime be-
havior. Clearly, a transactional version of P , τ(P ), cannot produce a schedule
s such that s /∈ S. Similarly, if S = {s} then τ(P ) can only have one unique
schedule as defined by the JMM, namely s. Thus, a transactional version of a
Java program cannot produce any new schedules and it must produce the exact
schedule the original program produces if only one exists. However, what occurs
when multiple schedules are plausible for a program P? The JMM itself does
not enforce any scheduling fairness restrictions. The underlying virtual machine
and its scheduler are free to provide any proper subset of schedules for P . We
leverage the freedom provided by the JMM in defining correct executions for a
transactionalized program. If program P produces a set of schedules S under the
JMM and τ(P ) produces a set of schedules S′ then τ(P ) is a correct execution
if S′ ⊆ S.

One could argue that a uniform transactional execution environment should
only be obligated to provide correctness guarantees for transactional and lock-
based executions when the program is properly structured [30]. Such programs
do not exhibit races, have shared data protected by a consistent set of locks,
etc. Unfortunately, requiring programs to be properly structured in order to
leverage transactional execution is a severe restriction in practice and prevents



Mutual Weak Strong P-SLE
Property Exclusion Atomicity Atomicity

RR no no yes yes/no∗

IU no no yes yes/no∗

IR no yes/no∗ yes yes/no∗

SS yes yes/no∗ yes yes
PUS yes yes/no∗ yes yes
PRS yes yes/no∗ yes yes
GS yes yes/no∗ yes yes

Table 1. A list of safety properties for isolation and ordering concerns related to shared
memory accesses (∗ – depends on a particular incarnation).

such programming idioms as privatization [26]. Our focus is on ensuring well-
defined behavior even when programs are not properly structured.

We identify a set of properties that the P-SLE implementation must satisfy
in order to correctly support lock semantics. We do so by analyzing proper-
ties of existing implementations: both non-transactional (mutual exclusion) and
transactional (weak atomicity and strong atomicity 1). Our discussion is sepa-
rated into two parts: one concerning problems related to isolation and ordering
of operations that may lead to incorrect results being computed, and the other
concerning problems related to visibility of an operation’s effects that may pre-
vent programs from making progress. Problems related to isolation and ordering
have been examined in previous work [19, 26] and our system builds off of such
solutions.

4.2 Isolation and Ordering Concerns

Table 1 presents a classification of isolation and ordering safety properties pre-
served by different implementations (yes means that the implementation sup-
ports the property, no means that it does not and yes/no means that different
incarnations of a particular implementation exist which may or may not pre-
serve it 2.). In the following, accesses to shared variables can be either protected
within critical sections or unprotected.

The first three properties described in the table concern direct interactions
between protected and unprotected accesses. In order to provide some intuition
behind their definition, Figure 5 demonstrates what happens if these properties
are violated. The code samples in Figure 5 use the same shared variable x for
illustration of the violations and (as well as all the remaining figures in this
section) are written in “pseudo-Java” – we use the critical keyword to denote
critical sections (instead of synchronized or atomic) to avoid implying a par-
ticular implementation of a concurrency control mechanism. We assume that if
1 We assume that both weak atomicity and strong atomicity use close nesting.
2 For example, some incarnations of weak atomicity use updates in-place while the

others use write buffering



Initially x==0

T1 T2

critical

{ r1=x;

x=1;

r2=x; }

Initially x==0

T1 T2

critical

{ r=x;

x=10;

x=r+1; }

Initially x==0

T1 T2

critical

{ x++;

r=x;

x++; }
(a) r1!=r2 violates RR (b) x==1 violates IU (c) odd r violates IR

Fig. 5. Safety violations resulting from direct interactions between protected and un-
protected accesses.

mutual exclusion is used to execute critical sections, then all threads synchronize
using the same global lock.

Preservation of repeatable reads (RR) requires that protected reads of the
same shared variable by one thread must return the same value despite interme-
diate unprotected write to the same variable by another thread being executed
between the reads. The intermediate updates (IU) property is preserved if the
effect of an unprotected update to some shared variable happening between a
protected read of the same variable and a protected write of the same variable
is not lost. Finally, preservation of the intermediate reads (IR) property requires
that an unprotected read of some shared variable does not see a dirty interme-
diate value available between two protected writes of the same variable. Since
mutual exclusion preserves none of these properties, they also do not need to be
preserved by P-SLE.

The next property described in the table, speculation safety (SS)3, concerns
(possibly indirect) interactions between protected and unprotected accesses com-
bined with the effects of speculative execution. Speculation safety prevents a
protected speculative write to some variable from producing an “out-of-thin-
air” value that could be observed by an unprotected read in another thread.
Mutual exclusion trivially preserves speculation safety since no protected access
is ever speculative under this implementation. As a result, P-SLE must preserve
this property as well, but in case of transactional implementations special care
needs to be taken to satisfy it – strong atomicity preserves it but weak atomicity
may or may not, depending on its particular incarnation. The example in Figure
6 illustrates one possible scenario when speculation safety gets violated – under
mutual exclusion, thread T2 could never observe r==1 since critical sections of
threads T1 and T2 would be executed serially and thread T2 would never see
values of y and z to be different from each other. When executed transaction-
ally, the transaction executed by thread T2 could observe different values of y
and z, and even though the transaction would be later aborted because of an
inconsistent state, it would still perform an update to x producing a value out
of thin air, visible to thread T3.

3 This safety property subsumes another safety property discussed in previous work
[19] – observable consistency



T1 T2 T3

critical

{ critical

y++; {
if(y!=z) x=1;

r=x;

z++; // abort

} }

Fig. 6. r==1 violates SS.

The following two safety properties, privatization safety (PRS) and publica-
tion safety (PUS), concern ordering of protected accesses with respect to unpro-
tected accesses. These idioms reflect how a privatizing or publishing action can
convert data from shared to private state, or vice versa. The privatization safety
pattern is generalized in Figure 7(a) – some memory location is shared when
accessed in S1 but private to T2 when accessed in S2. An intervening privatizing
action ensures that the location is only accessible to T2 and involves execution of
a memory synchronization operation to guarantee that other threads are aware
of the privatization event. The publication pattern, generalized in Figure 7(b), is
a reverse of the publication pattern. Both patterns have been well-researched [19,
1, 26, 28], and the conclusion is that while mutual exclusion trivially preserves
both safety properties, it is not necessarily automatically true for transactional
implementations, such as P-SLE, and requires special care to provide the same
memory synchronization effects.

The last property, granular safety (GS), prevents protected writes from af-
fecting unprotected reads of adjacent data. In Java, a protected write to a field
x of an object should have no effect on a read of field y of the same object.
By definition, granular safety cannot be violated when using mutual exclusion
locks since no protected accesses ever modify adjacent data (protected reads and
writes occur at the sane granularity as “regular” data accesses). In order for the
same guarantee to hold for transactional implementations, special care may have
to be taken on how modified data is logged and written to shared memory.

T1 T2

critical

{
S1;

}
[privatizing action]

S2;

T1 T2

S1;

[publication action]

critical

{
S2;

}
(a) privatization (b) publication

Fig. 7. Safety of protected vs. unprotected accesses ordering.



Initially x=0

T1 T2

synchronized(o) {
synchronized(m)

{ x=42; }
synchronized(m)

{
tmp=x;

{
synchronized(m)

{ x=0; }
}

tmp == 42 is possible

Initially x=0

T1 T2

atomic {
atomic

{ x=42; }
atomic

{

atomic

{ x=0; }
}

tmp=x;

}
tmp == 42 is not possible

(a) lock-based execution (b) transactional execution

Fig. 8. Visibility in presence of inner synchronization-related operations

Thus, P-SLE must provide at least the same level of isolation and order-
ing guarantees as mutual exclusion provides. At the same time, according to
our correctness definition presented in Section 4.1, P-SLE can provide stronger
guarantees than mutual exclusion since our obligation is to reproduce only a
subset of all schedules legal under the JMM. For example, an implementation
of a P-SLE system can allow or disallow violation of any of the first properties
listed in Table 1, provided that the visibility properties described in the next
section are satisfied.

4.3 Visibility Concerns

While the isolation and ordering properties of transactional systems have re-
cently attracted significant attention, issues concerning mismatches between vis-
ibility properties of systems supporting mutual exclusion semantics and those
supporting transactional semantics have been, with some notable exceptions [4,
30], largely neglected.

Visibility issues are closely tied to progress guarantees provided by the under-
lying execution engine. The JMM (or, in fact, the Java Language Specification [8]
or the Java Virtual Machine Specification [15]) does not require the Java execu-
tion environment to provide any guarantees with respect to application progress
or scheduling fairness. As a result, a legal implementation of a JVM could at-
tempt to execute all threads in sequential order, getting “stuck” when control
dependencies among operations in these threads manifest. In other words, it is
legal for a JVM to never successfully complete an inter-thread communication
action, such as the coordination barrier presented in Section 2 in Figure 2. While
we certainly agree that different JVM implementations are free to make their
own scheduling decisions, we also believe that certain programs are intuitively



Mutual Weak Strong P-SLE
Property Exclusion Atomicity Atomicity

SV yes no no yes
AV yes yes/no∗ no yes

Table 2. A list of safety properties for visibility concerns related to shared memory
accesses. (∗ – depends on a particular incarnation)

expected to make progress under lock semantics, and these programs must be
guaranteed to make progress regardless of the underlying execution model. This
is consistent with our correctness definition presented in Section 4.1 – two sched-
ules generated for the same program under two different execution models cannot
be equal if one of them is terminating and the other is non-terminating.

In languages like Java, different locks can be used to protect different accesses
to the same shared data. In other words, no concurrency control is enforced if two
accesses to the same location are protected by two different locks. As a result,
two critical sections protected by different locks can execute concurrently, such
as an outer critical section of thread T1 and a critical section of thread T2 in
Figure 8(a).

Transactions, on the other hand, make no such distinction between critical
sections. All transactions will appear serialized with respect to one another. Con-
sequently, if the critical sections in Figure 8(a) were executed transactionally,
the schedule presented in this figure could not have been generated. In a trans-
actional implementation supporting pessimistic writers [3, 12], thread T1 would
acquire a write lock when writing x for the first time and release it only at the
end of the outer critical section, making an intermediate read of x by thread T2
impossible. One possible schedule that could be generated is presented in Fig-
ure 8(b). In accordance with isolation properties of transactions, propagation of
both updates performed by thread T1 is delayed until the end of the outermost
critical section executed by thread T1. Observe that the schedule presented in
Figure 8(b) would still be legal under lock-based execution if the runtime system
used a different thread scheduling policy.

Thus, delaying propagation of updates can often be explained as a benign
change in scheduler behavior. However, additional visibility-related safety prop-
erties must be defined to guarantee that lock semantics can be correctly sup-
ported by a transactional implementation in situations where this is not true.
In the following code samples, an explicit “lock” parameter is used with the
critical keyword in order to be able to express the difference between execu-
tions using transactions and executions using mutual exclusion locks. We assume
that if transactions are used to execute critical sections then the “lock” param-
eter is ignored.

Visibility-related safety properties can be divided into two categories summa-
rized in Table 2: symmetric dependent visibility (SV) and asymmetric dependent
visibility (AV). Their definitions rely on the notion of control dependency be-



tween operations of different threads. We say that two operations are control
dependent if, under all lock-based executions, the outcome of the first operation
dictates whether the second one is executed.

Symmetric Dependent Visibility Dependent symmetric visibility (SV) con-
cerns the case when all control dependent operations are executed inside of criti-
cal sections. The SV property is satisfied if a schedule can be generated in which,
for every pair of control dependent operations, the second operation eventually
sees the outcome of the first.

Consider the following example of a handshake protocol given in Figure 9(a).
In this code the variables x, y, and z are used for communication. The two
executing threads alternate waiting on variables to be set to one by spinning in
while loops, making read and write operations on these variables control depen-
dent. Under locks, the dependent symmetric visibility is obviously satisfied – the
updates of x, y, and z will become visible to the respective threads allowing
for the handshake to proceed. Consequently, the same visibility property must
also be satisfied by P-SLE. However, if we executed this program using strong or
weakly atomic transactions, the program would hang because transactions en-
force isolation of shared accesses: execution of the outer transaction in thread T2
would prevent the update of x and z from being visible to the code it protects.

Initially x=y=z=0

T1 T2

critical(o)

{
critical(m)

{ x=1; }
do {
critical(m)

{{ if (x==1)

y=1; break; }}
}while(true);

do {
critical(m)

{{ if(y==1)

z=1; break; }}
}while(true);

do {
critical(m)

{{ if (z==1)

break; }}
}

Assume x and y are volatile
Initially x=y=false;

T1 T2

critical(m)

{
x=true;

do {
...

}while(!x);
y=true;

do {
...

}while(!y);
}

(a) symmetric (b) asymmetric

Fig. 9. Dependent visibility – is termination guaranteed?



Detecting potential visibility violations between critical sections is then tan-
tamount to detecting control dependencies among data accesses executed within
critical sections. We describe one solution to discovering symmetric dependent
visibility violations in Section 6.

Asymmetric Dependent Visibility Unfortunately, examining only critical
sections is insufficient since visibility issues can also arise between protected and
unprotected code. Dependent asymmetric visibility (AV) addresses this case.

Consider the example given in Figure 9(b). Thread T2’s progress depends on
making a result of thread T1s update of x available to thread T2. Since x is a
volatile, lock semantics dictates that Thread 2 must eventually see the result of
thread T1’s update to x. Similarly, thread T1 is guaranteed under lock semantics
to see the result of thread T2’s update to y. Therefore, this program is guaranteed
to successfully complete execution of both threads under lock semantics. At the
same time, strong atomicity and certain incarnations of weak atomicity (such
as those using write buffering) would prevent a write to x from being visible to
thread T2 until the end of the critical section in thread T1. If we run this program
under such an implementation, the program will fail to terminate 4. Once again
we notice that the variables through which communication occurs are in fact
control dependent. Discovering and remedying violations of the AV property is
additionally complicated when compared to SV because of the to the asymmetry
of control dependent operations (one of the operations is unprotected), as we
describe in Section 6.

Our examples illustrate that neither strong nor weak atomicity satisfy the
properties required from P-SLE to support lock semantics. As a result, existing
transactional implementations must be modified to detect violations of lock se-
mantics with respect to visibility concerns. We use a fallback mechanism to to
remedy such problems whenever they are discovered.

5 Explicit Transactions

Based on the discussion presented in Section 4, we observe that Java’s syn-
chronized blocks can be supported by two implementations: non-transactional
(mutual exclusion) and transactional (P-SLE). Now we have to consider the
opposite – what are the implementations that can support user-defined atomic
regions? Our task is much simpler here. We can choose the same transactional
implementation, P-SLE, to support execution of both atomic regions and syn-
chronized blocks. Since visibility-related properties of atomic regions are not as
strictly defined as in case of Java’s synchronized blocks, we only need to con-
sider the properties of P-SLE that concern isolation and ordering, described in
Section 4.2. The analysis of required properties for P-SLE defined in the last

4 On the other hand, the execution under a weakly atomic model that exposes un-
committed values to other threads could lead to violation of the speculation safety
property described in Section 4.2.



column of Table 1 reveals that this set corresponds to a so-called SGLA (Single
Global Lock Atomicity) transactional semantics [9, 19]. SGLA is a middle-of-
the-road semantics which is STM-implementation agnostic. SGLA provides a
simple, more intuitive, semantics compared to weak atomicity, but does incur
additional implementation-related constraints because it must provide stronger
guarantees. By utilizing SGLA, our system is not tied to a particular underlying
STM, as demonstrated in [19]. Atomic regions behave under SGLA as if they
were protected by a single global lock, including treatment of entry and exit to
every atomic region as a memory synchronization point for a unique lock with
respect to visibility requirements defined by the JMM. This property allows us
to trivially define a non-transactional implementation for atomic regions, atomic
serialization, in which execution of atomic regions is serialized using a unique
global mutual exclusion lock.

6 Implementation

Our implementation builds on an STM system using in-place updates, support-
ing optimistic readers and pessimistic writers, and providing strong atomicity
guarantees [26]. Although our implementation leverages strong atomicity, any
STM implementation that supports SGLA semantics is sufficient. We first briefly
describe an implementation of the “base” transactional infrastructure, then dis-
cuss how multiple semantics can be supported within the same system, and
finally describe modifications and extensions to the base transactional imple-
mentation needed to make it match properties required by P-SLE. Our imple-
mentation supports all of Java 1.4 including native method calls, class loading,
reflection, dynamic thread creation, wait/notify, volatiles, etc. but does not cur-
rently support Java 1.5 extensions.

The base STM system extends the Java language into Transactional Java
with an atomic primitive. Transactional Java is defined through a Polyglot [23]
extension and implemented in pure Java. Our implementation utilizes the Star-
JIT compiler [2] to modify code of all critical sections so that they can be exe-
cuted using either mutual exclusion locks or transactions. The run-time system,
composed of the ORP JVM [7] and the transactional memory (TM) run-time
library, provides transactional support and is tasked with handling interactions
between transactions and Java monitors.

6.1 Base System

In the base STM system every access to a shared data item is “transactionalized”
– mediated using a transaction record. In case of objects, a transaction record is
embedded in the object header, and in case of static variables it is embedded in
the header of an object representing the class that declares this static variable
(access to all static variables of a given class is mediated through the same
transaction record). The appropriate barriers implementing transactionalized



accesses are automatically generated by the JIT compiler and protect accesses
to data objects performed inside of transactions.

Data objects can be either exclusively write-locked or unlocked. In case a
given data item is unlocked, its transaction record contains a version number.
In case a given data item is write-locked, its transaction record contains a trans-
action descriptor pointer pointing to a data structure containing information
about the lock owner (transaction descriptor). These two cases can be distin-
guished by checking a designated low-order version bit. When a transaction
record contains a transaction descriptor pointer, this bit is always unset since
pointers are aligned. In case a transaction record contains a version number, this
bit is always set because of the way version numbers are generated. All writes
performed by a transaction are recorded in a transaction-local write set which
allows a terminating (committing or aborting) transaction to release its write
locks by incrementing version numbers for locations it has updated. All reads
performed by a transaction are recorded in the transaction-local read-set which
is used at transaction commit to verify validity of all the reads performed by the
committing transaction – writes are automatically valid since they are preceded
by acquisition of exclusive write locks. If this validation procedure is successful,
the transaction is allowed to commit, otherwise it is aborted and re-executed.

Because the base STM system supports strong atomicity, appropriate barriers
are generated for non-transactional data accesses. Non-transactional reads are
allowed to proceed only when a given data item is unlocked. Non-transactional
writes, in order to avoid conflicts with transactional accesses, behave as micro-
transactions: they acquire a write lock, update the data item and release the
write lock. Since the write is conceptually non-transactional, no explicit trans-
action owns the lock. Therefore, instead of a regular write lock, non-transactional
writes acquire an anonymous lock. The anonymous lock is implemented by flip-
ping a version bit to give the contents of the transaction record the appearance
of a write lock [26].

We augment the base STM system to handle translation of both concurrency
primitives (Section 6.2) and their interchangeability (Section 6.3). The STM was
also extended with special types of barriers (Section 6.4) and a visibility violation
detection scheme (Section 6.5). Our implementation spans all three parts of the
STM system: ORP, StarJIT and the TM library.

6.2 Translating Concurrency Primitives

Both types of concurrency primitives (synchronized and atomic) are translated
by the JIT compiler to use the same run-time API calls:

– criticalstart(Object m, ...)
– criticalend(Object m, ...)

Both API calls take an object as one of their parameters representing a Java
monitor (i.e., a mutual exclusion lock) – either associated with the synchronized
keyword or generated by the run-time system in case of atomics. The run-time



while (true) {
try { try {
monitorenter(m) criticalstart(m,..)

... ...

monitorexit(m) =⇒ if (criticalend(m,...)) continue;

} catch (Throwable x) { } catch (Throwable x) {
monitorexit(m) if (criticalend(m,...)) continue;

throw(x) throw(x)

} }
break;

}

Fig. 10. Translation of synchronized blocks

system, thus, has the ability to choose a specific implementation for critical
sections – either transactional (by instructing the TM library to start or commit
a transaction) or lock-based (by acquiring or releasing a monitor passed as a
parameter). The remaining parameters are used to pass additional transactional
meta-data.

A typical JVM (including ORP) handles synchronized blocks and synchro-
nized methods differently. In case of synchronized blocks, the source-to-bytecode
compiler (e.g., javac) generates explicit calls to the JVM’s implementation of the
bytecode-level monitorenter and monitorexit primitives. The synchronized
methods, on the other hand, are simply marked as such in the bytecode and the
JVM is responsible for insertion of the appropriate synchronization operations
during the generation of method prologues and epilogues. In order to be able to
treat synchronized methods and synchronized blocks uniformly, we modify the
JIT compiler to wrap the body of every synchronized method in a synchronized
block (using either this object or the “class” object as a monitor) instead of
invoking synchronization operations in the method’s prologue and epilogue.

Our translation of synchronized blocks and methods in the JIT compiler
mirrors the code structure of atomic blocks generated at the source level by
the Polyglot compiler [3]. Figure 10 depicts this translation as a pseudo-code
transformation (with monitorenter and monitorexit operations represented
as method calls) – the left-hand side shows code generated for acquisition of
monitor m to support Java’s synchronized blocks and the right-hand side the
code after transformation. The actual translation involves an additional pass
in the JIT compiler which transforms the control-flow graph – the pseudo-
code description of the transformation is out of necessity somewhat simplified.
The intuition behind this transformation is that monitorenter(Object m) and
monitorexit(Object m) operations are translated to criticalstart(Object
m, ...) and criticalend(Object m, ...) method calls. The existing byte-
code structure is leveraged to handle exceptions thrown inside of a transaction.
Re-executions of aborted transactions are supported through an explicit loop



inserted into the code stream – successful commit of a transaction is followed by
a loop break.

During translation of original Java synchronization primitives, we also need
to correctly disambiguate nesting. Our transactional API calls have one of two
different versions selected depending on the execution context – outer (when no
transaction is currently active) and inner (when executed in the context of an
already active transaction). To discover the execution context, the JIT compiler
performs a data flow analysis and builds a stack representation of monitor en-
ter/exit calls for each node in the control flow graph. This allows us to identify the
code fragments protected by transactions, and their nesting level. Additionally,
every compiled method is marked as either transactional or non-transactional,
depending on its calling context.

6.3 Coexistence of Transactions and Java Monitors

Ideally, Java monitors would be elided and all critical regions would be executed
transactionally. Unfortunately, this is not possible for code that performs native
method calls with side effects, triggers class loading and initialization, or contains
critical regions that engage in inter-thread communication or spawn threads. In
such cases, the fallback mechanism is utilized to use mutual exclusion rather
than transactional execution.

The fallback operation is performed by aborting the currently running (out-
ermost) transaction. The transaction is then restarted in fallback mode where
concurrency is managed by acquiring and releasing Java monitors passed to
transactional API calls as parameters. As a result, the implementation of the
existing synchronization-related primitives, such as wait and notify operations,
can be left largely untouched provided that they are only executed by fallback
transactions.

Naturally, as a result of the fallback operation, some critical sections in the
system are protected by Java monitors and others protected by transactions. In
order to guarantee correct interaction between critical sections, every fallback
transaction acquires transactional locks on all objects representing Java monitors
it is using (to simulate transactional writes) and every regular transaction adds
all its Java monitors to its read-set (simulating transactional reads). This pre-
vents any regular transaction (translated from a Java monitor) from successfully
completing if another thread is executing a critical section in fallback mode with
the same monitor. The read-set of the regular transaction would become invalid,
and the transaction itself would be aborted and re-executed. Notice that arbi-
trarily many regular transactions may execute concurrently, even if they share
the same monitor.

6.4 Fallback Barriers

In the base STM system, the JIT compiler generates two versions of each method,
transactional and non-transactional, containing appropriate versions of read and



T1 T2

synchronized(n) {
data=dummy;

critical(m) {
tmp=data;

data=1; // no barrier ...

}
}

Fig. 11. Incorrectly eliminated barrier thread (T1 is in fallback mode, thread T2 is
transactional)

write barriers. The specific version of the method is then chosen at run-time de-
pending on its invocation context. Read and write barriers occur on non trans-
actional code since our implementation is strongly atomic. The JIT compiler
eliminates unnecessary barriers where appropriate.

In our system, transactions in fallback mode behave differently than regular
transactions - namely their execution must be faithful to Java monitor semantics.
In order to reproduce Java monitor semantics, transactions in fallback mode have
to ignore conflicts between each other while still properly interacting with reg-
ular transactions. Since concurrency control between a regular transaction and
a transaction in fallback mode sharing the same monitor is mediated through
this monitor, it does not need to be controlled at the level of data accesses. At
the same time, according to the Java monitor semantics, no special concurrency
control guarantees are provided between critical sections using different moni-
tors. As a result, operations executed by a transaction in fallback mode should
behave as if they were non-transactional, by blocking on reads of write-locked
data items (to avoid speculation-related problems) and turning write operations
into micro-transactions.

The read barriers for transactions executing in fallback mode can therefore
be identical to non-transactional barriers. Unfortunately, turning write barriers
into micro-transactions is surprisingly tricky. This is because code for fallback
transactions has been compiled with regular transactional barriers. Optimiza-
tions may remove some barriers because they appear to be redundant. Consider
the example shown in Figure 11 in which the second write of thread T1 executing
a transaction in fallback mode should cause an abort of the regular transaction
executed by thread T2. Unfortunately, the transactional barrier at the second
write is dominated by the barrier at the first write (in a regular transaction the
first write would acquire a lock) and would be eliminated.

One option is to have the JIT compiler generate yet another version of all
methods executed by transactions in fallback mode. However, this would lead to
increase in code size, complicate the method dispatch procedure, and increase
compilation time. Additionally, we would lose all benefits of barrier elimination
optimizations. Therefore, we adopt a dynamic solution and re-use barrier code
sequences for both regular transactions and transactions executing in fallback



mode. To do so, we introduce another version of the anonymous lock, the fallback
lock. The fallback lock can be acquired only by a transaction executing in fallback
mode and is held until this transaction is completed. If more than one fallback
transaction wants to acquire a fallback lock for the same data item, the lock
gets inflated - we need to count the number of writers and retain information
about the version number. Regular transactions block when trying to access a
data item locked by a fallback transaction. At the same time, non-transactional
reads are allowed to access it freely, as are the non-transactional writes that
additionally change fallback lock to an anonymous lock for the duration of the
write operation 5. A diagram illustrating transitions in a lock’s state is given in
Figure 12.

Write Locked

Anonymously Locked

Fallback Locked

Unlocked

TXN

F-TXN

Fig. 12. Transitions made by non-transactional accesses are depicted by black arrows.
White arrows represent transactional accesses – a single arrow by a bona fide transac-
tion and a double arrow by a fallback transaction.

6.5 Detecting Dependent Visibility Violations

When dependent visibility violations occur, the observable effect is that exe-
cution becomes “stuck”. We provide a mechanism to detect these situations
rather than painstakingly tracking data and control dependencies between criti-
cal sections. Our specific solution differs slightly between cases of symmetric and
asymmetric dependent visibility violations.

Symmetric Case In case some transaction T is (permanently) unable to com-
plete its execution because it expects to see results computed by a different
5 Fallback transaction must wait for anonymous lock to be released both when updat-

ing the value and when releasing the fallback locks



transaction T ′ (such as in the example presented in Section 4.3 in Figure 9(a)),
the control dependencies between data access operations that belong to these
transactions must form a cycle. Otherwise, if transaction T ′ was independent
of transaction T and allowed to complete successfully, its computation results
would be eventually made available to T removing the reason for it being stuck.
This situation can be trivially generalized to the multi-transaction case. Obvi-
ously, we could employ full-fledged cycle detection to detect such situations, but
because we assume these kinds of situation to be infrequent, we opt for a simpler
solution and choose to utilize a time-out mechanism. If a transaction is unable
to complete its data access operation after a pre-specified amount of time, it
will be aborted and will re-execute in fallback mode. As a result of reverting
to an implementation that is identical with Java monitors, the visibility viola-
tion cannot happen upon re-execution since Java monitor semantics prevents it
automatically.

Asymmetric Case This case is a little more subtle, because execution can get
stuck in a non-transactional code region (as illustrated in Section 4.3 in Figure
9(b)). Therefore, the run-time system has no transactional context available that
could be aborted and re-executed in a different mode. The solution we adopt to
handle this case is for the non-transactional data access operation that failed to
successfully complete its execution after a pre-specified amount of time, and to
request the transaction blocking this data access to abort and re-start in fallback
mode. It is guaranteed that this request will be ultimately delivered since by
definition there must be a control dependency that prevents the transaction
from completing. The identity of the transaction blocking the data access is
readily available from the transaction record that must contain its transaction
descriptor in order for the access to be forbidden. Note that non-transactional
execution can only get stuck on accesses to volatile variables – otherwise no
happens-before edge forcing the visibility restriction would exist. Thus, we are
obligated to modify only those data accesses that concern volatile variables.

7 Performance Evaluation

Our implementation is based on an STM system that has already been shown
to deliver good performance for explicitly transactional applications [26]. In this
section, we consider the performance characteristics of legacy applications exe-
cuted with transactions and mutual exclusion.

In order to better understand the performance implications of our system, we
chose three different benchmarks representing three different locking schemes:

– OO7 [6]. This benchmark traverses and updates a shared tree-like data struc-
ture. Each each thread locks the entire shared data structure before perform-
ing a traversal (using a mixture of 80% lookups and 20% updates). This
benchmark reflects a coding style that uses coarse-grain locks for concurrency
control.
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Fig. 13. Preformance evaluation over multiple threads

– SpecJBB2000 [29]. This server application involves multiple threads operat-
ing over different objects (e.g., warehouses). Because operations of different
threads are protected by different locks, this benchmark reflects a coding
style that uses fine-grain locks for concurrency control.

– TSP. This implementation of traveling salesman involves threads that per-
form their searches independently, but share partially completed work and
the best-answer-so-far via shared memory. It uses both fine- and coarse-
grained concurrency control.

We ran all the benchmarks in two configurations: P-SLE which utilized our
uniform transaction execution environment, transparently translating all syn-
chronized blocks into atomic regions and dynamically falling back where nec-
essary and Synch which used mutual exclusion provided by original implemen-
tation of Java monitors. Synch represents the original benchmark without the
additional overhead of transactional instrumentation and fallback. All our ex-
periments have been performed on an Intel Clovertown system with two 2.66
GHz quad-core processors for a total of eight hardware threads and 3.25 GB of
RAM running Microsoft Windows XP Professional with Service Pack 2.



The performance of our system has met our expectations. When running the
lock-based version of OO7 benchmark transactionally under the P-SLE configu-
ration, the system was able to automatically extract additional parallelism and
significantly improve performance over executions using coarse-grain mutual ex-
clusion locks (Figure 13(a)). Since our implementation is based on a strongly
atomic implementation, there is a certain amount of overhead that is expected
[26] when only small amount of additional parallelism is available compared to
executions using mutual-exclusion locks. However, note that even though the
absolute performance of SPECjbb2000 when executed transactionally does not
quite match its performance when executed using mutual-exclusion locks, the
scalability characteristics in both cases is virtually the same (Figure 13(b)). Fi-
nally, the performance of the TSP benchmark is almost identical, regardless of
whether it is executed transactionally or using mutual-exclusion locks (Figure
13(c)).

Given that our system is based on a strongly atomic engine, our perfor-
mance evaluation results reflect very similar trends to those reported in [26]. In
our prior case study benchmarks were modified by hand to use explicit atomic
blocks under a strong atomicity model. Using our uniform transactional execu-
tion environment we were able to avoid by hand translation and ensure safety
while improving both scalability and performance.

8 Related Work

Recently there have been many proposals for Software Transactional Memory [5,
11, 13, 14, 17, 18, 20, 22, 24, 26]. Such systems, unfortunately, provide limited or
no support to compose transactions with locks. The Haskel STM [11] utilizes
the type system to prevent any I/O actions within a transaction. Although we
suspect such a restriction would allow for the safe composition of locks and
atomic regions, it defacto limits the use of libraries that perform I/O in trans-
actions. Other systems do not explicitly prevent composability of concurrency
constructs, but they leave their interactions undefined. Interactions can vary
based on the transactional implementation. Weakly atomic STMs, such as [13],
suffer from subtle visibility and isolation anomalies [4], where as strongly atomic
systems prevent the use wait/notify primitives. As such, program semantics vary
based on the virtual machine’s implementation of Java monitors as well as the
guarantees provided by the STM itself. Programs must be hand-tuned for each
system and virtual machine pairing.

Previous work which attempts to combine Java monitors and transactions
[30, 31] place restrictions on programmers. Notably, programs must be race-
free, even if races are benign. Such restrictions prevent the use of programming
paradigms such as privatization. In such systems, programmers are forced to
examine all interactions between transactions and locks to guarantee safety.

Other approaches [27] attempt to mirror lock based semantics by providing
programmers with additional primitives to break transactional properties. Po-
tential interactions between threads are tracked through the type system and



reported to the programmer. The programmer is required to establish consis-
tency at specific points within the transaction. Unfortunately, the programmer
must reason about the transitive effects of a given transactional region. Trans-
actional regions maybe called from many different contexts and it is unclear if a
break of isolation in one context is compatible with another.

9 Conclusions

We have presented the design and implementation of the first uniform transac-
tional execution environment for Java programs. We have explored implications
of executing arbitrary lock-based Java programs transactionally. We have also
presented techniques that allow explicit transactional constructs, such as atomic
blocks, can be seamlessly integrated into an existing programming language. We
have presented performance evaluation of our system that demonstrates its abil-
ity to extract additional parallelism from lock-based applications by executing
them transactionally, providing better performance when coarse-grain locks are
used and providing performance approaching those of mutual-exclusion locks in
case of fine-grain locking.
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