Transactional Monitors for Concurrent Objects

Adam Welc, Suresh Jagannathan, and Antony L. Hosking

Department of Computer Sciences
Purdue University
West Lafayette, IN 47906
{wel c, suresh, hoski ng}@s. pur due. edu

Abstract

Transactional monitor@re proposed as an alternative to monitors based on mutual-
exclusion synchronization for object-oriented programgnianguages. Transactional
monitors have execution semantics similar to mutual-estatumonitors butimplement
monitors as lightweight transactions that can be executedwrrently (or in parallel
on multiprocessors). They alleviate many of the constsaimat inhibit construction of
transparently scalable and robust applications.

We undertake a detailed study of alternative implememneatzhemes for transac-
tional monitors. These different schemes are tailoredfferdint concurrent access pat-
terns, and permit a given application to use potentialljediént implementations in
different contexts.

We also examine the performance and scalability of thesengitive approaches in
the context of the Jikes Research Virtual Machine, a sthteesart Java implementa-
tion. We show that transactional monitors are competitiith wiutual-exclusion syn-
chronization and can outperform lock-based approachesfiyettimes on a wide range
of workloads.

1 Introduction

Managing complexity is a major challenge in constructingust large-scale server
applications (such as database management systems agippliservers, airline reser-
vation sytemsetd. In a typical environment, large humbers of clients mayeasca
server application concurrently. To provide satisfact@sgponse time and throughput,
the applications themselves are often made concurrens, Diject-oriented program-
ming languagessg, Smalltalk, C++, Modula-3, Java) provide mechanisms thabée
concurrent programming via a thread abstraction, withatisebeing the smallest unit
of concurrent execution.

A key mechanism offered by these languages is the notigniafdedcode regions
in which accesses to shared data performed by one threasiodaitedfrom accesses
performed by others, and all updates performed by a thretidnad guarded region
become visible to other threadtmically, once the executing thread exits the region.

Guarded regions are usually implemented using mutualieian locks: a thread
acquires a lock before it is allowed to enter the guardedregind blocks if the lock has

already been acquired by another thread. Isolation resinlte threads must execute the
guarded region serially: only one thread at a time can bgettithe region, although
this serial order is not necessarily deterministic. Atdtgiof updates is also achieved
with respect to shared data accessed within the region;tepdae visible to other
threads only when the current thread releases the lock.

Unfortunately, enforcing isolation and atomicity using tonal-exclusion locks suf-
fers from a number of potentially serious drawbacks. Mogtantantly, locks often
serve as poor abstractions since they do not help to guarhigb-level properties of
concurrent programs such as atomicity or isolation thatoften implicitly assumed
in the specification of these programs. In other words, latksot obviate the pro-
grammer from the responsibility of (re)structuring pragsato guarantee atomicity,
consistency, or isolation invariants defined in a prograspiscification. The mismatch
between the low-level semantics of locks, and the hightlie@soning programmers
should apply to define concurrent applications leads torotled-known difficulties.
For example, threads waiting to acquire locks held by othexads may form cycles,
resulting in deadlock. Priority inversion may result if ahipriority thread must wait
to enter a guarded region because a low-priority threadéady active in it. Finally,
for improved performance, code must often be speciallptad to provide adequate
concurrency. To manipulate a complex shared data struliera tree or heap, appli-
cations must either impose a global locking scheme on thesroo employ locks at
lower-level nodes or leaves in the structure. The formetegy is simple, but reduces
realizable concurrency and may induce false exclusiorattie wishing to access a dis-
tinct piece of the structure may nonetheless block whildingfor another thread that
is accessing an unrelated piece of the structure. The mpi@roach permits multiple
threads to access the structure simultaneously, but leadgptementation complexity,
and requires more memory to hold the necessary lock state.

Recognition of these issues has prompted a number of résefforts aimed at
higher-level abstract notions of concurrency that omit defjnition based on mutual-
exclusion locks [25, 24,20, 19]. In this paper, we proptriaasactional monitorsaas
an alternative to mutual exclusion for object-orientedgpaomnming languages. Trans-
actional monitors implement guarded regions as lightwieliginsactions that can be
executed concurrently (or in parallel on multiprocessatfpkms). Transactional mon-
itors define the following data visibility property that ge¥ves isolation and atomicity
invariants on shared data protected by the monitor: all tgzd® objects guarded by a
transactional monitor become visible to other threads onlguccessful completion of
the monitor’s transactioh.

Our work is distinguished from previous efforts in two majespects. First, we
provide a semantics and detailed exploration of altereamplementation schemes for
transactional monitors, all of which enforce desired isotaand atomicity properties.
These different schemes are tailored to different conotierecess patterns, and permit
a given application to use potentially different transasil monitor implementations
in different contexts. We focus on two specific alternatiesapproach that works well

1 A slightly weaker visibility property is present in Java fapdates performed within a syn-
chronized block (or method); these are guaranteed to Haeleis other threads only upon exit
from the block.

when contention for shared data is loag(mostly read-only guarded regions), and a
scheme better suited to handle highly concurrent accestieawore uniform mix of
reads and updates. These alternatives reflect likely pattétuse in realistic concurrent
programs.

Second, we examine the performance and scalability of ttiffeeent approaches
in the context of a state-of-the-art Java compiler and &lntachine, the Jikes Research
Virtual Machine (RVM) [2] from IBM. Jikes RVM is an ideal pledrm in which to
explore alternative implementations of transactional itoos, and to compare them
with lock-based mutual exclusion, since Jikes already geehisticated strategies to
minimize the overhead of traditional mutual-exclusiorki®{4]. A detailed evaluation
in this context provides an accurate depiction of the tréfdeand benefits in using
lightweight transactions as an alternative to lock-basatual exclusion.

2 Overview

Unlike mutual-exclusion monitorg¢, synchronized blocks and methods in Java), which
force threads to acquire a given monitor serially, trarisaat monitors require only that
threadsappearto acquire the monitor serially. Transactional monitorengieconcur-
rent execution within the monitor so long as the effects ef thsulting schedule are
serializable That is, the effects of concurrent execution of the mordter equivalent
to someserial schedule that would arise if no interleaving of difet threads occurred
within the guarded region. The executions are equivaldhiey produce the same ob-
servable behavior; that is, all threads at any point duriregrtexecution observe the
same state of the shared data. Thus, while transactionatem®and mutual-exclusion
monitors have the same observable behavior, transactinoaitors permit a higher
degree of concurrency.

Transactional monitors maintain serializability by tramgkaccesses to shared data
within a thread-specifitog. When a thread attempts to release a monitor on exit from a
guarded region, an attempt is madetmmitthe log. The commit operation has the ef-
fect of verifying the consistency of shared data with respethe information recorded
in the log,atomicallyperforming all logged operations at once with respect toaihgr
commit operation. If the shared data changes in such a way mvdlidate the log,
the monitored code block is re-executed, and the commitretA log is invalidated
if committing its changes would violate the serializalilgroperty of the monitored
region.

For example, consider the code sample shown in Fig. 1 (usivegsyntax). Thread
T1 computes the total balance of both checking and savingsiatsol hread trans-
fers money between these accounts. Both account operébalasce and transfer) are
guarded by the sam&ccount _noni t or — the code region guarded by the moni-
tor is delimited by curly braces following theoni t or ed statement. If the account
operations were unguarded, concurrent execution of thesetons could potentially
yield an incorrect result: the total balance computed afterwithdrawal but before
the deposit would not include the amount withdrawn from theaking account. If
account _noni t or were a traditional mutual-exclusion monitor, either thtr@a or
T, would win a race to acquire the monitor and would executg tudifore releasing the

T

nmoni t ored (account _nonitor)

{

bal ancel = checki ng. get Bal ance();
bal ance2 = savi ngs. get Bal ance();
print (bal ancel + bal ance?2);

}
T2

nmoni t ored (account _nonitor)

{

checki ng. wi t hdr aw(amount) ;
savi ngs. deposi t (anmount) ;

}

Fig. 1. Bank account example

monitor; regardless of the order in which they execute, ti@ balance computed by
threadT; would be correct (it would in fact be the same in both cases).

If account _noni t or is a transactional monitor, two scenarios are possible, de-
pending on the interleaving of the statements implementiagccount operations. The
interleaving presented in Fig. 2 results in both threadsessfully committing their
logs — it preserves serializability sin@g's withdrawal from the checking account does
not compromisd;’s read from the savings account. This interleaving is egjaivt to a
serial execution in whicf; executes beforé,.

The interleaving presented in Fig. 3 resultdirs execution of the monitored code
being aborted sinc&; reads an inconsistent state. Serializability is enforcgades
executing the guarded region of threRad

T T
(1)|checking.getBalance
2) checking.withdra
(3)| savings.getBalance
4) savings.deposit

Fig. 2. Serializable execution.

These examples illustrate several issues in formulatinghafementation of trans-
actional monitors. Threads executing within a transaetioronitor must execute iso-
lation: their view of shared data on exit from the monitor mustbasistentvith their
view upon entry. Isolation and consistency imply that stiatate appears unchanged
by other threads. A thread executing in a monitor cannotleeepdates to shared state
by other threads. Transactional monitor implementationstrpermit threads to detect

T1 T2

Q) checking.withdra
(2)|checking.getBalance
(3)| savings.getBalance
(4) savings.deposit

Fig. 3. Non-serializable execution.

state changes that violate isolation and to abort, rolkbakd restart their execution in
response to such violations.

In Fig. 3, the execution of threaf} is not isolated from the execution of thread
To since thread; sees the effects of the withdrawal but does not see the efié¢the
deposit. ThusT; is obliged to abort and re-execute its operations. In géneetaread
may abort at any time within a transactional monitor. To eaghat partial results of
a computation performed by a thread do not affect the exatwt other threads, the
execution of any monitored region must &@mic either the effects of all operations
performed within the monitor become visible to other thieagon successful com-
mit or they are all discarded upon abort. The semantics ob&etional monitors thus
comprise the ACl4tomicity, consistencyandisolation) properties of a classical ACID
transaction model, and their realization may be viewed aptity optimistic concur-
rency control protocols [29] to concurrent object-oriehEnguages.

The properties of transactional monitors described hereaforced only between
threads executing within the same monitor; no guaranteegrarided for threads exe-
cuting within different transactional monitors, nor foreélads executing outside of any
transactional monitor. These properties result in serogrdimilar to those of Java’s
mutual-exclusion monitors. Accesses to data shared bgrdift threads are synchro-
nized only if they acquire the same monitor.

3 Design

There are a number of important issues that arise in a fotmgla semantics for trans-
actional monitors:

1. TransparencyThe degree of programmer control and visibility of intdrtrans-
action machinery influences the degree of flexibility preddy the abstraction,
and the complexity of using it. For example, if a programnsagiven control over
how shared data accesses are tracked, objects known to heaivimneed not be
logged when accessed.

2. Barrier Insertion A code fragment used within a guarded region to track aesess
to shared data is calledarrier. Barriers can be inserted at the source-code level,
injected into the code stream at compile time, or handledi@tp at runtime (in
the case of interpreted languages).

3. Serializability Violation DetectiorA thread executing within a guarded region may
try to detect serializability violation whenever a barriglexecuted, or may defer
detecting such violation until a commit poirgg, monitor exit).

4. Re-Execution ModeWhen a region guarded by a transactional monitor abowrs, th
updates performed by the thread in that region must be disdaAn important de-
sign decision is whether threads perform updates directlshared data, reverting
these updates on aborts (an undo model), or whether threafidsmp updates on a
local journal, propagating them to the corresponding (oal) shared objects upon
successful commit (a redo model).

5. Nesting Transaction models often permit transactions to nestyfif@2], permit-
ting division of any transaction into some number of sulmgetions. In the pres-
ence of nesting, a transactional monitor semantics mustalafles on visibility of
updates made by sub-transactions.

We motivate our design decisions with respect to the issbhiegea One of the most
important principles underlying our design is transpayeft¢he transactional monitors
mechanism: an application programmer should not be coaderith how monitors are
represented, nor with details of the logging mechanismytadrocommit operations.
After marking a region of code at source level as guarded bwengransactional
monitor, a programmer can simply rely on the underlying citdenand run-time system
to ensure transactional execution of the region (satigfytre properties of atomicity,
consistency, and isolation).

Our choice for the barrier placement is to have the compiieeiit the barriers
(rather than, for example, inserting them at the sourceflewe plan to take advantage
of existing compiler optimizationse(, escape analysis) to be able to remove unneces-
sary barrier overhead automaticalgg(for thread-private or immutable objects).

The decision aboutvhena thread should attempt to detect serializability violatio
is strongly dependent on the cost of detection and may vary fsne implementation
of transactional monitors to another. When choosing thet mppropriate point for
detecting serializability violations, we must considee tinade-off between reducing
the overall cost of checking any serializability invarigonce if performed at the exit
from the monitor, or potentially multiple times if perforishén access barriers), and
reducing the amount of computation performed by a threadhtlag eventually abort.

Our design assumesrado semantics for aborts of guarded regions. Implementa-
tions must therefore provide thread-specific redo logs &bkre-execution of guarded
regions. We chose a redo semantics because the space asmated to maintaining
logs is not excessive since a log (associated with a thrgadtpbeeds to be maintained
only when a thread is executing within a transactional noopand can be discarded
upon exit from the monitor. Our design requires all updatr$gsmed within a trans-
actional monitor to be re-directed to the log, and atomycalktalled in the shared
(globally-visible) heap upon successful commit (no act@otaken upon abort).

An alternative design might consider the usauntiologs in which all updates are
performed directly on shared data, and reverted usingnmdition from the log upon
abort. However, using undo logs can leadcascading aborswhich may severely
impact overall performance, or require a global per-actmddsng protocol ég two-
phase locking [21]) to prevent conflicting data accessedffgrent threads. Per-access
locking also has the disadvantage of requiring deadlockatieh or avoidance.

2 All threads that have seen updates of a thread being aborstba aborted as well.

Modularity principles dictate that our design support edgtansactional monitors.
A given monitor region may contain a number of child monit@&scause monitors are
released from the bottom up, child monitors must alwaysasgebefore their parent.
Thus, a child monitor will re-execute (as needed) until it ba (successfully) released.
The updates of child monitors are visible only within the pe®f their parent (and,
upon release of the outermost monitor, are propagated tshtheed space). Updates
performed by a parent monitor are always visible to the child

4 Implementation

An implementation that directly reflects the concept beladsactional monitors would
redirect all shared data accesses performed by a threaih withansactional monitor
to a thread-local log. When an object is first accessed, tbesaing thread records its
current value in the log and refers to it for all subsequeetatons. Serializability vio-
lation would be detected by traversing the log and compa#dahges of objects recorded
in the log with those of the original. The effectiveness @ stheme depends on a num-
ber of different parameters all of which are influenced bydhta access patterns that
occur within the application:

— expected contention (or concurrency) at monitor entry {30in

— the number of shared objects (both read and written) acdg&sethread;

— the percentage of operations that occur within a transaatimonitor that are be-
nign with respect to shared data accesses (method cali$yiriable computation,
type casts /etc)

Because the generic implementation is not biased towardefahese parameters,
it is not clear how effectively it would perform under vargimpplication conditions.
Therefore, we consider implementations of transactionaitors optimized towards
different shared data access patterns, informally de=sd@s low-contention and high-
contention.

Both optimized implementations must provide a solutionoigging, commit, and
abort actions. These actions can be broadly classified uheéollowing categories:

1. Initialization: When a transactional monitor is entered, actions to iiggaogs,
etc may have to be taken by threads before they are allowed ¢o #@ monitor.

2. Read and Write Operation8arriers define the actions to be taken when a thread
performs a read or write to an object when executing withnaagactional monitor.

3. Conflict DetectionConflict detection determines whether the execution ofjeore
guarded by a given monitor is serializable with respect ¢éodtbncurrent execution
of other regions guarded by the same monitor and it is safertondt changes to
shared data made by a thread.

4. Commitmentlf there are no conflicts, changes to the original objectstrha com-
mitted atomically; otherwise guarded region must be recetesl.

Our current implementation does not yet include suppomésted transactions.

4.1 Low-Contention Concurrency

Conceptually, transactional monitors use thread-loag to record updates and install
these updates into the original (shared) objects when adhtemmits. However, if
the contention on shared data accesses is low, the log isfleupes. If the number
of objects concurrently written by different threads exeaywithin the same monitor
is small and the number of threads performing concurrertewis also smalff, then
reads and writes can operate directly over original datgpréserve correctness, the
implementation must still prevent multiple non-seriatilawrites to objects and must
disallow readers from seeing partial or inconsistent upgltt the the objects performed
by the writers.

To address these concerns, we define an implementationttines she following
information in the transactional monitor object:

— writer: uniquely identifies a thread currently executing withinnzeg monitor that
has performed writes to this object;
— thread countnumber of threads concurrently operating within a givemituo.

Initialization: A thread attempting to enter the monitor must first check iwhiethere
are any active writers within the monitor. If there are nawcwriters, the thread can
freely proceed. Otherwise, shared data is not guarantebe io a consistent state,
and the entering thread must spin until there are no moreeastiters, thus achieving
serializability of guarded execution.

Read and Write Barriers:Because there are no object copies or logs, there are no
read barriers; threads read values from the original shalpgetts. Write barriers are
necessary to record whether writes performed by otherdsradich have yet to exit

the monitor have taken place. A write to a shared object cauratone of the following
conditions exist:

— The writer field in the monitor object is nil, indicating tleegire no active writers. In
this case, the current thread atomically sets the writed,fiatrements the thread
count, and executes the write.

— The writer field in the monitor points to the current threatiisTimplies that the
current thread has previously written to this object wittlie same monitor. The
current write can proceed.

If either condition fails, the thread must re-execute thaito.

Conflict Detection:In order for the shared data operations of a thread exitingritor
to be consistent and serializable with respect to otheattggthere must be no other
writers still active within this monitor besides the exdgithread. It is guaranteed (by
the actions taken in the write barrier) that if the exitingethd performed any writes
when executing within a monitor, it is the only active writeithin this monitor. If the
guarded region executed by the exiting thread was readamlyhere is an active writer

3 An example of the low-contention scenario could be multiptestly read-only threads travers-
ing a tree-like structure or accessing a hash-table

T N\ T @ @
counm writer_
(@

o\

TN @ @
counw writer_
(©)

Ty~

LNAAAE NG
counw writer\k

(e)

SN

counw writer&

(d)

Tz/\/\/\/\%>
T Y
counm Writer\k

®

Tz/\/\/\/\m> Tz/\/\/\/\/\@\/C9/>
T NN TN\
counm Writer\k counm Writer_

@) (h)

Fig. 4. Low contention scheme example

still executing within the monitor, it implies that the erig thread might have seen an
inconsistent state which leads to a conflict. If the exeecutias read-only and there are
no active writers, it implies that any threads concurreaxgcuting within the monitor
have performed only reads and no conflicts were possible.

Monitor Exit: Any thread that exits a transactional monitor must atorhyicicrement
the thread count. When a writer exits a monitor, it must firetak whether the thread
countis one. A number greater than one indicates that tmerstifl other active threads
executing within a monitor. To ensure that these threadsyamere that writes have
occurred when they perform conflict detection, the writddf@annot be reset. The last
thread to exit the monitor as part of the monitor exit proaedull decrement the count
to zero, and reset the writer field. Since there are no copidsgs, all updates are
immediately visible in the original copy.

The actions performed in this scheme executing the accoamgle from Fig. 3
is illustrated in Fig. 4, where wavy lines represent threddsand T, circles repre-
sent objectx (checking account) ansl(saving account), updated objects are marked
gray. The large box represents the dynamic scope of a commansaictional monitor
accountmonitor guarding code regions executed by the threads and smalsliege
resent additional information associated with the moniaiter field (initially nil) and
thread count (initially 0). In Fig. 4(a) threal is about to enter the monitor, which

it does in Fig. 4(b) incrementing thread count. In Fig. 4f@etdT; also enters the
monitor and increments thread count. In Fig. 4(d) thréadpdates objeat and sets
the writer to itself. Subsequently thre@greads object (Fig. 4(e)), thread, updates
objects and exits the monitor (Fig. 4(f)) (no conflicts are detectetes there were
no intervening writes on behalf of other threads executiitgiwthe monitor). Thread
count gets decremented but the writer cannot be reset dineedT; is still executing
within the monitor. In Fig. 4(g) threa; reads objecs and attempts to exit the monitor,
but the writer field still points to threal indicating a potential confliét- guarded re-
gion of threadl; must be re-executed. Since thréads the last one to exit the monitor,
in addition to decrementing thread count it also resets tliterfield.

4.2 High-Contention Concurrency

When there is notable contention for shared data, the pevitrategy is not likely
to perform well because attempts to execute multiple wetesn to distinct objects
result in a conflict, and subsequent aborts of all but oneewgkecuting within the
same monitor. We can relax this restriction by allowing #it® to manipulateopies
of shared objects, committing their changes when it doesaomfict with other shared
data operation’ This implementation is closer to the conceptual idea Ugitgrtrans-
actional monitors: updates and accesses performed byaxthre tracked within a log,
and committed only when serializability of a guarded re@f@xecution is not com-
promised. However, since applications tend to perform enlate reads than writes, we
decided to use a copy-on-write straté€gip reduce the cost of read operations (trading
it for a potential loss of precision in detecting serialidigfoviolations).

In this scheme, the following information is stored in eaabnitor:

— global write mapidentifies objects written by threads executing withinranitor.
This map is implemented as a bitmap with a bit being set foryavedified object.
The mapping is conservative and multiple objects can pistignbe hashed into
the same bit;

— thread countnumber of threads concurrently operating within a tratisaal mon-
itor.

The monitor object also contains information about whetimgrthread executing within
a monitor has already managed to install its updates. THeablerite map and thread
count can be combined into one data structure with the theeadt occupying the
lowest bits of the write map. In addition to the data storethiem monitor object, the
header of every object is extended to hold the followingiinfation:

— copies circular list of the object copies created by threads etirgwvithin trans-
actional monitors (original object is the head of the list)

4 This example is based on the interleaving of operations evtier conflict really exists (serial-
izability property is violated)

5 An example of the high-contention scenario could be mutthteads traversing disjoint sub-
trees of a tree-like structure or accessing different bisckea hash-table

6 Instead of creating copies on both reads and writes

— writer: if the object is copy generated byTawithin a transactional monitor, this
field contains a reference a

There is also the following (local) information associatgth every thread:

— local writes list of object copies created by a given thread when exeguwtithin
a transactional monitor;

— local read mapidentifies objects read by a given thread when executinkinvi
monitor (implemented in the same way as the global write map) is used for
conflict detection;

— local write map identifies objects written by a given thread when execuiitgin
a monitor (implemented the same way as the global write meamj,is used to
optimize read and write barriers.

Initialization: The first thread attempting to enter a monitor must initelize mon-
itor by initializing the global write map and setting the ¢ad counter to one. Any
subsequent thread entering the monitor simply incremaetitead counter and is im-
mediately allowed to enter the monitor, provided that nedadrhas yet committed its
updates. If the updates have already been installed, thaimérg threads still execut-
ing within the monitor are allowed to continue their execonfibut no more threads are
allowed to enter the monitor (they spin) to allow for the giblyrite map to be cleaned
up (otherwise out-dated information about updates perfdrmithin the monitor could
be retained for indefinite amount of time forcing enteringetds to repeatedly abort).
Each thread entering a monitor must also initialize its loleaa structures.

Read and Write BarriersThe barriers implement a copy-on-write semantics. The fol-
lowing actions are taken on writing an object:

— If the bit in the local write map representing the object i$ set,ie, the current
thread has not yet written to this object, a copy of the ogbobject is created,
the local write map is tagged, and the write is redirectetiéocbpy.

— If the bit in the local write map representing the object is & the current thread
has potentially (it is a conservative mapping because ofiasin construction) writ-
ten to this object, the copy is located by traversing thedlistopies to find the one
created by the current thread. Otherwise, a new copy isexteatd the write is
redirected to the copy.

The following actions are taken on reading an object:

— If the bit in the local write map representing the object i$ set,ie, the current
thread has not yet written to this object, read from the agbobject, tag the local
read map end exit the barrier.

— If the bit in the local write map representing the object is & the current thread
has potentially written to this object, and a copy of the obgeeated by this thread
exists, the contents of this copy is read. If no such copytexiscause the thread
did not actually write to it, the contents of the original etfjis read.

7 Creation of a copy also involves inserting this copy to thprapriate copy and local write
lists.

wl LT R T] wl T | R T]
T2’\/W®® Tz/\/\/\/\/®®
owl[[]

ow_[[]
(a) (b)
WHERNI-EEN WHERNI-EEN
T, NN TZ/\/W\@\@
Tl/\/\/\/\f)G) TN
WHEENT-EEN owl_L] WHEEENT-EEN GwW
(¢ (d)
WL T R WL T] R
T2WC@/®/‘>T2/\/\/\/\%>
TN TN
WL T] rRIT ow [T] w11 /RIT] oW
(e)]
WL T] R WL T] R
Tz/\/\/\/\%>ﬁ/\/\/\/\/\@/®/—>
T NN I A Ve
w11 RIT] ow [T] wLIT] RIT] oW
(9) (h)

Fig. 5. High contention scheme example

Conflict Detection: When a thread exits the monitor, a conflict detection alparit
checks if the global write map associated with the monitgedhbis disjoint for the
local read map associated with the thread. If so, it meartsthaeads of the current
thread were interleaved with the committed writes of otleedds executing within
the same monitor; otherwise a potentially harmful intarlieg could occur violating
serializability — guarded region must be re-executed. (lblkal write map gets updated
after a thread installs its local updates into the shareeob))

Monitor Exit: If a thread is allowed to commit, all updates to copies (asibés from
the local writes list) performed during monitored execntioust be installed in the
original objects and the local write map must be merged withglobal write map to
reflect writes performed by the current thread (both theseaifpns must be performed
atomically with respect to other threads potentially exjtihe same monitor at the same
time). Regardless of whether a thread is committing or afgrall the lists containing
copies created by this thread must be at this point updateéxhing thread must also
decrement the thread counter and free the monitor if theteovsaches zero (no active
threads executing within the monitor).

The actions performed in this scheme executing the accoamgle from Fig. 3
is illustrated in Fig. 5, where wavy lines represent threddsand T, circles repre-
sent objectx (checking account) ansl(saving account), updated objects are marked
gray, and the box represents the dynamic scope of a commasatt@onal monitor
accountmonitorguarding code regions executed by the threads. Both glatitel map
(GW) associated with the monitor and local maps (local write idapand local read
mapLR) associated with each thread have three slots. Local map® dbe wavy line
representing threat belong toT, and local maps below the wavy line representing
threadT; belong toT. In Fig. 5(a) thread> is about to enter the monitor, which it does
in Fig. 5(b), modifying object. Objectc is shaded and information about the update
gets reflected in the local write map ©f (we assume that objecthashes into the sec-
ond slot of the map). In Fig. 5(c) thredd enters the same monitor and reads object
¢ (the read operation gets reflected in the local read map)oin Fig. 5(d) threadr,
modifies objecs, objects gets shaded and the update also gets reflect@gisriocal
write map (we assume that objexhashes into the third slot of the map). In Fig. 5(e)
threadT, exits the monitor. Since no conflicts are detected (therewerintervening
writes on behalf of other threads executing within the nmm)jfT; installs its updates,
modifies the global write map to reflect updates performetiwithe guarded region
and resets its local maps. Thregdsubsequently reads objexinarking its local read
map (Fig 5(f)) and attempts to exit the monitor (Fig. 5(g))the case of threafi how-
ever its local read map and the global write map overlap atitig a potential confliét
thus, the guarded region of thre&dmust be re-executed (Fig. 5(h)). Since thr@ads
the last thread to exit the monitor, in addition to resetisddcal maps, it also frees the
monitor by resetting the global write map.

5 Experimental Evaluation

We validate the effectiveness of transactional monitora prototype implementation
for IBM’s Jikes Research Virtual Machine (RVM) [2]. The J&KBVM is a state-of-the-
art Java virtual machine with performance comparable toynpaoduction virtual ma-
chines. Itis itself written almost entirely in Java and if-b@sted (e, it does not require
another virtual machine to run). Java bytecodes in the Jkég are compiled directly
to machine code. The Jikes RVM's public distribution ina@sdoth a “baseline” and
optimizing compiler. The “baseline” compiler performs eagghtforward expansion of
each individual bytecode into a corresponding sequencesamably instructions. The
optimizing compiler generates high quality code due in pmgophisticated optimiza-
tions implemented at various levels of intermediate regmesgtion, and because it uses
adaptive compilation techniques [3] to selectively taigede best suited for optimiza-
tions. Our transactional monitors prototype targets thel k86 architecture.

8 This example is also based on the interleaving of operatidrere the conflict really exists
and serializability invariants are violated)

5.1 Java-Specific Issues

Realizing transactional monitors for Java requires rettiogctheir implementation

with Java-specific features such as native method callstiegithread synchroniza-
tion mechanisms (including th&ai t /not i f y primitives). We now briefly elaborate
on these issues.

Native Methodsin general, the effects of executing a native method canmatiolone.
Thus, we disallow execution of native methods within regignarded by transactional
monitors. However, it is possible to relax this restrictinrcertain cases. For example,
if the effects of executing a native method do not escapéehtteat! €g a call to obtain
the current system time), it can safely execute within ade@region. In the abstract,
it may be possible to provide compensation code to be inveleeh a transaction
aborts that will revert the effects of the native methodscalecuted within the transac-
tion. However, our current implementation does not progigieh functionality. Instead,
when a native method call occurs inside the dynamic contextepted by a transac-
tional monitor, a commit operation is attempted for the upsgerformed up to that
point. If the commit fails, then the monitor re-executescdrding all its updates. If the
commit succeeds, the updates are retained, and execuiemnsréo mutual-exclusion
semantics: a conventional mutual-exclusion lock is aegufor the remainder of the
monitor. Any other thread that attempts to commit its changhile the lock is held
must abort. Any thread that attempts to enter the monitoteathie lock is held must
wait.

Existing Synchronization MechanismBouble guarding a code fragment with both a
transactional monitor and a mutual-exclusion monitor fegped usingynchr oni zed
methods or blocks) does not strengthen existing seriadlizagpuarantees. Indeed, code
protected in such a manner will behave correctly. Howetaerytsibility rule for mutual-
exclusion monitors embedded within a transactional momvith change with respect
to the original Java memory model: all updates performetiwé region guarded by a
mutual-exclusion monitor become visible only upon comrhihe transactional moni-
tor guarding that region.

Wait-Notify: We allow invocation ofwai t andnot i f y methods inside of a region
guarded by a transactional monitor, provided that they @ guarded by a mutual-
exclusion monitor (and invoked on the object representiag utual-exclusion mon-
itor 9). Invokingwai t releases the corresponding mutual-exclusion monitor hed t
current thread waits for notification, but updates perfairse far do not become vis-
ible until the thread resumes and exits the transactionatitoro Invokingnot i fy
postpones the effects of notification until exit from thexgactional monitor°

9 This requirement is identical to the original Java execusiemantics — a thread invoking wait
or notify must hold the corresponding monitor.
10 Notification modifies the shared state of a program and igfher subject to the same visibil-
ity rules as other shared updates.

5.2 Compiler Support

Transactional monitors are implemented in both optimizng “baseline” compilers.
This is necessary because Jikes RVM configured to use onlgptimizing compiler
may still have certain methoded, class initializers) compiled by the “baseline” com-
piler. The implementation for both compilers is analogdtm.the sake of brevity, our
description here is limited to modifications to the optimgicompiler.

Barriers: Read and write barriers conceptually consist of two patfsa(check to de-
termine if the operation occurs inside the dynamic contéxt wansactional monitor,
and (2) if so, the actions to be undertaken to support a spétifilementation strategy
as described earlier. An inlined static method first chedksther any special process-
ing of the operation is required. If the current thread iscetieg inside of RVM code
or transactional monitors are turned offy during RVM startup), no further action is
required. Code for read and write barriers is inserted atay stage of compilation al-
lowing the compiler to apply appropriate optimizationsidgrsubsequent compilation
stages.

Re-execution of a Guarded RegioWvhen a thread attempts to commit its updates
within a region guarded by a transactional monitor, and dlicbrs detected, the thread
must abort its changes and re-execute the region. Our ingpltation adapts the Jikes
RVM exception handling mechanism to return control to thgitieing of the aborted
region and uses bytecode rewritiido save program state (values of local variables
and method parameters) for restoration on re-executioch Eade region guarded by
a transactional monitor is wrapped within an exception edbgat catches an internal
rollback exception. The rollback exception is thrown internally bg tRVM, but the
code to catch it (implementing re-execution) is injectet ithe bytecode stream. We
also modify the compiler and run-time system to suppressmgeion (and invocation)
of “default” exception handlers during a rollback operati®he “default” handlers in-
clude bothf i nal I y blocks, andccat ch blocks for exceptions of typ&hr owabl e,

of which all exceptions (includingpliback) are instances. Running these intervening
handlers would violate the requirement that an abortedreymized block produce no
side-effects.

5.3 Benchmark

To evaluate the performance of the prototype implementaie chose a multi-threaded
version of the OO7 object operations benchmark [14], odlijrdeveloped in the database
community. Our incarnation of OO7 benchmark uses modifigeetisal routines to al-
low parameterization of synchronization and concurreredyavior. We have selected
this benchmark because it provides a great deal of flexibiithe choice of runtime
parametersdg, percentage of reads and writes to shared data performéxtapplica-
tion) and extended it to allow control over placement of $ypaization primitives and
the amount of contention on data access. When choosing O@ufaneasurements,

11 we use the Bytecode Engineering Library (BCEL) from Apadatrethiis purpose.

our goal was to accurately gauge various trade-offs inhevih different implemen-
tations of transactional monitors, rather than emulatingdwoads of selected potential
applications. Thus, we believe the benchmark capturegakéatures of scalable
concurrent programs that can be used to quantify the imgdaitteodesign decisions
underlying a transactional monitor implementation.

The benchmark operates on a synthetic design databasstioypsif a set of com-
posite parts (see Fig. 6). Each composite part consists tdhgf atomic parts and
a document object. Composite parts are arranged in an alsbimakarchy, called a
module. Each assembly contains either composite parts @ssemblies) or other as-
semblies (composite assemblies).

The multi-threaded workload consists of multiple threag®ing a set of parame-
terized traversals composed of primitive operations. &drsal chooses a single path
through the assembly hierarchy and at the composite paat tamdomly chooses a
fixed number of composite parts to visit. When the traveesathes the composite part,
it has two choices: (a) it may perform read-only traversah gfraph of atomic parts;
or, (b) it may perform read-write traversal of a graph of amparts, swapping certain
scalar fields in each atomic part visited. To foster someeakegf interesting interleav-
ing and contention, the benchmark defines a parameter tbasadverhead to be added
to read operations to increase the time spent performingisals.

Our implementation of OO7 conforms to the standard OO7 dabBpecification.
Our traversals differ from the original OO7 traversals iloaing multiple composite
parts to be visited during a single traversal rather thanguoe as in the original speci-
fication, and in allowing entry of monitors at various levetshe database hierarchy.

Component Number
Modules 1
Assembly levels 7

Subassemblies per complex assembly3

Composite parts per assembly 3
Composite parts per module 500
Atomic parts per composite part] 20

Connections per atomic part 3
Document size (bytes) 2000
Manual size (bytes) 100000

Fig. 6. Component organization of the OO7 benchmark.

5.4 Measurements

Our measurements were taken on an eight-way 700MHz IntdiuPerill with 2GB

of RAM running Linux kernel version 2.4.20-20.9 (RedHat)d® single-user mode.
We ran each benchmark configuration in its own invocation WMRrepeating the
benchmark six times in each invocation, and discardingehkealts of the first iteration,

Normalized time
w S [o ~
T T T T
ey
L L L L L
Normalized time
w S [o ~

N
T
I

N

L n n 1 L L L L L L L L L L L
10 20 30 40 50 60 70 80 920 10 20 30 40 50 60 70 8
Percent of writes (100% - percent of reads) Percent of writes (100% - percent of reads)

(a) high-contention (b) low-contention

Fig. 7.Normalized execution time for 64 threads running on 8 preces

in which the benchmark classes are loaded and compiledmete the overheads of
compilation.
When running the benchmarks we varied the following paramset

— number of threads competing for shared data access alohghgihumber of pro-
cessors executing the threads: we Pa8 threads (wher® is the number of pro-
cessors) foP =1,2,4,8.

— ratio of shared reads to shared writes: from 10% shared r@ad9©0% shared
writes (mostly read-only guarded regions) to 90% sharedsemd 10% shared
writes (mostly write-only guarded regions)

— level of the benchmark database at which monitors wereeshtkavel one (module
level), level three (second layer of composite parts) andllsix (fifth layer of
composite parts)

Every thread performed 1000 traversals (entered 1000 gdamehions) and visited
2000k atomic parts during each iteration.

5.5 Results

The expected behavior for transactional monitor implemgors optimized for low-
contention applications is one in which performance is mézed when contention on
guarded shared data accesses is low, for example, if mositapes in guarded regions
are reads. The expected behavior for transactional manifgementations optimized
for high-contention applications is one in which perforro@ais maximized when con-
tention on guarded shared data accesses is moderate, ttatiape protected by the
monitor contain a mix of reads and writes, and concurremntgcating threads do not
often attempt concurrent updates of g@mneobject. Potential performance improve-
ments over a mutual-exclusion implementation arise frognntproved scalability that
should be observable when executing on multi-processtfophas.

Our experimental results confirm these hypotheses. Caateah shared data ac-
cesses depends on the number of updates performed withidegligegions combined

Number of aborts

Normalized time

[[— revelq]
Level 3|
E Level 6|

1000000

Level 1]
Level 3
Level §

100000 E
100000 <4 £ 100000-
E) E
©
[S .
10000 4 8 w000 T
E i E E
E 5 E
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, z
1000 E 1000
1007 L L | L L | L L L | L L 1007 L L | L L L | L L L | L L
10 2 0 70 80 90 10 20 60 70 80 90
Percent of writes (100% - percent of reads) Percent of writes (100% - percent of reads)
(a) high-contention (b) low-contention
Fig. 8. Total number of aborts for 64 threads running on 8 processors
T T
Level 1|
Level 3|
El-- Levelg
1000000¢- B
2
g
5
5
£
4
100000¢- 4
1020 %0 40 50 60 70 80 90
Percent of writes (100% - percent of reads)
Fig. 9. Total number of copies created for 64 threads running on 8gasors
10— T 10— T
r 10-90| r 10-90|
o g8 o 22
r 70-30| r 70-30|
8l — 90-10| 8l — 90-10|
71] 71 =
L el .
6 I - = 6
Lo R
5 4 = sk
[
g _
4+ 4 54 ;
z
sk
ok
1R
ol ol

8 56 64

32 40
Number of threads

(a) high-contention

o R

32 40 48
Number of threads

(b) low-contention

Fig. 10.Normalized execution times — monitor entries at level 1

10 ;

8- — 90-10|_] 8 90-10|_|
[[-T
7+ E 7+
£ I £ I
= 6 T — =6 x n
= =
[B [B
S st . 4 =& st Bl
g I To. g I
S 4r 4 5 4r = B
z z L

8 16 24

32 40 48
Number of threads

(a) high-contention

Fig. 11.Normalized execution times — monitor entries at level 3

(b) low-contention

10 ;

10-90| 10-90|
o] 30-70|_] o] 30-70|_{
50-50| 50-50|
70-30| r 70-30|
8- — 90-10(_| 8 90-10|_{
7+ g 7+ g
[} L [} L
£ £
£ 1B]
o L o L
2 2
5T I 1 8%]
E E
S 4r e I 1 S 4r 1
P 4 =4 L

8 16 24 32 40 48
Number of threads

(a) high-contention

(b) low-contention

32 40 48
Number of threads

Fig. 12.Normalized execution times — monitor entries at level 6

with the amount of contention on entering monitdfsFig. 7 plots execution time for
64 threads running on 8 processors for the high-contentioerae (Fig. 7(a)) and low-
contention scheme (Fig. 7(b)) normalized to the execuiioe for standard mutual-
exclusion monitor$?, while varying the ratio of shared reads and writes and e &t
which monitors are entered. It is important to note that embnitor entries at levels one
and three creates any reasonable contention (and thus @mustaa accesses) — at level
six the probability of two threads concurrently entering #ame monitor is very low
(thus no performance benefit can be expected). In Fig. 7(eeedhe high-contention
scheme outperforming mutual-exclusion monitorsdibiconfigurations when monitors
are entered at level one. When monitors are entered at e, tthe high-contention
scheme outperforms mutual-exclusion monitors for the gomditions where write op-

12 Threads contend on entering a monitor only if they entestmemonitor

13 To obtain results for the mutual-exclusion case we used arodified version of Jikes RVM
(no compiler or run-time modifications). Figures report@égcution times show 90% confi-
dence intervals in our results.

erations constitute 70% of all data operations. For largatewatios, the number of
aborts and the number of copies created during guardedtxeowercome any poten-
tial benefit from increased concurrency.

The low-contention scheme’s performance is illustratefign 7(b): it outperforms
mutual-exclusion monitors for configurations where wrifgerations constitute 30%
of all data operations (low contention on shared data aesgsthe total number of
aborts across all iterations for both high-contention sehand low-contention scheme
appears in Fig. 8(a-b). The total number of copies createssaall iterations for the
high-contention scheme appears in Fig. 9. The remaininghgrdlustrate the scala-
bility of both schemes by plotting normalized executiondsifor the high-contention
scheme (Figs. 10-12(a)) and low-contention scheme (F@4.21b)) when varying the
number of threads (and processors) for monitor entrieseglat levels one, three, and
six (Figs. 10-12, respectively).

6 Related Work

Several recent efforts explore alternatives to lock-baseturrent programming. Har-
ris et al [24] introduce a new synchronization construct to Javaedatomicthat is
superficially similar to our transactional monitors. Theadbehind the atomic con-
struct is that logically only one thread appears to exeanteatomic section at a time.
However, it is unclear how to translate their abstract sdimaefinition into a practical
implementation. For example, a complex data structureosadl withinatomicis sub-
ject to a costlyalidationcheck, even though operations on the structure may occur on
separate disjoint parts. We regard our work as a significaahgion and refinement of
their approach, especially with respect to understandinémentation issues related
to the effectiveness of new concurrency abstractions distieanulti-threaded appli-
cations. Thus, we focus on a detailed quantitative studyaasure the cost of logging,
commits, abortsetc we regard such an exercise as critical to validate theyutifithese
higher-level abstractions on scalable platforms.

Lock-free data structures [35, 28] and transactional mgijag, 38] are also closely
related to transactional monitors. Herliiyal [25] present a solution closest in spirit to
transactional monitors. They introduce an form of softwaa@sactional memory that
allows for the implementation afbstruction-fregla weaker incarnation of lock-free)
data structures. However, because shared data accesBasnpdrin a transactional
context are limited to statically pre-defingdnsactional objectstheir solution is less
general than the dynamic protection afforded by transaatimonitors. Moreover, the
overheads of their implementation are also unclear. Theypewe the performance of
operations on an obstruction-free red-black tree only wétspect to other lock-free
implementations of the same data structure, disregarditengial competition from a
carefully crafted implementation using mutual-excludimecks. The notion of transac-
tional lock removal proposed by Rajwar and Goodman [35] alsares similar goals
with our work, but their implementation relies on hardwauport.

Rinard [37] describes experimental results using low{leytimistic concurrency
primitives in the context of an optimizing parallelizingropiler that generates parallel
C++ programs from unannotated serial C++ source. Unlikenaigeg transaction facility

of the kind described here, his optimistic concurrency enpgntation does not ensure
atomic commitment of multiple variables. Moreover in castrto a low-level facility,
the code protected by transactional monitors may span dnaaybdynamic context.

There has been much recent interest in data race detectiojaya. Some ap-
proaches [7, 8] present new type systems using, for examwigership types [17] to
verify the absence of data races and deadlock. Recent wogleweralizing type sys-
tems allows reasoning about higher-level atomicity proggiof concurrent programs
that subsumes data race detection [20, 19]. Other techsjdlifemploy static analyses
such as escape analysis along with runtime instrumentttidmeters accesses to syn-
chronized data. Transactional monitors share similargyeéh these efforts but differ
in some important respects. In particular, our approack doerely on global analysis,
programmer annotations, or alternative type systems.ahthieplaces lock-based im-
plementations of synchronization sections, the set ofdudies it allows is not identical
to that supported by lock-based schemes. Indeed, traosatthonitors ensure preser-
vation of atomicity and serializability properties in gdad regions without enforcing
a rigid schedule that prohibits benign concurrent acceshaoed data. In this respect,
they can be viewed as a starting point for an implementatiangupports higher-level
atomic operations.

Incorporating explicit concurrency abstractions withighilevel languages has a
long history [22, 23,18, 9, 36], as does deriving paralielfsom unannotated programs
either through compiler analysis [31] or through explicihatations and pragmas [39].
Our ideas differ from these efforts insofar as we are coregbwith providing abstrac-
tions that simplify the complexity of locking and synchraaiion. Although we do not
elaborate on this point in this paper, we believe transaatimonitors can be general-
ized to serve as a building block upon which higher-leveltorency abstractions can
be defined and implemented. We believe such an approach prigfitably be used as
part of a Java-centric operating system.

There have been several attempts to reduce locking oveihetva. Ageseret
al [1] and Baconet al [4] describe locking implementations for Java that attetopt
optimize lock acquisition overhead when there is no comeantn a shared object.
Transactional monitors obviate the need for a multi-tidoetting algorithm by allow-
ing multiple threads to execute simultaneously within giear regions provided that
updates are serializable.

Finally, the formal specification of various flavors of trangons has received much
attention [30, 16, 21]. Blackt al[6] present a theory of transactions that specifies atom-
icity, isolation and durability properties in the form of equivalence relation on pro-
cesses. Choithia and Duggan [15] present the pik-calculdsie-calculus as exten-
sions of the pi-calculus that support abstractions forrithsted transactions and opti-
mistic concurrency. Their work is related to other effoft8]that encode transaction-
style semantics into the pi-calculus and its variants. Thekvof Busi, Gorrieri and
Zavattaro [11] and Busi and Zavattaro [13] formalize the aefics of JavaSpaces, a
transactional coordination language for Linda, and dis¢hie semantics of important
extensions such as leasing [12]. Berger and Honda [5] examitensions to the pi-
calculus to handle various forms of distributed computatilude aspects of trans-
actional processing such as two-phase commit protocolsdndling commit actions

in the presence of node failures. We have recently applieddisas presented here to
define an optimistic concurrency (transaction-like) setiearfor a Linda-like coordi-
nation language that addresses scalability limitatiorteése other approaches [27]. A
formalization of a general transaction semantics for paogning languages expressive
enough to capture the behavior of transactional monitgusasented in [40].

References

1. AGESEN O., DETLEFS, D., GARTHWAITE, A., KNIPPEL, R., RAMAKRISHNA, Y. S.,
AND WHITE, D. An efficient meta-lock for implementing ubiquitous syingnization. In
OOPSLA99 [34], pp. 207-222.

2. ALPERN, B., ATTANASIO, C. R., BaARTON, J. J., @CCHI, A., HUMMEL, S. F., LEBER,

D., NGo, T., MERGEN, M., SHEPHERD, J. C.,AND SMITH, S. Implementing Jalapefio in
Java. In OOPSLA99 [34], pp. 314-324.

3. ARNOLD, M., FINK, S. J., QROVE, D., HIND, M., AND SWEENEY, P. F. Adaptive opti-
mization in the Jalapefio JVM. IRroceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages, and Applicat{Mianeapolis, Minnesota, Oct ACM
SIGPLAN Notices 35L0 (Oct. 2000), pp. 47-65.

4. BACON, D., KONURU, R., MURTHY, C., AND SERRANO, M. Thin locks: Featherweight
synchronization for Java. lroceedings of the ACM Conference on Programming Language
Design and ImplementatiofMontréal, Canada, June)CM SIGPLAN Notices 3% (May
1998), pp. 258-268.

5. BERGER M., AND HONDA, K. The Two-Phase Commitment Protocol in an Extended pi-
Calculus. InElectronic Notes in Theoretical Computer SciericeAceto and B. Victor, Eds.
vol. 39. Elsevier, 2003.

6. BLACK, A., CREMET, V., GUERRAOUI, R., AND ODERSKY, M. An equational theory for
transactions. Tech. Rep. CSE 03-007, Department of Com@adience, OGI School of
Science and Engineering, 2003.

7. BOYAPATI, C., LEE, R., AND RINARD, M. C. Ownership types for safe programming:
preventing data races and deadlocks. Pmceedings of the ACM Conference on Object-
Oriented Programming Systems, Languages, and Applica{®eattle, Washington, Nov.).
ACM SIGPLAN Notices 321 (Nov. 2002), pp. 211-230.

8. BOYAPATI, C.,AND RINARD, M. A parameterized type system for race-free Java programs
In OOPSLA01 [33], pp. 56—69.

9. BREITINGER, S., LOOGEN, R., ORTEGA-MALLEN, Y., AND PENA, R. The Eden coordi-
nation model for distributed memory systems High-Level Parallel Programming Models
and Supportive Environments (HIRELEE Press, 1997.

10. BRUNI, R., LANEVE, C., AND MONTANARI, U. Orchestrating transactions in the join
calculus. Innternational Conferenec on Concurrency ThefByno, Czech Republic, Aug.),
L. Brim, M. K. Petr Jancar, and A. Kucera, Eds. vol. 2421l efture Notes in Computer
Science2002, pp. 321-337.

11. Busl, N., GORRIERI, R.,AND ZAVATTARO, G. On the Semantics of JavaSpaced=drmal
Methods for Open Object-Based Distributed SystemsdV 177. Kluwer, 2000.

12. Busl, N., GORRIERI, R., AND ZAVATTARO, G. Temporary Data in Shared Dataspace
Coordination Languages. FOSSACS’01Springer-Verlag, 2001, pp. 121-136.

13. Busl, N.,AND ZAVATTARO, G. On the serializability of transactions in JavaSpaaeBrdc.
of International Workshop on Concurrency and Coordinaf@®NCOORD’01)Electronic
Notes in Theoretical Computer Science 54, Elsevier, 2001.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

CAREY, M. J., DEWITT, D. J.,AND NAUGHTON, J. F. The OO7 benchmark. Rroceed-
ings of the ACM International Conference on Management a¢aD&ashington, DC, May).
ACM SIGMOD Record 22 (June 1993), pp. 12-21.

CHOITHIA, T., AND DUGGAN, D. Abstractions for fault-tolerant computing. Tech. Rep.
2003-3, Department of Computer Science, Stevens Instfufechnology, 2003.
CHRYSANTHIS, P., AND RAMAMRITHAM , K. Synthesis of extended transaction models
using ACTA. ACM Trans. Database Syst.,13(1994), 450-491.

CLARKE, D. G., POTTER, J. M., AND NOBLE, J. Ownership types for flexible alias pro-
tection. InProceedings of the ACM Conference on Object-Oriented Rwogning Systems,
Languages, and Application®ancouver, Canada, Oct ACM SIGPLAN Notices 33L0
(Oct. 1998), pp. 48—64.

FLANAGAN, C., AND FELLEISEN, M. The semantics of future and its use in program
optimizations. InConference Record of the ACM Symposium on Principles ofr@nmuging
LanguagegSan Francisco, California, Jan.). 1995, pp. 209-220.

FLANAGAN, C., AND FREUND, S. N. Type-based race detection for JavaPtaceedings
of the ACM Conference on Programming Language Design antelmgntatior(Vancouver,
Canada, JunepCM SIGPLAN Notices 3% (June 2000), pp. 219-232.

FLANAGAN, C.,AND QADEER, S. Types for atomicity. IfProceedings of the 2003 ACM
SIGPLAN International Workshop on Types in Language DesighimplementatiofNew
Orleans, Louisiana, Jan.). 2003, pp. 1-12.

GRAY, J.,AND REUTER, A. Transaction Processing: Concepts and Techniqizta Man-
agement Systems. Morgan Kaufmann, 1993.

HALSTEAD, JR., R. H. Multilisp: A language for concurrent symbolic contgtion. ACM
Trans. Program. Lang. Syst, 4 (Oct. 1985), 501-538.

HAMMOND, K., AND MICHAELSON, G., Eds.Research Directions in Parallel Functional
Programming Springer-Verlag, 1999.

HARRIS, T., AND FRASER, K. Language support for lightweight transactions. Aro-
ceedings of the ACM Conference on Object-Oriented Progriagnr8ystems, Languages,
and ApplicationgAnaheim, California, Nov.)ACM SIGPLAN Notices 381 (Nov. 2003),
pp. 388-402.

HERLIHY, M., LUCHANGCO, V., MOIR, M., AND SCHERER IIl, W. N. Software trans-
actional memory for dynamic-sized data structures. Ptaceedings of the Annual ACM
Symposium on Principles of Distributed Computii®pston, Massachusetts, July). 2003,
pp. 92-101.

HOSKING, A. L., AND Moss J. E. B. Object fault handling for persistent programming
languages: A performance evaluation. Rroceedings of the ACM Conference on Object-
Oriented Programming Systems, Languages, and Applica{{dfashington, DC, Sept.).
ACM SIGPLAN Notices 280 (Oct. 1993), pp. 288-303.

JAGANNATHAN, S.,AND VITEK, J. Optimistic Concurrency Semantics for Transactions
in Coordination Languages. @oordination Models and Languagegol. 2949 ofLecture
Notes in Computer Scienc2004, pp. 183-198.

ENSEN, E. H., HAGENSEN, G. W.,AND BROUGHTON, J. M. A new approach to exclusive
data access in shared memory multiprocessors. Tech. raprehce Livermore National
Laboratories, 1987.

KUNG, H. T., AND ROBINSON, J. T. On optimistic methods for concurrency cont®CM
Trans. Database Syst, 8 (June 1981), 213-226.

LYNCH, N., MERRITT, M., WEIHL, W., AND FEKETE, A. Atomic TransactionsMorgan
Kaufmann, 1994.

MICHAELSON, G., SCAIFE, N., BRIsTOWw, P.,AND KING, P. Nested algorithmic skeletons
from higher order functionsParallel Algorithms and Application000). Special issue on
High Level Models and Languages for Parallel Processing.

32.

33.

34.

35.

36.
37.

38.

39.

40.

41.

Moss J. E. B.Nested Transactions: An Approach to Reliable Distributedn@uting MIT
Press, Cambridge, Massachusetts, 1985.

Proceedings of the ACM Conference on Object-Oriented Rmmgning Systems, Languages,
and ApplicationgTampa, Florida, Oct. ACM SIGPLAN Notices 3@1 (Nov. 2001).
Proceedings of the ACM Conference on Object-Oriented Rimogning Systems, Languages,
and ApplicationgDenver, Colorado, Nov.ACM SIGPLAN Notices 34.0 (Oct. 1999).
RaJWAR, R.,AND GOODMAN, J. R. Transactional lock-free execution of lock-based pro
grams. InProceedings of the ACM International Conference on Architeal Support for
Programming Languages and Operating Systé€Ban Jose, California, Oct ACM SIG-
PLAN Notices 3710 (Oct. 2002), pp. 5-17.

RepPY, J. Concurrent Programming in MLCambridge University Press, 1999.

RNARD, M. Effective fine-grained synchronization for automallicparallelized programs
using optimistic synchronization primitive®A\CM Trans. Comput. Syst. 1Z (Nov. 1999),
337-371.

SHAvIT, N., AND ToulTou, D. Software transactional memory. Rroceedings of the
Annual ACM Symposium on Principles of Distributed Compu(ttawa, Canada, Aug.).
1995, pp. 204-213.

TRINDER, P. W., HAMMOND, K., LoiDL, H.-W., AND JONES, S. L. P. Algorithms +
strategy = parallelismJournal of Functional Programming, & (1998), 23-60.

VITEK, J., AGANNATHAN, S., WELC, A., AND HOSKING, A. L. A semantic framework
for designer transactions. IRroceedings of the European Symposium on Programming
(Barcelona, Spain, Mar./Apr), D. E. Schmidt, Ed. vol. 2988 ecture Notes in Computer
Science2004, pp. 249-263.

VON PRAUN, C.,AND GROSS T. R. Object race detection. In OOPSLA01 [33], pp. 70-82.

