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Abstract

Transactional monitorsare proposed as an alternative to monitors based on mutual-
exclusion synchronization for object-oriented programming languages. Transactional
monitors have execution semantics similar to mutual-exclusion monitors but implement
monitors as lightweight transactions that can be executed concurrently (or in parallel
on multiprocessors). They alleviate many of the constraints that inhibit construction of
transparently scalable and robust applications.

We undertake a detailed study of alternative implementation schemes for transac-
tional monitors. These different schemes are tailored to different concurrent access pat-
terns, and permit a given application to use potentially different implementations in
different contexts.

We also examine the performance and scalability of these alternative approaches in
the context of the Jikes Research Virtual Machine, a state-of-the-art Java implementa-
tion. We show that transactional monitors are competitive with mutual-exclusion syn-
chronization and can outperform lock-based approaches up to five times on a wide range
of workloads.

1 Introduction

Managing complexity is a major challenge in constructing robust large-scale server
applications (such as database management systems, application servers, airline reser-
vation sytems,etc). In a typical environment, large numbers of clients may access a
server application concurrently. To provide satisfactoryresponse time and throughput,
the applications themselves are often made concurrent. Thus, object-oriented program-
ming languages (eg, Smalltalk, C++, Modula-3, Java) provide mechanisms that enable
concurrent programming via a thread abstraction, with threads being the smallest unit
of concurrent execution.

A key mechanism offered by these languages is the notion ofguardedcode regions
in which accesses to shared data performed by one thread areisolatedfrom accesses
performed by others, and all updates performed by a thread within a guarded region
become visible to other threadsatomically, once the executing thread exits the region.

Guarded regions are usually implemented using mutual-exclusion locks: a thread
acquires a lock before it is allowed to enter the guarded region and blocks if the lock has



already been acquired by another thread. Isolation resultssince threads must execute the
guarded region serially: only one thread at a time can be active in the region, although
this serial order is not necessarily deterministic. Atomicity of updates is also achieved
with respect to shared data accessed within the region; updates are visible to other
threads only when the current thread releases the lock.

Unfortunately, enforcing isolation and atomicity using mutual-exclusion locks suf-
fers from a number of potentially serious drawbacks. Most importantly, locks often
serve as poor abstractions since they do not help to guarantee high-level properties of
concurrent programs such as atomicity or isolation that areoften implicitly assumed
in the specification of these programs. In other words, locksdo not obviate the pro-
grammer from the responsibility of (re)structuring programs to guarantee atomicity,
consistency, or isolation invariants defined in a program’sspecification. The mismatch
between the low-level semantics of locks, and the high-level reasoning programmers
should apply to define concurrent applications leads to other well-known difficulties.
For example, threads waiting to acquire locks held by other threads may form cycles,
resulting in deadlock. Priority inversion may result if a high-priority thread must wait
to enter a guarded region because a low-priority thread is already active in it. Finally,
for improved performance, code must often be specially tailored to provide adequate
concurrency. To manipulate a complex shared data structurelike a tree or heap, appli-
cations must either impose a global locking scheme on the roots, or employ locks at
lower-level nodes or leaves in the structure. The former strategy is simple, but reduces
realizable concurrency and may induce false exclusion: threads wishing to access a dis-
tinct piece of the structure may nonetheless block while waiting for another thread that
is accessing an unrelated piece of the structure. The latterapproach permits multiple
threads to access the structure simultaneously, but leads to implementation complexity,
and requires more memory to hold the necessary lock state.

Recognition of these issues has prompted a number of research efforts aimed at
higher-level abstract notions of concurrency that omit anydefinition based on mutual-
exclusion locks [25, 24, 20, 19]. In this paper, we proposetransactional monitorsas
an alternative to mutual exclusion for object-oriented programming languages. Trans-
actional monitors implement guarded regions as lightweight transactions that can be
executed concurrently (or in parallel on multiprocessor platforms). Transactional mon-
itors define the following data visibility property that preserves isolation and atomicity
invariants on shared data protected by the monitor: all updates to objects guarded by a
transactional monitor become visible to other threads onlyon successful completion of
the monitor’s transaction.1

Our work is distinguished from previous efforts in two majorrespects. First, we
provide a semantics and detailed exploration of alternative implementation schemes for
transactional monitors, all of which enforce desired isolation and atomicity properties.
These different schemes are tailored to different concurrent access patterns, and permit
a given application to use potentially different transactional monitor implementations
in different contexts. We focus on two specific alternatives: an approach that works well

1 A slightly weaker visibility property is present in Java forupdates performed within a syn-
chronized block (or method); these are guaranteed to be visible to other threads only upon exit
from the block.



when contention for shared data is low (eg, mostly read-only guarded regions), and a
scheme better suited to handle highly concurrent accesses with a more uniform mix of
reads and updates. These alternatives reflect likely patterns of use in realistic concurrent
programs.

Second, we examine the performance and scalability of thesedifferent approaches
in the context of a state-of-the-art Java compiler and virtual machine, the Jikes Research
Virtual Machine (RVM) [2] from IBM. Jikes RVM is an ideal platform in which to
explore alternative implementations of transactional monitors, and to compare them
with lock-based mutual exclusion, since Jikes already usessophisticated strategies to
minimize the overhead of traditional mutual-exclusion locks [4]. A detailed evaluation
in this context provides an accurate depiction of the tradeoffs and benefits in using
lightweight transactions as an alternative to lock-based mutual exclusion.

2 Overview

Unlike mutual-exclusion monitors (eg, synchronized blocks and methods in Java), which
force threads to acquire a given monitor serially, transactional monitors require only that
threadsappearto acquire the monitor serially. Transactional monitors permit concur-
rent execution within the monitor so long as the effects of the resulting schedule are
serializable. That is, the effects of concurrent execution of the monitorare equivalent
to someserial schedule that would arise if no interleaving of different threads occurred
within the guarded region. The executions are equivalent ifthey produce the same ob-
servable behavior; that is, all threads at any point during their execution observe the
same state of the shared data. Thus, while transactional monitors and mutual-exclusion
monitors have the same observable behavior, transactionalmonitors permit a higher
degree of concurrency.

Transactional monitors maintain serializability by tracking accesses to shared data
within a thread-specificlog. When a thread attempts to release a monitor on exit from a
guarded region, an attempt is made tocommitthe log. The commit operation has the ef-
fect of verifying the consistency of shared data with respect to the information recorded
in the log,atomicallyperforming all logged operations at once with respect to anyother
commit operation. If the shared data changes in such a way as to invalidate the log,
the monitored code block is re-executed, and the commit retried. A log is invalidated
if committing its changes would violate the serializability property of the monitored
region.

For example, consider the code sample shown in Fig. 1 (using Java syntax). Thread
T1 computes the total balance of both checking and savings accounts. ThreadT2 trans-
fers money between these accounts. Both account operations(balance and transfer) are
guarded by the sameaccount_monitor – the code region guarded by the moni-
tor is delimited by curly braces following themonitored statement. If the account
operations were unguarded, concurrent execution of these operations could potentially
yield an incorrect result: the total balance computed afterthe withdrawal but before
the deposit would not include the amount withdrawn from the checking account. If
account_monitor were a traditional mutual-exclusion monitor, either thread T1 or
T2 would win a race to acquire the monitor and would execute fully before releasing the



T1

monitored (account_monitor)
{

balance1 = checking.getBalance();
balance2 = savings.getBalance();
print(balance1 + balance2);

}

T2

monitored (account_monitor)
{

checking.withdraw(amount);
savings.deposit(amount);

}

Fig. 1.Bank account example

monitor; regardless of the order in which they execute, the total balance computed by
threadT1 would be correct (it would in fact be the same in both cases).

If account_monitor is a transactional monitor, two scenarios are possible, de-
pending on the interleaving of the statements implementingthe account operations. The
interleaving presented in Fig. 2 results in both threads successfully committing their
logs – it preserves serializability sinceT2’s withdrawal from the checking account does
not compromiseT1’s read from the savings account. This interleaving is equivalent to a
serial execution in whichT1 executes beforeT2.

The interleaving presented in Fig. 3 results inT1’s execution of the monitored code
being aborted sinceT1 reads an inconsistent state. Serializability is enforced by re-
executing the guarded region of threadT1.

T1 T2

(1) checking.getBalance
(2) checking.withdraw
(3) savings.getBalance
(4) savings.deposit

Fig. 2. Serializable execution.

These examples illustrate several issues in formulating animplementation of trans-
actional monitors. Threads executing within a transactional monitor must execute iniso-
lation: their view of shared data on exit from the monitor must beconsistentwith their
view upon entry. Isolation and consistency imply that shared state appears unchanged
by other threads. A thread executing in a monitor cannot see the updates to shared state
by other threads. Transactional monitor implementations must permit threads to detect



T1 T2
(1) checking.withdraw
(2) checking.getBalance
(3) savings.getBalance
(4) savings.deposit

Fig. 3. Non-serializable execution.

state changes that violate isolation and to abort, roll-back, and restart their execution in
response to such violations.

In Fig. 3, the execution of threadT1 is not isolated from the execution of thread
T2 since threadT1 sees the effects of the withdrawal but does not see the effects of the
deposit. Thus,T1 is obliged to abort and re-execute its operations. In general, a thread
may abort at any time within a transactional monitor. To ensure that partial results of
a computation performed by a thread do not affect the execution of other threads, the
execution of any monitored region must beatomic: either the effects of all operations
performed within the monitor become visible to other threads upon successful com-
mit or they are all discarded upon abort. The semantics of transactional monitors thus
comprise the ACI (atomicity, consistency, andisolation) properties of a classical ACID
transaction model, and their realization may be viewed as adapting optimistic concur-
rency control protocols [29] to concurrent object-oriented languages.

The properties of transactional monitors described here are enforced only between
threads executing within the same monitor; no guarantees are provided for threads exe-
cuting within different transactional monitors, nor for threads executing outside of any
transactional monitor. These properties result in semantics similar to those of Java’s
mutual-exclusion monitors. Accesses to data shared by different threads are synchro-
nized only if they acquire the same monitor.

3 Design

There are a number of important issues that arise in a formulating a semantics for trans-
actional monitors:

1. Transparency: The degree of programmer control and visibility of internal trans-
action machinery influences the degree of flexibility provided by the abstraction,
and the complexity of using it. For example, if a programmer is given control over
how shared data accesses are tracked, objects known to be immutable need not be
logged when accessed.

2. Barrier Insertion: A code fragment used within a guarded region to track accesses
to shared data is called abarrier. Barriers can be inserted at the source-code level,
injected into the code stream at compile time, or handled explicitly at runtime (in
the case of interpreted languages).

3. Serializability Violation Detection: A thread executing within a guarded region may
try to detect serializability violation whenever a barrieris executed, or may defer
detecting such violation until a commit point (eg, monitor exit).



4. Re-Execution Model: When a region guarded by a transactional monitor aborts, the
updates performed by the thread in that region must be discarded. An important de-
sign decision is whether threads perform updates directly on shared data, reverting
these updates on aborts (an undo model), or whether threads perform updates on a
local journal, propagating them to the corresponding (original) shared objects upon
successful commit (a redo model).

5. Nesting: Transaction models often permit transactions to nest freely [32], permit-
ting division of any transaction into some number of sub-transactions. In the pres-
ence of nesting, a transactional monitor semantics must define rules on visibility of
updates made by sub-transactions.

We motivate our design decisions with respect to the issues above. One of the most
important principles underlying our design is transparency of the transactional monitors
mechanism: an application programmer should not be concerned with how monitors are
represented, nor with details of the logging mechanism, abort or commit operations.
After marking a region of code at source level as guarded by a given transactional
monitor, a programmer can simply rely on the underlying compiler and run-time system
to ensure transactional execution of the region (satisfying the properties of atomicity,
consistency, and isolation).

Our choice for the barrier placement is to have the compiler insert the barriers
(rather than, for example, inserting them at the source-level). We plan to take advantage
of existing compiler optimizations (eg, escape analysis) to be able to remove unneces-
sary barrier overhead automatically (eg, for thread-private or immutable objects).

The decision aboutwhena thread should attempt to detect serializability violation
is strongly dependent on the cost of detection and may vary from one implementation
of transactional monitors to another. When choosing the most appropriate point for
detecting serializability violations, we must consider the trade-off between reducing
the overall cost of checking any serializability invariant(once if performed at the exit
from the monitor, or potentially multiple times if performed in access barriers), and
reducing the amount of computation performed by a thread that may eventually abort.

Our design assumes aredo semantics for aborts of guarded regions. Implementa-
tions must therefore provide thread-specific redo logs to enable re-execution of guarded
regions. We chose a redo semantics because the space overheads related to maintaining
logs is not excessive since a log (associated with a thread object) needs to be maintained
only when a thread is executing within a transactional monitor, and can be discarded
upon exit from the monitor. Our design requires all updates performed within a trans-
actional monitor to be re-directed to the log, and atomically installed in the shared
(globally-visible) heap upon successful commit (no actionis taken upon abort).

An alternative design might consider the use ofundologs in which all updates are
performed directly on shared data, and reverted using information from the log upon
abort. However, using undo logs can lead tocascading aborts2 which may severely
impact overall performance, or require a global per-accesslocking protocol (eg, two-
phase locking [21]) to prevent conflicting data accesses by different threads. Per-access
locking also has the disadvantage of requiring deadlock detection or avoidance.

2 All threads that have seen updates of a thread being aborted must be aborted as well.



Modularity principles dictate that our design support nested transactional monitors.
A given monitor region may contain a number of child monitors. Because monitors are
released from the bottom up, child monitors must always release before their parent.
Thus, a child monitor will re-execute (as needed) until it can be (successfully) released.
The updates of child monitors are visible only within the scope of their parent (and,
upon release of the outermost monitor, are propagated to theshared space). Updates
performed by a parent monitor are always visible to the child.

4 Implementation

An implementation that directly reflects the concept behindtransactional monitors would
redirect all shared data accesses performed by a thread within a transactional monitor
to a thread-local log. When an object is first accessed, the accessing thread records its
current value in the log and refers to it for all subsequent operations. Serializability vio-
lation would be detected by traversing the log and comparingvalues of objects recorded
in the log with those of the original. The effectiveness of this scheme depends on a num-
ber of different parameters all of which are influenced by thedata access patterns that
occur within the application:

– expected contention (or concurrency) at monitor entry points;
– the number of shared objects (both read and written) accessed per-thread;
– the percentage of operations that occur within a transactional monitor that are be-

nign with respect to shared data accesses (method calls, local variable computation,
type casts /etc)

Because the generic implementation is not biased towards any of these parameters,
it is not clear how effectively it would perform under varying application conditions.
Therefore, we consider implementations of transactional monitors optimized towards
different shared data access patterns, informally described as low-contention and high-
contention.

Both optimized implementations must provide a solution to logging, commit, and
abort actions. These actions can be broadly classified underthe following categories:

1. Initialization: When a transactional monitor is entered, actions to initialize logs,
etc, may have to be taken by threads before they are allowed to enter the monitor.

2. Read and Write Operations: Barriers define the actions to be taken when a thread
performs a read or write to an object when executing within a transactional monitor.

3. Conflict Detection: Conflict detection determines whether the execution of a region
guarded by a given monitor is serializable with respect to the concurrent execution
of other regions guarded by the same monitor and it is safe to commit changes to
shared data made by a thread.

4. Commitment: If there are no conflicts, changes to the original objects must be com-
mitted atomically; otherwise guarded region must be re-executed.

Our current implementation does not yet include support fornested transactions.



4.1 Low-Contention Concurrency

Conceptually, transactional monitors use thread-local logs to record updates and install
these updates into the original (shared) objects when a thread commits. However, if
the contention on shared data accesses is low, the log is superfluous. If the number
of objects concurrently written by different threads executing within the same monitor
is small and the number of threads performing concurrent writes is also small3, then
reads and writes can operate directly over original data. Topreserve correctness, the
implementation must still prevent multiple non-serializable writes to objects and must
disallow readers from seeing partial or inconsistent updates to the the objects performed
by the writers.

To address these concerns, we define an implementation that stores the following
information in the transactional monitor object:

– writer: uniquely identifies a thread currently executing within a given monitor that
has performed writes to this object;

– thread count: number of threads concurrently operating within a given monitor.

Initialization: A thread attempting to enter the monitor must first check whether there
are any active writers within the monitor. If there are no active writers, the thread can
freely proceed. Otherwise, shared data is not guaranteed tobe in a consistent state,
and the entering thread must spin until there are no more active writers, thus achieving
serializability of guarded execution.

Read and Write Barriers:Because there are no object copies or logs, there are no
read barriers; threads read values from the original sharedobjects. Write barriers are
necessary to record whether writes performed by other threads which have yet to exit
the monitor have taken place. A write to a shared object can occur if one of the following
conditions exist:

– The writer field in the monitor object is nil, indicating there are no active writers. In
this case, the current thread atomically sets the writer field, increments the thread
count, and executes the write.

– The writer field in the monitor points to the current thread. This implies that the
current thread has previously written to this object withinthe same monitor. The
current write can proceed.

If either condition fails, the thread must re-execute the monitor.

Conflict Detection:In order for the shared data operations of a thread exiting a monitor
to be consistent and serializable with respect to other threads, there must be no other
writers still active within this monitor besides the exiting thread. It is guaranteed (by
the actions taken in the write barrier) that if the exiting thread performed any writes
when executing within a monitor, it is the only active writerwithin this monitor. If the
guarded region executed by the exiting thread was read-onlyand there is an active writer

3 An example of the low-contention scenario could be multiplemostly read-only threads travers-
ing a tree-like structure or accessing a hash-table
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Fig. 4. Low contention scheme example

still executing within the monitor, it implies that the exiting thread might have seen an
inconsistent state which leads to a conflict. If the execution was read-only and there are
no active writers, it implies that any threads concurrentlyexecuting within the monitor
have performed only reads and no conflicts were possible.

Monitor Exit: Any thread that exits a transactional monitor must atomically decrement
the thread count. When a writer exits a monitor, it must first check whether the thread
count is one. A number greater than one indicates that there are still other active threads
executing within a monitor. To ensure that these threads areaware that writes have
occurred when they perform conflict detection, the writer field cannot be reset. The last
thread to exit the monitor as part of the monitor exit procedure will decrement the count
to zero, and reset the writer field. Since there are no copies or logs, all updates are
immediately visible in the original copy.

The actions performed in this scheme executing the account example from Fig. 3
is illustrated in Fig. 4, where wavy lines represent threadsT1 and T2, circles repre-
sent objectsc (checking account) ands (saving account), updated objects are marked
gray. The large box represents the dynamic scope of a common transactional monitor
accountmonitor guarding code regions executed by the threads and small boxes rep-
resent additional information associated with the monitor: writer field (initially nil) and
thread count (initially 0). In Fig. 4(a) threadT2 is about to enter the monitor, which



it does in Fig. 4(b) incrementing thread count. In Fig. 4(c) threadT1 also enters the
monitor and increments thread count. In Fig. 4(d) threadT2 updates objectc and sets
the writer to itself. Subsequently threadT1 reads objectc (Fig. 4(e)), threadT2 updates
objects and exits the monitor (Fig. 4(f)) (no conflicts are detected since there were
no intervening writes on behalf of other threads executing within the monitor). Thread
count gets decremented but the writer cannot be reset since threadT1 is still executing
within the monitor. In Fig. 4(g) threadT1 reads objectsand attempts to exit the monitor,
but the writer field still points to threadT2 indicating a potential conflict4 – guarded re-
gion of threadT1 must be re-executed. Since threadT1 is the last one to exit the monitor,
in addition to decrementing thread count it also resets the writer field.

4.2 High-Contention Concurrency

When there is notable contention for shared data, the previous strategy is not likely
to perform well because attempts to execute multiple writeseven to distinct objects
result in a conflict, and subsequent aborts of all but one writer executing within the
same monitor. We can relax this restriction by allowing threads to manipulatecopies
of shared objects, committing their changes when it does notconflict with other shared
data operations5. This implementation is closer to the conceptual idea underlying trans-
actional monitors: updates and accesses performed by a thread are tracked within a log,
and committed only when serializability of a guarded region’s execution is not com-
promised. However, since applications tend to perform a lotmore reads than writes, we
decided to use a copy-on-write strategy6 to reduce the cost of read operations (trading
it for a potential loss of precision in detecting serializability violations).

In this scheme, the following information is stored in each monitor:

– global write map: identifies objects written by threads executing within themonitor.
This map is implemented as a bitmap with a bit being set for every modified object.
The mapping is conservative and multiple objects can potentially be hashed into
the same bit;

– thread count: number of threads concurrently operating within a transactional mon-
itor.

The monitor object also contains information about whetherany thread executing within
a monitor has already managed to install its updates. The global write map and thread
count can be combined into one data structure with the threadcount occupying then
lowest bits of the write map. In addition to the data stored inthe monitor object, the
header of every object is extended to hold the following information:

– copies: circular list of the object copies created by threads executing within trans-
actional monitors (original object is the head of the list)

4 This example is based on the interleaving of operations where the conflict really exists (serial-
izability property is violated)

5 An example of the high-contention scenario could be multiple threads traversing disjoint sub-
trees of a tree-like structure or accessing different buckets in a hash-table

6 Instead of creating copies on both reads and writes



– writer: if the object is copy generated by aT within a transactional monitor, this
field contains a reference toT.

There is also the following (local) information associatedwith every thread:

– local writes: list of object copies created by a given thread when executing within
a transactional monitor;

– local read map: identifies objects read by a given thread when executing within a
monitor (implemented in the same way as the global write map), and is used for
conflict detection;

– local write map: identifies objects written by a given thread when executingwithin
a monitor (implemented the same way as the global write map),and is used to
optimize read and write barriers.

Initialization: The first thread attempting to enter a monitor must initialize the mon-
itor by initializing the global write map and setting the thread counter to one. Any
subsequent thread entering the monitor simply increments the thread counter and is im-
mediately allowed to enter the monitor, provided that no thread has yet committed its
updates. If the updates have already been installed, the remaining threads still execut-
ing within the monitor are allowed to continue their execution, but no more threads are
allowed to enter the monitor (they spin) to allow for the global write map to be cleaned
up (otherwise out-dated information about updates performed within the monitor could
be retained for indefinite amount of time forcing entering threads to repeatedly abort).
Each thread entering a monitor must also initialize its local data structures.

Read and Write Barriers:The barriers implement a copy-on-write semantics. The fol-
lowing actions are taken on writing an object:

– If the bit in the local write map representing the object is not set, ie, the current
thread has not yet written to this object, a copy of the original object is created7,
the local write map is tagged, and the write is redirected to the copy.

– If the bit in the local write map representing the object is set, ie, the current thread
has potentially (it is a conservative mapping because of ourhash construction) writ-
ten to this object, the copy is located by traversing the listof copies to find the one
created by the current thread. Otherwise, a new copy is created and the write is
redirected to the copy.

The following actions are taken on reading an object:

– If the bit in the local write map representing the object is not set, ie, the current
thread has not yet written to this object, read from the original object, tag the local
read map end exit the barrier.

– If the bit in the local write map representing the object is set, ie, the current thread
has potentially written to this object, and a copy of the object created by this thread
exists, the contents of this copy is read. If no such copy exists because the thread
did not actually write to it, the contents of the original object is read.

7 Creation of a copy also involves inserting this copy to the appropriate copy and local write
lists.
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Fig. 5. High contention scheme example

Conflict Detection: When a thread exits the monitor, a conflict detection algorithm
checks if the global write map associated with the monitor object is disjoint for the
local read map associated with the thread. If so, it means that no reads of the current
thread were interleaved with the committed writes of other threads executing within
the same monitor; otherwise a potentially harmful interleaving could occur violating
serializability – guarded region must be re-executed. (Theglobal write map gets updated
after a thread installs its local updates into the shared objects.)

Monitor Exit: If a thread is allowed to commit, all updates to copies (accessible from
the local writes list) performed during monitored execution must be installed in the
original objects and the local write map must be merged with the global write map to
reflect writes performed by the current thread (both these operations must be performed
atomically with respect to other threads potentially exiting the same monitor at the same
time). Regardless of whether a thread is committing or aborting, all the lists containing
copies created by this thread must be at this point updated. An exiting thread must also
decrement the thread counter and free the monitor if the counter reaches zero (no active
threads executing within the monitor).



The actions performed in this scheme executing the account example from Fig. 3
is illustrated in Fig. 5, where wavy lines represent threadsT1 and T2, circles repre-
sent objectsc (checking account) ands (saving account), updated objects are marked
gray, and the box represents the dynamic scope of a common transactional monitor
accountmonitorguarding code regions executed by the threads. Both global write map
(GW) associated with the monitor and local maps (local write mapLW and local read
mapLR) associated with each thread have three slots. Local maps above the wavy line
representing threadT2 belong toT2 and local maps below the wavy line representing
threadT1 belong toT1. In Fig. 5(a) threadT2 is about to enter the monitor, which it does
in Fig. 5(b), modifying objectc. Objectc is shaded and information about the update
gets reflected in the local write map ofT2 (we assume that objectc hashes into the sec-
ond slot of the map). In Fig. 5(c) threadT1 enters the same monitor and reads object
c (the read operation gets reflected in the local read map ofT1). In Fig. 5(d) threadT2

modifies objects, objects gets shaded and the update also gets reflected inT2’s local
write map (we assume that objects hashes into the third slot of the map). In Fig. 5(e)
threadT2 exits the monitor. Since no conflicts are detected (there were no intervening
writes on behalf of other threads executing within the monitor), T2 installs its updates,
modifies the global write map to reflect updates performed within the guarded region
and resets its local maps. ThreadT1 subsequently reads objects marking its local read
map (Fig 5(f)) and attempts to exit the monitor (Fig. 5(g)). In the case of threadT1 how-
ever its local read map and the global write map overlap indicating a potential conflict8;
thus, the guarded region of threadT1 must be re-executed (Fig. 5(h)). Since threadT1 is
the last thread to exit the monitor, in addition to reseting its local maps, it also frees the
monitor by resetting the global write map.

5 Experimental Evaluation

We validate the effectiveness of transactional monitors ina prototype implementation
for IBM’s Jikes Research Virtual Machine (RVM) [2]. The Jikes RVM is a state-of-the-
art Java virtual machine with performance comparable to many production virtual ma-
chines. It is itself written almost entirely in Java and is self-hosted (ie, it does not require
another virtual machine to run). Java bytecodes in the JikesRVM are compiled directly
to machine code. The Jikes RVM’s public distribution includes both a “baseline” and
optimizing compiler. The “baseline” compiler performs a straightforward expansion of
each individual bytecode into a corresponding sequence of assembly instructions. The
optimizing compiler generates high quality code due in partto sophisticated optimiza-
tions implemented at various levels of intermediate representation, and because it uses
adaptive compilation techniques [3] to selectively targetcode best suited for optimiza-
tions. Our transactional monitors prototype targets the Intel x86 architecture.

8 This example is also based on the interleaving of operationswhere the conflict really exists
and serializability invariants are violated)



5.1 Java-Specific Issues

Realizing transactional monitors for Java requires reconciling their implementation
with Java-specific features such as native method calls, existing thread synchroniza-
tion mechanisms (including thewait/notify primitives). We now briefly elaborate
on these issues.

Native Methods:In general, the effects of executing a native method cannot be undone.
Thus, we disallow execution of native methods within regions guarded by transactional
monitors. However, it is possible to relax this restrictionin certain cases. For example,
if the effects of executing a native method do not escape the thread (eg, a call to obtain
the current system time), it can safely execute within a guarded region. In the abstract,
it may be possible to provide compensation code to be invokedwhen a transaction
aborts that will revert the effects of the native method calls executed within the transac-
tion. However, our current implementation does not providesuch functionality. Instead,
when a native method call occurs inside the dynamic context protected by a transac-
tional monitor, a commit operation is attempted for the updates performed up to that
point. If the commit fails, then the monitor re-executes, discarding all its updates. If the
commit succeeds, the updates are retained, and execution reverts to mutual-exclusion
semantics: a conventional mutual-exclusion lock is acquired for the remainder of the
monitor. Any other thread that attempts to commit its changes while the lock is held
must abort. Any thread that attempts to enter the monitor while the lock is held must
wait.

Existing Synchronization Mechanisms:Double guarding a code fragment with both a
transactional monitor and a mutual-exclusion monitor (expressed usingsynchronized
methods or blocks) does not strengthen existing serializability guarantees. Indeed, code
protected in such a manner will behave correctly. However, the visibility rule for mutual-
exclusion monitors embedded within a transactional monitor will change with respect
to the original Java memory model: all updates performed within a region guarded by a
mutual-exclusion monitor become visible only upon commit of the transactional moni-
tor guarding that region.

Wait-Notify: We allow invocation ofwait andnotify methods inside of a region
guarded by a transactional monitor, provided that they are also guarded by a mutual-
exclusion monitor (and invoked on the object representing that mutual-exclusion mon-
itor 9). Invokingwait releases the corresponding mutual-exclusion monitor and the
current thread waits for notification, but updates performed so far do not become vis-
ible until the thread resumes and exits the transactional monitor. Invokingnotify
postpones the effects of notification until exit from the transactional monitor.10

9 This requirement is identical to the original Java execution semantics – a thread invoking wait
or notify must hold the corresponding monitor.

10 Notification modifies the shared state of a program and is therefore subject to the same visibil-
ity rules as other shared updates.



5.2 Compiler Support

Transactional monitors are implemented in both optimizingand “baseline” compilers.
This is necessary because Jikes RVM configured to use only theoptimizing compiler
may still have certain methods (eg, class initializers) compiled by the “baseline” com-
piler. The implementation for both compilers is analogous.For the sake of brevity, our
description here is limited to modifications to the optimizing compiler.

Barriers: Read and write barriers conceptually consist of two parts: (1) a check to de-
termine if the operation occurs inside the dynamic context of a transactional monitor,
and (2) if so, the actions to be undertaken to support a specific implementation strategy
as described earlier. An inlined static method first checks whether any special process-
ing of the operation is required. If the current thread is executing inside of RVM code
or transactional monitors are turned off (eg, during RVM startup), no further action is
required. Code for read and write barriers is inserted at an early stage of compilation al-
lowing the compiler to apply appropriate optimizations during subsequent compilation
stages.

Re-execution of a Guarded Region:When a thread attempts to commit its updates
within a region guarded by a transactional monitor, and a conflict is detected, the thread
must abort its changes and re-execute the region. Our implementation adapts the Jikes
RVM exception handling mechanism to return control to the beginning of the aborted
region and uses bytecode rewriting11 to save program state (values of local variables
and method parameters) for restoration on re-execution. Each code region guarded by
a transactional monitor is wrapped within an exception scope that catches an internal
rollback exception. The rollback exception is thrown internally by the RVM, but the
code to catch it (implementing re-execution) is injected into the bytecode stream. We
also modify the compiler and run-time system to suppress generation (and invocation)
of “default” exception handlers during a rollback operation. The “default” handlers in-
clude bothfinally blocks, andcatch blocks for exceptions of typeThrowable,
of which all exceptions (includingrollback) are instances. Running these intervening
handlers would violate the requirement that an aborted synchronized block produce no
side-effects.

5.3 Benchmark

To evaluate the performance of the prototype implementation, we chose a multi-threaded
version of the OO7 object operations benchmark [14], originally developed in the database
community. Our incarnation of OO7 benchmark uses modified traversal routines to al-
low parameterization of synchronization and concurrency behavior. We have selected
this benchmark because it provides a great deal of flexibility in the choice of runtime
parameters (eg, percentage of reads and writes to shared data performed by the applica-
tion) and extended it to allow control over placement of synchronization primitives and
the amount of contention on data access. When choosing OO7 for our measurements,

11 We use the Bytecode Engineering Library (BCEL) from Apache for this purpose.



our goal was to accurately gauge various trade-offs inherent with different implemen-
tations of transactional monitors, rather than emulating workloads of selected potential
applications. Thus, we believe the benchmark captures essential features of scalable
concurrent programs that can be used to quantify the impact of the design decisions
underlying a transactional monitor implementation.

The benchmark operates on a synthetic design database consisting of a set of com-
posite parts (see Fig. 6). Each composite part consists of a graph of atomic parts and
a document object. Composite parts are arranged in an assembly hierarchy, called a
module. Each assembly contains either composite parts (base assemblies) or other as-
semblies (composite assemblies).

The multi-threaded workload consists of multiple threads running a set of parame-
terized traversals composed of primitive operations. A traversal chooses a single path
through the assembly hierarchy and at the composite part level randomly chooses a
fixed number of composite parts to visit. When the traversal reaches the composite part,
it has two choices: (a) it may perform read-only traversal ofa graph of atomic parts;
or, (b) it may perform read-write traversal of a graph of atomic parts, swapping certain
scalar fields in each atomic part visited. To foster some degree of interesting interleav-
ing and contention, the benchmark defines a parameter that allows overhead to be added
to read operations to increase the time spent performing traversals.

Our implementation of OO7 conforms to the standard OO7 database specification.
Our traversals differ from the original OO7 traversals in allowing multiple composite
parts to be visited during a single traversal rather than just one as in the original speci-
fication, and in allowing entry of monitors at various levelsof the database hierarchy.

Component Number
Modules 1

Assembly levels 7
Subassemblies per complex assembly3

Composite parts per assembly 3
Composite parts per module 500

Atomic parts per composite part 20
Connections per atomic part 3

Document size (bytes) 2000
Manual size (bytes) 100000

Fig. 6. Component organization of the OO7 benchmark.

5.4 Measurements

Our measurements were taken on an eight-way 700MHz Intel Pentium III with 2GB
of RAM running Linux kernel version 2.4.20-20.9 (RedHat 9.0) in single-user mode.
We ran each benchmark configuration in its own invocation of RVM, repeating the
benchmark six times in each invocation, and discarding the results of the first iteration,
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Fig. 7.Normalized execution time for 64 threads running on 8 processors

in which the benchmark classes are loaded and compiled, to eliminate the overheads of
compilation.

When running the benchmarks we varied the following parameters:

– number of threads competing for shared data access along with the number of pro-
cessors executing the threads: we ranP∗8 threads (whereP is the number of pro-
cessors) forP = 1,2,4,8.

– ratio of shared reads to shared writes: from 10% shared readsand 90% shared
writes (mostly read-only guarded regions) to 90% shared reads and 10% shared
writes (mostly write-only guarded regions)

– level of the benchmark database at which monitors were entered: level one (module
level), level three (second layer of composite parts) and level six (fifth layer of
composite parts)

Every thread performed 1000 traversals (entered 1000 guarded regions) and visited
2000k atomic parts during each iteration.

5.5 Results

The expected behavior for transactional monitor implementations optimized for low-
contention applications is one in which performance is maximized when contention on
guarded shared data accesses is low, for example, if most operations in guarded regions
are reads. The expected behavior for transactional monitorimplementations optimized
for high-contention applications is one in which performance is maximized when con-
tention on guarded shared data accesses is moderate, the operations protected by the
monitor contain a mix of reads and writes, and concurrently executing threads do not
often attempt concurrent updates of thesameobject. Potential performance improve-
ments over a mutual-exclusion implementation arise from the improved scalability that
should be observable when executing on multi-processor platforms.

Our experimental results confirm these hypotheses. Contention on shared data ac-
cesses depends on the number of updates performed within guarded regions combined
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Fig. 8. Total number of aborts for 64 threads running on 8 processors
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Fig. 9.Total number of copies created for 64 threads running on 8 processors
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Fig. 10.Normalized execution times – monitor entries at level 1
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Fig. 11.Normalized execution times – monitor entries at level 3
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Fig. 12.Normalized execution times – monitor entries at level 6

with the amount of contention on entering monitors12. Fig. 7 plots execution time for
64 threads running on 8 processors for the high-contention scheme (Fig. 7(a)) and low-
contention scheme (Fig. 7(b)) normalized to the execution time for standard mutual-
exclusion monitors13, while varying the ratio of shared reads and writes and the level at
which monitors are entered. It is important to note that onlymonitor entries at levels one
and three creates any reasonable contention (and thus on shared data accesses) – at level
six the probability of two threads concurrently entering the same monitor is very low
(thus no performance benefit can be expected). In Fig. 7(a) wesee the high-contention
scheme outperforming mutual-exclusion monitors forall configurations when monitors
are entered at level one. When monitors are entered at level three, the high-contention
scheme outperforms mutual-exclusion monitors for the configurations where write op-

12 Threads contend on entering a monitor only if they enter thesamemonitor
13 To obtain results for the mutual-exclusion case we used an unmodified version of Jikes RVM

(no compiler or run-time modifications). Figures reportingexecution times show 90% confi-
dence intervals in our results.



erations constitute 70% of all data operations. For larger write ratios, the number of
aborts and the number of copies created during guarded execution overcome any poten-
tial benefit from increased concurrency.

The low-contention scheme’s performance is illustrated inFig. 7(b): it outperforms
mutual-exclusion monitors for configurations where write operations constitute 30%
of all data operations (low contention on shared data accesses). The total number of
aborts across all iterations for both high-contention scheme and low-contention scheme
appears in Fig. 8(a-b). The total number of copies created across all iterations for the
high-contention scheme appears in Fig. 9. The remaining graphs illustrate the scala-
bility of both schemes by plotting normalized execution times for the high-contention
scheme (Figs. 10-12(a)) and low-contention scheme (Figs. 10-12(b)) when varying the
number of threads (and processors) for monitor entries placed at levels one, three, and
six (Figs. 10-12, respectively).

6 Related Work

Several recent efforts explore alternatives to lock-basedconcurrent programming. Har-
ris et al [24] introduce a new synchronization construct to Java called atomic that is
superficially similar to our transactional monitors. The idea behind the atomic con-
struct is that logically only one thread appears to executeanyatomic section at a time.
However, it is unclear how to translate their abstract semantic definition into a practical
implementation. For example, a complex data structure enclosed withinatomicis sub-
ject to a costlyvalidationcheck, even though operations on the structure may occur on
separate disjoint parts. We regard our work as a significant extension and refinement of
their approach, especially with respect to understanding implementation issues related
to the effectiveness of new concurrency abstractions on realistic multi-threaded appli-
cations. Thus, we focus on a detailed quantitative study to measure the cost of logging,
commits, aborts,etc; we regard such an exercise as critical to validate the utility of these
higher-level abstractions on scalable platforms.

Lock-free data structures [35, 28] and transactional memory [26, 38] are also closely
related to transactional monitors. Herlihyet al [25] present a solution closest in spirit to
transactional monitors. They introduce an form of softwaretransactional memory that
allows for the implementation ofobstruction-free(a weaker incarnation of lock-free)
data structures. However, because shared data accesses performed in a transactional
context are limited to statically pre-definedtransactional objects, their solution is less
general than the dynamic protection afforded by transactional monitors. Moreover, the
overheads of their implementation are also unclear. They compare the performance of
operations on an obstruction-free red-black tree only withrespect to other lock-free
implementations of the same data structure, disregarding potential competition from a
carefully crafted implementation using mutual-exclusionlocks. The notion of transac-
tional lock removal proposed by Rajwar and Goodman [35] alsoshares similar goals
with our work, but their implementation relies on hardware support.

Rinard [37] describes experimental results using low-level optimistic concurrency
primitives in the context of an optimizing parallelizing compiler that generates parallel
C++ programs from unannotated serial C++ source. Unlike a general transaction facility



of the kind described here, his optimistic concurrency implementation does not ensure
atomic commitment of multiple variables. Moreover in contrast to a low-level facility,
the code protected by transactional monitors may span an arbitrary dynamic context.

There has been much recent interest in data race detection for Java. Some ap-
proaches [7, 8] present new type systems using, for example,ownership types [17] to
verify the absence of data races and deadlock. Recent work ongeneralizing type sys-
tems allows reasoning about higher-level atomicity properties of concurrent programs
that subsumes data race detection [20, 19]. Other techniques [41] employ static analyses
such as escape analysis along with runtime instrumentationthat meters accesses to syn-
chronized data. Transactional monitors share similar goals with these efforts but differ
in some important respects. In particular, our approach does not rely on global analysis,
programmer annotations, or alternative type systems. While it replaces lock-based im-
plementations of synchronization sections, the set of schedules it allows is not identical
to that supported by lock-based schemes. Indeed, transactional monitors ensure preser-
vation of atomicity and serializability properties in guarded regions without enforcing
a rigid schedule that prohibits benign concurrent access toshared data. In this respect,
they can be viewed as a starting point for an implementation that supports higher-level
atomic operations.

Incorporating explicit concurrency abstractions within high-level languages has a
long history [22, 23, 18, 9, 36], as does deriving parallelism from unannotated programs
either through compiler analysis [31] or through explicit annotations and pragmas [39].
Our ideas differ from these efforts insofar as we are concerned with providing abstrac-
tions that simplify the complexity of locking and synchronization. Although we do not
elaborate on this point in this paper, we believe transactional monitors can be general-
ized to serve as a building block upon which higher-level concurrency abstractions can
be defined and implemented. We believe such an approach mightprofitably be used as
part of a Java-centric operating system.

There have been several attempts to reduce locking overheadin Java. Agesenet
al [1] and Baconet al [4] describe locking implementations for Java that attemptto
optimize lock acquisition overhead when there is no contention on a shared object.
Transactional monitors obviate the need for a multi-tieredlocking algorithm by allow-
ing multiple threads to execute simultaneously within guarded regions provided that
updates are serializable.

Finally, the formal specification of various flavors of transactions has received much
attention [30, 16, 21]. Blacket al [6] present a theory of transactions that specifies atom-
icity, isolation and durability properties in the form of anequivalence relation on pro-
cesses. Choithia and Duggan [15] present the pik-calculus and pike-calculus as exten-
sions of the pi-calculus that support abstractions for distributed transactions and opti-
mistic concurrency. Their work is related to other efforts [10] that encode transaction-
style semantics into the pi-calculus and its variants. The work of Busi, Gorrieri and
Zavattaro [11] and Busi and Zavattaro [13] formalize the semantics of JavaSpaces, a
transactional coordination language for Linda, and discuss the semantics of important
extensions such as leasing [12]. Berger and Honda [5] examine extensions to the pi-
calculus to handle various forms of distributed computation include aspects of trans-
actional processing such as two-phase commit protocols forhandling commit actions



in the presence of node failures. We have recently applied the ideas presented here to
define an optimistic concurrency (transaction-like) semantics for a Linda-like coordi-
nation language that addresses scalability limitations inthese other approaches [27]. A
formalization of a general transaction semantics for programming languages expressive
enough to capture the behavior of transactional monitors ispresented in [40].
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