
Speculative N-Way Barriers

Lukasz Ziarek Suresh Jagannathan
Department of Computer Science; Purdue University

{lziarek,suresh}@cs.purdue.edu

Matthew Fluet Umut A. Acar
Toyota Technological Institute at Chicago

{fluet,acar}@tti-c.org

Abstract
Speculative execution is an important technique that has histori-
cally been used to extract concurrency from sequential programs.
While techniques to support speculation work well when compu-
tations perform relatively simple actions (e.g., reads and writes
to known locations), understanding speculation for multi-threaded
programs in which threads may communicate and synchronize
through multiple shared references is significantly more challeng-
ing, and is the focus of this paper.

We use as our reference point a simple higher-order concurrent
language extended with an n-way barrier and a fork/join execution
model. Our technique permits the expression guarded by the barrier
to speculatively proceed before the barrier has been satisfied (i.e.
before all threads that synchronize on that barrier have done so)
and to have participating threads that would normally block on the
barrier to speculatively proceed as well. Our solution formulates
safety properties under which speculation is correct in a fork/join
model, and uses traces to validate these properties modularly on a
per-thread and per-synchronization basis.

1. Introduction
Speculative execution is an important technique for extracting con-
currency from sequential programs. The correctness of a specula-
tion is defined in terms of visibility of values and preservation of
dependencies. Validating the correctness of a speculative compu-
tation involves assuming a state against which the speculation is
performed, and checking whether this assumed state is consistent
with the actual global state when the speculation completes. To en-
sure that accesses to shared state made by a speculative thread do
not incorrectly witness actions that logically follow its execution,
these threads typically execute in isolation. A computation follow-
ing a speculation that does not witness an action performed by the
speculation must be re-executed.

Existing speculative execution techniques (10; 8; 16) create con-
current threads from sequential programs. The effects of specula-
tive threads are revoked when conflicts that violate dependencies
found in the sequential program are detected. Detection can happen
either in hardware or software. Software transactions implemented
using optimistic concurrency control (1; 12) also can be viewed as
a form of speculation.

However, these mechanisms typically impose strong restrictions
on the actions that can be performed within a speculative context,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $5.00

typically limiting them to operations on shared data whose effects
can be easily revoked or isolated.

The formalization of speculative execution in multi-threaded
programs in which speculative threads are allowed to safely com-
municate with other speculative and non-speculative computations
is the focus of this paper. We use as our reference point a sim-
ple higher-order concurrent language equipped with an n-way bar-
rier, intended to be used in conjunction with a fork/join execution
model. In a fork/join model, child threads are forked from a par-
ent thread. Both child and parent execute in isolation, with their
own private copies of the heap. Updates can be propagated among
threads at join points (in our case, n-way barriers).

Our solution dynamically records dependence information
among all threads participating in an n-way barrier. When a thread
synchronizes on a barrier, two pieces of information become avail-
able: (1) the effects propagated by the threads as a consequence
of the synchronization, and (2) the history of the thread’s actions
on shared state up to this point. These histories are maintained on
a per-thread and per-barrier basis. A speculative computation also
maintains a history of assumptions that serve as an execution con-
text for the speculation. Our formulation is agnostic to how these
assumptions are chosen. These assumptions are validated against
the thread histories of those threads that participate in the corre-
sponding barrier. Validation occurs when a barrier is fully synchro-
nized; it guarantees that the values read by the speculation are con-
sistent with the values written by participating threads, and con-
versely that the values written by the speculation were not pre-
maturely seen by these threads. When validation fails, execution
reverts to the latest commit point, a point representing a state guar-
anteed not to contain the effects of any potentially incorrect specu-
lative actions.

The contributions of this paper are as follows: (1) we present a
formal characterization of safe speculation in a higher-order lan-
guage equipped with an n-way barrier, and in which concurrency
is expressed using a fork-join execution model. The validity of the
speculative actions performed by threads that join an n-way bar-
rier is determined modularly on a per thread and per speculation
basis by using traces; (2) our formulation allows for inter-thread
communication. All threads which participate in a speculative bar-
rier explicitly bind values through the pattern and can also implic-
itly communicate values through updates via shared memory; (3)
our treatment does not restrict speculation depth (i.e., a thread may
speculatively execute over many barriers). Consequently, there are
no limitations on the actions that can be performed within a specu-
lative context: a speculation can initiate other speculative computa-
tions, fork new threads, and communicate with other computations
(both speculative and non-speculative).

To our knowledge, this is the first attempt to (a) formalize the
safety properties of speculative computation for multi-threaded
programs in which speculative computations are not required to ex-
ecute in isolation, and (b) enrich the fork-join execution mode with



speculative support. Besides these theoretical contributions, we be-
lieve our results have practical importance, since existing fork-join
algorithms can leverage the safety conditions enforced by our se-
mantics to profitably exploit speculation on multi-core platforms.

2. Motivation
Consider how we might write the well-know Floyd-Warshall algo-
rithm to compute all-pairs shortest-path within a fork/join execu-
tion model. The algorithm takes as input the edge-weight matrix
of a weighted directed graph and returns the matrix of shortest-
length paths between all pairs of vertices in the graph. Consider the
pseudo-code presented in ML-like syntax given below.

fun innerLoop(Matrix, i, j, k) =
if (j < size(Matrix))
then let val newpath = get(Matrix, i, k) +

get(Matrix, k, j)
in if (newpath < get(Matrix, i, j)

then update(Matrix, i, j, newpath);
innerLoop(Matrix, i, j+1, k)

else innerLoop(Matrix, i, j+1, k)
end

else ()
fun loop(Matrix, i, j, k) =

if( i < (tid+1) * size(Matrix)/n)
then innerLoop(Matrix, i, j, k);

loop(Matrix, i+1, j, k)
else join n-way barrier;

loop(Matrix, tid * size(Matrix)/n, 0, k+1)

The algorithm forks n threads (code not shown), each with a copy
of the matrix. Each thread performs size(Matrix)/n calls to
loop. Before a thread can exit the loop, it must synchronize with
all other threads at the barrier point. Unfortunately, the join point
creates a bottle neck as it does not consider which threads are data
dependent upon one another. Although threads blocked on the bar-
rier may be able safely to proceed once all threads which manipu-
late entries in the matrix that they require on the subsequent itera-
tion have completed, the synchronization requires instead that they
wait until all threads signal their completion. Allowing threads to
proceed speculatively past the barrier can extract additional con-
currency without complicating the synchronization within the al-
gorithm.

3. Programming Model
Our programming model is based on a fork-join execution model
in which threads synchronize through n-way barriers. We support
a dynamic number of forked threads. Threads execute with local
stores, initially inherited from their parent. Besides creating and
manipulating references, threads can create and synchronize (i.e.,
join) on barriers. We express barrier synchronization using pattern
matching. The barrier expression match(p) → e waits for the
patterns in p to be satisfied and then executes e in a new thread
of control. If there are no patterns, then e represents a computation
that executes asynchronously with respect to the computation that
evaluated the match expression. (Thus, a match with an empty
pattern can be used to unconditionally fork a thread.) The result of a
match is of type unit, since the body evaluates in a separate thread
of control. Barriers are used as the only communication medium as
explained below.

A pattern p is either a conjunction or disjunction of base pat-
terns1. The base pattern rd(l) causes the enclosing match expres-
sion to block waiting for another thread to read from location l. The

1 To support a combination of conjunctive and disjunctive patterns, a mech-
anism similar to transactional events is required (5).

base pattern wr(l) causes the enclosing match expression to block
waiting for a thread to write to location l. The base pattern wr(l,
v) behaves similarly, except that it causes its enclosing match ex-
pression to block until another thread writes value v to location
l. Finally, the base pattern wr?(l, v) reads the contents of the
location l – if the location contains v, the pattern has no effect;
otherwise, it causes the enclosing match expression to block until
another thread writes v to l. A thread can only join on one pattern
in a given barrier, thus a barrier composed of n base patterns will
wait for n threads to join.

A base pattern becomes active when a thread matches against it
(i.e. creates a barrier). Other threads participate in the pattern by
reading or writing to locations specified in the base patterns which
comprise the overall pattern. Thus, a thread that attempts to read
from location l (!l) causes it to participate with the base pattern
rd(l) in a currently blocked match expression. Similarly, a thread
that attempts to write to location l (l := v) causes it participate
with the base pattern wr(l). A thread performing a read or write
action on which several patterns are blocked is obligated to join
with one, by participating in the pattern’s barrier.

Since barriers are synchronous, the evaluation of the match body
as well as all threads participating in the barrier’s pattern are de-
layed until the pattern is satisfied. Consider the expression

match (rd(l) ∧ wr(l)) ⇒ e

executed by thread T . If another thread T1 attempts to perform a
read of location l (by evaluating !l), then T1 can join with rd(l).
At this point, T1 participates in the barrier and is blocked until
another thread T2 performs a write to location l and joins the
pattern wr(l). When this occurs, T1 and T2 can resume execution,
and e is evaluated in a new thread of control. When T1 resumes,
the contents of l it dereferences is the value stored by T2. This
example illustrates a simple handoff of a value through location
l that ensures that every write to l performed by some thread
is always witnessed by some other thread, a property difficult to
ensure using ordinary shared-memory primitives. A program in
which no such read occurs will not terminate since the barrier will
not complete.

Conjunctive patterns cause the executing match expression to be
blocked until all are joined, while a disjunctive pattern causes the
executing match pattern to be blocked as long as none are joined.
One way to encode a non-deterministic choice between conjunctive
patterns is to simply match on multiple conjunctive patterns.

Threads execute with local stores, and propagate store bindings
when they join a synchronization pattern. Threads can communi-
cate values from their thread-local store through pattern matches.
A new store is synthesized from the thread-local stores of all the
participating threads in a pattern-match expression. This store be-
comes the thread-local store for all participating threads as well as
the thread executing the match expression. (The body of a match
with an empty pattern (i.e., a fork) is given an unmodified copy of
its parent’s thread-local store.) Therefore, a pattern match acts as
both a barrier and a communication medium.

Every thread that joins a pattern contributes its store bindings
to a synthesized store. When a thread matches on a write pattern
(wr(l)), its binding for l is recorded in the synthesized store, along
with all other bindings except for those on locations associated
with earlier matched write patterns. When a thread matches on a
read pattern, its store bindings are added to the synthesized store,
with the same caveat on locations with previously established write
bindings. A thread which joins a pattern, and contributes a set of
bindings will have these bindings supersede the bindings for these
locations provided earlier by other threads that have joined the
pattern. When a pattern is satisfied, the synthesized store becomes



the thread-local store for all threads that joined the pattern and the
match-expression body. Note that a thread that joins a read pattern
blocks until the pattern is satisfied; when it resumes the value it
reads is the value in the new store that reflects the contributions
provided by the threads participating in the pattern. Thus, pattern
matching serves as both a synchronization and a binding device.

3.1 Speculative Execution Model

A speculative barrier alters the synchronous semantics by allowing
the body of a match expression to be executed before all base pat-
terns have been joined. Moreover, the thread that participates in a
barrier need not block until all other patterns in the match expres-
sion are satisfied. Thus, speculation occurs both in the expression
protected by the barrier as well as in all threads which participate
with it. The speculative actions executed by a thread T become
non-speculative once all speculative barriers with which T is asso-
ciated have all their patterns satisfied.

The thread-local store of the thread that initiates a speculation,
(i.e., the thread that executes the body of a match expression) must
be consistent with the store that would have existed had the specula-
tion not happened, and the thread blocked. Clearly, this store should
contain bindings for locations referenced by base patterns in bar-
rier. Locations referenced by the speculative computation but not
explicit in the pattern also require store bindings. The correctness
of a joined set of speculative actions is determined when all par-
ticipants of the barrier are known. When the last participant joins
the barrier, the speculative actions of all participants are validated.
The validation check determines if the chosen store was correct.
To do this, the thread-local stores of all participants prior to join-
ing the barrier are examined. If the store chosen for the speculation
can be synthesized from these thread local stores without violating
ordering dependencies, the check succeeds.

3.2 Examples

To illustrate these ideas, we depict possible executions of the pro-
grams shown in Fig. 1 in Fig. 2 and Fig. 3. In the examples, thread
executions are depicted as solid black lines. Dashed lines represent
blocked computation, and dashed boxes enclose speculative com-
putation. Solid gray circles show validation points where a specula-
tive computation is either committed or unrolled. A reversion action
is defined by a solid double black arrow. The body of a match ex-
pression is shown as a square following the barrier. Data dependen-
cies, shown as dotted white arrows, occur between read and write
operations and patterns. All code fragments (Fig. 1) utilize three
threads of control. Thread T1 establishes barriers and threads T2
and T3 communicate with T1 explicitly through shared locations x
and y as well as implicitly through locations z and w.

Consider the execution of Fig. 1(a) using synchronous evalua-
tion of barriers as shown in Fig. 2(a). Initially T1 executes a match
on conjunctive pattern consisting of wr(x) and wr(y). The thread
T1 will block until writes to x and y occur. Next, thread T3 up-
dates the shared variable z with the value 3. Since z is not spec-
ified in the pattern, the write does not join with the barrier in T1.
Thread T2 subsequently writes the value 1 to x. Because the loca-
tion x is specified in the pattern on which T1 is blocked, the write
can join with the pattern. Now both T2 and T1 are blocked wait-
ing for the base pattern wr(y) to be satisfied. Eventually, thread
T3 updates the location y and joins the pattern wr(y). Since T3’s
join satisfies the entire barrier, all three threads become unblocked.
A consistent store is synthesized for all three participants with
{ x 7→ 1, y 7→ 2, z 7→ 3}. All three threads resume their exe-
cutions with a local store reflecting these bindings. Thus, the body
of T1’s barrier will read the values 1, 2, and 3.

Now, consider what happens when we allow threads T1 and T2
to proceed speculatively past the barrier boundary (see Fig. 2(b)).
As before, T1 establishes the conjunctive pattern on the locations x
and y. However, it no longer blocks waiting for these base patterns
to be satisfied. To allow speculative execution of the match body, a
new thread-local store must be chosen that captures store bindings
for the locations referenced in the pattern and match body. Suppose
we correctly choose a thread-local store for T1 such that { x 7→
1, y 7→ 2, z 7→ 3}. With this store, T1 can safely execute
past the match expression. When T2’s write joins the pattern, it
too speculatively proceeds past its write, operating on the store
chosen for the speculation. When thread T3 writes to y, the pattern
once again is satisfied. At this point, the validation check confirms
that the chosen store bindings are consistent with the thread-local
stores of T1, T2, and T3 immediately prior to their matches on the
pattern, and thus the behavior program under speculative evaluation
is no different than its behavior under synchronous evaluation. The
validation check is successful and the speculative executions of T1
and T2 become non-speculative.

In general, the choice of store bindings made when a specu-
lation is initiated may not be correct. The execution depicted in
Fig. 2(c) shows what happens when a speculation executes under
an incorrect store. Consider what occurs when thread T3 writes the
value 2 to location y prior to the establishment of the barrier in T1.
After this write T1 executes the conjunctive pattern of wr(x) and
wr(y). Once again, it speculates beyond the barrier, and as before
chooses a thread-local store with { x 7→ 1, y 7→ 2, z 7→ 3}. Sim-
ilarly, when thread T2’s subsequent write matches the pattern, it too
speculatively proceeds past the barrier boundary with this chosen
store. Unfortunately, thread T3 writes the value 42 to y. Since this
write matches the pattern, the pattern is satisfied and validation of
all speculative actions triggered based on this pattern must be per-
formed. Notice that the thread local store chosen for the speculation
cannot be synthesized from the local stores of T1, T2, and T3 extant
at the point they participated in the barrier.

Now, we can redo T1 and T2’s computations to consider this new
binding for y. Since T2’s speculation did not depend on y’s value its
execution can be marked as non-speculative. Thread T1’s computa-
tion, however, must be re-evaluated with y’s new value. Once T1’s
computation is complete it also becomes non-speculative. Notice
we can resume T2 before T1’s re-execution is complete since there
is no synchronization between the two threads after the barrier.

Speculations can be nested. Consider the example given in
Fig. 1(b). Thread T1 is extended to create a second barrier after
the first. Consider this program’s execution as shown in Fig. 3(a).
Once again, we consider the scenario in which T3 writes 2 to loca-
tion y prior to the match expression in T1. Threads T1 and T2 will
begin speculation past the barrier using a store with { x 7→ 1, y 7→
2, z 7→ 3}. During its speculation, T1 writes to a shared location
w. The value stored into this location is the value of y in T1’s local
store, namely 2. Thread T1 subsequently executes another barrier
and again proceeds speculatively. Thread T2 speculatively reads
from location z. This satisfies the second barrier established by T1.
Since T2 is speculative, this barrier’s ultimate validation depends
on the validation of the first barrier. Thread T2 then reads the value
2 from location w. This value was propagated to T2 when it matched
on the second barrier established by T1. Now, thread T3 writes the
value 42 to y and satisfies the first barrier. We must validate any
speculations based on this barrier, namely those in T1 and T2. As
before, the thread-local store chosen for the speculation cannot be
synthesized from the local stores of T1, T2, and T3 immediately
prior to their participating in the barrier since the binding for lo-
cation y is incorrect. Thread T1’s computation must be adjusted to
the new value of y. This requires a new binding for w, which in turn
invalidates T2’s speculation.



T1 = ...
match(wr(x) ∧ wr(y)) ⇒
!x; !y; !z;

T2 = ...
x := 1;
...

T3 = ...
z := 3;
...
y := 2;
...
y := 42;
...

(a) Program for Fig. 2

T1 = ...
match(wr(x)∧wr(y)) ⇒
!x; !y; w := !y;

...
match(rd(z)) ⇒ ...

T2 = ...
x := 1;
...
! z;
! w;

T3 = ...
y := 2;
...
y := 42;
...

(b) Program for Fig. 3(a)

T1 = ...
match(wr(x)∧wr(y)) ⇒
!x; !y;

...
match(rd(z)) ⇒ ...

T2 = ...
x := 1;
...
!z;
!w;

T3 = ...
y := 2;
w := 3;
y := 42;
...

(c) Program for Fig. 3(b)

Figure 1.

       match(wr(x) ^ wr(y))

  wr(x, 1)
blocked

rd(x)
rd(y)
rd(z)

blocked
  wr(y, 2)

 wr(z, 3)

T 1 T 2 T 3

(a) Synchronous Execution

      match(wr(x) ^ wr(y)) 

   wr(x, 1)

  wr(y, 2)

rd(x,)
rd(y,)
rd(z)

validate +speculative

non-
speculative

x<-1
y<-2

T 1 T 2 T 3

 wr(z, 3)

(b) Speculative Execution

       match(wr(x) ^ wr(y)) 

  wr(x, 1)

wr(y, 42)

rd(x)
rd(y)
rd(z)

validate X
speculative

non-
speculative

x<-1
y<-2

y<-42

T 1 T 2 T 3

  wr(y, 2)

 wr(z, 3)

(c) Speculative Execution w/ Rollback

Figure 2.

       match(wr(x) ^ wr(y)) 

  wr(x, 1)

wr(y, 42)

rd(x)
rd(y)

wr(w, y)

validate X
speculative

non-
speculative

x<-1
y<-2

y<-42

T 1 T 2 T 3

   match(rd(z))   rd(z)
  rd(w)

  wr(y, 2)

(a)

       match(wr(x) ^ wr(y)) 

  wr(x, 1)

wr(y, 42)

rd(x)
rd(y)

validate X
speculative

non-
speculative

x<-1
y<-2

y<-42

T 1 T 2 T 3

   match(rd(z))   rd(z)
  rd(w) wr(w, 3)

  wr(y, 2)

(b)

Figure 3. Two programs which require a rollback not only of the thread initiating the pattern match, but threads which have participated in
the pattern and continued their execution speculatively.



A cascading rollback can also occur if a speculative thread
is obligated to witness a specific value for a location when the
barrier is satisfied. Consider the example program Fig. 1(c) and an
execution in Fig. 3(b). Instead of T1 performing a write to location
w, thread T3 writes to w after the speculative read occurs in T2.
Unfortunately T2 is obligated to see T3’s write to w since it would
have executed prior to T2’s read under synchronous evaluation.
Writes to shared locations are naturally ordered in T3; similarly,
T2’s speculative actions must be ordered logically after the barrier.
When T3 participates in the pattern, its writes become ordered prior
to the barrier containing the pattern. Thus, the read from w in T2
logically executes after the write of w in T3.

4. Semantics
Our semantics is defined in terms of a core call-by-value higher-
order language with first-class references, threads, and synchro-
nization patterns. For perspicuity, we first present a semantics
in which all synchronization patterns are synchronous. We then
extend this language to support speculation past synchronization
points. Updates to shared data by a thread become visible at syn-
chronization points.

In the following, we write α to denote a sequence of zero or
more elements of kind α, A.B to denote sequence concatenation,
and φ to denote an empty sequence. Metavariables x and y range
over variables, e ranges over expressions, v ranges over values, l
ranges over locations, p ranges over base patterns, t ranges over
thread identifiers, and γ ranges over pattern identifiers.

Expressions can be values, variables, applications, operations to
create, read, or write locations, or a synchronization-pattern match.
A value is either unit, an abstraction, a location, or a synchroniza-
tion pattern. A base pattern p can either be a read pattern (rd(l)) or
a write pattern (wr(l)). A read pattern causes the evaluating thread
to block until another thread reads location l, and a write pattern
causes the evaluating thread to block until another threads writes
location l. We do not consider more expressive base patterns such
as those described informally in Section 3, but their addition poses
no complications to the semantics.

Base patterns can be aggregated to form a synchronization pat-
terns. To simplify the presentation, we only consider synchroniza-
tion patterns with conjunctive semantics; extending the semantics
with disjunctive synchronization patterns is straightforward. An
empty base-pattern denotes a synchronization pattern that is im-
mediately satisfied.

4.1 Synchronous Evaluation

The syntax of the language is given in Fig. 4 and synchronous eval-
uation rules are given in Fig. 5. A program state π is a collection
of threads. (Program states are equivalent modulo the associativity
and commutativity of π‖π.) Each thread t[e, σ] includes a thread
identifier (t), an expression (e), and a thread-local store (σ). Our
synchronous evaluation is formulated with respect to fork/join exe-
cution model: each thread maintains its own image of the (implicit)
global store and propagates its updates when it joins with a syn-
chronization pattern.

Global evaluation is specified via a relation (⇒) that maps a pro-
gram state (π) and a pattern environment (ρ) to another program
state and pattern environment. We write ⇒∗ to denote the reflex-
ive, transitive closure of this relation. Many of the rules decompose
the process state into a distinguished thread t and remaining pro-
cesses π as t[E [e], σ]‖π, where the thread’s expression is further
decomposed into an evaluation context E and active expression e.
The rules APP and REF do not deal with synchronization patterns

and are standard: function application (APP) substitutes the argu-
ment value for free occurrences of the parameter in the body of
the abstraction, and evaluating a ref(v) expression (REF) creates a
new location in the thread’s local store. (Note that the new location
l is globally fresh with respect to all thread-local stores.)

The pattern environment maps a pattern identifier, a unique
identifier created whenever a synchronization-pattern match is
evaluated, to a 5-tuple, 〈p, tb[eb], tr[lr,Er], tw[lw, vw,Ew], σ′〉.
The first component represents unsatisfied base patterns of the orig-
inal synchronization pattern. The body of a synchronization-pattern
match and any thread that joins with a synchronization pattern are
blocked until the synchronization pattern becomes satisfied (i.e.,
until all base patterns are joined). The second, third, and fourth
components represent blocked threads. The tb[eb] component cor-
responds to the body of the synchronization-pattern match. The
tr[lr,Er] component corresponds to threads that have joined the
synchronization pattern via a read pattern; these threads will be re-
sumed with values read from the locations lr . The tw[lw, vw,Ew]
component corresponds to threads that have joined the synchro-
nization pattern via a write pattern; these threads will be resumed
with unit values and will contribute the bindings lw 7→ vw to the
new store synthesized by the synchronization-pattern match. The
fifth component σ′ corresponds to the thread-local stores of all the
threads that have joined with the pattern (in the order in which they
joined with the pattern).

A read or write operation that takes place when there is no
synchronization pattern waiting for a join on that operation, simply
reads from or updates the thread-local store (READ and WRITE).
We determine whether there is an active synchronization pattern by
consulting the patten environment.

Evaluating a synchronization-pattern match augments the pat-
tern environment with the synchronization pattern and the
(blocked) body of the match (PMATCH). Since the body of the
synchronization-pattern match will be evaluated in a new thread of
control, a fresh thread identifier is generated. Every time a thread
joins with an active synchronization pattern (i.e., a pattern found
in the pattern environment), the joined base pattern is removed
from the pattern in the pattern environment. When all base pat-
terns for a synchronization pattern have been satisfied, the syn-
chronization pattern becomes empty. At this point, the body of the
synchronization-pattern match can be evaluated and all threads that
have joined with this pattern can be resumed (PDONE). All threads
resume execution with a local-store that is synthesized by merging
the stores of all the participating threads, as described in Section 3.
We omit a precise definition of Merge(σ′, lw 7→ vw); we simply
require Merge(σ′, lw 7→ vw) to denote a proper function from a
collection of stores and writes to a store that represents an appropri-
ate propagation of store updates. Note that threads that have joined
with the synchronization pattern via a read pattern are resumed with
the value present at the appropriate location in the merged store,
while threads that have joined with the synchronization pattern via
a write pattern are resumed with the unit value.

Unconditionally spawning a thread to evaluate the expression
e can be simulated by match(φ) → e. Note that the synchro-
nization pattern is immediately satisfied, and the body e will be-
gin executing with a fresh thread identifier and with a local store
inherited from the parent thread (i.e., we reasonable assume that
Merge(φ.σ, φ) = σ).

Threads can join with synchronization patterns through rule
PREAD or PWRITE. These rules remove the base pattern with which
they match from the synchronization pattern with which they join
(we write p \ i to denote pattern p with the ith base pattern in p
removed). When a thread joins with a read pattern, the location,
context, and local store of the joining thread is recorded in the



SYNTAX:
e ∈ Exp ::= v | x | e(e) | ref(e) | !e | e := e | match(e)→ e
v ∈ Val ::= unit | λ x.e | l | p
p ∈ Pat ::= rd(l) | wr(l)

STORES:
σ ::= {l 7→ v, . . .}

PROCESSES:
π ::= π‖π | t[e, σ]

EVALUATION CONTEXTS:
E ::= [ ] | E(e) | v(E) | ref(E) | !E | E := e | l := E | match(E)→ e

Figure 4. Syntax, stores, processes, and evaluation contexts.

PATTERN ENVIRONMENTS:

ρ ::= {γ 7→ 〈p, tb[eb], tr[lr,Er], tw[lw, vw,Ew], σ′〉, . . .}

SYNCHRONOUS EVALUATION:
APP

t[E [(λ x.e)(v)], σ]‖π, ρ⇒ t[E [e[x/v]], σ]‖π, ρ

REF
l fresh

t[E [ref(v)], σ]‖π, ρ⇒ t[E [l], σ ] {l 7→ v}]‖π, ρ

READ
σ(l) = v

∀γ ∈ Dom(ρ) ρ(γ) = 〈p, , , , 〉
1 ≤ |p| = n ∀i ∈ {1 . . . n} pi 6= rd(l)

t[E [!l], σ]‖π, ρ⇒ t[E [v], σ]‖π, ρ

WRITE
∀γ ∈ Dom(ρ) ρ(γ) = 〈p, , , , 〉

1 ≤ |p| = n ∀i ∈ {1 . . . n} pi 6= wr(l)

t[E [l := v], σ]‖π, ρ⇒ t[E [unit], σ[l 7→ v]]‖π, ρ

PMATCH
tb, γ fresh

t[E [match(p)→ eb], σ]‖π, ρ⇒
t[E [unit], σ]‖π, ρ ] {γ 7→ 〈p, tb[eb], φ, φ, φ.σ〉}

PDONE
Merge(σ′, lw 7→ vw) = σ′′

π, ρ ] {γ 7→ 〈φ, tb[eb], tr[l,Er], tw[lw, vw,Ew], σ′〉} ⇒
tb[eb, σ

′′]‖tr[Er[σ′′(lr)], σ′′]‖tw[Er[unit], σ′′]‖π, ρ

PREAD
1 ≤ |p| = n i ∈ {1 . . . n} pi = rd(l)

t[E [!l], σ]‖π, ρ ] {γ 7→ 〈p, tb[eb], tr[lr,Er], tw[lw, vw,Ew], σ′〉} ⇒
π, ρ ] {γ 7→ 〈p \ i, tb[eb], tr[lr,Er].t[l,E ], tw[lw, vw,Ew], σ′.σ〉}

PWRITE
1 ≤ |p| = n i ∈ {1 . . . n} pi = wr(l)

t[E [l := v], σ]‖π, ρ ] {γ 7→ 〈p, tb[eb], tr[lr,Er], tw[lw, vw,Ew]〉} ⇒
π, ρ ] {γ 7→ 〈p \ i, tb[eb], tr[lr,Er], tw[Ew, σw].t[l, v,E ], σ′.σ〉}

Figure 5. Synchronous evaluation rules.

TRACES:

ω ::= β
t
| v⇑l

t
| l→v

t
| l←v

t
| p→γtb

t
| γ | l→γ,i

t
| l←γ,iv

t
Ω ::= ω

Figure 6. Traces

pattern environment. (This allows the thread to be resumed with the
value stored at l in the store that exists after the synchronization
pattern is satisfied.) When a thread joins with a write pattern, it
updates its local store and then the context and local store of the
joining thread is recorded in the pattern environment. Joins occur
eagerly – a read or write operation must join with a waiting read
or write pattern if one exists in the pattern environment. If multiple
such patterns exist, the pattern with which the thread joins is chosen
non-deterministically.

4.2 Speculative Evaluation

We now wish to revise the synchronous-evaluation semantics given
above to a speculative-evaluation semantics. We specify a new
global evaluation relation (;) that maps a program state (π), a
speculative pattern environment (ψ), a committed trace (ΩC ), and a
speculative trace (ΩS) to another program state, speculative pattern

environment, committed trace, and speculative trace. We write ;∗

to denote the reflexive, transitive closure of this relation.

A speculative pattern environment maps a pattern identifier to
a 6-tuple, 〈p, tb[eb], tr[lr,Er], tw[lw, vw,Ew], σ′, σ′′〉. The first
five components are similar to those in a synchronous pattern en-
vironment; they represent the unsatisfied base patterns of the origi-
nal synchronization pattern the (notionally) blocked threads corre-
sponding to the body of the synchronization-pattern match, readers,
and writers, and the thread-local stores of all the threads that have
joined with the pattern. The speculative semantics will allow a com-
putation to proceed speculatively into the body of a speculative-
pattern match and past a read or write that joins with a pattern; such
a computation does so in the context of a local-store that assumes
the values of the store that will exist after the synchronization pat-
tern is satisfied (i.e., the store that is the merging of the local-stores
of all the thread that ultimately join with this synchronization pat-



tern). The sixth component in the range of the speculative pattern
environment is this assumed store.

A committed trace and a speculative trace are conservative ap-
proximations of the history of actions performed by threads (see
Fig. 6). Theses traces are used to validate the behavior of specula-
tive computations. Trace actions record the β-reduction of thread t

( β
t

), the creation of a reference of location l with initial value v by
thread t ( v⇑l

t
), the (non-joining) reading of a value v from location

l by thread t, ( l→v
t

), and the (non-joining) writing of a value v to
location l by thread t ( l←v

t
). Operations that join a synchronization

pattern are also recorded: the reading from location l by thread t

that satisfies the ith base pattern of the pattern identifier γ ( l→γ,i

t
)

and the writing of a value v to location l by thread t that satis-
fies the ith base pattern of the pattern identifier γ ( l←γ,iv

t
). Finally,

the start and end of synchronization-pattern matches are recorded:
the start of the match on the synchronization pattern p by thread t,
with pattern identifier γ and thread identifier tb for the match body
( p→γtb

t
) and the end of the synchronization-pattern match with pat-

tern identifier γ ( γ ).

The speculative-evaluation semantics makes use of two relations
defined on traces to validate the behavior of speculative computa-
tions. The first, written Ω1 � ω2, asserts that the trace Ω1 can be
exchanged with the trace action ω2.

φ � ω2

Ω1 � ω2 ω1 � ω2

Ω1.ω1 � ω2

It is defined by induction on the trace Ω1 making use of the auxil-
iary relation ω1 � ω2. This relation, which asserts that the trace ac-
tion ω1 can be exchanged with the trace action ω2, holds when the
thread identifiers and pattern identifiers in ω1 are disjoint from the
thread identifiers and pattern identifiers in ω2. Intuitively, ω1 � ω2

holds when the action denoted by ω2 could have been performed
before the action denoted by ω1. Requiring the thread identifiers
to be disjoint ensures that the actions of a single thread cannot be
exchanged and the actions of a thread cannot be exchanged with its
creation (by a synchronization-pattern match). Similarly, requiring
the pattern identifiers to be disjoint ensures that a thread’s joining
with a pattern cannot be exchanged with the start or end of the
synchronization-pattern match.

The second relation defined on traces, written κ(Ω) = ($, %),
asserts that the trace Ω can be simulated to yield a simulated
program state ($, denoting executing threads) and simulated pat-
tern environment (%, denoting active synchronization patterns and
blocked threads). Trace simulation is similar to the synchronous-
evaluation relation, except that a thread’s expression and local-store
are elided and all non-determinism is resolved by the trace. Space
precludes giving the definition of the κ(Ω) = ($, %) relation.2

However, we note that κ(φ) = (m, ∅), where m is a (distinguished)
thread identifier used for the main thread of the program. Because
all non-determinism is dictated by the trace Ω, κ(Ω) denotes a par-
tial function from a trace to a simulated program state and a simu-
lated pattern environment.

The evaluation rules for our speculative extension are given in
Fig. 7. Recall that the relation takes the form π, ψ,ΩC ,ΩS ;

π′′, ψ′′,Ω′′C ,Ω
′′
S . Intuitively, ΩC and Ω′′C represent actions that

have been committed; that is, actions that are known to correspond
to a valid synchronous evaluation. Similarly, ΩS and Ω′′S represent
actions that have been speculatively executed; that is, actions that
are not yet known to correspond to a valid synchronous execution.
During speculative evaluation, actions are initially appended to the

2 See http://ttic.uchicago.edu/∼fluet/research/
speculation/proofs.pdf for the complete definition.

speculative trace. As actions can be validated, they are removed
from the speculative trace and appended to the committed trace.

Since the rules APP and REF do not deal with synchronization
patterns, they are similar to those from the synchronous evaluation.
In addition, the speculative trace is appended with an appropriate
trace action ( β

t
or v⇑l

t
).

A read or write operation may simply read or update the thread-
local store (READ and WRITE), while appending an appropriate
trace action ( l→v

t
or l←v

t
) to the speculative trace. Unlike the

corresponding synchronous-evaluation rules, there is no require-
ment that there is no synchronization pattern waiting for a join on
the read or update. Intuitively, this is because the speculative pat-
tern environment includes active synchronization patterns from the
speculative execution of threads. Hence, an active synchronization
pattern in the speculative pattern environment may correspond to a
synchronization pattern from the “future”, with which the present
thread could not join.

Evaluating a synchronization-pattern match augments the pat-
tern environment with the synchronization pattern and the body of
the match (SMATCH), while appending a trace action ( p→γtb

t
) to the

speculative trace. However, unlike the corresponding synchronous-
evaluation rule, the speculative-evaluation rule immediately in-
cludes a thread to evaluate the body of the synchronization-pattern
match in the program state. This thread is executed with a new
store (σ′′) that is the assumed store that will exist after the synchro-
nization pattern is satisfied. This assumed store is also recorded in
the speculative pattern environment, along with the synchroniza-
tion pattern and the body of the match, to be validated in the future.
A portion of this validation occurs when the synchronization pat-
tern in the speculative pattern environment becomes empty (i.e.,
when all base patterns for a synchronization pattern have been sat-
isfied) (SDONE). At this point, all threads that have joined with
this pattern have been recorded in the speculative pattern environ-
ment. Thus, the rule asserts that the assumed store is, in fact, the
one derived by merging the stores of all the participating threads
(Merge(σ′, lw 7→ vw) = σ′′). In addition, the rule appends a trace
action ( γ ) to the speculative trace. Note that this rule only spec-
ulatively completes the synchronization-pattern match; that is, it
validates the merging of the (speculative) thread-local stores of
the participating threads, but does not validate the global consis-
tency of the completed synchronization-pattern match with respect
to the actions of other threads. This consistency is validated by the
SCOMMIT rule (described below).

Threads can join with synchronization patterns through the
rules SREAD and SWRITE. Like the corresponding synchronous-
evaluation rules, these rules remove the base pattern with which
they match from the synchronization pattern with which they join.
However, unlike the corresponding synchronous-evaluation rules,
the speculative-evaluation rules immediately resume the joining
threads in the program state. Note that in the SREAD rule, the value
is read from the assumed store recorded in the speculative pattern
environment, which represents the value assumed to be present in
the store at location l after all base patterns for the synchronization
pattern have been satisfied. As expected, each of the rules appends
an appropriate trace action ( l→γ,i

t
or l←γ,iv

t
) to the speculative

trace.
As noted above, the SDONE rule only validates the merging of

the (speculative) thread-local stores of threads joining with a syn-
chronization pattern. The SCOMMIT rule validates the global consis-
tency of individual thread actions and completed synchronization-
pattern matches. Thus, the validation of a synchronization-pattern
match is established piece-meal, without requiring an atomic vali-
dation of all participating threads and their actions. Intuitively, the
SCOMMIT rule moves trace actions from the speculative trace to the



PROCESSES:
π ::= π‖π | t[e, σ]

PATTERN ENVIRONMENTS:

ψ ::= {γ 7→ 〈p, tb[eb], tr[lr,Er], tw[lw, vw,Ew], σ′, σ′′〉, . . .}

SPECULATIVE EVALUATION:
APP

t[E [(λ x.e)(v)], σ]‖π, ψ,ΩC ,ΩS ;

t[E [e[x/v]], σ]‖π, ψ,ΩC ,ΩS .
β

t

REF
l fresh

t[E [ref(v)], σ]‖π, ψ,ΩC ,ΩS ;

t[E [l], σ ] {l 7→ v}]‖π, ψ,ΩC ,ΩS .
v ⇑ l

t

READ
σ(l) = v

t[E [!l], σ]‖π, ψ,ΩC ,ΩS ;

t[E [v], σ]‖π, ψ,ΩC ,ΩS .
l→ v

t

WRITE

t[E [l := v], σ]‖π, ψ,ΩC ,ΩS ;

t[E [unit], σ[l 7→ v]]‖π, ψ,ΩC ,ΩS .
l← v

t

SMATCH
tb, γ fresh

t[E [match(p)→ eb], σ]‖π, ψ,ΩC ,ΩS ; t[E [unit], σ]‖π‖tb[eb, σ
′′], ψ ] {γ 7→ 〈p, tb[eb], φ, φ, φ.σ, σ

′′〉},ΩC ,ΩS .
p→γ tb

t

SDONE
Merge(σ′, lw 7→ vw) = σ′′

π, ψ ] {γ 7→ 〈φ, tb[eb], tr[lr,Er], tw[lw, vw,Ew], σ′, σ′′〉},ΩC ,ΩS ; π, ψ,ΩC ,ΩS .
γ

SREAD
1 ≤ |p| = n i ∈ {1 . . . n} pi = rd(l)

t[E [!l], σ]‖π, ψ ] {γ 7→ 〈p, tb[eb], tr[lr,Er], tw[lw, vw,Ew], σ′, σ′′〉},ΩC ,ΩS ;

t[E [σ′′(l)], σ′′]‖π, ψ ] {γ 7→ 〈p \ i, tb[eb], tr[lr,Er].t[l,E ], tw[lw, vw,Ew], σ′, σ′′〉},ΩC ,ΩS .
l→γ,i

t

SWRITE
1 ≤ |p| = n i ∈ {1 . . . n} pi = wr(l)

t[E [l := v], σ]‖π, ψ ] {γ 7→ 〈p, tb[eb], tr[lr,Er], tw[lw, vw,Ew], σ′, σ′′〉},ΩC ,ΩS ;

t[E [unit], σ′′]‖π, ψ ] {γ 7→ 〈p \ i, tb[eb], tr[lr,Er], tw[lw, vw,Ew].t[l, v,E ], σ′, σ′′〉},ΩC ,ΩS .
l→γ,i

t

SCOMMIT
ΩX � ω κ(ΩC .ω) = ( , )

π, ψ,ΩC ,ΩX .ω.ΩY ; π, ψ,ΩC .ω,ΩX .ΩY

Figure 7. Speculative evaluation rules.

committed trace. The requirement that ΩX � ω ensures that the
action ω is not dependent upon any action in ΩX ; this implies that
the speculative-evaluation step that introduced ω could have taken
place before all of the speculative-evaluation steps that introduced
ΩX . The requirement that κ(ΩC .ω) = ( , ) ensures that the trace
ΩC .ω can be simulated to yield some simulated program state and
simulated pattern environment. Since trace simulation is similar to
the synchronous-evaluation relation, the definedness of κ(ΩC .ω)
implies that the speculative-evaluation step that introduced ω cor-
responds to a synchronous-evaluation step that can take place after
a sequence of synchronous-evaluation steps that correspond to ΩC .

Soundness. As alluded to above, the various validation checks
made by the SDONE and SCOMMIT rules are meant to ensure that
the speculative-evaluation relation is sound with respect to the
synchronous-evaluation relation. We demonstrate this correspon-
dence in Theorem 1.3 The soundness theorem is formulated with
respect to a fixed (but arbitrary) initial main thread m[e0, ∅].

3 See http://ttic.uchicago.edu/∼fluet/research/
speculation/proofs.pdf for details.

To formally state the soundness theorem, we extend
the synchronous-evaluation relation with committed traces
(π, ρ,ΩC ⇒ π′, ρ′,Ω′C ) in the obvious manner. We also introduce
an erasure function to convert a speculative-evaluation program
state and pattern environment to a synchronous-evaluation program
state and pattern environment (Tπ, ψU = (πH, ρH); Fig. 8). This
(partial) function removes from the program state any processes
that correspond to speculative evaluation.

The soundness theorem asserts that a sequence of speculative-
evaluation steps can be reconstructed as a sequence of speculative-
evaluation steps that perform only the committed trace actions (and
none of the speculative trace actions) followed by a sequence of
speculative-evaluation steps that perform only the speculative trace
actions (and no additional committed trace actions). Furthermore,
the speculative-evaluation program state and pattern environment
corresponding to the committed trace actions only can be erased to
a synchronous-evaluation program state and pattern environment
that is a synchronous evaluation of the initial program state.

THEOREM 1. (Soundness)



SPECULATIVE PROCESS AND PATTERN ENVIRONMENT ERASURE:
Tπ, ψU = Tπ, ψ; ∅U

Tπ, ∅; ρU = (π, ρ)

Ttb[eb, σ
′′]‖tr[Er[σ′′(lr)], σ′′]‖tw[Ew[unit], σ′′]‖π,

ψ ] {γ 7→ 〈p, tb[eb], tr[lr,Er], tw[lw, vw,Ew, σw], σ′, σ′′〉}; ρU
= let (πH, ρH) = Tπ, ψ; ρU

in (πH, ρH ] {γ 7→ 〈p, tb[eb], tr[lr,El], tw[lw, vw,Ew], σ′〉})

Figure 8. Speculative process and pattern environment erasure.

If π, ψ,ΩC ,ΩS ;∗ π′′, ψ′′,Ω′′C ,Ω
′′
S

and ∃π†, ψ†, πH, ρH

such that m[e0, ∅], ∅, φ, φ ;∗ π†, ψ†,ΩC , φ
and π†, ψ†,ΩC , φ ;∗ π, ψ,ΩC ,ΩS

and Tπ†, ψ†U = (πH, ρH)
and m[e0, ∅], ∅, φ⇒∗ πH, ψH,ΩC ,
then ∃π‡, ψ‡, πU, ρU

such that m[e0, ∅], ∅, φ, φ ;∗ π‡, ψ‡,Ω′′C , φ
and π‡, ψ‡,Ω′′C , φ ;∗ π′′, ψ′′,Ω′′C ,Ω

′′
S

and Tπ‡, ψ‡U = (πU, ρU)
and m[e0, ∅], ∅, φ⇒∗ πU, ψU,Ω′′C .

The proof is a straightforward induction and case analysis on the
derivation π, ψ,ΩC ,ΩS ;∗ π′′, ψ′′,Ω′′C ,Ω

′′
S ; the most interesting

case is that of the SCOMMIT rule, which requires a number of
supporting lemmas that formalize the behavior of traces.

A simple corollary of Theorem 1 states that the committed trace
of a speculative evaluation of the initial program state corresponds
to a synchronous evaluation of the initial program state:

THEOREM 2. (Soundness)
If m[e0, ∅], ∅, φ, φ ;∗ π′′, ψ′′,Ω′′C ,Ω

′′
S ,

then ∃π‡, ψ‡, πU, ρU

such that m[e0, ∅], ∅, φ, φ ;∗ π‡, ψ‡,Ω′′C , φ
and π‡, ψ‡,Ω′′C , φ ;∗ π′′, ψ′′,Ω′′C ,Ω

′′
S

and Tπ‡, ψ‡U = (πU, ρU)
and m[e0, ∅], ∅, φ⇒∗ πU, ρU,Ω′′C .

The converse of Theorem 2 is also true, since every
synchronous-evaluation step can be simulated by a corresponding
speculative-evaluation step followed by an SCOMMIT step:

THEOREM 3. (Converse Soundness)
If m[e0, ∅], ∅, φ⇒∗ πU, ρU,Ω′′C ,
then ∃π‡, ψ‡
such that m[e0, ∅], ∅, φ, φ ;∗ π‡, ψ‡,Ω′′C , φ

and Tπ‡, ψ‡U = (πU, ρU).

4.3 Discussion

As specified above, the speculative-evaluation semantics is sound
with respect to the synchronous-evaluation semantics. However,
the choice of an assumed store in the rule for speculative
synchronization-pattern match (SMATCH) effectively implements
an oracle. The oracle utilizes arbitrary power in predicting the pro-
gram’s future actions. Implementations may wish to bound the
amount of predictive power or use none at all. For example, one
simple choice for the assumed store at a synchronization-pattern
match would be the current thread-local store of the thread execut-
ing the match. Speculation admits the possibility that the assumed
store may be incorrect, as it depends upon future actions. Nonethe-
less, we can augment the speculative-evaluation semantics with ad-
ditional rules to detect failure and to recover.

In Fig. 9, we provide an extension to the speculation-evaluation
semantics that allows the completion of a synchronization-pattern
match to fail. When a such a failure is detected (SFAIL), the seman-
tics yields a failed state (3). Failure is detected when the assumed

store does not equal the store derived by merging the stores of all
the participating threads. Evaluation is halted at a fail state.

This form of failure corresponds to a true discrepancy between
the speculative evaluation and the synchronous evaluation implied
by the committed trace. That is, while the speculative-evaluation re-
lation may continue to make some progress with other threads (and
even commit additional trace actions), the failing synchronization
pattern will continue to fail in the future.

THEOREM 4. (Failure Safety (; from Fig. 7 and Fig. 9))
If m[e0, ∅], ∅, φ, φ ;∗ π′, ψ′,Ω′C ,Ω

′
S ; 3

and π′, ψ′,Ω′C ,Ω
′
S ;∗ π′′, ψ′′,Ω′′C ,Ω

′′
S ,

then π′′, ψ′′,Ω′′C ,Ω
′′
S ; 3.

We may utilize the fact that the speculative-evaluation seman-
tics is sound with respect to the synchronous-evaluation semantics
to provide a simple but effective recovery mechanism. In particular,
we may use the committed trace to synthesize a known good state
(namely, the state corresponding to the synchronous evaluation that
yields the committed trace) and resume the computation with an
empty speculative trace. In Fig. 10, we provide an extension to
the speculative-evaluation semantics that implements this intuition.
Since the SDONE rule does not resume blocked threads from the
speculative pattern environment (rather, it simply allows the spec-
ulatively executing threads to continue executing), we make use of
a synthesis function to convert a synchronous-evaluation program
state and pattern environment to a speculative-evaluation program
state and pattern environment (Vπ, ψW = (π†, ρ†)). This (total)
function adds to the program state any processes blocked in the pat-
tern environment; like the SMATCH rule, it introduces a new store
(σ′′) that is the assumed store that will exist after the synchroniza-
tion pattern is satisfied. While the choice of the assumed store re-
mains oracular, the choice can be made with the knowledge of the
local stores of some of the necessarily participating threads.

The SRECOVER rule provides a simple, somewhat heavyweight,
recovery mechanism. However, it does demonstrate that the
speculative-evaluation semantics has sufficient information to fa-
cilitate recovering from an incorrectly-chosen assumed store, and
to allow program computation to make progress. Indeed, a realistic
implementation would likely alternate between (bounded) specu-
lation and synchronous evaluation, to ensure progress with respect
to synchronous-evaluation alone. We believe that it can serve as a
starting point for more sophisticated recovery strategies.

For example, one attractive special case is the situation where
a synchronization pattern is satisfied and committable, but has an
incorrectly-chosen assumed store:

Merge(σ′, lw 7→ vw) = σ† 6= σ′′

ΩS �
γ

κ(ΩC .
γ

) = ( , )

(π, ψ,ΩS)	 tb.tr.tw = (π†, ψ†,Ω†S)

π, ψ ] {γ 7→ 〈φ, tb[eb], tr[lr,Er], tw[lw, vw,Ew], σ′, σ′′〉},ΩC ,ΩS ;

tb[eb, σ
†]‖tr[Er[σ†(lr)], σ†]‖tw[Ew[unit], σ†]‖π†, ψ†,ΩC .

γ
,Ω†S



SPECULATIVE EVALUATION WITH FAILURE:
SFAIL

Merge(σ′, lw 7→ vw) 6= σ′′

π, ψ ] {γ 7→ 〈φ, tb[eb], tr[lr,Er], tw[lw, vw,Ew], σ′, σ′′〉},ΩC ,ΩS ; 3

Figure 9. Speculative evaluation with failure.

SPECULATIVE PROCESS AND PATTERN ENVIRONMENT SYNTHESIS:
Vπ, ρW = Vπ, ρ; ∅W

Vπ, ∅;ψW = (π, ψ)

Vπ, ρ ] {γ 7→ 〈p, tb[eb], tr[lr,Er], tw[lw, vw,Ew], σ′〉};ψW = let (π†, ρ†) = Vπ, ρ;ψW
in (tb[eb, σ

′′]‖tr[Er[σ′′(lr)], σ′′]‖tw[Ew[unit], σ′′]‖π†,
ρ† ] {γ 7→ 〈p, tb[eb], tr[lr,El], tw[lw, vw,Ew], σ′, σ′′〉})

SPECULATIVE EVALUATION WITH RECOVERY:
SRECOVER
m[e0, ∅], ∅, φ⇒∗ πU, ρU,ΩC VπU, ρUW = (π‡, ψ‡)

π, ψ,ΩC ,ΩS ; π‡, ψ‡,ΩC , φ

Figure 10. Speculative evaluation with recovery.

In this situation, it suffices to remove any components from the pro-
gram state, speculative pattern environment, and speculative trace
that depend upon the (incorrectly) speculated actions of the partic-
ipating threads, but retaining the computation and actions of inde-
pendent threads. We envision using self-adjusting computation (2)
as one way to efficiently propagate the difference between the as-
sumed store (σ′′) and the actual merged store (σ†), possibly reusing
portions of the speculative computation that don’t depend on incor-
rect assumptions.

5. Related Work and Conclusions
Our work is influenced by previous research on both implemen-
tation techniques for speculative execution, and the formalization
of high-level concurrency abstractions. Speculation has long been
used by processor architects and compiler writers (6; 14; 15; 11;
10; 13) to extract parallelism from sequential programs. These
techniques speculatively execute concurrent threads and revoke (or
stall) execution in the presence of conflicts. Kulkarni et al. (9)
present their experience in parallelizing large-scale irregular appli-
cations using speculative parallelization.

Transactional memory designs based on optimistic concur-
rency (3; 7) allow transactions to execute in isolation, logging up-
dates and validating these updates are consistent (e.g., serializable)
with other concurrently executing transactions. Transactions exe-
cute optimistically under the assumption that changes they perform
are unlikely to be invalidated by other transactions. When this as-
sumption fails, the transaction must be aborted and restarted.

Cilk (4) is a multithreaded extension of C with support fork-
join parallelism. Speculative threads can be aborted, but no safety
guarantees are provided. The basic synchronization mechanism
( sync ) acts as a barrier that waits for completion of all children
spawned by the thread. Cilk provides no mechanism similar to our
match abstraction, nor does it allow safe speculative execution
beyond sync points.

References
[1] M. Abadi, A. Birrell, T. Harris, and M. Isard. Semantics of Trans-

actional Memory and Automatic Mutual Exclusion. In POPL, pages
63–74, 2008.

[2] U. A. Acar, A. Ahmed, and M. Blume. Imperative Self-Adjusting
Computation. In POPL, pages 309–322, 2008.

[3] A.-R. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R. Murphy, B. Saha,
and T. Shpeisman. Compiler and Runtime Support for Efficient Soft-
ware Transactional Memory. In PLDI, pages 26–37, 2006.

[4] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou. Cilk: An efficient multithreaded runtime sys-
tem. In Journal of Parallel and Distributed Computing, pages 207–
216, 1995.

[5] K. Donnelly and M. Fluet. Transactional events. In ICFP, pages 124–
135, 2006.

[6] L. Hammond, M. Willey, and K. Olukotun. Data speculation support
for a chip multiprocessor. In ASPLOS, pages 58–69, 1998.

[7] T. Harris and K. Fraser. Language support for lightweight transactions.
In OOPSLA, pages 388–402, 2003.

[8] T. A. Johnson, R. Eigenmann, and T. N. Vijaykumar. Min-cut program
decomposition for thread-level speculation. In PLDI, pages 59–70,
2004.

[9] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and
L. P. Chew. Optimistic Parallelism Requires Abstractions. In PLDI,
pages 211–222, 2007.

[10] W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau, and J. Tor-
rellas. POSH: A TLS Compiler that Exploits Program Structure. In
PPoPP, pages 158–167, 2006.

[11] J. F. Martı́nez and J. Torrellas. Speculative Synchronization: Apply-
ing Thread-Level Speculation to Explicitly Parallel Applications. In
ASPLOS, pages 18–29, 2002.

[12] K. F. Moore and D. Grossman. High-level Small-Step Operational
Semantics for Transactions. In POPL, pages 51–62, 2008.

[13] A. Navabi, X. Zhang, and S. Jagannathan. Quasi-static Scheduling for
Safe Futures. In PPoPP, pages 23–32, 2008.

[14] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar processors.
In ISCA, pages 414–425, 1995.

[15] J. Steffan and T. Mowry. The Potential for Using Thread-Level Data
Speculation to Facilitate Automatic Parallelization, booktitle = HPCA.
page 2, 1998.

[16] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A Scalable
Approach to Thread-Level Speculation. In ISCA, pages 1–12, 2000.


