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SUMMARY

This paper proposes two approaches to managing concurrencyin Java using aguarded region abstraction.
Both approaches userevocation of such regions – the ability to undo their effects automatically
and transparently. These new techniques alleviate many of the constraints that inhibit construction
of transparently scalable and robust concurrent applications. The first solution, revocable monitors,
augments existing mutual exclusion monitors with the ability to resolve priority inversion and deadlock
dynamically, by reverting program execution to a consistent state when such situations are detected,
while preserving Java semantics. The second technique,transactional monitors, extends the functionality
of revocable monitors by implementing guarded regions as lightweight transactions that can be executed
concurrently (or in parallel on multiprocessor platforms). The presentation includes discussion of design
and implementation issues for both schemes, as well as a detailed performance study to compare their
behavior with the traditional, state-of-the-art implementation of Java monitors based on mutual exclusion.
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1. Introduction

Managing complexity is a major challenge in constructing robust large-scale server applications
(such as database management systems, application servers, airline reservation systems,etc). In
a typical environment, large numbers of clients may access aserver application concurrently. To
provide satisfactory response time and throughput, applications are often made concurrent. Thus, many
programming languages (eg, Smalltalk, C++, ML, Modula-3, Java) provide mechanisms that enable
concurrent programming via a thread abstraction, with threads being the smallest unit of concurrent
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execution. Another key mechanism offered by these languages is the notion ofguardedcode regions in
which accesses to shared data performed by one thread areisolatedfrom accesses performed by other
threads, and all updates performed by a thread within a guarded region become visible to the other
threadsatomically, once the executing thread exits the region. Guarded regions (eg, Java synchronized
methods and blocks, Modula-3LOCK statements) are usually implemented using mutual-exclusion
locks.

In this paper, we explore two new approaches to concurrent programming, comparing their
performance against use of a state-of-the-art mutual exclusion implementation that usesthin locks
to minimize the overhead of locking [4]. Our discussion is grounded in the context of the Java
programming language, but is applicable to any language that offers the following mechanisms:

• Multithreading: concurrent threads of control executing over objects in a shared address space.
• Synchronized blocks: lexically-delimited blocks of code,guarded by dynamically-scoped

monitors (locks). Threads synchronize on a given monitor, acquiring it on entry to the block
and releasing it on exit. Only one thread may be perceived to execute within a synchronized
block at any time, ensuring exclusive access to all monitor-protected blocks.

• Exception scopes: blocks of code in which an error conditioncan change the normal flow
of control of the active thread, by exiting active scopes, and transferring control to a handler
associated with each block.

Difficulties arising in the use of mutual exclusion locking with multiple threads are widely-
recognized, such asrace conditions, priority inversionanddeadlock.

Race conditionsare a serious issue for non-trivial concurrent programs. A race exists when two
threads can access the same object, and one of the accesses isa write. To avoid races, programmers
must carefully construct their application to trade off performance and throughput (by maximizing
concurrent access to shared data) for correctness (by limiting concurrent access when it could lead to
incorrect behavior), or rely on race detector tools that identify when races occur [7, 8, 18]. Recent work
has advocated higher-level safety properties such as atomicity for concurrent applications [19].

In languages with priority scheduling of threads, a low-priority thread may hold a lock even while
other threads, which may have higher priority, are waiting to acquire it.Priority inversionresults when
a low-priority threadTl holds a lock required by some high-priority threadTh, forcing the high-priority
Th to wait until Tl releases the lock. Even worse, an unbounded number of runnable medium-priority
threadsTm may exist, thus preventingTl from running, making unbounded the time thatTl (and hence
Th) must wait. Such situations can cause havoc in applicationswhere high-priority threads demand
some level of guaranteed throughput.

Deadlockresults when two or more threads are unable to proceed because each is waiting on a lock
held by another. Such a situation is easily constructed for two threads,T1 andT2: T1 first acquires lock
L1 while T2 acquiresL2, thenT1 tries to acquireL2 while T2 tries to acquireL1, resulting in deadlock.
Deadlocks may also result from a far more complex interaction among multiple threads and may stay
undetected until and beyond application deployment. The ability to resolve a deadlock dynamically is
much more attractive than permanently stalling some subsetof concurrent threads.

For real-world concurrent programs with complex module anddependency structures, it is difficult
to perform an exhaustive exploration of the space of possible interleavings to determine statically
when races, deadlocks, or priority inversions may arise. For such applications, the ability to redress
undesirable interactions transparently among schedulingdecisions and lock management is very useful.
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REVOCATION TECHNIQUES FOR JAVA CONCURRENCY 3

These observations inspire the first solution we propose:revocable monitors. Our technique augments
existing mutual exclusion monitors with the ability to resolve priority inversion dynamically (and
automatically). Some instances of deadlock may be resolvedby revocation. However, we note that
deadlocks inherent to a program that are independent of scheduling decisions will manifest themselves
aslivelockwhen revocation is used.

A second difficulty with using mutual exclusion to mediate data accesses among threads is ensuring
adequate performance when running on multi-processor platforms. To manipulate a complex shared
data structure like a tree or heap, applications must eitherimpose a global locking scheme on the
roots, or employ locks at lower-level nodes in the structure. The former strategy is simple, but reduces
realizable concurrency and may induce false exclusion: threads wishing to access a distinct piece of the
structure may nonetheless block while waiting for another thread that is accessing an unrelated piece
of the structure. The latter approach permits multiple threads to access the structure simultaneously,
but incurs implementation complexity, and requires more memory to hold the necessary lock state.

Our solution to this problem is an alternative to lock-basedmutual exclusion:transactional
monitors. These extend the functionality of revocable monitors by implementing guarded regions as
lightweight transactions that can be executed concurrently (or in parallel on multiprocessor platforms).
Transactional monitors define the following data visibility property that preserves isolation and
atomicity invariants on shared data protected by the monitor: all updates to objects guarded by a
transactional monitor become visible to other threads onlyon successful completion of the monitor
transaction.∗ Because transactional monitors impose serializability invariants on the regions they
protect (ie, preserve the appearance of serial execution), they can help reduce race conditions by
allowing programmers to more aggressively guard code regions that may access shared datawithout
paying a significant performance penalty. Since the system dynamically records and redresses state
violations (by revoking the effects of the transaction whena serializability violation is detected),
programmers are relieved from the burden of having to determine when mutual exclusion can safely
be relaxed. Thus, programmers can afford to over-specify code regions that must be guarded, provided
the implementation can relax such over-specification safely and efficiently whenever possible.

While revocable monitors and transactional monitors rely on similar mechanisms, and can exist
side-by-side in the same virtual machine, their semantics and intended utility are quite different. We
expect revocable monitors to be used primarily to resolve deadlock as well as to improve throughput for
high-priority threads by transparently averting priorityinversion. In contrast, we envision transactional
monitors as an entirely new synchronization framework thataddresses the performance impact of
classical mutual exclusion while simplifying concurrent programming.

We examine the performance and scalability of these different approaches in the context of a state-of-
the-art Java compiler and virtual machine, namely the JikesResearch Virtual Machine (RVM) [3] from
IBM. Jikes RVM is an ideal platform to compare our solutions with pure lock-based mutual exclusion,
since it already uses sophisticated strategies to minimizethe overhead of traditional mutual-exclusion
locks [4]. A detailed evaluation in this context provides anaccurate depiction of the tradeoffs embodied
and benefits obtained using the solutions we propose.

∗A slightly weaker visibility property is present in Java forupdates performed within a synchronized block (or method);
these areguaranteedto be visible to other threads only upon exit from the block.
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Tl Th Tm

synchronized(mon) {
o1.f++;
o2.f++;
bar();

}

foo();

Figure 1. Priority inversion

2. Revocable monitors: Overview

There are several ways to remedy erroneous or undesirable behavior in concurrent programs. Static
techniques can sometimes identify erroneous conditions, allowing programmers to restructure their
application appropriately. When static techniques are infeasible, dynamic techniques can be used both
to identify problems and remedy them when possible. Solutions to priority inversion such as thepriority
ceilingandpriority inheritanceprotocols [40] are good examples of such dynamic solutions.

Priority ceiling and priority inheritance solve anunbounded priority inversionproblem, illustrated
using the code fragment in Figure 1 (bothTl andTh execute the same code and methodsfoo() and
bar() contain an arbitrary sequence of operations). Let us assumethat threadTl (low priority) is first
to acquire the monitormon, modifies objectso1 ando2, and is then preempted by threadTm (medium
priority). Note that threadTh (high priority) is not permitted to enter monitormon until it has been
released byTl , but since methodfoo() executed byTm may contain arbitrary sequence of actions (eg,
synchronous communication with another thread), it may take arbitrary time beforeTl is allowed to run
again (and exit the monitor). Thus threadTh may be forced to wait for an unbounded amount of time
before it is allowed to complete its actions.

The priority ceiling technique raises the priority of any locking thread to the highest priority of
any thread that ever uses that lock (ie, its priority ceiling). This requires the programmer to supply
the priority ceiling for each lock used throughout the execution of a program. In contrast, priority
inheritance will raise the priority of a thread only when holding a lock causes it to block a higher
priority thread. When this happens, the low priority threadinherits the priority of the higher priority
thread it is blocking. Both of these solutions prevent a medium priority thread from blocking the
execution of the low priority thread (and thus also the high priority thread) indefinitely. However, even
in the absence of the medium priority thread, the high priority thread is forced to wait until the low
priority thread releases its lock. In the example given, thetime to execute methodbar() is potentially
unbounded, thus high priority threadTh may still be delayed indefinitely until low priority threadTl

finishes executingbar() and releases the monitor. Neither priority ceiling nor priority inheritance
offer a solution to this problem.

Besides priority inversion, deadlock is another potentially unwanted consequence of using mutual-
exclusion abstractions. A typical deadlock situation is illustrated with the code fragment in Figure 2.
Let us assume the following sequence of actions: threadT1 acquires monitormon1 and updates object
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REVOCATION TECHNIQUES FOR JAVA CONCURRENCY 5

T1 T2

synchronized(mon1) {
o1.f++;
synchronized(mon2) {

bar();
}

}

synchronized(mon2) {
o2.f++;
synchronized(mon1) {

bar();
}

}

Figure 2. Deadlock

o1, threadT2 acquires monitormon2 and updates objecto2, threadT1 attempts to acquire monitormon2
(T1 blocks sincemon2 is already held by threadT2) and threadT2 attempts to acquire monitormon1
(T2 blocks as well sincemon1 is already held byT1). The result is that both threads are deadlocked –
they will remain blocked indefinitely and methodbar()will never get executed by any of the threads.

In both of the scenarios illustrated by Figures 1 and 2, one can identify a singleoffendingthread that
must be revoked in order to resolve either the priority inversion or the deadlock. For priority inversion
the offending thread is the low-priority thread currently executing the monitor. For deadlock, it is either
of the threads engaged in deadlock – there exist various techniques for preventing or detecting deadlock
[21], but all require that the actions of one of the threads leading to deadlock be revoked.

Revocable monitors can alleviate both these issues. Our approach to revocation combines compiler
techniques with run-time detection and resolution. When the need for revocation is encountered, the
run-time system selectively revokes the offending thread executing the monitor (ie, synchronized
block) and its effects. All updates to shared data performedwithin the monitor arelogged. Upon
detecting priority inversion or deadlock (either at lock acquisition, or in the background), the run-time
system interrupts the offending thread, uses the logged updates to undo that thread’s shared updates,
and transfers control of the thread back to the beginning of the block for retry. Externally, the effect of
the roll-back is to make it appear that the offending thread never entered the block.

The process of revoking the effects performed by a low priority thread within a monitor is illustrated
in Figure 3 where wavy lines represent threadsTl andTh, circles represent objectso1 ando2, updated
objects are marked grey, and the box represents the dynamic scope of a common monitor guarding a
synchronized block executed by the threads. This scenario is based on the code from Figure 1 (data
access operations performed within methodbar() have been omitted for brevity). In Figure 3(a) low-
priority threadTl is about to enter the synchronized block, which it does in Figure 3(b), modifying
objecto1. High-priority threadTh tries to acquire the same monitor, but is blocked by low-priority
Tl (Figure 3(c)). Here, a priority inheritance approach [40] would raise the priority of threadTl to
that ofTh, but Th would still have to wait forTl to release the lock. If a priority ceiling protocol was
used, the priority ofTl would be raised to the ceiling upon its entry to the synchronized block, but
the problem ofTh being forced to wait forTl to release the lock would remain. Instead, our approach
preemptsTl , undoing any updates too1, and transfers control inTl back to the point of entry to the
synchronized block. HereTl must wait whileTh enters the monitor, and updates objectso1 (Figure 3(e))
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Figure 3. Revoking the effects of a synchronized block’s execution – priority inversion

ando2 (Figure 3(f)), before leaving. At this point the monitor is released andTl will re-gain entry. This
example reveals why roll-backs are useful in dealing with priority inversion issues. Note, however, that
the correctness of the solution relies critically on the assumption that threads see updates performed
within synchronized blocks only after the lock on the block is released, permitting them entry. IfTh

were allowed to see updates too1 while Tl still held the lock on the synchronized block, the effect of
the roll-back would be moot.

The process of revoking a thread in the case of deadlock is illustrated in Figure 4. The wavy lines
represent threadsT1 andT2, circles represent objectso1 ando2, updated objects are marked grey, and
the boxes represent the dynamic scopes of monitorsmon1 andmon2. This scenario is based on the
code from Figure 2. In Figure 4(a) threadT1 is about to enter monitormon1. In Figure 4(b)T1 enters
mon1, updates objecto1 and attempts to enter monitormon2. In Figure 4(c) threadT2 is about to
enter monitormon2. In Figure 4(d) the same thread entersmon2, updates objecto2 and attempts to
enter monitormon1. We assume that threadT1 is selected for revocation – its updates to objecto1 are
rolled back and its execution of monitormon1 retried (Figure 4(e)). ThreadT2 may then enter monitor
mon1, proceed to execute methodbar() (data access operations performed within methodbar()
have again been omitted for brevity) and exit both monitormon1 and monitormon2 (Figure 4(f)).

Some instances of deadlock cannot be resolved using revocation. If deadlock is guaranteed to arise
in the way locks have been programmed (independently of scheduling) when using traditional non-
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Figure 4. Revoking the effects of a synchronized block’s execution – deadlock

T1 T2

synchronized(mon1) {
while (!o1.f) {

synchronized(mon2) {
bar();

}
}
o2.f = true;

}

synchronized(mon2) {
while (!o2.f) {

synchronized(mon1) {
bar();

}
}
o1.f = true;

}

Figure 5. Schedule-independent deadlock
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revocable monitors, the deadlock still cannot be resolved by revocable monitors. Consider the code
fragment in Figure 5. Because of control-flow dependencies,all executions of this program under
traditional mutual exclusion will eventually lead to deadlock. When executing this program using
revocable monitors, the run-time system will attempt to resolve deadlock by revoking one of the
threads. Let’s assume that threadT1 is selected for revocation. However, in order for threadT2 to
make progress it must be able to observe updates performed bythreadT1. BecauseT2 is unable to
proceed, it will maintain ownership of the monitor(s) it hasalready acquired, which will eventually
lead to another deadlock once execution of threadT1 is resumed. Note however, that while revocable
monitors are unable to assist in resolving schedule-independent deadlocks, the final observable effect
of the resultinglivelock (ie, repeated attempts to resolve the deadlock situation via revocation) is the
same for deadlock – none of the threads will make progress.

3. Revocable monitors: Design

One of the main principles underlying the design of revocable monitors is acompliance requirement:
programmers must perceive all programs executing in our system to behave exactly the same as on all
other platforms implemented according to the specificationof a given language. In order to achieve
this goal we must adhere to the execution semantics of the language and follow the memory access
rules specified by those semantics.

We fulfill the compliance requirement byloggingall updates to shared data performed by a thread
executing within a monitor. We use the information from the log to roll back updates whenever the
monitor is revoked. In effect, synchronized sections execute speculatively, and their updates may be
revoked at any time before the block is exited.

Our approach is inspired by optimistic concurrency controlprotocols [29]. Traditionally, optimistic
techniques distinguish three execution phases: aread phase, avalidation phaseand awrite phase[29].
In the read phase all updates are redirected to the log, the validation phase verifies the integrity of all
data accessed during the entire execution, and the write phase atomically installs all updates into the
shared space. However, in the case of revocable monitors data integrity is guaranteed by the presence of
mutual exclusion. Thus, updates can be performed in place and the validation phase can be omitted. It is
only when a monitor is revoked that the information from the log is used to roll back changes performed
by a thread executing that monitor. The space overhead of maintaining logs is not excessive since a log
(associated with each thread object) needs to be maintainedonly when the thread is executing within a
revocable monitor, and can be discarded upon exit from the monitor.

The introduction of revocable monitors requires a careful consideration of the interaction between
revocation and the Java Memory Model (JMM) [32]. We elaborate on these issues in the following
sections.

3.1. The Java memory model (JMM)

The JMM defines ahappens-beforerelation (written
hb
→) among the actions performed by threads in a

given execution of a program. For single-threaded execution the happens-before relation is defined by
program order. For multi-threaded execution a happens-before relation is induced between an unlock
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ACQUIRE(inner)

WRITE(v)

RELEASE(inner)

ACQUIRE(inner)

READ(v)

RELEASE(inner)

T ′

ROLL-BACK

T

ACQUIRE(outer)

Figure 6. Erroneous revocation sequence due to monitor nesting and Java visibility semantics

uM (release) and a subsequent locklM (acquire) operation on a given monitorM (uM
hb
→ lM). The

happens-before relation is transitive:x
hb
→y andy

hb
→z imply x

hb
→z. The JMM shared data visibility rule

is defined using the happens-before relation: a readrv is allowed to observe a writewv to a given
variable variablev if rv does not happen beforewv and there is no intervening writew′v such that

rv
hb
→ w′v

hb
→ wv (we say that a read becomesread-write dependenton the write that it isallowed to

see). As a consequence, it is possible that partial results computed by some threadT executing within
monitorM become visible to (and are used by) another threadT ′ even before threadT releasesM if
accesses to those updated objects performed byT ′ are not mediated by first acquiringM. However, a
subsequent revocation of monitorM would undo the update and remove the happens-before relation,
making a value seen byT ′ appear “out of thin air” and thus the execution ofT ′ inconsistent with the
JMM.

An example of such an execution appears in Figure 6: threadT acquires monitorouter and
subsequently monitorinner, writes to a shared variablev and releases monitorinner. Then thread
T ′ acquires monitorinner, reads variablev and releases monitorinner. The execution is JMM-
consistent up to the roll-back point: the read performed byT ′ is allowedbut the subsequent roll-back
of T would violate consistency.

A similar problem occurs whenvolatile variables are used. The Java Language Specification (JLS)
[20] states that updates to volatile variables immediatelybecome visible to all program threads. Thus,
there also exists a happens-before relation between a volatile write and all subsequent volatile reads
of the same (volatile) variable. For the execution presented in Figure 7vol is a volatile variable and
edges depict a happens-before relation. As in the previous example, the execution is JMM-consistent
up to the roll-back point because a read performed byT ′ is allowed, but the roll-back would violate
consistency. We now discuss possible solutions to these JMM-consistency preservation problems.
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ACQUIRE(M)

T

WRITE(vol)

READ(vol)

ROLL-BACK

T ′

Figure 7. Erroneous revocation sequence due to volatile variable access

static boolean v=false;

T T ′

synchronized(outer) {
synchronized(inner) {

v=true;
}

// ROLL-BACK
}

while (true) {
synchronized(inner) {

if (v) break;
}

}

Figure 8. Rescheduling thread execution in the presence of rollback may not always be correct

3.2. Preserving JMM-consistency

Several solutions to the problem of partial results of a monitored computation being exposed to other
threads can be considered. We might trace read-write dependencies among all threads and upon roll-
back of a monitor trigger a cascade of roll-backs for threadswhose read-write dependencies are
violated. An obvious disadvantage of this approach is the need to considerall operations (including
non-monitored ones) for a potential roll-back. In the execution of Figure 7 the volatile read performed
by T ′ would have to be rolled back even though it is not guarded by any monitor. Furthermore, to apply
this solution, the full execution context of each thread (ie, its instruction pointer, registers, thread stack
etc) would have to be logged in addition to its shared data operations. Consider a situation based on the
example of Figure 6 where threadT ′ returns(from the current method) after releasing monitorinner
but before threadT is asked to roll back the execution of monitorouter. Without the ability to restore
the full execution context ofT ′, the subsequent roll-back of monitorinner by that thread becomes
infeasible.

Another possible solution is to re-schedule the execution of threads in problematic cases. In the
examples of Figures 6 and 7, if threadT ′ executes fully before threadT, the execution will still be
JMM-consistent. The roll-back ofT does not violate consistency since none of the updates performed
by T are visible toT ′. Besides the obvious question about the practicality of re-scheduling as a solution
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(some knowledge about the future actions performed by threads would be required), there also remains
the issue of correctness. While re-scheduling may be correct in some cases, it is not necessarily correct
in others. Consider the Java program of Figure 8. Completionof threadT ′ is dependent upon it seeing
the effect ofT executing the statementv=true. If we choose to rescheduleT ′ to run beforeT,
knowing thatT will be revoked, thenT ′ will never complete. Of course, if we make the “right” choice
to rescheduleT ′ afterT, things will work. There are however, similar cases where rescheduling never
works.

The solution that does seem flexible enough to handle all possible problematic cases, and simple
enough to avoid using complex analyses and/or maintaining significant additional meta-data, is to
disable the revocability of monitors whose roll-back couldcreate inconsistencies with respect to the
JMM. As a consequence, not all instances of priority inversion can be resolved. We mark a monitorM
non-revocablewhen a read-write dependency is created between a write it has performed withinM∗

and a read performed by another thread. Detecting the possibility for this is relatively straightforward,
without needing to track every read, so long as we track monitor acquire/release dependencies. This can
be achieved as follows. When a thread holding an outer monitor enters some inner monitor, it becomes
associatedwith the inner monitor. This association is cleared when thethread exits the outer monitor, or
when the thread is made non-revocable, as follows. Any otherthread arriving at the monitor will simply
make non-revocable any thread associated with that monitor, clearing the association. If the arriving
thread itself holds an outer monitor then it now becomes associated with the monitor. We believe this
solution does not severely penalize the effectiveness of our technique. Intuitively, programmers guard
accesses to the same subset of shared data using the same set of monitors; in such cases, there is no
need to force non-revocability of any of the monitors (even if they are nested) since mutual-exclusion
induced by monitor acquisition prevents generation of problematic dependencies among these threads.

There are other Java constructs that affect revocability ofthe monitors. Calling a native method
within a monitor also forces non-revocability of the monitor (and all of its enclosing monitors if it is
nested), since the effects of a native method cannot generally be revoked (eg, printing a message to
the console is irrevocable, even if benign). The same applies to executions where await method is
invoked within a nested monitor.† Revocation of thewait call would result in a situation where the
matchingnotify call (that “woke up” the waiting thread) “disappears” (ie, does not get delivered
to any thread) which would violate Java execution semantics. A call to notify does not force
irrevocability of enclosing monitors: Java VM implementations are permitted [32] to perform “spurious
wake-ups” so a rolled back notification can be considered as such.

4. Revocable monitors: Implementation

To demonstrate the validity of our approach, we base our implementation on a well-known Java
execution environment with a high-quality compiler. We useIBM’s Jikes RVM [3], a state-of-the-art

∗The write may additionally be guarded by other monitors nested withinM.
†A monitor object associated with the receiver object is released upon a call towait and re-acquired after returning from

the call. In the case of a non-nested monitor a potential roll-back will therefore not reach beyond the point whenwait was
called.
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research virtual machine (VM) for Java with performance comparable to many production VMs. Java
bytecodes in Jikes RVM are compiled directly to machine codeusing either a low-cost non-optimizing
“baseline” compiler or an aggressive optimizing compiler.

When discussing the details of our approach, we concentrateon the necessary compiler and run-time
capabilities that allow the VM to interrupt execution of synchronized blocks (monitors) at arbitrary
points without inducing any observable effects on an application’s execution behavior. For our case
study we chose the priority inversion problem, rather than deadlock resolution, as an excellent vehicle
to measure the trade-offs inherent in speculative execution.

4.1. Monitor roll-back

Our implementation uses bytecode rewriting∗ to save program state (values of local variables and
method parameters) for re-execution and the existing exception mechanisms to return control to
the beginning of the synchronized block. We modify the compiler and run-time system to suppress
generation (and invocation) of undesirable exception handlers during a roll-back operation, to insert
access “barriers”† for logging and to revert updates performed up to revocationof a synchronized
block.

4.1.1. Bytecode transformation

There exist two different synchronization constructs in Java: synchronized methods and synchronized
blocks. We treat them uniformly, by transforming synchronized methods into non-synchronized
equivalents whose entire body is enclosed in a synchronizedblock. For each synchronized method
we create a non-synchronized wrapper with a signature identical to the original method. We fill the
body of the wrapper method with a synchronized block enclosing an invocation of the original (non-
synchronized) method, which has been appropriately renamed to avoid name clashes. We also instruct
the VM to inline the original method within the wrapper to avoid performance penalties related to
the delegating method invocation. This approach greatly simplifies our implementation,‡ is extremely
simple and robust, and also efficient because of inlining.

Each synchronized block (bracketed at the bytecode level bymonitorenter and monitorexit
operations) is wrapped within an exception scope that catches a specialRollback exception. The
roll-back exception is thrown internally by the VM (see below), but the code to catch it is injected
into the bytecode. Since a roll-back may involve a nested synchronized block, each roll-back exception
catch handler invokes an internal VM method to check if it corresponds to the synchronized block that
is to be re-executed. If it does, then the handler releases the lock associated with its synchronized block,
and returns control to the beginning of the block. Otherwise, the handler re-throws theRollback
exception to the enclosing synchronized block.

∗We use the Bytecode Engineering Library (BCEL) from Apache for this purpose. Note that our solution does not preclude
the use of languages that do not have a similar intermediate representation – we could use source-code rewriting instead.

†Code snippets inserted by the compiler into the code stream and directly preceding (or substituting) the implementation of
actual data access operations (ie, loads and stores).

‡We need only handle explicitmonitorenterandmonitorexitbytecodes, without worrying about implicit monitor operations
for synchronized methods.
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There is an additional complication related to the return ofcontrol to the beginning of the block. The
contents of the VM’s operand stack before executing amonitorenteroperation must be the same as at
first invocation in subsequent re-invocations resulting from revocation. However, in accordance with
the Java virtual machine specification [30], the run-time system erases the operand stack of the method
activation that will catch the exception. To handle this, weinject bytecode to save the values on the
operand stack just before each roll-back scope’smonitorenteropcode, and to restore the stack state in
the handler before transferring control back to themonitorenter.

4.1.2. Compiler and run-time modifications

The roll-back operation is initiated by throwing aRollback exception. However, we cannot rely on
the standard exception handling mechanism to propagate theRollback exception up the activation
stack to the synchronized block being revoked, since it willalso run “default” exception handlers
in nested exception scopes as it unwinds the stack. Such “default” handlers include bothfinally
blocks, andcatch blocks for exceptions of typeThrowable, of which all exceptions (including
Rollback) are instances. Running these intervening handlers would violate our semantics that an
aborted synchronized block produces no side-effects.

To handle this, we augment exception handling to ignore all handlers (includingfinally blocks)
that do not explicitly catch theRollback exception, when it is thrown. The default behavior
still applies for all other exceptions, to preserve the standard semantics. We are careful to release
monitors as necessary wherever the Jikes RVM optimizing compiler releases them explicitly in its
implementation of synchronized blocks.

Roll-back relies on information collected within the compiler inserted write barriers. Both
compilers (baseline and optimizing) have been modified to inject barriers before every store operation
(represented by the bytecodes:putfield for object stores,putstatic for static variable stores,
and Xastore for array stores). The barrier records in the log every modification performed by a
thread executing a synchronized block. We implemented the log as a sequential buffer. For object and
array stores, three values are recorded: the target object or array, the offset of the modified field or array
slot, and the previous (old) value in that field/slot. For stores to static variable two values are recorded:
the offset of the static variable in the global symbol table and the previous value of that variable. Upon
monitor revocation information stored in the log is used to undo updates to shared data performed by
the thread executing this monitor.

4.1.3. Discussion

Instead of using bytecode transformations, we note that an alternative strategy might be to implement
re-execution entirely at the VM level (ie, all the code modifications necessary to support roll-backs
would only involve the compiler and the Java run-time system). This approach simply requires that
the current state of the thread (ie, contents of local variables, non-volatile registers, stack pointer,
etc) be remembered upon entry to a synchronized block, and restored when a roll-back is required.
Unfortunately, this strategy has the significant drawback that it introduces implicit control-flow edges
in the program’s control-flow graph that are not visible to the compiler. Consequently, liveness
information necessary for the garbage collector may be computed incorrectly, since a roll-back action
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14 A. WELC, S. JAGANNATHAN, A. L. HOSKING

may require stack slots to remain live that would ordinarilybe marked dead. Resolving these issues
would entail substantial changes to the compiler and run-time system.

A second alternative we considered (and discarded) was a fully portable user-level implementation
that would not require any modifications to the VM or the compiler. Instead, this solution would
take advantage of language-level exceptions and use bytecode rewriting techniques exclusively to
provide all the support necessary to perform a roll-back operation. Unfortunately, in the absence of any
compiler modifications, the built-in exception handling mechanism may execute an arbitrary number
of other user-defined exception handlers and finalizers, violating the transparency of our design.
Moreover, inserting write-barriers at the bytecode level to log changes would require optimizations
to remove them to be re-implemented at bytecode level as well. For example an escape analysis could
be used to eliminate barriers for accesses to thread-local objects. However, if implemented inside the
compiler, barriers inserted at bytecode level appear as snippets of ordinary code, so the compiler cannot
optimize them effectively.

4.2. Priority inversion avoidance

Detecting priority inversion is reasonably simple. A thread acquiring a monitor deposits its priority
in the header of the monitor object. Before another thread can acquire the monitor, the scheduler
checks whether its own priority is higher than the priority of the thread currently executing within
the synchronized block. If it is, then the it triggers roll-back of the low priority thread. After the low-
priority thread rolls back its changes and releases the monitor, the high-priority thread acquires control
of the synchronized block. If the incoming thread’s priority is lower, it blocks on the monitor and waits
for the other thread to complete execution of the synchronized block.

The Jikes RVM does not include a priority scheduler; threadsare scheduled in a round-robin order.
This does not affect the generality of our solution nor does it invalidate the results obtained, since the
problems solved by our mechanisms cannot be solved simply byusing a priority scheduler. However, in
order to make the measurements independent of the random order in which threads arrive at a monitor,
we augmented the monitor queues to take priority into account. A thread can have either high or low
priority. When a thread releases a monitor, another thread is scheduled from the queue. If it is a high-
priority thread, it is allowed to acquire the monitor. If it is a low-priority thread, it is allowed to run
only if there are no other high-priority threads waiting in the queue.

5. Revocable monitors: Experiments

We quantify the overhead of the revocable monitors mechanism using a detailed micro-benchmark. We
measure executions that exhibit priority inversion to verify if the increased overheads induced by our
implementation are mitigated by higher overall throughputof high-priority threads. The experiments
are performed for a uni-processor system, since revocable monitors do nothing to increase concurrency
in applications, so applications will exhibit no more parallelism using revocable monitors on multi-
processors than they would using non-revocable monitors. In our results, it is to be expected that
revocable monitors used to address priority inversion willsacrifice throughput of low-priority threads
to improve throughput of high-priority threads. As a result, total throughput will suffer. Our results
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quantify this sacrifice of total throughput to be approximately 30%, while throughput for high-priority
threads improves by 25% to 100%.

5.1. Benchmark program

The micro-benchmark executes several low and high-priority threads contending on the same lock.
Regardless of their priority, all threads are compiled identically, with write barriers inserted to log
updates, and special exception handlers injected to restart synchronized blocks. Though our benchmark
is structured so that only low-priority threads will actually be revoked, updates of both low-priority and
high-priority threads are logged for fairness, even thoughhigh-priority threads are never rolled back.
Every thread executes 100 synchronized synchronized blocks. Each synchronized block contains an
inner loop containing an interleaved sequence of read and write operations. We emphasize that our
micro-benchmark has been constructed to gauge the overheads inherent in our techniques (the costs
of re-execution, logging,etc) and not necessarily to simulate any particular real-life application. We
do not bias the benchmark structure in favor of our mechanisms by artificially extending the execution
time using benign (with respect to logging) operations (eg, method calls). Therefore, we decided to
make the execution time of a synchronized block directly proportional to the number of shared data
operations performed within that block. We fixed the number of iterations of the inner loop for low-
priority threads at 500K, and varied it for the high-priority threads (100K and 500K). The remaining
parameters for our benchmark include:

• The ratio of high-priority threads to low-priority threads– we used three configurations: 2+ 8,
5+5, and 8+2, high-priority plus low-priority threads, respectively.

• The ratio of write to read operations performed within a synchronized block – we used six
different configurations ranging from 0% writes (ie, 100% reads) to 100% writes (ie, 0% reads).

Our benchmark also includes a short random pause time (on average approximately a single thread
quantum in Jikes RVM) right before an entry to the synchronized block, to ensure random arrival of
threads at the monitors guarding the blocks.

Our thesis is that the total elapsed time of high-priority threads can be improved using the roll-
back scheme, at the expense of longer elapsed time for low-priority threads. Improvement is measured
against a priority scheduling implementation that provides no remedy for priority inversion. Thus, for
every run of the micro-benchmark we compare the total time ittakes for all high-priority threads to
complete their execution for the following two settings:

• An unmodifiedVM that does not allow execution of a synchronized block to beinterrupted and
revoked: when a high-priority thread wants to acquire a lockalready held by a low-priority
thread, it waits until the low-priority thread exits the synchronized block. The benchmark
code executed on this VM is compiled using the Jikes RVM optimizing compiler without any
modification.

• A modified VMequipped with the compiler and run-time changes to interrupt and revoke
execution of synchronized blocks by low-priority threads:when a high-priority thread wants
to acquire a lock held by a low-priority thread it signals itsintent, resulting in the low-priority
thread exiting the synchronized block at the next yield point, rolling back any changes to shared
data made from the time it began executing inside the block. The benchmark code executed on
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16 A. WELC, S. JAGANNATHAN, A. L. HOSKING

this VM is compiled using the modified version of the Jikes RVMoptimizing compiler described
in Section 4.

To measure the total elapsed time of high-priority threads we take two time-stamps for each high-
priority thread: one when it begins itsrun() method and one at the end of itsrun() method. We
compute the total elapsed time for all high-priority threads by subtracting the latest end time-stamp
of all high-priority threads from the earliest begin time-stamp of all the high-priority threads. We also
record the impact that our solution has on the overall elapsed time of the entire micro-benchmark,
including low-priority elapsed times: this is simply the difference between the end time-stamp of the
last thread to finish and the begin time-stamp of the first thread to start, regardless of priority.

The measurements were taken on an 800MHz Intel Pentium III (Coppermine) with 1GB of RAM
running Linux kernel version 2.4.20-13.7 (RedHat 7.0) in single-user mode. A benchmark run consists
of one invocation of the VM in which the benchmark is repeatedsix times. We discard the results of
the first iteration, in which the benchmark classes are loaded and compiled, to eliminate the overheads
of compilation. We report the average elapsed time for the five subsequent iterations, and show 90%
confidence intervals in our results. Our system is based on Jikes RVM 2.2.1 and we use a configuration
where both the Jikes RVM (which is itself implemented and bootstrapped in Java) and dynamically
loaded classes are compiled using the optimizing compiler by default. Even in this configuration
there remain some methods (eg, class initializers) that override this setting and are compiled without
optimization.

5.2. Results

Figures 9 and 10 plot elapsed times for high priority threadsexecuted on both the modified VM
(indicated by a solid line) and unmodified VM (indicated by a dotted line), normalized with respect to
the configuration executing 100% reads on an unmodified VM using standard non-revocable monitors.
We normalize with respect to the 100% reads benchmark configuration so as to obtain a standard
baseline for illustrating performance trends as the read/write mix changes. In Figure 9 every high
priority thread executes 100K internal iterations; in Figure 10 the iteration count is 500K. In each
figure: the graph labeled (a) reflects a workload consisting of two high-priority threads, and eight
low-priority threads; the graph labeled (b) reflects a workload consisting of five high-priority and five
low-priority threads; and, the graph labeled (c) reflects a workload consisting of eight high-priority
threads and two low-priority ones.

If the ratio of high-priority threads to low-priority threads is relatively low (Figures 9-10 (a)(b)),
our hybrid implementation improves throughput for high-priority threads by 25% to 100% over the
unmodified implementation. Average elapsed-time gain across all the configurations, including those
where the number of high-priority threads is greater than the number of low-priority threads, is 78%.
If we discard the configuration where there are eight high-priority threads competing with only two
low-priority ones, the average elapsed time of a high-priority thread is half that of the reference
implementation.

Note that the influence of different read-write ratios on overall performance is small; recall that
all threads, regardless of their priority, log all updates within a synchronized block. This implies
that the cost of operations related to log maintenance and roll-back of partial results is also small,
compared to the elapsed time of the entire benchmark. Indeed, the actual “workload” (the contents
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Figure 9. Total time for high-priority threads, 100K iterations

0 20 40 60 80 100
Percent of writes (100% - percent of reads)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e 
of

 h
ig

h 
pr

io
rit

y 
th

re
ad

s MODIFIED
UNMODIFIED

(a) 2 high-priority, 8 low-priority

0 20 40 60 80 100
Percent of writes (100% - percent of reads)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e 
of

 h
ig

h 
pr

io
rit

y 
th

re
ad

s MODIFIED
UNMODIFIED

(b) 5 high-priority, 5 low-priority

0 20 40 60 80 100
Percent of writes (100% - percent of reads)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e 
of

 h
ig

h 
pr

io
rit

y 
th

re
ad

s MODIFIED
UNMODIFIED

(c) 8 high-priority, 2 low-priority

Figure 10. Total time for high-priority threads, 500K iterations

of the synchronized block) in the benchmark consists entirely of data access operations – no delays
(method calls, empty loops,etc) are inserted in order to artificially extend its execution time. Since
realistic programs are likely to have a more diverse mix of operations, the overheads would be even
smaller in practice.

As expected, if the number of write operations within a synchronized block is sufficiently large,
the overhead of logging and roll-backs may start outweighing potential benefit. For example, in
Figure 10(c), under a 100% write configuration, every high priority thread writes, and thus logs,
approximately 500K words of data in every execution of a synchronized block. We believe that
synchronized blocks that consist entirely of write operations of this magnitude are relatively rare.

As the ratio of high-priority threads to low-priority threads increases, the benefit of our strategy
diminishes (see Figures 9(c) and 10(c)). This is expected: since there are relatively fewer low-priority
threads in the system, there is less opportunity to “steal” cycles from them to improve throughput
of higher priority ones. We note, however, that even when theroll-back-enabled VM has weaker
performance than the unmodified implementation, the average difference in execution time is only
a few percent.

Figures 11 and 12 plot overall elapsed times for the entire application executed on both modified
(solid line) and unmodified (dotted line) VMs. These graphs are also normalized with respect to a
configuration executing 100% reads on the unmodified VM. Notethat the overall elapsed time for
the modified VM must always be longer than for the unmodified VM. If we disallowed revocability
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Figure 11. Overall time, 100K iterations
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Figure 12. Overall time, 500K iterations

of synchronized blocks, threads executing on both VMs wouldneed exactly the same amount of
time to execute their workloads (modulo costs related to theimplementation of our mechanisms for
the modified VM such as barriers, log maintenance,etc). However, if the execution of synchronized
blocks can be interrupted and revoked, low-priority threads executing on the modified VM will re-
execute parts of their synchronized blocks, thus lengthening overall elapsed time. Since our focus is
on lowering elapsed times for high priority threads, we consider the impact on overall elapsed time
(on average 30% higher on the modified VM) to be acceptable. Ifour mechanism is used to resolve
deadlocks then these overheads may be an even more acceptable price to pay to obtain progress by
breaking deadlocks.

6. Transactional monitors: Overview

Revocable monitors solve one class of problems related to writing concurrent programs, but because of
the compliance requirement with respect to Java’s execution semantics and memory model they are still
required to use mutual exclusion as an underlying synchronization mechanism. As a result, the degree
of concurrency achievable in the concurrent (parallel) setting is still severely limited. Transactional
monitors are an attempt to ease that restriction.
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T T ′

monitored(account_monitor) {
b1 = checking.getBalance();
b2 = savings.getBalance();
print(b1 + b2);

}

monitored(account_monitor) {
checking.withdraw(amount);
savings.deposit(amount);

}

Figure 13. Bank account example

Unlike Java monitors implemented using mutual exclusion locks, which make threads acquire a
given monitor serially, transactional monitors require only that threadsappearto acquire the monitor
serially. Transactional monitors permit concurrent execution within the monitor so long as the effects of
the resulting schedule areserializable: the effects of concurrent execution of the monitor are equivalent
to somelegal serial schedule that would arise if no interleaving ofthe actions of different threads
occurred within the guarded region. The executions are equivalent if they produce the same observable
behavior; that is, all threads at any point during their execution observe the same state of the shared
data. Thus, while transactional monitors and mutual-exclusion monitors have very similar execution
semantics, transactional monitors permit a higher degree of concurrency.

Consider the code sample shown in Figure 13. ThreadT computes the total balance of both checking
and savings accounts. ThreadT ′ transfers money between these accounts. Both account operations
(balance and transfer) are guarded by the sameaccount_monitor – the code region guarded by the
monitor is delimited by curly braces following themonitored statement. If the account operations
were unguarded then concurrent execution of these operations could potentially yield an incorrect
result: the total balance computed after the withdrawal butbefore the deposit would not include the
amount withdrawn from the checking account. Ifaccount_monitor were a traditional mutual-
exclusion monitor, either threadT or T ′ would win a race to acquire the monitor and would execute
fully before releasing the monitor; regardless of the orderin which they execute, the total balance
computed by threadT would be correct (it would in fact be the same in both cases).

If account_monitor is a transactional monitor, two scenarios are possible, depending on the
interleaving of the statements implementing the account operations. The interleaving presented in
Figure 14 results in both threads successfully completing their executions – it preserves serializability
sinceT ′’s withdrawal from the checking account does not compromiseT ’s read from the savings
account. This interleaving is equivalent to a serial execution in whichT executes beforeT ′.

The interleaving presented in Figure 15 results in an incorrect execution (with respect to the
serializability requirement): threadT reads an inconsistent state. Serializability is enforced by
automatically re-executing the guarded region of threadT.

These examples illustrate several issues in formulating animplementation of transactional monitors.
Threads executing within a transactional monitor must execute in isolation, and their view of shared
data on exit from the monitor must beconsistentwith their view upon entry. Isolation and consistency
imply that shared state appears unchanged by other threads.A thread executing in a monitor cannot
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T T ′

(1) checking.getBalance
(2) checking.withdraw
(3) savings.getBalance
(4) savings.deposit

Figure 14. Serializable execution

T T ′

(1) checking.withdraw
(2) checking.getBalance
(3) savings.getBalance
(4) savings.deposit

Figure 15. Non-serializable execution

see the updates to shared state by other threads. Transactional monitor implementations must permit
threads to detect state changes that violate isolation and to roll back automatically (and transparently),
restarting their execution in response to such violations.

In Figure 15, the execution of threadT is not isolated from the execution of threadT ′ since thread
T sees the effects of the withdrawal but does not see the effects of the deposit. Thus,T is obliged
to re-execute its operations. In general, a thread may end upbeing re-executed at any time within a
transactional monitor. To ensure that partial results of a computation performed by a thread do not
affect the execution of other threads, the execution of any monitored region must beatomic: either the
effects of all operations performed within the monitor become visible to other threads upon successful
commit or they are all discarded upon abort. The semantics oftransactional monitors thus comprise the
ACI (atomicity, consistency, andisolation) properties of a classical ACID transaction model [21], and
their realization may be viewed as adapting optimistic concurrency control protocols [29] to concurrent
object-oriented languages.

The properties of transactional monitors described here are enforced only between threads executing
within the same monitor; no guarantees are provided for threads executing within different transactional
monitors, nor for threads executing outside of any transactional monitor. These properties result in
semantics similar to those of Java’s mutual-exclusion monitors. Accesses to data shared by different
threads are synchronized only if they acquire the same monitor.
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7. Transactional monitors: Design

Our approach to managing concurrency in the case of transactional monitors is even closer in spirit
to that of traditional optimistic concurrency techniques [29] than in the case of revocable monitors.
Transactional monitors maintain serializability by tracking all accesses to shared data performed during
the read phase within a thread-specificlog . When a thread attempts to release a monitor on exit from a
guarded region, an attempt is made tocommitthe log. The commit operation has the effect of verifying
the consistency of shared data with respect to the information recorded in the log (ie, the validate
phase), andatomically performing all logged operations at once with respect to anyother commit
operation (ie, the write phase). If the shared data changes in such a way as to invalidate the log, the
monitored code region is re-executed, and the commit retried. A log is invalidated if committing its
changes would violate serializability of actions performed in the monitored region.

An alternative design might consider performing updates in-place (directly on shared data), and
reverting them using information from the log upon monitor revocation. However, using this technique
can lead tocascading revocations– since all threads that have seen updates of a thread being aborted
must be revoked as well – which may severely impact overall performance, or require a global per-
access locking protocol (eg, two-phase locking [21]) to prevent conflicting data accesses by different
threads. A significant disadvantage of using per-access locking is a potential for deadlocks to arise
between concurrently executing threads.

There are a number of important issues that arise in a formulating a semantics for transactional
monitors:

1. Transparency: The degree of programmer control and visibility of internal transaction machinery
influences the degree of flexibility provided by the abstraction, and the complexity of using it.
For example, if a programmer is given control over how shareddata accesses are tracked, objects
known to be immutable need not be logged when accessed.

2. Serializability Violation Detection: A thread executing within a guarded region may try to detect
serializability violation whenever a barrier is executed,or may defer detecting such violation
until a commit point (eg, monitor exit).

3. Nesting: Transaction models often allow transactions to nest freely [34], permitting division of
any transaction into some number of sub-transactions. In the presence of nesting, a transactional
monitor semantics must define rules on visibility of updatesmade by sub-transactions.

We motivate our design decisions with respect to the issues above. One of the most important
principles underlying our design is transparency of the transactional monitors mechanism: an
application programmer should not be concerned with how monitors are represented, nor with details of
the logging mechanism, abort or commit operations. After marking a region of code at source level as
guarded by a given transactional monitor, a programmer can simply rely on the underlying compiler and
run-time system to ensure transactional execution of the region (satisfying the properties of atomicity,
consistency, and isolation).

The decision aboutwhena thread should attempt to detect serializability violations is strongly
dependent on the cost of detection and may vary from one implementation of transactional monitors
to another. When choosing the most appropriate point for detecting serializability violations, we must
consider the trade-off between reducing the overall cost ofchecking any serializability invariant (once
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if performed on exit from the monitor, or potentially multiple times if performed within access barriers),
and reducing the amount of computation performed by a threadthat may eventually abort.

Modularity principles dictate that our design support nested transactional monitors. A given monitor
region may contain a number of child monitors. Because monitors are released from the bottom up,
child monitors must always release before their parent. Thus, a child monitor will re-execute (as
needed) until it can be (successfully) released. The updates of child monitors are visible upon release
only within the scope of their parent (and, upon release of the outermost monitor, are propagated to the
shared space). Updates performed by a parent monitor are always visible to the child.

8. Transactional monitors: Implementation

An implementation that directly reflects the concept behindtransactional monitors would redirect all
shared data accesses performed by a thread within a transactional monitor to a thread-local log. When
an object is first accessed, the accessing thread records itscurrent value in the log and refers to it
for all subsequent operations. Serializability violations would be detected by traversing the log and
comparing values of objects recorded in the log with those ofthe original. The effectiveness of this
scheme depends on a number of different parameters all of which are influenced by the data access
patterns that occur within the application:

• expected contention (or concurrency) at monitor entry points;
• the number of shared objects (both read and written) accessed per-thread;
• the percentage of operations that occur within a transactional monitor that are benign with respect

to shared data accesses (method calls, local variable computation, type castsetc)

Because the generic implementation is not biased toward anyof these parameters, it is not clear
how effectively it would perform under widely varying application conditions. Therefore, we consider
implementations of transactional monitors optimized towards different shared data access patterns,
informally described as low-contention and high-contention.

Both optimized implementations must provide a solution to logging, commit, and abort actions.
These actions can be broadly classified under the following categories:

1. Initialization: When a transactional monitor is entered, actions to initialize logs,etc, may have
to be taken by threads before they are allowed to enter the monitor.

2. Read and Write Operations: Barriers define the actions to be taken when a thread performs a
read or write to an object when executing within a transactional monitor.

3. Conflict Detection: Conflict detection determines whether the execution of a region guarded by
a given monitor is serializable with respect to the concurrent execution of other regions guarded
by the same monitor and it is safe to commit changes to shared data made by a thread.

4. Commitment: If there are no conflicts, changes to the original objects must be committed
atomically; otherwise the guarded region must be re-executed.

Our current implementation does not yet include support fornested transactions. While nesting
adds complications, there are no inherent difficulties in supporting them [33]. Chiefly, the optimistic
techniques described below require distinct versions (where used) to be maintained for each
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transactional monitor, and for those versions to be appliedon commit of each (nested) transactional
monitor.

The low-contention scheme and the high-contention scheme both use the same mechanism to
perform automatic re-execution. It is very similar to the roll-back mechanism for revocable monitors,
except for the following differences:

• The Rollback exception scope wraps a transactional monitor instead of a Java-style
synchronized block.

• Implementation of the data access barriers and of the log maintenance algorithm depend on the
particular scheme (and are different than for revocable monitors).

• Implementation of the re-execution mechanism is simplifiedsince the current implementation of
transactional monitors does not support nesting.

As for revocable monitors, our implementation of transactional monitors is based on IBM’s Jikes
Research Virtual Machine.

8.1. Low-contention concurrency

Conceptually, transactional monitors use thread-local logs to record updates and install these updates
into the original (shared) objects when a thread commits. However, if the contention on shared data
accesses is low, the log is superfluous. If the number of objects concurrently written by different threads
executing within the same monitor is small and the number of threads performing concurrent writes is
also small,∗ then reads and writes can operate directly over the originaldata. To preserve correctness, an
implementation must still prevent multiple non-serializable writes to objects and must disallow readers
from seeing partial or inconsistent updates to objects performed by the writers.

To address these concerns, we devise a low-contention implementation that stores the following
information in each transactional monitor object:

• writer: the thread currently executing within the monitor that hasperformed writes to objects
guarded by the monitor;

• thread count: the number of threads concurrently executing within the monitor.

In this scheme, we permit only one thread executing within the monitor to perform writes to objects.
Before entering a monitor, a thread must check that no writerthread is present in the monitor. Before
writing to an object, a thread must ensure it is the exclusivewriter.

8.1.1. Initialization

A thread attempting to enter the monitor must first check whether there is any active writer within the
monitor. If there is no active writer, the thread can freely proceed after incrementing the thread count.
Otherwise, shared data is not guaranteed to be in a consistent state, and the entering thread must wait
until the writing thread exits the monitor. This guaranteesserializability of guarded execution.

∗An example of a low-contention scenario might be multiple mostly read-only threads traversing a tree-like structure or
accessing a hash-table.
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8.1.2. Read and write barriers

Because there are no object copies or logs, there are no read barriers; threads read values from the
original shared objects. Write barriers are necessary to ensure that no other thread has performed writes
within the monitor. A write to a shared object can occur if anyone of the following conditions holds:

• The writer field in the monitor object is nil, indicating no other writers are executing within the
monitor. In this case, the current thread atomically sets the writer field and executes the write.

• The writer field in the monitor points to the current thread. This implies that the current thread
has previously written to an object within the monitor. The current write can proceed.

If either condition does not hold then the thread must roll back and re-execute the monitor.

8.1.3. Conflict detection

In order for the shared data operations of a thread exiting the monitor to be consistent and serializable
with respect to other threads, there must have been no other writers within the monitor besides the
exiting thread. This is guaranteed by exclusion of other threads from entering monitors in which a
writer exists, and by the write barrier which revokes threads that try to write when a writer already
exists. So long as there has been no concurrent writer withinthe monitor, actions of read-only threads
are trivially serializable. Thus, read-only threads simply check this condition on monitor exit.

8.1.4. Monitor exit

All threads decrement the monitor thread count on exit from the monitor. The last thread to leave the
monitor (ie, when the thread count reaches zero) clears the monitor writer field. Read-only threads
successfully exit the monitor only when the writer field is nil. A writer thread always succeeds in
exiting the monitor, since its writes have been validated bythe write barrier at the time they occurred.
Since there are no copies or logs, all updates are immediately visible in the original object.

The actions performed by the low-contention scheme executing the account example from Figure 13
are illustrated in Figure 16, where wavy lines represent threadsT andT ′, circles represent objects
c (checking account) ands (savings account), and updated objects are marked grey. Thelarge box
represents the dynamic scope of a common transactional monitor accountmonitor guarding code
regions executed by the threads and small boxes represent the additional information associated with
the monitor: the writer field (initially nil) and the thread count (initially 0). In Figure 16(a) thread
T ′ is about to enter the monitor, which it does in Figure 16(b) incrementing the thread count. In
Figure 16(c) threadT also enters the monitor and increments the thread count. In Figure 16(d) thread
T ′ updates objectc and sets the writer to itself. Subsequently threadT reads objectc (Figure 16(e)),
threadT ′ updates objects and exits the monitor (Figure 16(f)) (no conflicts are detected since there
were no intervening writes on behalf of other threads executing within the monitor). The thread count
is decremented but the writer cannot be reset since threadT is still executing within the monitor. In
Figure 16(g) threadT reads objectsand attempts to exit the monitor, but the writer field still points to
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Figure 16. Low contention scheme example

threadT ′ indicating a potential conflict∗ – the guarded region of threadT must be re-executed. Since
threadT is the last one to exit the monitor, in addition to decrementing the thread count it also resets
the writer field (Figure 16(h)).

8.2. High-contention concurrency

When there is even moderate contention for shared data, the previous strategy is unlikely to perform
well because attempts to execute multiple writes, even to distinct objects, may result in conflicts and

∗This example is based on an interleaving of operations wherethe conflict really exists (ie, serializability is violated).
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aborting all but one of the writers. A realistic example scenario in which contention becomes apparent
is multiple threads traversing disjoint sub-trees of a tree-like structure or accessing different buckets
in a hash-table. We can avoid being penalized for contentionby permitting threads to manipulate
copiesof shared objects, committing their changes only when they do not conflict with the actions of
other threads. This implementation is closer to the conceptual idea underlying transactional monitors:
updates and accesses performed by a thread are tracked within a log, and committed only when the
actions of one thread with respect to actions of other threads executing under the same guard respect
serializability. Since applications tend to perform a lot more reads than writes, we decided to use
a copy-on-write strategy (instead of creating copies on both reads and writes) to reduce the cost of
read operations (trading this lower overhead for potentialloss of precision in detecting serializability
violations).

The high-contention scheme maintains the following information in each monitor:

• global write map: identifies the objects written by all threads executing within the monitor. This
map is implemented as a bit-map with a bit being set for every modified object. The mapping is
many-to-one with multiple objects possibly hashing to the same bit;

• thread count: the number of threads concurrently executing within the monitor.

The monitor object also contains information about whetherany thread executing within a monitor has
already managed to commit its updates. The global write map and thread count can be combined into
one data structure to simplify access to it.

In addition to the data stored in the monitor object, the header of every object holds the following
information:

• copies: a circular list of the object’s copies, created by the different threads executing within
transactional monitors (the original object is the head of the list).

• writer: each copy holds a reference to the threadT that created it.

Each thread also holds the following (thread-local) information:

• local writes: a list of object copies created by the thread when executingwithin the current
transactional monitor;

• local read map: a local bit-map, implemented similarly to the global writemap, which identifies
those objects read by the thread within the current monitor.

• local write map: identifies the objects written by a given thread when executing within the current
monitor.

8.2.1. Initialization

The first thread attempting to enter a monitor initializes the monitor by clearing the global write map
and setting the thread counter to one. Any subsequent threadentering the monitor simply increments
the thread counter, and is immediately allowed to enter the monitor provided that no thread has yet
committed its updates. If updates have already been installed, the remaining threads still executing
within the monitor are allowed to continue their execution,but no further threads are allowed to
enter the monitor. We do this so as to avoid accumulating spurious conflicts due to threads that have
successfully exited the monitor after having performed writes. Otherwise out-dated global write map
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information about updates performed within the monitor might be retained for an indefinite time, and
newly-entering threads would abort without reason. By preventing threads from entering the monitor
once updates have been installed we allow the remaining threads to complete and the last one out will
clear the global write map. Each thread entering a monitor must also clear its local data structures.

8.2.2. Read and write barriers

The barriers implement a copy-on-write semantics. The following actions are taken before writing to
an object:

• If the bit representing the object in the local write map is clear (ie, the current thread has not
yet written to this object), then a copy of the original object is created and threaded onto its per-
object copy chain, and onto the list of copies for this thread. The object’s bit in the local write
map is set, and the write is redirected to the copy.

• If the bit representing the object in the local write map is set, then the current thread may already
have a copy of this object (the mapping is imprecise). The copy is located by traversing the list
of copies to find the one created by the current thread; if a copy is not found, one is created. The
write is redirected to the copy and the local write map is set.

The following actions are taken before reading an object:

• If the bit representing the object in the local write map is clear (ie, the current thread has not yet
written to this object), the local read map is first set, before the original object is read.

• If the bit representing the object in the local write map is set, then the corresponding copy is
located (as above). If a copy exists, the read is performed against the copy, otherwise the original
object is read; in both cases the local read map is set.

8.2.3. Conflict detection

Before a thread can exit a monitor, conflict detection checksif the global write map and the thread’s
local read map are disjoint. If they are disjoint then no reads by the current thread could have been
interleaved with committed writes of other threads within the monitor, so the thread proceeds to exit
the monitor. If the maps intersect then a potentially harmful interleaving may have occurred that may
violate serializability; in this case, the exiting thread must abort and re-execute the monitored region.
Only if the thread passes the test for conflicts can it proceedto exit the monitor, as follows.

8.2.4. Monitor exit

Having passed the test for possible conflicts, the thread proceeds to commit its updates atomically
before exiting the monitor. The updated contents of each copy are installed in the original object, and
the local write map is merged into the global write map to reflect the writes performed by the exiting
thread. The copies are discarded from their circular copy list. The monitor thread count is decremented,
and the per-monitor state is cleared if the counter reaches zero (there are no longer threads active within
the monitor).

The actions performed in this scheme executing the account example from Figure 13 are illustrated in
Figure 17, where wavy lines represent threadsT andT ′, circles represent objectsc (checking account)
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Figure 17. High contention scheme example

ands (saving account), and updated objects are marked grey. The box represents the dynamic scope of
a common transactional monitoraccountmonitorguarding code regions executed by the threads. Both
the global write map (GW) associated with the monitor and the local maps (write mapLW and read map
LR) associated with each thread have three slots. Local maps above the wavy line representing thread
T ′ belong toT ′ and local maps below the wavy line representing threadT belong toT. In Figure 17(a)
threadT ′ is about to enter the monitor, which it does in Figure 17(b), modifying objectc. Objectc
is greyed and information about the update is reflected in thelocal write map ofT ′ (we assume that
objectc hashes into the second slot of the map). In Figure 17(c) thread T enters the same monitor and
reads objectc (the read operation gets reflected in the local read map ofT). In Figure 17(d) threadT ′

modifies objects, objects is greyed and the update also is reflected inT ′’s local write map (we assume
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that objectshashes into the third slot of the map). In Figure 17(e) threadT ′ exits the monitor. Since no
conflicts are detected (there were no intervening writes on behalf of other threads executing within the
monitor),T ′ installs its updates, modifies the global write map to reflectupdates performed within the
guarded region and clears its local maps. ThreadT subsequently reads objects marking its local read
map (Fig 17(f)) and attempts to exit the monitor (Figure 17(g)). In the case of threadT however its
local read map and the global write map overlap indicating a potential conflict∗ – the guarded region
of threadT must be re-executed (Figure 17(h)). Since threadT is the last thread to exit the monitor, in
addition to clearing its local maps, it also cleans up the monitor by clearing the global write map.

8.3. Java-specific issues

Realizing transactional monitors for Java requires reconciling their implementation with Java-specific
features such as native method calls and existing thread synchronization mechanisms (including the
wait/notify primitives). We now elaborate on these issues.

8.3.1. Native methods

In general, the effects of executing a native method cannot be undone. Thus, we disallow execution of
native methods within regions guarded by transactional monitors. However, it is possible to relax this
restriction in certain cases. For example, if the effects ofexecuting a native method do not affect the
shared state (eg, a call to obtain the current system time), it can safely be performed within a guarded
region. It may also be possible to provide compensation codeto be invoked when a transaction aborts
that will revert the effects of native method calls executedwithin the aborting transaction. However, our
current implementation does not provide such functionality. Instead, when a native method call occurs
inside the dynamic context protected by a transactional monitor, a commit operation is attempted for
the updates performed up to that point. If the commit fails, then the monitor re-executes, discarding all
its updates. If the commit succeeds, the updates are retained, and execution reverts to mutual-exclusion
semantics: a conventional mutual-exclusion lock is acquired for the remainder of the monitor. Any
other thread that attempts to commit its changes while the lock is held must abort. Any thread that
attempts to enter the monitor while the lock is held must wait.

8.3.2. Existing synchronization mechanisms

Double guarding a code fragment with both a transactional monitor and a mutual-exclusion
monitor (the latter expressed using Java’ssynchronized keyword) does not strengthen existing
serializability guarantees. Indeed, code protected in such a manner will behave correctly. However,
the visibility rule for mutual-exclusion monitors embedded within a transactional monitor will change
with respect to the original Java memory model: all updates performed within a region guarded by a
mutual-exclusion monitor become visible only upon commit of the transactional monitor guarding that
region.

∗This example is also based on an interleaving of operations where the conflict really exists (ie, serializability invariants are
violated).
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8.3.3. Wait-notify

We allow invocation ofwait andnotify methods inside of a region guarded by a transactional
monitor, provided that they are also guarded by a mutual-exclusion monitor (and invoked on the
object representing that mutual-exclusion monitor). Thisrequirement is identical to the original
Java execution semantics – a thread invoking wait or notify must hold the corresponding monitor.
Invokingwait releases the corresponding mutual-exclusion monitor and the current thread waits for
notification, but updates performed so far do not become visible until the thread resumes and exits
the transactional monitor. Invokingnotify postpones the effects of notification until exit from the
transactional monitor. That is, notification modifies the shared state of a program and is therefore
subject to the same visibility rules as other shared updates.

9. Transactional monitors: Experiments

To evaluate the performance of the prototype implementation, we use and extend the multi-threaded
version of the OO7 object operations benchmark [14], originally developed in the database community.
Our incarnation of OO7 uses modified traversal routines to allow parameterization of synchronization
and concurrency behavior. We have selected this benchmark because it provides a great deal of
flexibility in the choice of run-time parameters (eg, percentage of reads and writes to shared data
performed by the application) and extended it to allow control over placement of synchronization
primitives and the amount of contention on data access. Whenchoosing OO7 for our measurements,
our goal was to accurately gauge various trade-offs inherent with different implementations of
transactional monitors, rather than emulating workloads of selected potential applications. Thus, we
believe the benchmark captures essential features of scalable concurrent programs that can be used to
quantify the impact of the design decisions underlying a transactional monitor implementation.

9.1. The OO7 benchmark

The OO7 benchmark suite [14] provides a great deal of flexibility for benchmark parameters (eg,
database structure, fractions of reads/writes to shared/private data). The multi-user OO7 benchmark
[13] allows control over the degree of contention for accessto shared data. By varying these parameters
we are able to characterize the performance of transactional monitors over a mixed range of workloads.

The OO7 benchmarks operate on a synthetic design database, consisting of a set ofcomposite parts.
Each composite part comprises a graph ofatomic parts, and adocument object containing a small
amount of text. Each atomic part has a set of attributes (ie, fields), and is connected via a bi-directional
association to several other atomic parts. The connectionsare implemented by interposing a separate
connection object between each pair of connected atomic parts. Composite parts are arranged in an
assemblyhierarchy; each assembly is either made up of composite parts (abaseassembly) or other
assemblies (acomplexassembly). Each assembly hierarchy is called amodule, and has an associated
manualobject consisting of a large amount of text. Our results are all obtained with an OO7 database
configured as in Table I.

Our implementation of OO7 conforms to the standard OO7 database specification. Our traversals
are a modified version of the multi-user OO7 traversals. A traversal chooses a single path through the
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Table I. Component organization of the OO7 benchmark

Component Number

Modules 1
Assembly levels 7
Subassemblies per complex assembly 3
Composite parts per assembly 3
Composite parts per module 500
Atomic parts per composite part 20
Connections per atomic part 3
Document size (bytes) 2000
Manual size (bytes) 100000

assembly hierarchy and at the composite part level randomlychooses a fixed number of composite
parts to visit (the number of composite parts to be visited during a single traversal is a configurable
parameter). When the traversal reaches the composite part,it has two choices:

1. Do aread-onlydepth-first traversal of the atomic part subgraph associated with that composite
part; or

2. Do aread-writedepth-first traversal of the associated atomic part subgraph, swapping thex and
y coordinates of each atomic part as it is visited.

Each traversal can be done beginning with either aprivatemodule or asharedmodule. The parameter’s
of the workload control the mix of these four basic operations: read/write and private/shared. To
foster some degree of interesting interleaving and contention in the case of concurrent execution, our
traversals also take a parameter that allows extra overheadto be added to read operations to increase
the time spent performing traversals.

Our experiments here use traversals that always operate on the shared module, since we are
interested in the effects of contention on performance of transactional monitors. Our implementation of
OO7 conforms to the standard OO7 database specification. Ourtraversals differ from the original OO7
traversals in allowing multiple composite parts to be visited during a single traversal rather than just
one as in the original specification, and adding a parameter that controls entry to monitors at varying
levels of the database hierarchy.

9.2. Measurements

Our measurements were obtained on an eight-way 700MHz IntelPentium III with 2GB of RAM
running Linux kernel version 2.4.20-20.9 (RedHat 9.0) in single-user mode. We ran each benchmark
configuration in its own invocation of RVM, repeating the benchmark six times in each invocation, and
discarding the results of the first iteration, in which the benchmark classes are loaded and compiled, to
eliminate the overheads of compilation.

When running the benchmarks we varied the following parameters:

• number of threads competing for shared data access along with the number of processors
executing the threads: we ranP∗8 threads (whereP is the number of processors) forP= 1,2,4,8.
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• ratio of shared reads to shared writes: from 10% shared readsand 90% shared writes (mostly
read-only guarded regions) to 90% shared reads and 10% shared writes (mostly write-only
guarded regions).

• level of the assembly hierarchy at which monitors were entered: level one (module level), level
three (second layer of composite parts) and level six (fifth layer of composite parts). Varying the
level at which monitors are entered models different locking granularities from coarse-grained
(ie, module) through to fine-grained (ie, composite part).

Every thread performs 1000 traversals (enters 1000 guardedregions) and visits 2M atomic parts during
each iteration.

9.3. Results

The expected behavior for transactional monitor implementations optimized for low-contention
applications is one in which performance is maximized when contention on guarded shared data
accesses is low, for example, if most operations in guarded regions are reads. The expected behavior
for transactional monitor implementations optimized for high-contention applications is one in
which performance is maximized when contention on guarded shared data accesses is moderate,
the operations protected by the monitor contain a mix of reads and writes, and concurrently
executing threads do not often attempt concurrent updates of the sameobject. Potential performance
improvements over a mutual-exclusion implementation arise from the improved scalability that should
be observable when executing on multi-processor platforms.

Our experimental results confirm these hypotheses. Contention on shared data accesses depends on
the number of updates performed within guarded regions combined with the amount of contention
on entering monitors.∗ Figure 18 plots execution time for 64 threads running on 8 processors for the
high-contention scheme (Figure 18(a)) and low-contentionscheme (Figure 18(b) normalized to the
execution time for standard mutual-exclusion monitors,† while varying the ratio of shared reads and
writes and the level at which monitors are entered. It is important to note that only monitor entries
at levels one and three create any reasonable contention on shared data accesses – at level six the
probability of two threads concurrently entering the same monitor is very low (thus no performance
benefit can be expected). In Figure 18(a) we see the high-contention scheme outperforming mutual-
exclusion monitors forall configurations when monitors are entered at level one. When monitors
are entered at level three, the high-contention scheme outperforms mutual-exclusion monitors for the
configurations where write operations constitute 70% of alldata operations. For larger write ratios, the
number of aborts and the number of copies created during guarded execution overcome any potential
benefit from increased concurrency.

The low-contention scheme’s performance is illustrated inFigure 18(b): it outperforms mutual-
exclusion monitors for configurations where write operations constitute 30% of all data operations
(low contention on shared data accesses). The total number of aborts across all iterations for both

∗Threads contend on entering a monitor only if they enter thesamemonitor.
†To obtain results for the mutual-exclusion case we used an unmodified version of Jikes RVM (no compiler or run-time

modifications). Figures reporting execution times show 90%confidence intervals in our results.
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(b) low-contention

Figure 18. Normalized execution time for 64 threads runningon 8 processors
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Figure 19. Total aborts for 64 threads running on 8 processors
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Figure 20. Total copies created for 64 threads running on 8 processors
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Figure 21. Normalized execution times – monitor entries at level 1
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Figure 22. Normalized execution times – monitor entries at level 3
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Figure 23. Normalized execution times – monitor entries at level 6
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Figure 24. Total aborts – monitor entries at level 1
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Figure 25. Total aborts – monitor entries at level 3
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Figure 26. Total aborts – monitor entries at level 6
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Figure 27. Total copies

high-contention scheme and low-contention scheme appearsin Figure 19. The total number of copies
created across all iterations for the high-contention scheme appears in Figure 20. The remaining
graphs illustrate the scalability of both schemes by plotting normalized execution times for the
high-contention scheme (Figures 21(a)-23(a)) and low-contention scheme (Figures 21(b)-23(b)) when
varying the number of threads (and processors) for monitor entries placed at levels one, three, and
six (Figures 21-23, respectively), along with the information concerning number of aborts and copies
created (Figures 24-26 and Figure 27(a)-27(c), respectively).

We observe that the reduced performance of the low contention scheme for higher shared write ratios
is caused almost exclusively∗ by an increase in the number of aborts (graphs reporting number of aborts

∗The run-time overheads of the low contention scheme are low:no logging and no read barriers. As a result performance
of this scheme in the case when there is almost no contention on entering monitors is only slightly worse than that of the
mutual-exclusion monitors (Figure 23(b)).
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are plotted on a logarithmic scale)(Figures 24(b) and (Figures 25(b)). It is a direct result of a degree of
imprecision in detecting serializability violations. Note however, that the low contention scheme has
been specifically designed to perform well only when executing workloads when concurrent writes are
infrequent and as such has exactly met our expectations. Conversely, the high contention scheme has
higher run-time costs and therefore its performance is reduced when there is not enough opportunity for
increased concurrency (Figures 21(a)-23(a) – 8 threads executing on 1 CPU), even though the number
of aborts is in these cases relatively low (Figures 24-26(a)).

10. Related work

Our use of roll-backs to redo computation inside monitored regions is reminiscent of optimistic
concurrency protocols first introduced in the 1980’s [29] toimprove database performance. Given a
collection of transactions, the goal in an optimistic concurrency implementation is to ensure that only a
serializable schedule results [1, 24, 42]. Devising fast and efficient techniques to confirm that a schedule
is correct remains an important topic of study.

Several recent efforts explore alternatives to lock-basedconcurrent programming. Harriset al [22]
introduce a new synchronization construct to Java calledatomic that is superficially similar to our
transactional monitors. The idea behind the atomic construct is that logically only one thread appears
to executeanyatomic block at a time. However, it is unclear how to translate their abstract semantic
definition into a practical implementation. For example, a complex data structure enclosed within
atomic is subject to a costlyvalidation check, even though operations on the structure may occur
on separate disjoint parts. We regard our work as a significant extension and refinement of their
approach, especially with respect to understanding implementation issues related to the effectiveness
of new concurrency abstractions on realistic multi-threaded applications. Thus, we focus on a detailed
quantitative study to measure the cost of logging, commits,aborts,etc; we regard such an exercise as
critical to validate the utility of these higher-level abstractions on scalable platforms.

Lock-free data structures [38, 28] and transactional memory [26, 41] are also closely related to
transactional monitors. Herlihyet al [25] present a solution closest in spirit to transactional monitors.
They introduce a form of software transactional memory thatallows for the implementation of
obstruction-free(a weaker incarnation of lock-free) data structures. However, because shared data
accesses performed in a transactional context are limited to statically pre-definedtransactional objects,
their solution is less general than the dynamic protection afforded by transactional monitors. Moreover,
the overheads of their implementation are also unclear. They compare the performance of operations on
an obstruction-free red-black tree only with respect to other lock-free implementations of the same data
structure, disregarding potential competition from a carefully crafted implementation using mutual-
exclusion locks. The notion of transactional lock removal proposed by Rajwar and Goodman [38] also
shares similar goals with our work, but their implementation relies on hardware support.

Recently, Pizloet al [37] proposed a transactions-based solution to resolving priority inversion in
the context of the Real-Time Specification for Java (RTSJ). They extended RTSJ with a notion of
transactional lock-free (TLF) objects whose methods can bedesignated as atomic and run under the
protection of lightweight transactions (currently only one thread is allowed to execute a given method
at a time). The basic idea underlying their solution is similar to that of revocable monitors – a low
priority thread executing an atomic method can be interrupted and revoked by a higher priority thread.
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However, their major focus is on providing real-time guarantees for transactional execution, such as
bounding the space consumed by transaction logs, while our emphasis is improving throughput of
high-priority threads in a semantically transparent way.

Rinard [39] describes experimental results using low-level optimistic concurrency primitives in the
context of an optimizing parallelizing compiler that generates parallel C++ programs from unannotated
serial C++ source. Unlike a general transaction facility ofthe kind described here, his optimistic
concurrency implementation does not ensure atomic commitment of multiple variables. Moreover in
contrast to a low-level facility, the code protected by transactional monitors may span an arbitrary
dynamic context. In similar vein, Harris and Fraser [23] propose another low-level mechanism called
revocable locks. A revocable lock is associated with a single heap location and, once acquired by a
thread, can be revoked by another thread attempting to access the same location by gaining ownership
of the same lock. The intended use of revocable locks is quitedifferent from that of higher level
synchronization mechanisms such as revocable monitors because they are meant to be used as a
building blockwithin implementations of such high-level abstractions.

There has been much recent interest in data race detection for Java. Some approaches [7, 8] present
new type systems using, for example, ownership types [17] toverify the absence of data races and
deadlock. Recent work on generalizing type systems allows reasoning about higher-level atomicity
properties of concurrent programs that subsumes data race detection [19, 18]. Other techniques [44]
employ static analyses such as escape analysis along with run-time instrumentation that meters accesses
to synchronized data. Transactional monitors share similar goals with these efforts but differ in
some important respects. In particular, our approach does not rely on global analysis, programmer
annotations, or alternative type systems. While it replaces lock-based implementations of synchronized
blocks, the set of schedules it allows is not identical to that supported by lock-based schemes. Indeed,
transactional monitors ensure preservation of atomicity and serializability properties in guarded regions
without enforcing a rigid schedule that prohibits benign concurrent access to shared data. In this
respect, they can be viewed as a starting point for an implementation that supports higher-level atomic
operations.

There have been several attempts to reduce locking overheadin Java. Agesenet al [2] and Bacon
et al [4] describe locking implementations for Java that attemptto optimize lock acquisition overhead
when there is no contention on a shared object. Transactional monitors obviate the need for a multi-
tiered locking algorithm by allowing multiple threads to execute simultaneously within guarded regions
provided that updates are serializable.

Finally, the formal specification of various flavors of transactions has received much attention
[31, 16, 21]. Blacket al [6] present a theory of transactions that specifies atomicity, isolation and
durability properties in the form of an equivalence relation on processes. Choithia and Duggan [15]
present the pik-calculus and pike-calculus as extensions of the pi-calculus that support abstractions
for distributed transactions and optimistic concurrency.Their work is related to other efforts [9]
that encode transaction-style semantics into the pi-calculus and its variants. The work of Busi,
Gorrieri and Zavattaro [10] and Busi and Zavattaro [12] formalize the semantics of JavaSpaces, a
transactional coordination language for Linda, and discuss the semantics of important extensions such
as leasing [11]. Berger and Honda [5] examine extensions to the pi-calculus to handle various forms
of distributed computation include aspects of transactional processing such as two-phase commit
protocols for handling commit actions in the presence of node failures. We have recently applied
the ideas presented here to define an optimistic concurrency(transaction-like) semantics for a Linda-
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like coordination language that addresses scalability limitations in these other approaches [27]. A
formalization of a general transaction semantics for programming languages expressive enough to
capture the behavior of transactional monitors is presented in [43].

11. Conclusions

We have presented a revocation-based priority inversion avoidance technique and demonstrated its
utility in improving throughput of high priority threads ina priority scheduling environment. The
solution proposed is relatively simple to implement, portable, and can be adopted to solve other types
of problems (eg, deadlocks). We have also introduced transactional monitors, a new synchronization
mechanism, alternative to mutual-exclusion. Transactional monitors preserve the semblance of serial
execution within monitored regions and are implemented as lightweight transactions that can be
executed concurrently. We have presented two different schemes tailored to different concurrent access
patterns and examined their performance and scalability. All the techniques we described use compiler
support to insert barriers to monitor accesses to shared data, and run-time modifications to implement
revocation.
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