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SUMMARY

This paper proposes two approaches to managing concurrendg Java using aguarded region abstraction.
Both approaches userevocation of such regions — the ability to undo their effects automatically
and transparently. These new techniques alleviate many ofhe constraints that inhibit construction
of transparently scalable and robust concurrent applicatons. The first solution, revocable monitors,
augments existing mutual exclusion monitors with the abiliy to resolve priority inversion and deadlock
dynamically, by reverting program execution to a consisteh state when such situations are detected,
while preserving Java semantics. The second techniqugansactional monitors, extends the functionality
of revocable monitors by implementing guarded regions as dihtweight transactions that can be executed
concurrently (or in parallel on multiprocessor platforms). The presentation includes discussion of design
and implementation issues for both schemes, as well as a digg¢a performance study to compare their
behavior with the traditional, state-of-the-art implementation of Java monitors based on mutual exclusion.
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1. Introduction

Managing complexity is a major challenge in constructingusi large-scale server applications
(such as database management systems, application saiéne reservation systemstd. In

a typical environment, large numbers of clients may accessraer application concurrently. To
provide satisfactory response time and throughput, agidics are often made concurrent. Thus, many
programming languageged Smalltalk, C++, ML, Modula-3, Java) provide mechanismet thnable
concurrent programming via a thread abstraction, withatisebeing the smallest unit of concurrent
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execution. Another key mechanism offered by these languiaghe notion ofuardedcode regions in
which accesses to shared data performed by one thredgbtatedfrom accesses performed by other
threads, and all updates performed by a thread within a gdaregion become visible to the other
threadsatomically;, once the executing thread exits the region. Guarded reg¢ggnlava synchronized
methods and blocks, Modulal30CK statements) are usually implemented using mutual-exatusi
locks.

In this paper, we explore two new approaches to concurreogramming, comparing their
performance against use of a state-of-the-art mutual sixeiumplementation that usekin locks
to minimize the overhead of locking [4]. Our discussion i®wgrded in the context of the Java
programming language, but is applicable to any languageffers the following mechanisms:

e Multithreading: concurrent threads of control executingrmobjects in a shared address space.

e Synchronized blocks: lexically-delimited blocks of codgyarded by dynamically-scoped
monitors (locks). Threads synchronize on a given monitoguaing it on entry to the block
and releasing it on exit. Only one thread may be perceiveckéoige within a synchronized
block at any time, ensuring exclusive access to all morgtotected blocks.

e Exception scopes: blocks of code in which an error condiian change the normal flow
of control of the active thread, by exiting active scopes] transferring control to a handler
associated with each block.

Difficulties arising in the use of mutual exclusion lockingtlw multiple threads are widely-
recognized, such aace conditionspriority inversionanddeadlock

Race conditionsre a serious issue for non-trivial concurrent programsaée rexists when two
threads can access the same object, and one of the acceasgstes To avoid races, programmers
must carefully construct their application to trade offfpemance and throughput (by maximizing
concurrent access to shared data) for correctness (byrgnibncurrent access when it could lead to
incorrect behavior), or rely on race detector tools thatiifigwhen races occur [7, 8, 18]. Recent work
has advocated higher-level safety properties such as atgiftr concurrent applications [19].

In languages with priority scheduling of threads, a lowspty thread may hold a lock even while
other threads, which may have higher priority, are waitmgdaquire itPriority inversionresults when
a low-priority threadT, holds a lock required by some high-priority threggiforcing the high-priority
Ty to wait until T; releases the lock. Even worse, an unbounded number of rlenmaliumpriority
threadsZy, may exist, thus preventinfy from running, making unbounded the time tiig{and hence
Th) must wait. Such situations can cause havoc in applicatidrere high-priority threads demand
some level of guaranteed throughput.

Deadlockresults when two or more threads are unable to proceed keeaah is waiting on a lock
held by another. Such a situation is easily constructedforthreadsT; andT,: Ty first acquires lock
L1 while T, acquired.,, thenT; tries to acquird., while T tries to acquird., resulting in deadlock.
Deadlocks may also result from a far more complex interactimong multiple threads and may stay
undetected until and beyond application deployment. Thigyato resolve a deadlock dynamically is
much more attractive than permanently stalling some sufssincurrent threads.

For real-world concurrent programs with complex module degdendency structures, it is difficult
to perform an exhaustive exploration of the space of paossifitkerleavings to determine statically
when races, deadlocks, or priority inversions may arise.sbgch applications, the ability to redress
undesirable interactions transparently among scheddé&aigions and lock managementis very useful.
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These observations inspire the first solution we prop@s@cable monitorsOur technique augments
existing mutual exclusion monitors with the ability to régo priority inversion dynamically (and
automatically). Some instances of deadlock may be resdiyeatvocation. However, we note that
deadlocks inherent to a program that are independent oflathg decisions will manifest themselves
aslivelockwhen revocation is used.

A second difficulty with using mutual exclusion to mediatéadaccesses among threads is ensuring
adequate performance when running on multi-processdiopias. To manipulate a complex shared
data structure like a tree or heap, applications must eithppse a global locking scheme on the
roots, or employ locks at lower-level nodes in the structlifee former strategy is simple, but reduces
realizable concurrency and may induce false exclusiorattie wishing to access a distinct piece of the
structure may nonetheless block while waiting for anothezad that is accessing an unrelated piece
of the structure. The latter approach permits multipledlssto access the structure simultaneously,
but incurs implementation complexity, and requires morenmy to hold the necessary lock state.

Our solution to this problem is an alternative to lock-bagedtual exclusion:transactional
monitors These extend the functionality of revocable monitors bplementing guarded regions as
lightweight transactions that can be executed concuyréntiin parallel on multiprocessor platforms).
Transactional monitors define the following data visigilpproperty that preserves isolation and
atomicity invariants on shared data protected by the manitlb updates to objects guarded by a
transactional monitor become visible to other threads onlsuccessful completion of the monitor
transactiorf. Because transactional monitors impose serializabiliaiimnts on the regions they
protect (e, preserve the appearance of serial execution), they canrbdlice race conditions by
allowing programmers to more aggressively guard code nagfioat may access shared daithout
paying a significant performance penalty. Since the systgnamically records and redresses state
violations (by revoking the effects of the transaction wlseserializability violation is detected),
programmers are relieved from the burden of having to determvhen mutual exclusion can safely
be relaxed. Thus, programmers can afford to over-specifg cegions that must be guarded, provided
the implementation can relax such over-specification gafetl efficiently whenever possible.

While revocable monitors and transactional monitors retysamilar mechanisms, and can exist
side-by-side in the same virtual machine, their semanticsiatended utility are quite different. We
expect revocable monitors to be used primarily to resolagltbek as well as to improve throughput for
high-priority threads by transparently averting priofityersion. In contrast, we envision transactional
monitors as an entirely new synchronization framework #ddresses the performance impact of
classical mutual exclusion while simplifying concurrenbgramming.

We examine the performance and scalability of these diffexpproaches in the context of a state-of-
the-art Java compiler and virtual machine, namely the Je=earch Virtual Machine (RVM) [3] from
IBM. Jikes RVM is an ideal platform to compare our solutiorigwmpure lock-based mutual exclusion,
since it already uses sophisticated strategies to minitheeverhead of traditional mutual-exclusion
locks [4]. A detailed evaluation in this context providessmaurate depiction of the tradeoffs embodied
and benefits obtained using the solutions we propose.

*A slightly weaker visibility property is present in Java fapdates performed within a synchronized block (or method);
these arguaranteedo be visible to other threads only upon exit from the block.
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TI Th Tm
synchroni zed(non) { foo();
ol. f ++;
02. f ++;
bar ();

Figure 1. Priority inversion

2. Revocable monitors: Overview

There are several ways to remedy erroneous or undesiraidwibe in concurrent programs. Static
techniques can sometimes identify erroneous conditiditayiag programmers to restructure their
application appropriately. When static techniques aredsible, dynamic techniques can be used both
to identify problems and remedy them when possible. Saistio priority inversion such as tipeiority
ceiling andpriority inheritanceprotocols [40] are good examples of such dynamic solutions.

Priority ceiling and priority inheritance solve ambounded priority inversioproblem, illustrated
using the code fragment in Figure 1 (b&khand Ty, execute the same code and methbds() and
bar () contain an arbitrary sequence of operations). Let us asthuméhreadT; (low priority) is first
to acquire the monitamon, modifies object®; andoy, and is then preempted by thregd (medium
priority). Note that thready, (high priority) is not permitted to enter monitaon until it has been
released by}, but since methofloo() executed by, may contain arbitrary sequence of actioeg (
synchronous communication with another thread), it mag tabitrary time befor@, is allowed to run
again (and exit the monitor). Thus thre&dmay be forced to wait for an unbounded amount of time
before it is allowed to complete its actions.

The priority ceiling technique raises the priority of angcking thread to the highest priority of
any thread that ever uses that lodg, (ts priority ceiling). This requires the programmer to plyp
the priority ceiling for each lock used throughout the exeruof a program. In contrast, priority
inheritance will raise the priority of a thread only when dioh a lock causes it to block a higher
priority thread. When this happens, the low priority thréalgerits the priority of the higher priority
thread it is blocking. Both of these solutions prevent a medpriority thread from blocking the
execution of the low priority thread (and thus also the highnity thread) indefinitely. However, even
in the absence of the medium priority thread, the high pyidtiread is forced to wait until the low
priority thread releases its lock. In the example giventithe to execute methdadar () is potentially
unbounded, thus high priority thredd may still be delayed indefinitely until low priority thredg
finishes executingpar () and releases the monitor. Neither priority ceiling nor ptyoinheritance
offer a solution to this problem.

Besides priority inversion, deadlock is another potelytiahwanted consequence of using mutual-
exclusion abstractions. A typical deadlock situation ligsirated with the code fragment in Figure 2.
Let us assume the following sequence of actions: thieaatquires monitononl and updates object
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T T2
synchroni zed(nonl) { synchroni zed(nmon2) {
ol. f ++; 02. f ++;
synchroni zed(nmon2) { synchroni zed(nmonl) {
bar (); bar ();
} }

Figure 2. Deadlock

01, threadT, acquires monitonmon2 and updates objeog, threadr; attempts to acquire monitaon?2

(T1 blocks sincenon?2 is already held by threa®) and threadr, attempts to acquire moniteronl

(T2 blocks as well sinceonl is already held byl1). The result is that both threads are deadlocked —
they will remain blocked indefinitely and methbdr () will never get executed by any of the threads.

In both of the scenarios illustrated by Figures 1 and 2, onadentify a singleoffendingthread that
must be revoked in order to resolve either the priority isi@r or the deadlock. For priority inversion
the offending thread is the low-priority thread currenthgeuting the monitor. For deadlock, it is either
of the threads engaged in deadlock — there exist variousigebs for preventing or detecting deadlock
[21], but all require that the actions of one of the threadslieg to deadlock be revoked.

Revocable monitors can alleviate both these issues. Ouoapipto revocation combines compiler
techniques with run-time detection and resolution. Whenrtbed for revocation is encountered, the
run-time system selectively revokes the offending thremekceting the monitori€, synchronized
block) and its effects. All updates to shared data performihkin the monitor ardogged Upon
detecting priority inversion or deadlock (either at lockjaisition, or in the background), the run-time
system interrupts the offending thread, uses the loggedtapdo undo that thread’s shared updates,
and transfers control of the thread back to the beginningebtock for retry. Externally, the effect of
the roll-back is to make it appear that the offending threaknentered the block.

The process of revoking the effects performed by a low pxidhread within a monitor is illustrated
in Figure 3 where wavy lines represent thredadandTy, circles represent objects ando,, updated
objects are marked grey, and the box represents the dynanpe ®f a common monitor guarding a
synchronized block executed by the threads. This scemafiased on the code from Figure 1 (data
access operations performed within methad () have been omitted for brevity). In Figure 3(a) low-
priority threadT, is about to enter the synchronized block, which it does irufggB(b), modifying
objecto;. High-priority threadTy, tries to acquire the same monitor, but is blocked by lowAjisio
T, (Figure 3(c)). Here, a priority inheritance approach [4@wd raise the priority of thread to
that of Ty, but Ty, would still have to wait forT; to release the lock. If a priority ceiling protocol was
used, the priority ofl} would be raised to the ceiling upon its entry to the synctrediblock, but
the problem ofT,, being forced to wait foff} to release the lock would remain. Instead, our approach
preemptsl;, undoing any updates tm, and transfers control iy back to the point of entry to the
synchronized block. Herg must wait whileTy, enters the monitor, and updates objexgtéFigure 3(e))
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Figure 3. Revoking the effects of a synchronized block'scaken — priority inversion

ando, (Figure 3(f)), before leaving. At this point the monitor ede@ased andi, will re-gain entry. This
example reveals why roll-backs are useful in dealing withnty inversion issues. Note, however, that
the correctness of the solution relies critically on theuagstion that threads see updates performed
within synchronized blocks only after the lock on the bloskéleased, permitting them entry.Ti
were allowed to see updatesdpwhile T, still held the lock on the synchronized block, the effect of
the roll-back would be moot.

The process of revoking a thread in the case of deadloclustiifited in Figure 4. The wavy lines
represent threadg andTs,, circles represent objects ando,, updated objects are marked grey, and
the boxes represent the dynamic scopes of monitorsl andnon2. This scenario is based on the
code from Figure 2. In Figure 4(a) threddis about to enter monitaron1. In Figure 4(b)T; enters
nonl, updates objeab; and attempts to enter monitapn2. In Figure 4(c) thread> is about to
enter monitomon2. In Figure 4(d) the same thread entexsn2, updates objeab, and attempts to
enter monitomonl. We assume that thredd is selected for revocation — its updates to objgcare
rolled back and its execution of monitoon1 retried (Figure 4(e)). Threah may then enter monitor
nmonl, proceed to execute methbar () (data access operations performed within metbhad( )
have again been omitted for brevity) and exit both moniton1 and monitomon2 (Figure 4(f)).

Some instances of deadlock cannot be resolved using rémocHtdeadlock is guaranteed to arise
in the way locks have been programmed (independently ofdsdimg) when using traditional non-
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Figure 4. Revoking the effects of a synchronized block'scaken — deadlock

Ty

T2

synchroni zed(nonl) {
while (lol.f) {
synchroni zed(nmon2) {
bar () ;

}

}
02. f
}

= true;

synchroni zed(nmon2) {
while (lo2.f) {
synchroni zed(nonl) {
bar ();
}

ol. f
}

= true;

Figure 5. Schedule-independent deadlock
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revocable monitors, the deadlock still cannot be resolwedeliocable monitors. Consider the code
fragment in Figure 5. Because of control-flow dependencibsexecutions of this program under
traditional mutual exclusion will eventually lead to deack. When executing this program using
revocable monitors, the run-time system will attempt toohes deadlock by revoking one of the
threads. Let’'s assume that threddis selected for revocation. However, in order for thrdado
make progress it must be able to observe updates performétdndT;. Becausel, is unable to
proceed, it will maintain ownership of the monitor(s) it helseeady acquired, which will eventually
lead to another deadlock once execution of thréad resumed. Note however, that while revocable
monitors are unable to assist in resolving schedule-inuggr deadlocks, the final observable effect
of the resultingivelock (ie, repeated attempts to resolve the deadlock situation vizcedion) is the
same for deadlock — none of the threads will make progress.

3. Revocable monitors: Design

One of the main principles underlying the design of revoeabnitors is a&ompliance requirement
programmers must perceive all programs executing in ouesy# behave exactly the same as on all
other platforms implemented according to the specificatiba given language. In order to achieve
this goal we must adhere to the execution semantics of trguéage and follow the memory access
rules specified by those semantics.

We fulfill the compliance requirement bgggingall updates to shared data performed by a thread
executing within a monitor. We use the information from tbg to roll back updates whenever the
monitor is revoked. In effect, synchronized sections eteespeculatively, and their updates may be
revoked at any time before the block is exited.

Our approach is inspired by optimistic concurrency corrotocols [29]. Traditionally, optimistic
techniques distinguish three execution phasesad phaseavalidation phasend awrite phasg29].

In the read phase all updates are redirected to the log, tliatian phase verifies the integrity of all
data accessed during the entire execution, and the writsepdtamically installs all updates into the
shared space. However, in the case of revocable monita&degrity is guaranteed by the presence of
mutual exclusion. Thus, updates can be performed in plagtth@nvalidation phase can be omitted. Itis
only when a monitor is revoked that the information from thgis used to roll back changes performed
by a thread executing that monitor. The space overhead aitaiaing logs is not excessive since a log
(associated with each thread object) needs to be maintairigavhen the thread is executing within a
revocable monitor, and can be discarded upon exit from theitoro

The introduction of revocable monitors requires a carefulsideration of the interaction between
revocation and the Java Memory Model (JMM) [32]. We elaboiat these issues in the following
sections.

3.1. The Java memory model (JMM)

The JMM defines dappens-beforeelation (writtenﬂi) among the actions performed by threads in a
given execution of a program. For single-threaded exegukie happens-before relation is defined by
program order. For multi-threaded execution a happensrbeélation is induced between an unlock

Copyright(©) 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp@005;00:1-41
Prepared usingpeauth.cls



% REVOCATION TECHNIQUES FOR JAVA CONCURRENCY 9

T T/

<ACQJI RE( out er)
<AOQJI RE(i nner)
<V\RI TE(V)
RELEASE( i nner)
\QACQJI RE(i nner)
READ( v)
<RELEASE(i nner)
ROLL- BACK

Figure 6. Erroneous revocation sequence due to monitoingestd Java visibility semantics

um (release) and a subsequent ldgk (acquire) operation on a given monitet (uy he) m). The

happens-before relation is transitive'?gy andyﬂiz imply x ™2 The JMM shared data visibility rule
is defined using the happens-before relation: a mgats allowedto observe a writenw, to a given
variable variablev if r does not happen befom and there is no intervening writ&, such that

ry L w, hb w, (we say that a read become=ad-write dependentn the write that it isallowedto
see). As a consequence, it is possible that partial resuitpated by some threald executing within
monitor M become visible to (and are used by) another thiEagven before thread releaseM if
accesses to those updated objects performel laye not mediated by first acquiridd. However, a
subsequent revocation of moniter would undo the update and remove the happens-before relatio
making a value seen Bl appear “out of thin air” and thus the executionTdfinconsistent with the
JMM.

An example of such an execution appears in Figure 6: thiieatquires monitoout er and
subsequently monitarnner , writes to a shared variableand releases monitomner . Then thread
T’ acquires monitor nner , reads variable and releases monitomner . The execution is JMM-
consistent up to the roll-back point: the read performed big allowedbut the subsequent roll-back
of T would violate consistency.

A similar problem occurs whewolatile variables are used. The Java Language Specification (JLS)
[20] states that updates to volatile variables immedidielyome visible to all program threads. Thus,
there also exists a happens-before relation between &leolatte and all subsequent volatile reads
of the same (volatile) variable. For the execution preskitd-igure 7vol is a volatile variable and
edges depict a happens-before relation. As in the previcaragle, the execution is IMM-consistent
up to the roll-back point because a read performed bis allowed but the roll-back would violate
consistency. We now discuss possible solutions to these-gbidistency preservation problems.
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T T
<ACQJI RE(M
V\RI TE(vol )
READ( vol )
ROLL- BACK

Figure 7. Erroneous revocation sequence due to volatileblaraccess

static bool ean v=fal se;

T T

synchroni zed(outer) { while (true) {

synchroni zed(i nner) { synchroni zed(i nner) {

V=t rue; if (v) break;
}
}

/1 ROLL- BACK

}

Figure 8. Rescheduling thread execution in the presenaalback may not always be correct

3.2. Preserving JMM-consistency

Several solutions to the problem of partial results of a noyad computation being exposed to other
threads can be considered. We might trace read-write depeies among all threads and upon roll-
back of a monitor trigger a cascade of roll-backs for threatisse read-write dependencies are
violated. An obvious disadvantage of this approach is therirte consideall operations (including
non-monitored ones) for a potential roll-back. In the excuof Figure 7 the volatile read performed
by T’ would have to be rolled back even though it is not guarded pyn@onitor. Furthermore, to apply
this solution, the full execution context of each threigdi{s instruction pointer, registers, thread stack
etc) would have to be logged in addition to its shared data ofmrstConsider a situation based on the
example of Figure 6 where thre@dreturns(from the current method) after releasing monitoner

but before thread is asked to roll back the execution of monitart er . Without the ability to restore
the full execution context of/, the subsequent roll-back of monitonner by that thread becomes
infeasible.

Another possible solution is to re-schedule the executfotihieads in problematic cases. In the
examples of Figures 6 and 7, if thre@d executes fully before threaf, the execution will still be
JMM-consistent. The roll-back af does not violate consistency since none of the updatesrpeztb
by T are visible toT’. Besides the obvious question about the practicality aoteeduling as a solution
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(some knowledge about the future actions performed by dsreauld be required), there also remains
the issue of correctness. While re-scheduling may be ddrreome cases, it is not necessarily correct
in others. Consider the Java program of Figure 8. ComplatidhreadT’ is dependent upon it seeing
the effect of T executing the statement=t r ue. If we choose to reschedulE’ to run beforeT,
knowing thafT will be revoked, thed’ will never complete. Of course, if we make the “right” choice
to rescheduld’ afterT, things will work. There are however, similar cases wheseheduling never
works.

The solution that does seem flexible enough to handle alliffegsroblematic cases, and simple
enough to avoid using complex analyses and/or maintainowjfeant additional meta-data, is to
disable the revocability of monitors whose roll-back cooldate inconsistencies with respect to the
JMM. As a consequence, not all instances of priority in@rgian be resolved. We mark a monikdr
non-revocablevhen a read-write dependency is created between a writes ipadormed withinv*
and a read performed by another thread. Detecting the plig<idr this is relatively straightforward,
without needing to track every read, so long as we track moadquire/release dependencies. This can
be achieved as follows. When a thread holding an outer mogitiers some inner monitor, it becomes
associatedvith the inner monitor. This association is cleared wheritinead exits the outer monitor, or
when the thread is made non-revocable, as follows. Any dtiiead arriving at the monitor will simply
make non-revocable any thread associated with that mouol&aring the association. If the arriving
thread itself holds an outer monitor then it now becomesaataml with the monitor. We believe this
solution does not severely penalize the effectiveness ofemtnique. Intuitively, programmers guard
accesses to the same subset of shared data using the sarheseittors; in such cases, there is no
need to force non-revocability of any of the monitors (evighéy are nested) since mutual-exclusion
induced by monitor acquisition prevents generation of [Ewiatic dependencies among these threads.

There are other Java constructs that affect revocabilitthefmonitors. Calling a native method
within a monitor also forces non-revocability of the momifand all of its enclosing monitors if it is
nested), since the effects of a native method cannot génémlrevoked €g printing a message to
the console is irrevocable, even if benign). The same appdiexecutions wherewai t method is
invoked within a nested monitérRevocation of thevai t call would result in a situation where the
matchingnot i f y call (that “woke up” the waiting thread) “disappear$s,(does not get delivered
to any thread) which would violate Java execution semanficsall to noti fy does not force
irrevocability of enclosing monitors: Java VM implememats are permitted [32] to perform “spurious
wake-ups” so a rolled back notification can be consideredias.s

4. Revocable monitors: Implementation

To demonstrate the validity of our approach, we base ourdmphtation on a well-known Java
execution environment with a high-quality compiler. We IBB's Jikes RVM [3], a state-of-the-art

*The write may additionally be guarded by other monitors eekstithin M.

TA monitor object associated with the receiver object isawel upon a call taai t and re-acquired after returning from
the call. In the case of a non-nested monitor a potentialbadk will therefore not reach beyond the point wivai t was
called.
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research virtual machine (VM) for Java with performance parable to many production VMs. Java
bytecodes in Jikes RVM are compiled directly to machine aggieg either a low-cost non-optimizing
“baseline” compiler or an aggressive optimizing compiler.

When discussing the details of our approach, we concemtnatee necessary compiler and run-time
capabilities that allow the VM to interrupt execution of sinonized blocks (monitors) at arbitrary
points without inducing any observable effects on an apfibo’'s execution behavior. For our case
study we chose the priority inversion problem, rather theadliock resolution, as an excellent vehicle
to measure the trade-offs inherent in speculative exatutio

4.1. Monitor roll-back

Our implementation uses bytecode rewritirtg save program state (values of local variables and
method parameters) for re-execution and the existing éxgepnechanisms to return control to
the beginning of the synchronized block. We modify the cderpnd run-time system to suppress
generation (and invocation) of undesirable exception laadiuring a roll-back operation, to insert
access “barrier§”for logging and to revert updates performed up to revocatiba synchronized
block.

4.1.1. Bytecode transformation

There exist two different synchronization constructs walaynchronized methods and synchronized
blocks. We treat them uniformly, by transforming syncheemi methods into non-synchronized
equivalents whose entire body is enclosed in a synchrorbfmzk. For each synchronized method
we create a non-synchronized wrapper with a signatureibgrio the original method. We fill the
body of the wrapper method with a synchronized block enatpsain invocation of the original (non-
synchronized) method, which has been appropriately redama&void name clashes. We also instruct
the VM to inline the original method within the wrapper to &l@erformance penalties related to
the delegating method invocation. This approach greatfylfies our implementatiohjs extremely
simple and robust, and also efficient because of inlining.

Each synchronized block (bracketed at the bytecode leveimiopitorenter and monitorexit
operations) is wrapped within an exception scope that eatehspeciaRol | back exception. The
roll-back exception is thrown internally by the VM (see beJpbut the code to catch it is injected
into the bytecode. Since a roll-back may involve a nestedlsyomized block, each roll-back exception
catch handler invokes an internal VM method to check if iresponds to the synchronized block that
is to be re-executed. If it does, then the handler releagdsth associated with its synchronized block,
and returns control to the beginning of the block. Otherwike handler re-throws thigol | back
exception to the enclosing synchronized block.

*We use the Bytecode Engineering Library (BCEL) from Apadtretiis purpose. Note that our solution does not preclude
the use of languages that do not have a similar intermedégresentation — we could use source-code rewriting instead

TCode snippets inserted by the compiler into the code stremhdliaectly preceding (or substituting) the implementatic
actual data access operatioigs [pads and stores).

*We need only handle explicihonitorenterandmonitorexitbytecodes, without worrying about implicit monitor opéoas
for synchronized methods.
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There is an additional complication related to the returoaritrol to the beginning of the block. The
contents of the VM'’s operand stack before executimgamitorenteroperation must be the same as at
first invocation in subsequent re-invocations resultimapfirevocation. However, in accordance with
the Java virtual machine specification [30], the run-tim&tam erases the operand stack of the method
activation that will catch the exception. To handle this, mject bytecode to save the values on the
operand stack just before each roll-back scopemitorenteropcode, and to restore the stack state in
the handler before transferring control back to tin@nitorenter

4.1.2. Compiler and run-time modifications

The roll-back operation is initiated by throwingRal | back exception. However, we cannot rely on
the standard exception handling mechanism to propagateahkback exception up the activation
stack to the synchronized block being revoked, since it aldb run “default” exception handlers
in nested exception scopes as it unwinds the stack. Suchudtfehandlers include bothi nal | y
blocks, andcat ch blocks for exceptions of typ&hr owabl e, of which all exceptions (including
Rol | back) are instances. Running these intervening handlers waoldte our semantics that an
aborted synchronized block produces no side-effects.

To handle this, we augment exception handling to ignoreaaidters (includind i nal | y blocks)
that do not explicitly catch thdRol | back exception, when it is thrown. The default behavior
still applies for all other exceptions, to preserve the déd semantics. We are careful to release
monitors as necessary wherever the Jikes RVM optimizingpilemreleases them explicitly in its
implementation of synchronized blocks.

Roll-back relies on information collected within the comepiinserted write barriers. Both
compilers (baseline and optimizing) have been modifiedjexirbarriers before every store operation
(represented by the bytecodesit fi el d for object storesput st at i ¢ for static variable stores,
and Xast or e for array stores). The barrier records in the log every madglifbn performed by a
thread executing a synchronized block. We implementedap@$ a sequential buffer. For object and
array stores, three values are recorded: the target objantay, the offset of the modified field or array
slot, and the previous (old) value in that field/slot. Foresxo static variable two values are recorded:
the offset of the static variable in the global symbol talsid the previous value of that variable. Upon
monitor revocation information stored in the log is used nd@ updates to shared data performed by
the thread executing this monitor.

4.1.3. Discussion

Instead of using bytecode transformations, we note thattarmative strategy might be to implement
re-execution entirely at the VM levelg all the code modifications necessary to support roll-backs
would only involve the compiler and the Java run-time sy$tephis approach simply requires that
the current state of the threat,(contents of local variables, non-volatile registerscistpointer,

et be remembered upon entry to a synchronized block, andresstehen a roll-back is required.
Unfortunately, this strategy has the significant drawbaeit it introduces implicit control-flow edges

in the program’s control-flow graph that are not visible t@ tbompiler. Consequently, liveness
information necessary for the garbage collector may be eteadincorrectly, since a roll-back action
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may require stack slots to remain live that would ordinabié/marked dead. Resolving these issues
would entail substantial changes to the compiler and nae-8ystem.

A second alternative we considered (and discarded) wadyapioittable user-level implementation
that would not require any modifications to the VM or the coepilnstead, this solution would
take advantage of language-level exceptions and use lmde®avriting techniques exclusively to
provide all the support necessary to perform a roll-backatmm. Unfortunately, in the absence of any
compiler modifications, the built-in exception handlingahanism may execute an arbitrary number
of other user-defined exception handlers and finalizerdatg the transparency of our design.
Moreover, inserting write-barriers at the bytecode leweldg changes would require optimizations
to remove them to be re-implemented at bytecode level as R@llexample an escape analysis could
be used to eliminate barriers for accesses to thread-lbogatis. However, if implemented inside the
compiler, barriers inserted at bytecode level appear apsets of ordinary code, so the compiler cannot
optimize them effectively.

4.2. Priority inversion avoidance

Detecting priority inversion is reasonably simple. A thdescquiring a monitor deposits its priority
in the header of the monitor object. Before another threadammuire the monitor, the scheduler
checks whether its own priority is higher than the priorifytloe thread currently executing within
the synchronized block. If it is, then the it triggers roddk of the low priority thread. After the low-
priority thread rolls back its changes and releases thetamwttie high-priority thread acquires control
of the synchronized block. If the incoming thread’s prigi# lower, it blocks on the monitor and waits
for the other thread to complete execution of the synchezhitock.

The Jikes RVM does not include a priority scheduler; thremédsscheduled in a round-robin order.
This does not affect the generality of our solution nor do&svalidate the results obtained, since the
problems solved by our mechanisms cannot be solved simplgibg a priority scheduler. However, in
order to make the measurements independent of the rand@mionngdhich threads arrive at a monitor,
we augmented the monitor queues to take priority into accduthread can have either high or low
priority. When a thread releases a monitor, another threadtieduled from the queue. If it is a high-
priority thread, it is allowed to acquire the monitor. If & & low-priority thread, it is allowed to run
only if there are no other high-priority threads waiting e tqueue.

5. Revocable monitors: Experiments

We quantify the overhead of the revocable monitors mechangng a detailed micro-benchmark. We
measure executions that exhibit priority inversion to fyeifithe increased overheads induced by our
implementation are mitigated by higher overall throughgfthigh-priority threads. The experiments
are performed for a uni-processor system, since revocatnéans do nothing to increase concurrency
in applications, so applications will exhibit no more p&tidm using revocable monitors on multi-
processors than they would using non-revocable monitargur results, it is to be expected that
revocable monitors used to address priority inversion satrifice throughput of low-priority threads
to improve throughput of high-priority threads. As a restdtal throughput will suffer. Our results
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quantify this sacrifice of total throughput to be approxietaB80%, while throughput for high-priority
threads improves by 25% to 100%.

5.1. Benchmark program

The micro-benchmark executes several low and high-pyithiteads contending on the same lock.
Regardless of their priority, all threads are compiled tabetly, with write barriers inserted to log
updates, and special exception handlers injected to tegtazhronized blocks. Though our benchmark
is structured so that only low-priority threads will actydle revoked, updates of both low-priority and
high-priority threads are logged for fairness, even thohigih-priority threads are never rolled back.
Every thread executes 100 synchronized synchronized ldekch synchronized block contains an
inner loop containing an interleaved sequence of read aitd wperations. We emphasize that our
micro-benchmark has been constructed to gauge the overlrgaetrent in our techniques (the costs
of re-execution, loggingetc and not necessarily to simulate any particular real-lgplization. We
do not bias the benchmark structure in favor of our mechamtgyartificially extending the execution
time using benign (with respect to logging) operatioeg (ethod calls). Therefore, we decided to
make the execution time of a synchronized block directlypprtional to the number of shared data
operations performed within that block. We fixed the humHdtesations of the inner loop for low-
priority threads at 500K, and varied it for the high-prigribreads (100K and 500K). The remaining
parameters for our benchmark include:

e The ratio of high-priority threads to low-priority threadsve used three configurations:+2,
5+ 5, and 8+ 2, high-priority plus low-priority threads, respectively

e The ratio of write to read operations performed within a $ynaized block — we used six
different configurations ranging from 0% writde,(100% reads) to 100% write&@( 0% reads).

Our benchmark also includes a short random pause time (sagev@pproximately a single thread
quantum in Jikes RVM) right before an entry to the synchrediblock, to ensure random arrival of
threads at the monitors guarding the blocks.

Our thesis is that the total elapsed time of high-prioritsetids can be improved using the roll-
back scheme, at the expense of longer elapsed time for lmsitgithreads. Improvementis measured
against a priority scheduling implementation that proside remedy for priority inversion. Thus, for
every run of the micro-benchmark we compare the total tintakiés for all high-priority threads to
complete their execution for the following two settings:

e An unmodifiedVM that does not allow execution of a synchronized block terterrupted and
revoked: when a high-priority thread wants to acquire a laltkady held by a low-priority
thread, it waits until the low-priority thread exits the symonized block. The benchmark
code executed on this VM is compiled using the Jikes RVM ojziimy compiler without any
modification.

e A modified VMequipped with the compiler and run-time changes to inteéraum revoke
execution of synchronized blocks by low-priority threaddien a high-priority thread wants
to acquire a lock held by a low-priority thread it signalsiittent, resulting in the low-priority
thread exiting the synchronized block at the next yield pawlling back any changes to shared
data made from the time it began executing inside the blobk.@enchmark code executed on
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this VM is compiled using the modified version of the Jikes RéMimizing compiler described
in Section 4.

To measure the total elapsed time of high-priority threadgake two time-stamps for each high-
priority thread: one when it begins itaun() method and one at the end of itsin() method. We
compute the total elapsed time for all high-priority threday subtracting the latest end time-stamp
of all high-priority threads from the earliest begin timterap of all the high-priority threads. We also
record the impact that our solution has on the overall ethpisee of the entire micro-benchmark,
including low-priority elapsed times: this is simply thdfdrence between the end time-stamp of the
last thread to finish and the begin time-stamp of the firstdthte start, regardless of priority.

The measurements were taken on an 800MHz Intel Pentium dpg€rmine) with 1GB of RAM
running Linux kernel version 2.4.20-13.7 (RedHat 7.0) imgé&-user mode. A benchmark run consists
of one invocation of the VM in which the benchmark is repeatiedimes. We discard the results of
the first iteration, in which the benchmark classes are ldaael compiled, to eliminate the overheads
of compilation. We report the average elapsed time for the divbsequent iterations, and show 90%
confidence intervals in our results. Our system is basedkas RVM 2.2.1 and we use a configuration
where both the Jikes RVM (which is itself implemented andtbtmapped in Java) and dynamically
loaded classes are compiled using the optimizing compieddfault. Even in this configuration
there remain some methodsy( class initializers) that override this setting and are pib@d without
optimization.

5.2. Results

Figures 9 and 10 plot elapsed times for high priority threaxiscuted on both the modified VM
(indicated by a solid line) and unmodified VM (indicated byadtdd line), normalized with respect to
the configuration executing 100% reads on an unmodified VMgusiandard non-revocable monitors.
We normalize with respect to the 100% reads benchmark caafign so as to obtain a standard
baseline for illustrating performance trends as the redtwnix changes. In Figure 9 every high
priority thread executes 100K internal iterations; in Fedo the iteration count is 500K. In each
figure: the graph labeled (a) reflects a workload consistintyo high-priority threads, and eight
low-priority threads; the graph labeled (b) reflects a woakl consisting of five high-priority and five
low-priority threads; and, the graph labeled (c) reflectsaakivad consisting of eight high-priority
threads and two low-priority ones.

If the ratio of high-priority threads to low-priority thrda is relatively low (Figures 9-10 (a)(b)),
our hybrid implementation improves throughput for higlepity threads by 25% to 100% over the
unmodified implementation. Average elapsed-time gainsecadl the configurations, including those
where the number of high-priority threads is greater thanthmber of low-priority threads, is 78%.
If we discard the configuration where there are eight higbrjty threads competing with only two
low-priority ones, the average elapsed time of a high-fisidhread is half that of the reference
implementation.

Note that the influence of different read-write ratios onralleperformance is small; recall that
all threads, regardless of their priority, log all update¢him a synchronized block. This implies
that the cost of operations related to log maintenance alhbaok of partial results is also small,
compared to the elapsed time of the entire benchmark. Indbedactual “workload” (the contents
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of the synchronized block) in the benchmark consists dptoEdata access operations — no delays
(method calls, empty loopgtc) are inserted in order to artificially extend its executione. Since
realistic programs are likely to have a more diverse mix afrafions, the overheads would be even
smaller in practice.

As expected, if the number of write operations within a synaofzed block is sufficiently large,
the overhead of logging and roll-backs may start outweiglpotential benefit. For example, in
Figure 10(c), under a 100% write configuration, every higionity thread writes, and thus logs,
approximately 500K words of data in every execution of a Byanized block. We believe that
synchronized blocks that consist entirely of write op@nadiof this magnitude are relatively rare.

As the ratio of high-priority threads to low-priority thrés increases, the benefit of our strategy
diminishes (see Figures 9(c) and 10(c)). This is expectadeghere are relatively fewer low-priority
threads in the system, there is less opportunity to “stegtles from them to improve throughput
of higher priority ones. We note, however, that even whenrtieback-enabled VM has weaker
performance than the unmodified implementation, the aeedifference in execution time is only
a few percent.

Figures 11 and 12 plot overall elapsed times for the entipiegtion executed on both modified
(solid line) and unmodified (dotted line) VMs. These graptes @so normalized with respect to a
configuration executing 100% reads on the unmodified VM. Nbét the overall elapsed time for
the modified VM must always be longer than for the unmodified.\'Mve disallowed revocability
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of synchronized blocks, threads executing on both VMs waddd exactly the same amount of
time to execute their workloads (modulo costs related toiifgementation of our mechanisms for
the modified VM such as barriers, log maintenarate). However, if the execution of synchronized
blocks can be interrupted and revoked, low-priority theeagecuting on the modified VM will re-
execute parts of their synchronized blocks, thus lengtigeaverall elapsed time. Since our focus is
on lowering elapsed times for high priority threads, we éd@sthe impact on overall elapsed time
(on average 30% higher on the modified VM) to be acceptableudfmechanism is used to resolve
deadlocks then these overheads may be an even more acegutiablto pay to obtain progress by
breaking deadlocks.

6. Transactional monitors: Overview

Revocable monitors solve one class of problems relateditmgiconcurrent programs, but because of
the compliance requirement with respect to Java’'s exetsémantics and memory model they are still
required to use mutual exclusion as an underlying synchatioin mechanism. As a result, the degree
of concurrency achievable in the concurrent (parallefirsgtis still severely limited. Transactional
monitors are an attempt to ease that restriction.

Copyright(©) 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp@005;00:1-41
Prepared usingpeauth.cls



% REVOCATION TECHNIQUES FOR JAVA CONCURRENCY 19

T T
nmoni t or ed(account _monitor) { noni t ored(account _nonitor) {
bl = checki ng. get Bal ance(); checki ng. wi t hdr aw( anount ) ;
b2 = savi ngs. get Bal ance(); savi ngs. deposi t (amount) ;
print(bl + b2); }

Figure 13. Bank account example

Unlike Java monitors implemented using mutual exclusiark$o which make threads acquire a
given monitor serially, transactional monitors requirdyadhat threadsppearto acquire the monitor
serially. Transactional monitors permit concurrent execuwithin the monitor so long as the effects of
the resulting schedule aserializable the effects of concurrent execution of the monitor are eajant
to somelegal serial schedule that would arise if no interleavinghaf actions of different threads
occurred within the guarded region. The executions arevafgrit if they produce the same observable
behavior; that is, all threads at any point during their efien observe the same state of the shared
data. Thus, while transactional monitors and mutual-esiclumonitors have very similar execution
semantics, transactional monitors permit a higher degreerurrency.

Consider the code sample shown in Figure 13. Thiieadmputes the total balance of both checking
and savings accounts. Thre@d transfers money between these accounts. Both accounttiopsra
(balance and transfer) are guarded by the saceount _noni t or —the code region guarded by the
monitor is delimited by curly braces following theoni t or ed statement. If the account operations
were unguarded then concurrent execution of these opesatiould potentially yield an incorrect
result: the total balance computed after the withdrawaldadbre the deposit would not include the
amount withdrawn from the checking accountalfcount _noni t or were a traditional mutual-
exclusion monitor, either thread or T’ would win a race to acquire the monitor and would execute
fully before releasing the monitor; regardless of the oridewhich they execute, the total balance
computed by thread would be correct (it would in fact be the same in both cases).

If account noni t or is a transactional monitor, two scenarios are possibleenidipg on the
interleaving of the statements implementing the accoumtrapns. The interleaving presented in
Figure 14 results in both threads successfully completieg £xecutions — it preserves serializability
since T”’s withdrawal from the checking account does not comproriseread from the savings
account. This interleaving is equivalent to a serial execLih whichT executes beforé’.

The interleaving presented in Figure 15 results in an iremdrexecution (with respect to the
serializability requirement): thread reads an inconsistent state. Serializability is enforcgd b
automatically re-executing the guarded region of thread

These examples illustrate several issues in formulatingpafementation of transactional monitors.
Threads executing within a transactional monitor must etem isolation and their view of shared
data on exit from the monitor must lsensistentvith their view upon entry. Isolation and consistency
imply that shared state appears unchanged by other thraatisead executing in a monitor cannot
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T T
(1) | checking.getBalance
(2) checking.withdraw
(3) | savings.getBalance
4) savings.deposit

Figure 14. Serializable execution

T T
Q) checking.withdraw
(2) | checking.getBalanc
(3) | savings.getBalance
4) savings.deposit

U

Figure 15. Non-serializable execution

see the updates to shared state by other threads. Tramséetionitor implementations must permit
threads to detect state changes that violate isolationaarall tback automatically (and transparently),
restarting their execution in response to such violations.

In Figure 15, the execution of threddis notisolated from the execution of thredd since thread
T sees the effects of the withdrawal but does not see the gftédhe deposit. Thudl is obliged
to re-execute its operations. In general, a thread may erukiny re-executed at any time within a
transactional monitor. To ensure that partial results cbmpmutation performed by a thread do not
affect the execution of other threads, the execution of aogitared region must batomic either the
effects of all operations performed within the monitor beeovisible to other threads upon successful
commit or they are all discarded upon abort. The semantitao$actional monitors thus comprise the
ACI (atomicity, consistencyandisolation) properties of a classical ACID transaction model [21], and
their realization may be viewed as adapting optimistic corency control protocols [29] to concurrent
object-oriented languages.

The properties of transactional monitors described hererforced only between threads executing
within the same monitor; no guarantees are provided foatts@xecuting within different transactional
monitors, nor for threads executing outside of any tramsaal monitor. These properties result in
semantics similar to those of Java’s mutual-exclusion moosi Accesses to data shared by different
threads are synchronized only if they acquire the same monit
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7. Transactional monitors: Design

Our approach to managing concurrency in the case of tréosatmonitors is even closer in spirit
to that of traditional optimistic concurrency techniqu@8]than in the case of revocable monitors.
Transactional monitors maintain serializability by tramckall accesses to shared data performed during
the read phase within a thread-spedifig. When a thread attempts to release a monitor on exit from a
guarded region, an attempt is madetonmitthe log. The commit operation has the effect of verifying
the consistency of shared data with respect to the infoomagcorded in the logi€, the validate
phase), andtomically performing all logged operations at once with respect to atimer commit
operation ig, the write phase). If the shared data changes in such a wayiagalidate the log, the
monitored code region is re-executed, and the commit tetAelog is invalidated if committing its
changes would violate serializability of actions perfothirethe monitored region.

An alternative design might consider performing updateplate (directly on shared data), and
reverting them using information from the log upon moniwracation. However, using this technique
can lead tacascading revocations since all threads that have seen updates of a thread bedntgdb
must be revoked as well — which may severely impact overafbpmance, or require a global per-
access locking protocok¢, two-phase locking [21]) to prevent conflicting data acesdsy different
threads. A significant disadvantage of using per-acce$sngds a potential for deadlocks to arise
between concurrently executing threads.

There are a number of important issues that arise in a fotmgla semantics for transactional
monitors:

1. TransparencyThe degree of programmer control and visibility of intdrinansaction machinery
influences the degree of flexibility provided by the abstmactand the complexity of using it.
For example, if a programmer is given control over how shdagd accesses are tracked, objects
known to be immutable need not be logged when accessed.

2. Serializability Violation DetectiornA thread executing within a guarded region may try to detect
serializability violation whenever a barrier is executedmay defer detecting such violation
until a commit point ég, monitor exit).

3. Nesting Transaction models often allow transactions to nestyrg&d], permitting division of
any transaction into some number of sub-transactionseptésence of nesting, a transactional
monitor semantics must define rules on visibility of updaesle by sub-transactions.

We motivate our design decisions with respect to the issbesea One of the most important
principles underlying our design is transparency of thendamtional monitors mechanism: an
application programmer should not be concerned with howitasare represented, nor with details of
the logging mechanism, abort or commit operations. Afterking a region of code at source level as
guarded by a given transactional monitor, a programmerioguigrely on the underlying compiler and
run-time system to ensure transactional execution of thiemngsatisfying the properties of atomicity,
consistency, and isolation).

The decision aboutvhena thread should attempt to detect serializability violasias strongly
dependent on the cost of detection and may vary from one mmaléation of transactional monitors
to another. When choosing the most appropriate point fadliely serializability violations, we must
consider the trade-off between reducing the overall coshetking any serializability invariant (once
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if performed on exit from the monitor, or potentially mulggimes if performed within access barriers),
and reducing the amount of computation performed by a thiestdnay eventually abort.

Modularity principles dictate that our design support addtansactional monitors. A given monitor
region may contain a number of child monitors. Because mosire released from the bottom up,
child monitors must always release before their parent.sTluchild monitor will re-execute (as
needed) until it can be (successfully) released. The upddtehild monitors are visible upon release
only within the scope of their parent (and, upon release@bilitermost monitor, are propagated to the
shared space). Updates performed by a parent monitor aagshisible to the child.

8. Transactional monitors: Implementation

An implementation that directly reflects the concept behiadsactional monitors would redirect all
shared data accesses performed by a thread within a tresmsdchonitor to a thread-local log. When
an object is first accessed, the accessing thread recordsrient value in the log and refers to it
for all subsequent operations. Serializability violasomould be detected by traversing the log and
comparing values of objects recorded in the log with thostheforiginal. The effectiveness of this
scheme depends on a number of different parameters all atwvare influenced by the data access
patterns that occur within the application:

e expected contention (or concurrency) at monitor entry {30in

e the number of shared objects (both read and written) acd ggsethread,;

¢ the percentage of operations that occur within a transaatioonitor that are benign with respect
to shared data accesses (method calls, local variable datigry type castetc)

Because the generic implementation is not biased towardéatlyese parameters, it is not clear
how effectively it would perform under widely varying apgdition conditions. Therefore, we consider
implementations of transactional monitors optimized talgadifferent shared data access patterns,
informally described as low-contention and high-conimti

Both optimized implementations must provide a solutiondgging, commit, and abort actions.
These actions can be broadly classified under the follonéategories:

1. Initialization: When a transactional monitor is entered, actions to liEgdogs,etc may have
to be taken by threads before they are allowed to enter théonon

2. Read and Write Operation8arriers define the actions to be taken when a thread pesfarm
read or write to an object when executing within a transaetiononitor.

3. Conflict DetectionConflict detection determines whether the execution ofjioreguarded by
a given monitor is serializable with respect to the conaurexecution of other regions guarded
by the same monitor and it is safe to commit changes to shatachdade by a thread.

4. Commitment If there are no conflicts, changes to the original objectstnhe committed
atomically; otherwise the guarded region must be re-execut

Our current implementation does not yet include supportrfested transactions. While nesting
adds complications, there are no inherent difficulties ippsuting them [33]. Chiefly, the optimistic
techniques described below require distinct versions (ehesed) to be maintained for each
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transactional monitor, and for those versions to be apmiedommit of each (nested) transactional
monitor.

The low-contention scheme and the high-contention scheatle bse the same mechanism to
perform automatic re-execution. It is very similar to th#-mck mechanism for revocable monitors,
except for the following differences:

e The Rol | back exception scope wraps a transactional monitor instead obva-style
synchronized block.

e Implementation of the data access barriers and of the logterance algorithm depend on the
particular scheme (and are different than for revocableitors).

¢ Implementation of the re-execution mechanism is simpliiede the currentimplementation of
transactional monitors does not support nesting.

As for revocable monitors, our implementation of trangawi monitors is based on IBM’s Jikes
Research Virtual Machine.

8.1. Low-contention concurrency

Conceptually, transactional monitors use thread-loaqgd ko record updates and install these updates
into the original (shared) objects when a thread commitsvéder, if the contention on shared data
accesses s low, the log is superfluous. If the number of thf@ncurrently written by different threads
executing within the same monitor is small and the numbehnm&ads performing concurrent writes is
also small; then reads and writes can operate directly over the origiaal. To preserve correctness, an
implementation must still prevent multiple non-serialilawrites to objects and must disallow readers
from seeing partial or inconsistent updates to objectsoperéd by the writers.

To address these concerns, we devise a low-contention ringpition that stores the following
information in each transactional monitor object:

e writer: the thread currently executing within the monitor that pasformed writes to objects
guarded by the monitor;
o thread countthe number of threads concurrently executing within theitoo.

In this scheme, we permit only one thread executing withenrttonitor to perform writes to objects.
Before entering a monitor, a thread must check that no wititerad is present in the monitor. Before
writing to an object, a thread must ensure it is the exclusiiter.

8.1.1. Initialization

A thread attempting to enter the monitor must first check Wwhiethere is any active writer within the
monitor. If there is no active writer, the thread can frealgqeed after incrementing the thread count.
Otherwise, shared data is not guaranteed to be in a cortsis&®, and the entering thread must wait
until the writing thread exits the monitor. This guaranteesalizability of guarded execution.

*An example of a low-contention scenario might be multiplestiyoread-only threads traversing a tree-like structure or
accessing a hash-table.
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8.1.2. Read and write barriers

Because there are no object copies or logs, there are no eeadrb; threads read values from the
original shared objects. Write barriers are necessarysorerthat no other thread has performed writes
within the monitor. A write to a shared object can occur if amg of the following conditions holds:

e The writer field in the monitor object is nil, indicating nchetr writers are executing within the
monitor. In this case, the current thread atomically sedsattiter field and executes the write.

e The writer field in the monitor points to the current threadislimplies that the current thread
has previously written to an object within the monitor. Therent write can proceed.

If either condition does not hold then the thread must ratikdand re-execute the monitor.

8.1.3. Conflict detection

In order for the shared data operations of a thread exitiagrtbnitor to be consistent and serializable
with respect to other threads, there must have been no ottiterswvithin the monitor besides the

exiting thread. This is guaranteed by exclusion of otheealls from entering monitors in which a

writer exists, and by the write barrier which revokes thetttht try to write when a writer already

exists. So long as there has been no concurrent writer witlieimonitor, actions of read-only threads
are trivially serializable. Thus, read-only threads siyngieck this condition on monitor exit.

8.1.4. Monitor exit

All threads decrement the monitor thread count on exit frberhonitor. The last thread to leave the
monitor (e, when the thread count reaches zero) clears the monitoeniiritid. Read-only threads

successfully exit the monitor only when the writer field i$. @ writer thread always succeeds in
exiting the monitor, since its writes have been validatedhgywrite barrier at the time they occurred.
Since there are no copies or logs, all updates are immegliaséble in the original object.

The actions performed by the low-contention scheme exagtiie account example from Figure 13
are illustrated in Figure 16, where wavy lines represergatisT and T’, circles represent objects
¢ (checking account) and (savings account), and updated objects are marked greylafe box
represents the dynamic scope of a common transactionalton@uicountmonitor guarding code
regions executed by the threads and small boxes repregeatlttitional information associated with
the monitor: the writer field (initially nil) and the threadunt (initially 0). In Figure 16(a) thread
T’ is about to enter the monitor, which it does in Figure 16(lWrémenting the thread count. In
Figure 16(c) thread also enters the monitor and increments the thread countglré=16(d) thread
T’ updates objeat and sets the writer to itself. Subsequently thréackads object (Figure 16(e)),
threadT’ updates objecs and exits the monitor (Figure 16(f)) (no conflicts are detdctince there
were no intervening writes on behalf of other threads exegutithin the monitor). The thread count
is decremented but the writer cannot be reset since thFeiadstill executing within the monitor. In
Figure 16(g) thread reads objecs and attempts to exit the monitor, but the writer field stilings to
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Figure 16. Low contention scheme example

threadT’ indicating a potential confli¢t— the guarded region of threddmust be re-executed. Since
threadT is the last one to exit the monitor, in addition to decrenmmemnthe thread count it also resets
the writer field (Figure 16(h)).

8.2. High-contention concurrency

When there is even moderate contention for shared datayévéops strategy is unlikely to perform
well because attempts to execute multiple writes, evendtindt objects, may result in conflicts and

*This example is based on an interleaving of operations wihereonflict really existsi€, serializability is violated).
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aborting all but one of the writers. A realistic example smémin which contention becomes apparent
is multiple threads traversing disjoint sub-trees of a-tile® structure or accessing different buckets
in a hash-table. We can avoid being penalized for conterijopermitting threads to manipulate
copiesof shared objects, committing their changes only when tleegat conflict with the actions of
other threads. This implementation is closer to the congdea underlying transactional monitors:
updates and accesses performed by a thread are tracked wilbj, and committed only when the
actions of one thread with respect to actions of other treexécuting under the same guard respect
serializability. Since applications tend to perform a lobna reads than writes, we decided to use
a copy-on-write strategy (instead of creating copies o lbeads and writes) to reduce the cost of
read operations (trading this lower overhead for potehdis of precision in detecting serializability
violations).

The high-contention scheme maintains the following infation in each monitor:

e global write mapidentifies the objects written by all threads executindwaithe monitor. This
map is implemented as a bit-map with a bit being set for evesglified object. The mapping is
many-to-one with multiple objects possibly hashing to thes bit;

o thread countthe number of threads concurrently executing within theitoo.

The monitor object also contains information about wheéimgrthread executing within a monitor has
already managed to commit its updates. The global write mdgteread count can be combined into
one data structure to simplify access to it.

In addition to the data stored in the monitor object, the kead every object holds the following
information:

e copies a circular list of the object’s copies, created by the défe threads executing within
transactional monitors (the original object is the headeflist).
e writer: each copy holds a reference to the thréatiat created it.

Each thread also holds the following (thread-local) infation:

e local writes a list of object copies created by the thread when execwtiitigin the current
transactional monitor;

e local read mapa local bit-map, implemented similarly to the global writep, which identifies
those objects read by the thread within the current monitor.

¢ local write map identifies the objects written by a given thread when exegutithin the current
monitor.

8.2.1. Initialization

The first thread attempting to enter a monitor initializes thonitor by clearing the global write map
and setting the thread counter to one. Any subsequent tlergadng the monitor simply increments
the thread counter, and is immediately allowed to enter tbaitor provided that no thread has yet
committed its updates. If updates have already been iadtaihe remaining threads still executing
within the monitor are allowed to continue their executibnt no further threads are allowed to
enter the monitor. We do this so as to avoid accumulatingiepsiconflicts due to threads that have
successfully exited the monitor after having performedesgti Otherwise out-dated global write map
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information about updates performed within the monitor mige retained for an indefinite time, and
newly-entering threads would abort without reason. By en¢ing threads from entering the monitor
once updates have been installed we allow the remainingdbr® complete and the last one out will
clear the global write map. Each thread entering a monita@tralso clear its local data structures.

8.2.2. Read and write barriers

The barriers implement a copy-on-write semantics. Thevahg actions are taken before writing to
an object:

o If the bit representing the object in the local write map isatl fe, the current thread has not
yet written to this object), then a copy of the original objisccreated and threaded onto its per-
object copy chain, and onto the list of copies for this thréldte object’s bit in the local write
map is set, and the write is redirected to the copy.

e If the bit representing the object in the local write map is 8e=n the current thread may already
have a copy of this object (the mapping is imprecise). The/ i®fpcated by traversing the list
of copies to find the one created by the current thread; if § @opot found, one is created. The
write is redirected to the copy and the local write map is set.

The following actions are taken before reading an object:

e If the bit representing the object in the local write map &atlfe, the current thread has not yet
written to this object), the local read map is first set, befhie original object is read.

o If the bit representing the object in the local write map i #gen the corresponding copy is
located (as above). If a copy exists, the read is performahatthe copy, otherwise the original
object is read; in both cases the local read map is set.

8.2.3. Conflict detection

Before a thread can exit a monitor, conflict detection chéfckse global write map and the thread’s
local read map are disjoint. If they are disjoint then no sebg the current thread could have been
interleaved with committed writes of other threads wittie tmonitor, so the thread proceeds to exit
the monitor. If the maps intersect then a potentially hatrmfierleaving may have occurred that may
violate serializability; in this case, the exiting threadshabort and re-execute the monitored region.
Only if the thread passes the test for conflicts can it proteedit the monitor, as follows.

8.2.4. Monitor exit

Having passed the test for possible conflicts, the threadegeas to commit its updates atomically
before exiting the monitor. The updated contents of eacly eop installed in the original object, and
the local write map is merged into the global write map to rtfthe writes performed by the exiting
thread. The copies are discarded from their circular cagpyTihhe monitor thread count is decremented,
and the per-monitor state is cleared if the counter readregthere are no longer threads active within
the monitor).

The actions performed in this scheme executing the accaantjgle from Figure 13 are illustrated in
Figure 17, where wavy lines represent threddmdT’, circles represent objeatgchecking account)
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Figure 17. High contention scheme example

ands (saving account), and updated objects are marked grey. @heepresents the dynamic scope of
a common transactional monitaccountmonitorguarding code regions executed by the threads. Both
the global write map@GW) associated with the monitor and the local maps (write bV&(@and read map
LR) associated with each thread have three slots. Local map®dbe wavy line representing thread
T’ belong toT’ and local maps below the wavy line representing thie&elong toT . In Figure 17(a)
threadT’ is about to enter the monitor, which it does in Figure 17(bddifying objectc. Objectc

is greyed and information about the update is reflected indat& write map ofT’ (we assume that
objectc hashes into the second slot of the map). In Figure 17(c) dhfeanters the same monitor and
reads object (the read operation gets reflected in the local read map.ah Figure 17(d) thread’
modifies objecs, objectsis greyed and the update also is reflected’ta local write map (we assume
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that objecs hashes into the third slot of the map). In Figure 17(e) thiEagkits the monitor. Since no
conflicts are detected (there were no intervening writesasral§ of other threads executing within the
monitor), T’ installs its updates, modifies the global write map to reflpectates performed within the
guarded region and clears its local maps. Threadibsequently reads objextnarking its local read
map (Fig 17(f)) and attempts to exit the monitor (Figure }).(ln the case of thread however its
local read map and the global write map overlap indicatingt@mtial conflict — the guarded region
of threadT must be re-executed (Figure 17(h)). Since thréaslthe last thread to exit the monitor, in
addition to clearing its local maps, it also cleans up theitooby clearing the global write map.

8.3. Java-specific issues

Realizing transactional monitors for Java requires reitiogctheir implementation with Java-specific
features such as native method calls and existing threachsynization mechanisms (including the
wai t /not i fy primitives). We now elaborate on these issues.

8.3.1. Native methods

In general, the effects of executing a native method canaainolone. Thus, we disallow execution of
native methods within regions guarded by transactionalitom However, it is possible to relax this
restriction in certain cases. For example, if the effectexacuting a native method do not affect the
shared stateefy, a call to obtain the current system time), it can safely béopeed within a guarded
region. It may also be possible to provide compensation tode invoked when a transaction aborts
that will revert the effects of native method calls execwtiiin the aborting transaction. However, our
current implementation does not provide such functiopdlistead, when a native method call occurs
inside the dynamic context protected by a transactionalitmga commit operation is attempted for
the updates performed up to that point. If the commit falentthe monitor re-executes, discarding all
its updates. If the commit succeeds, the updates are rdta@ind execution reverts to mutual-exclusion
semantics: a conventional mutual-exclusion lock is aeglifor the remainder of the monitor. Any
other thread that attempts to commit its changes while thk i® held must abort. Any thread that
attempts to enter the monitor while the lock is held must wait

8.3.2. Existing synchronization mechanisms

Double guarding a code fragment with both a transactionahitoo and a mutual-exclusion

monitor (the latter expressed using Javayanchr oni zed keyword) does not strengthen existing
serializability guarantees. Indeed, code protected i sumanner will behave correctly. However,
the visibility rule for mutual-exclusion monitors embeddeithin a transactional monitor will change
with respect to the original Java memory model: all updatgfopmed within a region guarded by a
mutual-exclusion monitor become visible only upon comrhithe transactional monitor guarding that
region.

*This example is also based on an interleaving of operatidresathe conflict really existse( serializability invariants are
violated).
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8.3.3. Wait-notify

We allow invocation ofwai t andnot i fy methods inside of a region guarded by a transactional
monitor, provided that they are also guarded by a mutualdsian monitor (and invoked on the
object representing that mutual-exclusion monitor). Tigguirement is identical to the original
Java execution semantics — a thread invoking wait or notifistninold the corresponding monitor.
Invokingwai t releases the corresponding mutual-exclusion monitor la@darrent thread waits for
notification, but updates performed so far do not becomdleisintil the thread resumes and exits
the transactional monitor. Invokingot i f y postpones the effects of notification until exit from the
transactional monitor. That is, notification modifies thargll state of a program and is therefore
subject to the same visibility rules as other shared updates

9. Transactional monitors: Experiments

To evaluate the performance of the prototype implementatie use and extend the multi-threaded
version of the OO7 object operations benchmark [14], odfijrdeveloped in the database community.
Our incarnation of OO7 uses modified traversal routinesltmgbarameterization of synchronization
and concurrency behavior. We have selected this benchnegéuke it provides a great deal of
flexibility in the choice of run-time parametersq percentage of reads and writes to shared data
performed by the application) and extended it to allow agndwver placement of synchronization
primitives and the amount of contention on data access. WWehensing OO7 for our measurements,
our goal was to accurately gauge various trade-offs intteneth different implementations of
transactional monitors, rather than emulating workloadsetected potential applications. Thus, we
believe the benchmark captures essential features ofodeaancurrent programs that can be used to
quantify the impact of the design decisions underlying agaational monitor implementation.

9.1. The OO7 benchmark

The OO7 benchmark suite [14] provides a great deal of flagbibr benchmark parametergd
database structure, fractions of reads/writes to sharedip data). The multi-user OO7 benchmark
[13] allows control over the degree of contention for acceshared data. By varying these parameters
we are able to characterize the performance of transattimators over a mixed range of workloads.

The OO7 benchmarks operate on a synthetic design dataloasésting of a set ocfomposite parts
Each composite part comprises a graplatmic parts and adocunent object containing a small
amount of text. Each atomic part has a set of attribuge$iélds), and is connected via a bi-directional
association to several other atomic parts. The connectimnanplemented by interposing a separate
connection object between each pair of connected atomts.pg@omposite parts are arranged in an
assemblyhierarchy; each assembly is either made up of composits fablaseassembly) or other
assemblies (aomplexassembly). Each assembly hierarchy is calledaalule and has an associated
manualobject consisting of a large amount of text. Our results dretdained with an OO7 database
configured as in Table I.

Our implementation of OO7 conforms to the standard OO7 datlspecification. Our traversals
are a modified version of the multi-user OO7 traversals. ®etrsal chooses a single path through the
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Table I. Component organization of the OO7 benchmark

Component | Number
Modules 1
Assembly levels 7
Subassemblies per complex assemply 3
Composite parts per assembly 3
Composite parts per module 500
Atomic parts per composite part 20
Connections per atomic part 3
Document size (bytes) 2000
Manual size (bytes) 100000

assembly hierarchy and at the composite part level randoehdpses a fixed humber of composite
parts to visit (the number of composite parts to be visitedndua single traversal is a configurable
parameter). When the traversal reaches the compositetgeas, two choices:

1. Do aread-onlydepth-first traversal of the atomic part subgraph assatiatéh that composite
part; or

2. Do aread-writedepth-first traversal of the associated atomic part suligpapping thec and
y coordinates of each atomic part as it is visited.

Each traversal can be done beginning with eithgrieatemodule or ssharedmodule. The parameter’s
of the workload control the mix of these four basic operatioread/write and private/shared. To
foster some degree of interesting interleaving and coimterm the case of concurrent execution, our
traversals also take a parameter that allows extra ovetiodael added to read operations to increase
the time spent performing traversals.

Our experiments here use traversals that always operatéeoshtired module, since we are
interested in the effects of contention on performanceasfdactional monitors. Our implementation of
007 conforms to the standard OO7 database specificationr&versals differ from the original 0OO7
traversals in allowing multiple composite parts to be @ditluring a single traversal rather than just
one as in the original specification, and adding a paramle&rcontrols entry to monitors at varying
levels of the database hierarchy.

9.2. Measurements

Our measurements were obtained on an eight-way 700MHz Restium Il with 2GB of RAM
running Linux kernel version 2.4.20-20.9 (RedHat 9.0) img#&-user mode. We ran each benchmark
configuration in its own invocation of RVM, repeating the bbmark six times in each invocation, and
discarding the results of the first iteration, in which thedliemark classes are loaded and compiled, to
eliminate the overheads of compilation.

When running the benchmarks we varied the following paramet

e number of threads competing for shared data access alomgtét number of processors
executing the threads: we r&n 8 threads (wherB is the number of processors) 8= 1, 2,4, 8.
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e ratio of shared reads to shared writes: from 10% shared r@adi®0% shared writes (mostly
read-only guarded regions) to 90% shared reads and 10%dshaites (mostly write-only
guarded regions).

e level of the assembly hierarchy at which monitors were eutelevel one (module level), level
three (second layer of composite parts) and level six (ffytet of composite parts). Varying the
level at which monitors are entered models different logkgnanularities from coarse-grained
(ie, module) through to fine-grainet( composite part).

Every thread performs 1000 traversals (enters 1000 guaegézhs) and visits 2M atomic parts during
each iteration.

9.3. Results

The expected behavior for transactional monitor implemons optimized for low-contention
applications is one in which performance is maximized whentention on guarded shared data
accesses is low, for example, if most operations in guardgins are reads. The expected behavior
for transactional monitor implementations optimized fdghHicontention applications is one in
which performance is maximized when contention on guardedes data accesses is moderate,
the operations protected by the monitor contain a mix of seadd writes, and concurrently
executing threads do not often attempt concurrent updétie sameobject. Potential performance
improvements over a mutual-exclusion implementatioredrism the improved scalability that should
be observable when executing on multi-processor platforms

Our experimental results confirm these hypotheses. Cooteoh shared data accesses depends on
the number of updates performed within guarded regions @wdbwith the amount of contention
on entering monitor$.Figure 18 plots execution time for 64 threads running on &@seors for the
high-contention scheme (Figure 18(a)) and low-contensicimeeme (Figure 18(b) normalized to the
execution time for standard mutual-exclusion monitovghile varying the ratio of shared reads and
writes and the level at which monitors are entered. It is irtgott to note that only monitor entries
at levels one and three create any reasonable contentiohamadsdata accesses — at level six the
probability of two threads concurrently entering the sananitor is very low (thus no performance
benefit can be expected). In Figure 18(a) we see the higlectioh scheme outperforming mutual-
exclusion monitors forll configurations when monitors are entered at level one. Whenitors
are entered at level three, the high-contention schemedotps mutual-exclusion monitors for the
configurations where write operations constitute 70% odath operations. For larger write ratios, the
number of aborts and the number of copies created duringigdaxecution overcome any potential
benefit from increased concurrency.

The low-contention scheme’s performance is illustratedrigure 18(b): it outperforms mutual-
exclusion monitors for configurations where write openagi@onstitute 30% of all data operations
(low contention on shared data accesses). The total nunikayoots across all iterations for both

*Threads contend on entering a monitor only if they entestiraemonitor.
To obtain results for the mutual-exclusion case we used amodified version of Jikes RVM (no compiler or run-time
modifications). Figures reporting execution times show @@#tfidence intervals in our results.
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T T T T
100000t L - 100000C |
10000¢ e 100000 El
2 2
3 5
S 10000 . . S 10000 E
5 5
g 10 < g 1000; |
€ £
=3 =]
z z
| 100 =
10;7 | 10 e
1’\ | O S T O I S B 1L | N N S A B
8 16 24 32 40 48 56 64 8 16 24 32 40 48 56 64
Number of threads Number of threads
(a) high-contention (b) low-contention

Figure 25. Total aborts — monitor entries at level 3
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Figure 26. Total aborts — monitor entries at level 6
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Number of copies

high-contention scheme and low-contention scheme appe&igure 19. The total number of copies
created across all iterations for the high-contention seheappears in Figure 20. The remaining
illustrate the scalability of both schemes by pigtthormalized execution times for the
high-contention scheme (Figures 21(a)-23(a)) and lowterdion scheme (Figures 21(b)-23(b)) when
the number of threads (and processors) for monittnies placed at levels one, three, and
six (Figures 21-23, respectively), along with the inforirmatconcerning number of aborts and copies

graphs

varying
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Figure 27. Total copies

created (Figures 24-26 and Figure 27(a)-27(c), respédglive

We observe that the reduced performance of the low contestiseme for higher shared write ratios
is caused almost exclusivélpy an increase in the number of aborts (graphs reporting ruoflaborts

*The run-time overheads of the low contention scheme aredowogging and no read barriers. As a result performance
of this scheme in the case when there is almost no contentioentering monitors is only slightly worse than that of the

mutual-exclusion monitors (Figure 23(b)).
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are plotted on a logarithmic scale)(Figures 24(b) and (feig25(b)). It is a direct result of a degree of
imprecision in detecting serializability violations. Molhowever, that the low contention scheme has
been specifically designed to perform well only when exegutiorkloads when concurrent writes are
infrequent and as such has exactly met our expectations.eCzaly, the high contention scheme has
higher run-time costs and therefore its performance isasedwhen there is not enough opportunity for
increased concurrency (Figures 21(a)-23(a) — 8 threadsugirg on 1 CPU), even though the number
of aborts is in these cases relatively low (Figures 24-26(a)

10. Related work

Our use of roll-backs to redo computation inside monitoredians is reminiscent of optimistic
concurrency protocols first introduced in the 1980’s [29]rtprove database performance. Given a
collection of transactions, the goal in an optimistic camency implementation is to ensure that only a
serializable schedule results [1, 24, 42]. Devising fadtefficient techniques to confirm that a schedule
is correct remains an important topic of study.

Several recent efforts explore alternatives to lock-baseaturrent programming. Harrit al [22]
introduce a new synchronization construct to Java cadkednic that is superficially similar to our
transactional monitors. The idea behind the atomic coaosistthat logically only one thread appears
to executeany atomic block at a time. However, it is unclear how to trarestieir abstract semantic
definition into a practical implementation. For example,amplex data structure enclosed within
atomicis subject to a costlyalidation check, even though operations on the structure may occur
on separate disjoint parts. We regard our work as a signffieatension and refinement of their
approach, especially with respect to understanding imefdation issues related to the effectiveness
of new concurrency abstractions on realistic multi-thezhdpplications. Thus, we focus on a detailed
quantitative study to measure the cost of logging, comralisyts,etc, we regard such an exercise as
critical to validate the utility of these higher-level atasttions on scalable platforms.

Lock-free data structures [38, 28] and transactional mgni28, 41] are also closely related to
transactional monitors. Herlihgt al [25] present a solution closest in spirit to transactionahitors.
They introduce a form of software transactional memory thiddws for the implementation of
obstruction-free(a weaker incarnation of lock-free) data structures. H@xelecause shared data
accesses performed in a transactional context are linatsthtically pre-definettansactional objects
their solution is less general than the dynamic protectifimded by transactional monitors. Moreover,
the overheads of theirimplementation are also uncleay tompare the performance of operations on
an obstruction-free red-black tree only with respect t@otbck-free implementations of the same data
structure, disregarding potential competition from a fidhe crafted implementation using mutual-
exclusion locks. The notion of transactional lock removalgmsed by Rajwar and Goodman [38] also
shares similar goals with our work, but their implementatielies on hardware support.

Recently, Pizlcet al [37] proposed a transactions-based solution to resolvifggity inversion in
the context of the Real-Time Specification for Java (RTS#eyTextended RTSJ with a notion of
transactional lock-free (TLF) objects whose methods caddsignated as atomic and run under the
protection of lightweight transactions (currently onlyeathread is allowed to execute a given method
at a time). The basic idea underlying their solution is samtb that of revocable monitors — a low
priority thread executing an atomic method can be inteadipihd revoked by a higher priority thread.
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However, their major focus is on providing real-time guadeas for transactional execution, such as
bounding the space consumed by transaction logs, while mphasis is improving throughput of
high-priority threads in a semantically transparent way.

Rinard [39] describes experimental results using lowdlepéimistic concurrency primitives in the
context of an optimizing parallelizing compiler that gesttess parallel C++ programs from unannotated
serial C++ source. Unlike a general transaction facilitytld kind described here, his optimistic
concurrency implementation does not ensure atomic comenitof multiple variables. Moreover in
contrast to a low-level facility, the code protected by sactional monitors may span an arbitrary
dynamic context. In similar vein, Harris and Fraser [23]gmee another low-level mechanism called
revocable locks. A revocable lock is associated with a sitnglap location and, once acquired by a
thread, can be revoked by another thread attempting to attetesame location by gaining ownership
of the same lock. The intended use of revocable locks is glifferent from that of higher level
synchronization mechanisms such as revocable monitoraubecthey are meant to be used as a
building blockwithin implementations of such high-level abstractions.

There has been much recent interest in data race detectidavia. Some approaches [7, 8] present
new type systems using, for example, ownership types [1¥ptdy the absence of data races and
deadlock. Recent work on generalizing type systems all@asaning about higher-level atomicity
properties of concurrent programs that subsumes data edeetin [19, 18]. Other techniques [44]
employ static analyses such as escape analysis along witinne instrumentation that meters accesses
to synchronized data. Transactional monitors share gingitels with these efforts but differ in
some important respects. In particular, our approach doesety on global analysis, programmer
annotations, or alternative type systems. While it redoek-based implementations of synchronized
blocks, the set of schedules it allows is not identical ta sugported by lock-based schemes. Indeed,
transactional monitors ensure preservation of atomicitlserializability properties in guarded regions
without enforcing a rigid schedule that prohibits benigmaarrent access to shared data. In this
respect, they can be viewed as a starting point for an impléation that supports higher-level atomic
operations.

There have been several attempts to reduce locking oveihelaa. Ageseet al [2] and Bacon
et al[4] describe locking implementations for Java that attetoiptimize lock acquisition overhead
when there is no contention on a shared object. Transattiooiitors obviate the need for a multi-
tiered locking algorithm by allowing multiple threads teeexte simultaneously within guarded regions
provided that updates are serializable.

Finally, the formal specification of various flavors of tranSons has received much attention
[31, 16, 21]. Blacket al [6] present a theory of transactions that specifies atoyniblation and
durability properties in the form of an equivalence relatan processes. Choithia and Duggan [15]
present the pik-calculus and pike-calculus as extensibtiseopi-calculus that support abstractions
for distributed transactions and optimistic concurrenbyeir work is related to other efforts [9]
that encode transaction-style semantics into the pi-t@cand its variants. The work of Busi,
Gorrieri and Zavattaro [10] and Busi and Zavattaro [12] falime the semantics of JavaSpaces, a
transactional coordination language for Linda, and distlis semantics of important extensions such
as leasing [11]. Berger and Honda [5] examine extensionsg@i-calculus to handle various forms
of distributed computation include aspects of transaefigrocessing such as two-phase commit
protocols for handling commit actions in the presence ofenfadlures. We have recently applied
the ideas presented here to define an optimistic concurigrarysaction-like) semantics for a Linda-
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like coordination language that addresses scalabilitytdiions in these other approaches [27]. A
formalization of a general transaction semantics for paogning languages expressive enough to
capture the behavior of transactional monitors is presentgt3].

11.

Conclusions

We have presented a revocation-based priority inversiaidance technique and demonstrated its
utility in improving throughput of high priority threads ia priority scheduling environment. The
solution proposed is relatively simple to implement, pbléaand can be adopted to solve other types
of problems €g, deadlocks). We have also introduced transactional meigonew synchronization
mechanism, alternative to mutual-exclusion. Transaatiaronitors preserve the semblance of serial
execution within monitored regions and are implementedigisivieight transactions that can be
executed concurrently. We have presented two differerraels tailored to different concurrent access
patterns and examined their performance and scalabilityhé techniques we described use compiler
support to insert barriers to monitor accesses to sharedq alad run-time modifications to implement
revocation.
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