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Abstract—Effectively migrating sequential applications to Identifying code regions where concurrent execution can
take advantage of parallelism available on multicore platforms  pe profitably exploited remains an issue. In general, the bur
is a well-recognized challenge. This paper addresses important den of determining the parts of a computation best suited for

aspects of this issue by proposing a novel profiling technique to o . .
automatically detect available concurrency in C programs. The parallelization still falls onto the programmer. Poor aes

profiler, called Alchemist, operates completely transparently ~ €an lead to poor performance. Consider a call to procedure
to applications, and identifies constructs at various levels of p that is chosen for concurrent execution with its calling
granularity (e.g., loops, procedures, and conditional statemes)  context. If operations irp share significant dependencies
as candidates for asynchronous execution. Various dependersce with operations in the call’s continuation (the computatio

including read-after-write (RAW), write-after-read (WAR), and following th I f ins that f
write-after-write (WAW), are detected between a construct aml ollowing the call), performance gains that may accrue from

its continuation, the execution following the completion of the ~ €Xxecuting the call concurrently would be limited by the
construct. The time-ordered distance between program points  need to guarantee that these dependencies are presereed. Th
forming a dependence gives a measure of the effectiveness challenge becomes even more severe if we wish to extract
of parallelizing that construct, as well as identifying the  qat5 parallelism to allow different instances of a codeargi
transformations necessary to facilitate such parallelization. . s
Using the notion of post-dominance, our profiling algorithm operating on d'sjo'm_ memory bIQCkS to e_xecute concurygntl
builds an execution index tree at run-time. This tree is used Compared to function parallelism, which allows multiple
to differentiate among multiple instances of the same static code regions to perform different operations on the same
construct, and leads to improved accuracy in the computed memory block, data parallelism is often not as readily
profile, useful to better identify constructs that are amenable  jyentifiaple because different memory blocks at runtime
to parallelization. Performance results indicate that the pro- . .
files generated by Alchemist pinpoint strong candidates for u_sually are mz_ipped_to th_e same abstract Iocatl_onS at compile
parallelization, and can help significantly ease the burden of time. Static disambiguation has been used with success to
application migration to multicore environments. some extent through data dependence analysis in the context
Keywords-profiling; program dependence; parallelization; of Ioo.ps, rgsulting in automatic tephniques that pa_ral&li
execution indexing loop iterations. However, extracting data parallelism for
general programs with complex control flow and dataflow
mechanisms, remains an open challenge.
To mitigate this problem, many existing parallelization
The emergence of multicore architectures has now madwols are equipped with profiling componentsog¥ [17]
it possible to express large-scale parallelism on the dpskt profiles the benefits of running a loop or a procedure as
Migrating existing sequential applications to this platho speculative threads by emulating the effects of concurrent
remains a significant challenge, howev@etermining code execution, squashing and prefetching when dependenaies ar
regions that are amenable for parallelizatioandinjecting  violated. MN-CuT [14] identifies code regions that can run
appropriate concurrency control into programs to ensure speculatively on CMPs by profiling the number of depen-
safetyare the two major issues that must be addressed bgtence edges that cross a program poimsT[5] profiles the
any program transformation mechanism. Assuming that codminimum dependence distance between speculative threads.
regions amenable for parallelization have been identifiedin [23], dependence frequencies are profiled for critical
technigues built upon transactional or speculation machinregions and used as an estimation of available concurrency.
ery [24], [25], [7] can be used to guarantee that concurrenBependences are profiled at the level of execution phases to
operations performed by these regions which potentiallyguide behavior-oriented parallelization in [7].
manipulate shared data in ways that are inconsistent with In this paper, we present Alchemist, a novel profiling
the program’s sequential semantics can be safely revokedystem for parallelization, that is distinguished fromsthe
By requiring the runtime to detect and remedy dependencsgfforts in four important respects:
violations, these approaches free the programmer from ex- 1) Generality.We assumeo specific underlying runtime
plicitly weaving a complex concurrency control protocol execution model such as transactional memory to deal
within the application. with dependency violations. Instead, Alchemist pro-
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The paper makes the following contributions:

vides direct guidance for safe manual transformations
to break the dependencies it identifies.
TransparencyAlchemist considers all aggregate pro-
gram constructs (e.g., procedures, conditionals, loops,
etc.) as candidates for parallelization with no need for
programmer involvement to identify plausible choices.
The capability of profiling all constructs is important
because useful parallelism can be sometimes extracted
even from code regions that are not frequently exe-
cuted.

Precision. Most dependence profilers attribute de-
pendence information to syntactic artifacts such as
statements without distinguishing the context in which
a dependence is exercised. For example, although
such techniques may be able to tell that there is a
dependence between statementendy inside a loop

in a functionfoo(), and the frequency of the depen-
dence, they usually are unable to determine if these
dependences occur within the same loop iteration,
cross the loop boundary but not different invocations
of foo(), or cross both the loop boundary and the
method boundary. Observe that in the first case, the
loop body is amenable to parallelization. In the second
case, the method is amenable to paralelization. By
being able to distinguish among these different forms
of dependence, Alchemist is able to provide a more
accurate characterization of parallelism opportunities
within the program than would otherwise be possible.

richer profiles. We devise a sophisticated online algo-
rithm that relies on building an index tree on program
execution to maintain profile history. More specifically,
we utilize a post-dominance analysis to construct a tree
at runtime that reflects the hierarchical nesting structure
of individual execution points and constructs.
Alchemist supports profiling of Read-After-Write
(RAW) dependences as well as Write-After-Write
(WAW) and Write-After-Read (WAR) ones. RAW de-
pendencies provide a measure of the amount of avail-
able concurrency in a program that can be exploited
without code transformations, while removing WAR
and WAW dependencies typically require source-level
changes, such as making private copies of data.

We evaluate profile quality on a set of programs that
have been parallelized elsewhere. We compare the
program points highly ranked by Alchemist with those
actually parallelized, and observe strong correlation
between the two. Using Alchemist, we also manually
parallelize a set of benchmarks to quantify its benefits.
Our experience shows that, with the help of Alchemist,
parallelizing medium-size C programs (on the order
of 10K lines of code) can lead to notable runtime
improvement on multicore platforms.

II. OVERVIEW

Our profiling technique detects code structures that can be

Usability. Alchemist produces a ranked list of con- run asynchronously within their dynamic context. More pre-
structs and an estimated measure on the work necesisely, as illustrated in Fig. 1, it identifies code struegilike
sary to parallelize them by gathering and analyzingC, delimited byCe,¢y and Cepir, Which can be spawned
profile runs. The basic idea is to profile dependenceas a thread and run simultaneously wiits continuation,
distances for a construct, which are the time spanghe execution following the completion of'. C' can be
of dependence edges between the construct and i procedure, loop, or anf -t hen-el se construct. Our

continuation. A construct with all its dependence execution model thus follows the parallelization strategy
distances larger than its duration is amenable foravailable usingfutures[10], [15], [25] that has been used
parallelization. The output produced by Alchemistto introduce asynchronous execution into sequential Java,
provides clear guidance to programmers on both théscheme and Lisp programs; it is also similar to the behavior-
potential benefits of parallelizing a given construct, oriented execution model [7] proposed for C. A futjoes

and the associated overheads of transformations thatith its continuation at a claim point, the point at which the
enable such parallelization. return value of the future is needed.

Our goal is to automatically identify constructs that are
amenable fofuture annotation and provide direct guidance
Alchemist is a novel transparent profiling infrastructurefor the parallelization transformation. The basic ideads t
that given a C or C++ program and its input, producesprofile the duration of a construct and the time intervals
a list of program points denoting constructs that areof the two conflicting memory references involved in any
likely candidates for parallelization. Alchemist treats dependence from inside the construct to its continuation.
any program construct as a potential parallelizationConsider the sequential run in Fig. 1. Assume our profiling
candidate. The implication of such generality is that amechanism reveals a dependence between execution points
detected dependence may affect the profiles of multiplendy. The duration of construet’ and the interval between
constructs, some of whom may have already completed andy are profiled asly,, andTy.,, respectively. Let the
execution. A more significant challenge is to distinguishtimestamps of an execution poinin the sequential and the
among the various dynamic nesting structures in whictparallel executions bé,.,(s) andt,.,(s), respectively; the
a dependence occurs to provide more accurate anititerval between: andy in the parallel run is then
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Figure 1. Overview (the dashed lines represent the cornefgree between execution points).

Source Position Source Position
1. int zip (in, out) 8471 11. off t flush_block (buf, len, ...) 6496
2. 4 8472 12. { 6495
3 while (/* input buffer not empty*/) { 1600 13.  flag buf[last flags] = /*the current flag*/; 6505
4 /* process one literal at a time*/ ... 14.  input_len + = /* length of the block*/; 6528
5 if (/*processing buffer full*/) 1662 15.  /* Encode literals to bits*/
6. flush_block (&window[],...); 1662 16. do{ 6670
7 flag_buf[last_flags++]=... ; 6629 17. ... flag =flag_bufl...]; 6671
8.} 1701 18. if (flag ...) { 6673
9.  ...=flush block (&window[],...); 1704 19. if (bi_valid>...) { 754
10. outbuf[outent++]=/*checksum*/ 8527 20. outbuf[outent++]=(char) bi_buf...; 756
} 21. bi_buf=/* encoding*/, 757
Profile 22. bi_valid+=...; 758
23. } 759
1. Method main T4u=20432742, inst=1 24. }
2. Loop (main,3404)  Te,=20431181, inst=1 25. )} while (/*not the last literal*/), 6698
9. Method flush_block Ty =643408, inst=2 26, last_flags=0; 6064
RAW: line29 — linc9 Mol 27.  /* Write out remaining bits*/ .
RAW: line 28 — line 10 Tyep=3 28. outbuf[outent++]=(char) bi_buf...; 790
RAW: line 14— line 14 Taep=4541215 29.  return /* # of compressed literals*/; 6597
RAW: line22 — line 19 Taep=4541231 }

Figure 2. Profilinggzi p- 1. 3. 5.

mation is to annotat€” as a future, which is joined

tpar () — tpar(2) at any poss_ible conﬂi_ct_ing read_s e.g.,More complex
= (toeq()) — (tseq(Cenit) — tseq(Centry))) — tseq(x) transformations that inject barriers which stall the read
= (tseq(y) — tseq(z)) — (tseq(Ceait) — tseq(Contry)) aty until it is guaranteed that’ will perform no further
= Tuep — Taur writes to the same location (e.g:,has completed) are

o also possible.

as shown in Fig. 1. « For WAR dependences, i.e:,is a read ang is a write,

The profile and the dependence types provide guidance to  if C' has been decided by the RAW profile to be par-
programmers as follows. allelizable, two possible transformations are suggested
to the programmer. The first one is for dependences
with Tgep < Tqur, Which implies that if the construct
is run asynchronously, the write may happen before
the read and thus the read may see a value from its
logical future, violating an obvious safety property.
Therefore, the programmer should create a private copy
of the conflict variable inC. For dependences with
Taep > Tqur, the programmer can choose to join the

o For RAW dependences, i.ex, is a write andy is a
read of the same location, ., > Tgy», construct
C is a candidate for asynchronous evaluation with its
continuation. That is because it indicates the distance
betweern: andy is positive in the parallel run, meaning
it is highly likely that wheny is reached(' has already
finished the computation at and thus dependence can
be easily respected. A simple parallelization transfor-



asynchronous execution befoge of a total of fifteen) dependences, highlighted by the box,

« WAW dependences are similar to WAR. do not satisfy the conditiodly., > T4, and thus hinder
Consider the example in Fig. 2, which is abstracted fromconcurrent execution. Further inspection shows that tisé fir
the single file version ofjzi p- 1. 3. 5 [1]. It contains two  dependence only occurs between the call site at line 9, which

methodszi p andf | ush_bl ock. To simplify the presen- is out of the main loop irzi p(), and the return at 29. In
tation, we inline methods called by these two proceduresther words, this dependence does not prevent the call at 6
and do not show statements irrelevant to our discussiorfrom being spawned as a future. The second dependence
The positions of the statements in the source that are showa between the write toutcnt at 28 and the read at

in the code snippet are listed on the right. Procediirp 10. Again, this dependence only occurs when the call is
compresses one input file at a time. It containgal e loop ~ made at line 9. While these dependencies prevent the call to
that processes the input literals, calculating the fregigsn 1 ush_bl ock on line 9 from running concurrently with

of individual substrings and storing literals into tempgra its continuation (the write t@ut buf ), it does not address
buffers. Whenever these buffers reach their limits, it callsthe calls tof | ush_bl ock made at line 6. Because these
proceduref | ush_bl ock to encode the literals and emit calls occur within the loop, safety of their asynchronous
the compressed results at line 6. During processing, thexecution is predicated on the absence of dependences
whi | e loop setsf | ags[] which will be used later during within concurrent executions of the procedure itself, alt we
encoding. The procedurel ush_bl ock first records the as the absence of dependencies with operations performed
current flag and updates the number of processed inpuy the outer procedure. Snippets of the profile show that the
at lines 13-14; it scans the input buffer within the loop atoperation performed at line 14 has a dependence with itself
lines 16-25, encodes a literal into bits stored within buffe separated by an interval comprising roughly 4M instruction

bi _buf, which is eventually output to buffeout buf Observe that the duration of the loop itself is only 2M
at line 20. Variablebi _val i d maintains the number of instructions, with the remaining 2M instructions comptise
result bits in the buffer, andut cnt keeps track of the of actions performed within the iteration after the callsél
current pointer in the output buffer. After all the literalsee  observe that there is no return value from calls performed
processed, the procedure resetslthst _f 1 ags variable  within the loop, and thus dependencies induced by such
at line 26 and emits the remaining bits in the bit buffer. Notereturns found at line 9, are not problematic here.

that at line 20 in the encoding loop, bits are stored to the

output buffer at the unit of bytes and thus at the end, therelethod flush block T,4,=643408, inst=2

are often trailing bits remaining. The number of compressed WAW: line 28 — line 10 Taep=7

literals is returned at line 29. WAR: linel7 —line7 Tyep=6702
The code in Fig. 2 is significantly simplified from the WAR: line26 — line?7 T e, =6703

actual program, which is comprised of much more complex WAR: line 17 — line 13 Taep=3915860

control flow and data flow, both further confounded by
aliasing. It is difficult for traditional static techniques
identify the places where concurrency can be exploited. Figure 3. WAR and WAW profile.
Runninggzi p with Alchemist produces the results shown
in Fig. 2. Each row corresponds to a source code construct. Besides RAW dependencies, Alchemist also profiles WAR
The profile containg’,,., approximated by the number of and WAW dependencies. Unlike a RAW dependence which
instructions executed inside the construct and the numbegan be broken by blocking execution of the read access until
of executions of the construct. For example, the first rowthe last write in the future upon which it depends completes,
shows that themain function executes roughly 20 milion WAR and WAW dependencies typically require manifest
instructions once. The second row shows that the loogode transformations. The WAR and WAW profile fjzi p
headed by line 3404 in the original source executes roughlis shown in Fig. 3. The interesting dependences, namely
20 million instructions once, i.e. there is one iteratiortted ~ those which do not satisf¥., > T4, are highlighted in
loop. the box. The first dependence is between the two writes
Let us focus on the third row, which corresponds to theto out cnt at 28 and 10. Note that there are no WAW
execution of calls to procedurfel ush_bl ock. From the dependences detected between writeoud buf as they
profile, we see the procedure is called two times — the firstvrite to disjoint locations. Another way of understanding i
call corresponds to the invocation at line 6, and the other ais that the conflict is reflected on the buffer indeut cnt
line 9. Some of the profiled RAW dependences between thanstead of the buffer itself. As before, this dependencesdoe
procedure and its continuation are listed. Note that whike o not compromise the potential for executing calls initiated
dependence edge can be exercised multiple times, the profilg 6 asynchronously. The second dependence is caused
shows the minimall;., because it bounds the concurrency because the read tbl ag_buf[] happens at 17 and
that one can exploit. We can see that only the first two (outhe write happens later at 7. While we might be able to



inject barriers between these two operations to prevent A. Execution Indexing

dependence violation, a code transformation that prigatiz

flag_buf[] by copying its values to a local array is  RAW, WAR, and WAW dependences are detected between
a feasible alternative. Similarly, we can satisfy the thirdindividual instructions at run time. Since our goal is to
dependence by hoisting the reset lodist _f1 ags from  identify available concurrency between constructs and the
inside f1 ush_bl ock () and put it in the beginning futures, intra-construct dependences can be safely disdar
of the continuation, say, between lines 6 and 7. In the®\N executed instruction often belongs to multiple congsuc

meantime, we need to create a local copy aét _flags @t the same time. As a result, a dependence may appear as
for f 1 ush_bl ock() . While the decision to inject barriers &n intra-construct dependence for some constructs, and as a

or perform code transformations demands a certain degree §f0ss-boundary dependence for others.

programmer involvement, Alchemist helps identify program In order to efficiently update the profile of multiple con-
regions where these decisions need to be made, alorgjructs upon detection of a dependence, we adopt a technique
with supporting evidence to help with the decision-makingcalled execution indexing26] to create an execution index
process. Of course, as with any profiling technique, thdree that represents the nesting structure of an execution
completeness of the dependencies identified by Alchemigpoint. Fig. 4 shows three examples of execution indexing.
is a function of the test inputs used to run the profiler.  In example (a), nodé denotes the construct of procedure

A. As statements 2 and 3 are nested in procedyrthey

are children of nodéA in the index tree. ProcedurB is

T VEE;A(){ : VS;)C(H T VO(;)D(){ also nested mA Sta_tem_ent 6 is nested iB. The index
2. sk 2 (.01 2. while(...) { for an execution point is the path from the root to the
code i : B () i ff3( : i fj;me( ) point, which illustrates the nesting structure of the point
5. voidB(){ | 5. 4 5. 4 For example, the index of the first instance of statement 6
2' } s2; (7’ \ i g \ } in trace (a) is[A, B]. Fig. 4 (b) shows an example for an
T Tias Srisioia i f_-t hen- el_se construct. The construct led by_statement
2 is nested in procedur€(), and construct 4 is nested
(D) within construct 2, resulting in the index tree in the figure.
Index | &) (2) Note that statement 2 is not a child of node 2, but a child
AN L . . .
5 ?9 (4 @ of nodeC pecause it is considered as belng nested in the
)b s procedure instead pf the construc't led by |t§elf. Example
23454 5 472 (c) shows how to index loops. Since loop iterations are

often strong candidates for parallelization, each iterati
is considered as an instance of the loop construct so that
a dependence between iterations is considered as a cross
boundary dependence and hence should be profiled. We can
1. THE PROFILING ALGORITHM see in the index tree of example (c), the two iterations of
loop 4 are siblings nested in the first iteration of 2. The
Most traditional profiling techniques simply aggreate in-index of5; (the second instance of statement 5)/i5 2, 4],
formation according to static artifacts such as instruntio €xactly disclosing its nesting structure. From these exesnp
and functions. Unfortunately, such a strategy is not adequawe observe that (i) a dynamic instance of a construct is
for dependence profiling. Consider the example trace ifepresented by a subtree; (i) the index for a particular
Fig. 4 (c). Assume a dependence is detected between tixecution point is the path from the root to this point.
second instance of 5 in the trace and the second instance While Fig. 4 only shows simple cases, realistic appli-
of 2. Simply recording the time interval between the twocations may include control structures such laseak,
instances or increasing a frequency counter is not sufficiercont i nue, r et urn, or evenl ong_j unp/ set _j unp;
to decide available concurrency. We need to know that tha naive solution based on the syntax of the source code
dependence indeed crossed the iteration boundaries of loogvould fail to correctly index these structures. Control flow
2 and 4. This information is relevant to determine if theanalysis is required to solve the problem. The intuition is
iterations of these loops are amenable for parallelizafion that a construct is started by a predicate and terminated
contrast, it is an intra-construct dependence for proeedurby the immediate post-dominator of the predicate. Similar
D and can be ignored if we wish to evaluate callslo to calling contexts, constructs never overlap. Therefare,
concurrently with other actions. Thus, an exercised depensimilar stack structure can be used to maintain the current
dence edge, which is detected between two instructions, hasdex of an execution point. More precisely, a push is
various implications for the profiles of multiple constrsict performed upon the execution of a predicate, indicating the
The online algorithm has to efficiently address this issue. start of a construct. A pop is performed upon the execution

Figure 4. Execution Indexing Examples.



. . . Table |
of the immediate post-dominator of the top construct on the The Algorithm for Managing the Index Tree.

stack, marking the end of that construct. The state of the

stack is indeed the index for the current execution point. | pc is the program counter of the head of the construct.
PROFILE constrains the profile for constructs, indexedpby

Rule  Event Instrumentation pool is the construct pool.

(1) Enter procedureX IDS.push(X) 1. IDS.push pc)

2) Exit procedureX IDS.pop() 2 {

3) Non-loop predicate gt IDS.pushp) ) _ .

4) Loop predicate ap if (p==IDS.top()) IDS.pop(); 3 c—pool.head(),
IDS.pushp) 4 while (timestamp — c¢.Tezit < ¢.Tewit — C-Tenter) {

5) Statement while (p=IDS.top() A s is the immediate 5: c=pool.next();
post-dominator ofp) IDS.pop() 6

*IDS is the indexing stack. 7 pool.remove(c);

) ) ) 8 c.label= pc;
Figure 5. Instrumentation Rules for Indexing. 9 . Tonter= timestamp;

10: cTeziv=0;

The instrumentation rules for execution indexing are prer 11.  c.parent= IDS[top-1];
sented in Fig. 5. The first two rules mark the start and 12  IDS[top++]=c;
end of a procedure construct by pushing and popping the 13}
entry as;ociated vyith th.e procedure. In rgle (3), an en'try |> 15 IDS.pop ()
pushed if the predicate is not a loop predicate. Otherwise in 16: {
rule (4), the top entry is popped if the entry corresponds t¢ 17  ¢=IDS[— — top];
the loop predicate of the previous iteration, and the ctirren igi C~Tem'lt=btilm€5tamp;

: : . c=c.Label,
loop predicate is then pqshed. Although rule (4) pushes a_mdzo: Z};ROHLEb’gc].Ttoml+:c.Texit-c.Tenter;
pops the same value, it is not redundant as these operatiops;. PROFILEpc].inst++:
have side effects, which will be explained next. By doing so{ 22:  pool.appends)
we avoid introducing a nesting relation between iterations| 23: }
Finally, if the top stack entry is a predicate and the current
statement is the predicate’s immediate post-dominater, th
top entry is popped (Rule 5). Irregular control flows such ashe T, of the construct, only those constructs that get
those caused blyong j unp andset j unp are handled repeatedly executed have many instances at runtime and pose
in the same way as that presented in [26]. challenges to index tree management.

Managing the Index Tree for an Entire Execution. Theorem 1:Assume the maximum size of an instance
Unfortunately, the above stack-based method that is similaof a repeatedly executed construct/i$, a statement can
to the one proposed in [26] only generates the index for theerve as the immediate post-dominator for a maximuny of
current execution point, which is the state of the indexkstac constructs, and the maximum nesting levalisThe memory
It does not explicitly construct the whole tree. However, inrequirement of Alchemist i©(M - N + L).

Alchemist, we need the tree because a detected dependence Proof: Let i be the instruction count of an execution
may involve a construct that completed earlier. For ingtanc point, constructs completed befoire- M are of no interest
assume in the execution trace of Fig. 4 (c), a dependence xecause any dependence betwéemd any point in those
detected betweeh; and2,. The index of5; is [D,2,4]. It constructs must havé,., > M. Thus, only constructs that
is nested in the first iteration of loop 4, which has completedcompleted between — M andi need to be indexed with
before2,, and thus its index is no longer maintained by therespect toi, i.e., the nodes for those constructs can not
stack. In order to update the right profilés,s index needs be retired. As the maximum number of constructs that can
to be maintained. complete in one execution step/i& according to rule (5) in

A simple solution is to maintain the tree for the entire Fig. 5, the number of constructs completed in that duration
execution. However, doing so is prohitively expensive andcan not exceed/ - N. SinceL is the maximum number of
unnecessary. The key observation is that if a construcactive constructs, i.e., constructs that have not terrathat
instanceC has ended for a period longer th&n,,.(C), the space complexity i©®(M - N + L). [ ]
the duration of the construct instance, it is safe to remove The theorem says that the memory requirement of Al-
the instance from the index tree. The reason is that anghemist is bounded if the size of any repeatedly executed
dependence between a pointGhand a future point, must construct is bounded. In our experiment, a pre-allocated po
satisfy Ty, > Tuur(C) and hence does not affect the of the size of one million dynamic constructs never led to
profiling result. The implication is that the index tree can b memory exhaustion. The pseudo-code for the algorithm is
managed by using a construct pool, which only maintaingresented in Table I. It consists of two functiohgS. push
the construct instances that need to be indexed. Since oramdl DS. pop. In the instrumentation rules presented earlier,
node is created for one construct instance regardless difiey are the push and pop operations of the index stack.




. . Table Il
In the algorithm, variablerool denotes the construct pool. Profiling Algorithm.

Upon calling the push operation with the program counter

of the head instruction of a construct, usually a predicate o pc, andpc; are the program counters for the head
a function entry, the algorithm finds the first available con- and tail of the dependence.

struct from the pool by testing if it satisfies the conditidn a | “*’ C;r?éet;ner:;gz””m instances in which the head
Iin_e 4 Variabletimestamp denotes the current tim_e stamp. | 73 7, are the timestamps.

It is simulated by the number of executed instructions. éf th — Profileen, cn, Th, per, o, T0)

predicate is trueg can not be retired and the next construct| 2: {

from pool is tested. The first construct that can be safely 3: Taep=Tt-Th;
retired is reused to store information for the newly entered 4 pc=calabel;
construct. Lines 8-11 initialize the construct structute 5j P_‘P,ROFILE[DC]'
o . . . 6 C=Ch,;

Specifically, line 11 establishes the connection frento 7 while (€. Tonter <= Th < ¢.Tonit) {
its enclosing construct, which is the top construct on the g if (P.hasEdgercr, — pci) {
stack. Line 12 pushesto the stack. 9: Tmin=P.getTdep pcn — pce);

Upon calling the pop function, the top construct is popped, 10: it (Trmin > Taep) _
Its ending time stamp is recorded at line 18. The profile of 1% P.setTdep gen — per, Taep);

- . . 12: } else

the po_pped construct, indexed by its pc in ﬁhléq:l LE _ 13: P.addEdge ficn — pees Taep);
array, is updated. The total number of executed instrustion| 14: c=c.parent;

for the construct is incremented by the duration of the 15:
completed instance. Note that a construct may be executed6: }
multiple times during execution. The number of executed
instances of the construct is incremented by one. Fin&lgy, t

data structure assigned to the completed construct irestanéetected betweefy, with index[D, 2, 4], and2;, with index

is appended to the construct pool so that it might belD]- The input toprofile is the tuple< pcp =5, cp =
reused later on. We adopt a lazy retiring strategy — a newl)é1 , Ty =6, pc, =2, ¢ = D, T, = 8 >, in which
completed construct is attached to the tail of the pool whilg? represents a construct headed by 4" represents the
reuse is tried from the head. Hence, the time a completef0de 4 on the right. The algorithm starts from the enclosing

construct remains accessible is maximized. construct of the head, which i§'. As T, (4") = 6 and
Tewit(4 ) =7, the condition at line 7 in Table Il is satisfied

- . asT;, = 6; the profile is thus updated by adding the edge
B. The Profiling Algorithm to PROFI LE[ 4] . The algorithm traverses one level up and
Functionprof i | e() in Table Il explains the profiling  |ooks at4’'s parent2. The condition is satisfied again as
procedure. The algorithm takes as input a dependence edgenm( 2) =2 < T, =6 < T.,u(2) = 8 thus, the
denoted as a tuple of six elements. The basic rule is tgependence is added RROFI LE[ 2] , indicating that it is
update the profile of each nesting construct bottom up fromy|so an external dependence Towhich is the first iteration
the enclosing construct of the dependence head up to thg the outer while loop in code Fig 4(c). However, the parent

first active (not yet completed) construct along the head'$onstructD is still active with T, Lir = 0: thus, the condition
index. This is reflected in lines 7 and 14. The conditionjs not satisfied here an@ROFI LE[ 1] is not updated.

at 7 dictates that a nesting construct, if subject to update,

must have completede.lunier < c.Torirt) and must not Recursion. The algorithm in Table | produces incorrect in-
retire. If a construct has not completed, the dependence muprmation in the presence of recursion. The problem resides
be an intra-dependence for this construct and its nestingt line 20, where the total number of executed instructidns o
ancestors. If the construct has retired and its residenc#e€ construct is updated. Assume a functidr) calls itself
memory space: has been reused, it must be true thzt  and results in the index path ¢f;, f2]. Here we use the
falls out of the duration of the current construct occupyingsubscripts to distinguish the two construct instances.nJpo
¢ and thus condition at 7 is not true. Lines 8-13 are devotedhe end off; and fa, T, (f1) andeur(fZ) are aggregated

to updating the profile. It first tests if the dependence hago PROFILE[f].T,.qi. However, asf, is nested inf,, the
been recorded. If not, it is simply added to the construct'svalue of Ty, (f2) has already been aggregatedrig,.(f1),
profile. If so, a further test to determine if tf%,, of the  and thus is mistakenly added twice to thig;.,;. The solution
detected dependence is smaller than the recorded minimui# to use a nesting counter for each pc so that the profile is
Tyep is performed. If yes, the minimuri,., is updated. aggregated only when the counter reaches zero.

To illustrate the profiling algorithm, consider the example
trace and its index in Fig. 4 (c). Assume a dependence IISnadequacy of Context Sensitivity.In some of the recent
ork [6], [8], context sensitive profiling [2] is used to

1T, it is reset upon entering a construct. collect dependence information for parallelization. Hoare




context sensitivity is not sufficient in general. Considez t slow down factor ranges from 166-712 due to dependence

following code snippet. detection and indexing. Note that the valgrind infrastioet
FO) { itsglf incurs 5-10 times sllowdown.. The numbers of static
for (i ) unique c.onstructs and their dynamic m;tances are pr_e.i;ente
for (J ' ) in theT third colgmn of Taple Il Acgordmg to the prof!lmg
A): U algorithm ment|oned earlier, profile is collected per dyiam
B() ' construct instance and then aggregated when the construct
' instance is retired. As mentioned earlier, we used a fixdsize
} construct pool so that the memory overhead is bounded. The
} pool size is one million, with each construct entry in the
} pool taking 132 bytes. We have not encountered overflow

Assume there are four dependences between some exedsuith such a setting. Since Alchemist is intended to be used
tion inside A() and some execution insid&( ) . The first as an offline tool, we believe this overhead is acceptable.
one is within the sam¢ iteration; the second one crosses Using a better infrastructure such as Pin [18] may improve
the j loop but is within the sameé iteration; the third runtime performance by a factor of 5-8, and implementing
one crosses the loop but is within the same invocation the optimizations for indexing as described in [26] may lead
to F() ; the fourth one crosses different callsk¢) . They  to another 2-3 factor improvement.
have different implications for parallelization. For iaste,
in case one, the loop can be parallelized; in case two, the B, profile Quality

i loop can be parallelized but thje loop may not; and so . .
on. In all the four cases, the calling context is the same. In_1he next set of experiments are devoted to evaluating pro-

help. by Alchemist we run two sets of experiments. For the first

set of experiments, we consider sequential programs that
IV. EXPERIMENTATION have been parallelized in previous work. We observe how
Alchemist is implemented on valgrind-2.2.0 [19]. The parallelizgtion is reflected ip the prpfjle. We also eyaluate
evaluation consists of various sequential benchmarks eSonfhe effectiveness of Alchemist in guiding the paralleliaat
of them have been considered in previous work and otherBrocess by observing the dependences demonstrated by
(to the best of our knowledge) have not. Relevant detaildhe profile and relating them to the code transformations

about the benchmarks are shown in Table 11l and discusselfiat were required in the parallelization of the sequential
below. programs. Furthermore, we run Alchemist on a sequential

program that can not be migrated to a parallel version to
5 Table 'd” see if the profile successfully shows that the program is not
ENCHMARKS, NUMBER OF STATIGDYNAMIC CONSTRUCTS AND amenable for parallelization.

RUNNING TIMES GIVEN IN SECONDS . i i
For our other set of experiments, we parallelize various

Benchmark| LOC | Static | Dynamic Orig. | Prof. . . .

197.parser | 11K | 603 | 31,763,541 1.22 | 279.5 programs using the output from Alchemist. We first run
bzip2 7K 157 | 134,832 1.39 | 990.8 the sequential version of the program through Alchemist
gzip-1.35 | 8K 100 | 570,897 1.06 | 280.4 to collect profiles. We then look for large constructs with
130.li 15K [ 190 [ 13,772,859| 0.12 | 28.8 few violating static RAW dependences and try to parallelize
ggg iﬁK ‘1“136 ‘2‘%;15703929 8-381 303;36 those constructs. To do so, we use the WAW and WAR
bar? 13K 125 T 4437 195 3240 profiles as hints for .whgre to insert variable privatization
defaunay | 2K 111 [ 1243073321 081 | 2663 and thread synchronization between concurrently exegutin

constructs in the parallel implementation. We assume no
specific runtime support and parallelize programs using
_ POSIX threads (pthreads).
A. Runtime 1) Parallelized Programs:We first consider programs
The first experiment is to collect the runtime overhead ofparallelized in previous work. We claim that a given con-
Alchemist. The performance data is collected on a Pentiunstruct C' is amenable for asynchronous evaluation if 1)
Dual Core 3.2 GHZ machine with 2GB RAM equipped with the construct is large enough to benefit from concurrent
Linux Gentoo 3.4.5. The results are presented in Table lllexecution and 2) the interval between its RAW depen-
Columns St at i ¢ and Dynami ¢ present the number of dences are greater than the durationCaf To verify our
static and dynamic constructs profiled. Colunthi g. hypothesis we examined prograngzip, 197.parserand
presents the raw execution time. ColuBnof . presents 130.lispparallelized in [7]. The programs were parallelized
the times for running the programs in Alchemist. Theby marking possibly parallel regions in the code and then
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Figure 6. Size and number of violating static RAW dependefmesonstructs parallelized in [7]. For Figures 6(a) and)pfiarallelized constructs’l and
C9 represent a loop on line 3404 ahtlush_bl ock, respectively. Fogzip, Fig. 6(b) shows the constructs that remain aftdrand all nested constructs
with a single instance per instance ©fl have been removed. Constru€s in Fig. 6(c) represents the parallelized loop on line 130297 .parserand
constructC2 in Fig. 6(d) represents the parallelized loop on line 63.30.lisp

running in a runtime system that executes the marked regiorsig. 6(c) presents the profile information. Construcs
speculatively. corresponds to the loop (on line 1302) which was par-
Fig. 6 shows the profile information collected by Al- allelized. Inspection of t_he code reyealed that constructs
chemist for the sequential versions gip, 197.parseand ~ C1 and C2 (corresponding respectively to the loop in
130.lisp The figure shows the number of instructions (i.e.” €ad_di ctionary and methodread_entry), while
total duration) and the number of violating static RAw Poth larger thanC'3 and with less violating dependences,
dependences for the constructs that took the most time iWere unable to be parallelized because they were I/O bound.
each program. The duration of the constructs are normalized 130.lisp.XLispfrom Spec95, also parallelized by [7], is a
to the total number of instructions executed by the programsmall implementation of lisp with object-oriented program
and the number of violating static RAW dependences arening. It contains two control loops. One reads expressions
normalized to the total number of violating static RAW from the terminal and the other performs batch processing
dependences detected in the profiled execution. Intujtivel on files. In the parallel version, they marked the batch loop
a construct is a good candidate if it has many instructionss a potentially parallel construct to run speculativelhigir
and few violating dependences. runtime system. Constru¢t2 in Fig.6(d) corresponds to the
Gzip v1.35. The loop on line 3404 and the bat_ch _Ioop inmai n. C1 corresponds to methoxll | oad_
f I ush_bl ock procedure were parallelized in [7]. In Fig- WhICh is calleq oncg before the batch loop, and then a single
ures 6(a) and 6(b) construct1 represents the loop and t|r_ne for each_lterauo_n of the loop. The reason execgtgq
C9 represents | ush_bl ock. The figure clearly shows slightly more instructions thaé'2 was because of the initial
that C1 is a good candidate for concurrent execution be-Call before the loop. Thus parallelizing constrd&, as was
cause it is the largest construct and has very few violat-done in the previous work, _results in all but one of the calls
ing RAW depedences. Parallelizingl makes constructs (© X! | 0ad to be executed in parallel.
C2,C3,C4,C5, andC8 no longer amenable to paralleliza- Delaunay Mesh Refinement.It is known that paral-
tion because the constructs only have a single nested aestanlelizing the sequential Delaunay mesh refinement algorithm
for each instance of”’1. In other words, the constructs is extremely hard [16]. The result of Alchemist provides
are parallelized too as a result 6fl being parallelized. confirmation. In particular, most computation intensive-co
Thus, to identify more constructs amenable for asynchrenoustructs have more than 100 static violating RAW depen-
execution, we removed construefd, C2,C3,C4,C5, and  dences. In fact, the construct with the largest number of
C8. The remaining constructs are shown in Fig. 6(b).executed instructions has 720 RAW dependences.
ConstructsC'9, C10 and C'11 have the fewest violations 5y parallelization ExperiencefFor the following bench-

out of the remaining constructs, and the largest conyarks, we have used profiles generated by Alchemist to im-

structC'9 (f | ush_bl ock) becomes the next parallelization jement parallel versions of sequential programs. We tepor

candidate. The Alchemist WAW/WAR profile pinpointed oyr experience using Alchemist to identify opportunities f

the conflicts betweeminsi gned short out_buf and  parg)elization and to provide guidance in the parall¢ica

int outcnt andunsigned short bi_buf andint  yrocess. We also report speedups achieved by the parallel

bi _val i d that were mentioned in [7]. version on 2 dual-core 1.8GHZ AMD Opteron(tm) 865
197.parser. Parser has also been parallelized in [7]. processors with 32GB of RAM running Linux kernel version



2.6.9-34. the profile along with all nested constructs with only a sengl
instance per iteration of the loop, as we did in Fig. 6(b)

0 Table IV with gzip From the new constructs Alchemist identified
ARALLELIZATION EXPERIENCETHE PLACES THAT WE PARALLELIZED . . .
AND THEIR PROFILES the opportunity to compress multiple blocks of a single
Progam| Code Location Static Confiict f|!e in parallel, allthoggh thg construct had an unusually
RAW | WAW | WAR high number of violating static RAW dependences. Further
bzip2 6932 in main() 3 103 [ O inspection showed the RAW dependences identified by the
5340 in compressstream( | 23 [ 53 | 63 profile resulted from a call tBZ2_bzWiteC ose64
099 802 in main( g ;’0 %7 after the loop. Each iteration of the loop compresses 5000
Sgrsz 22? i ’::rsz-étrr:;i-jncrypt I 15 byte blocks and if there is any data that is left over
par2 ProcessData () after the last 5000 byte blockgZ2_bzWited ose64
489 in Par2Creator:: 0 2 12 processes that data and flushes the output file. As with
OpenSourceFiles() the loop inmai n, the profile reported many WAW and

WAR dependences on thezf structure. By examining the
violating dependences reported by Alchemist, we were able
Par2cmdline. Par2cmdlineis a utility to create and to rewrite the sequential program so that multiple blocks
repair data files using Reed Solomon coding. The origcould be compressed in parallel. The parallelization Bsce
inal program was 13718 lines of C++ code. We generincluded privatizing parts of the data in thef structure
ated a profile in Alchemist by runningar2 to create to avoid the reported conflicts. The parallel versiorbeip2
an archive for four text files. By looking at the pro- achieves near-linear speedup both for compressing mailtipl
file we were able to parallelize the loop at line 489 infiles and compressing a single file. We compressed two
Par 2Creat or: : OpenSour ceFi |l es and the loop at 42.5MB wav files with the original sequentiazip2and our
line 887 in Par 2Creator:: ProcessData. The loop parallel version with 4 threads. The sequential versiork too
at line 489 was the second largest construct and only hag0.92 seconds and the parallel version took 11.82 seconds
one violating static RAW dependence. The Alchemist profileresulting in a speedup of 3.46.
detected a conflict when a file is closed. The parallel version AES Encryption (Counter Mode) in OpenSSL.AES is
moved file closing to guarantee all threads are completg plock cipher algorithm which can be used in many different
before closing files. The loop at line 887 was the eighthmodes. We extracted the AES counter mode implementation
largest construct with no violating static RAW dependencesrom OpenSSLBased on the profile generated by Alchemist
and thus is the second most beneficial place to performyhijle encrypting a message of size 512 (32 blocks each
parallelization. The loop processes each output block. Wa2g bits long) we parallelized the implementation. The
parallelized this loop by evenly distributing the processi encryption algorithm loops over the input until it has read i
of the output blocks among threads. We ran the paralleln entire block and then callES_encr ypt to encrypt the
version and the sequential version on the same large 42.5MBjock and then makes a call &ES_ct r 128_i nc(i vec)
WAV file to create an archive. The parallel version took 6.33tg increment thé vec. The incrementedvec is then used
seconds compared to the sequential version which completag; the next call toAES_encr ypt to encrypt the next block.
in 11.25 seconds (speedup of 1.78). We parallelized the main loop that iterates over the input
Bzip2 v1.0.Bzip2takes one or more files and compresses(sixth largest construct), which had no violating staticVRA
each file separately. We rdozip2in Alchemist on two small  dependences in the profile. The WAW/WAR dependences
text files to generate profiling information. With the guidan in the profile included conflicts omvec. In our parallel
of the Alchemist profile, we were able to write a parallel

version ofbzip2that achieves near linear speedup. The first Table V
construct we were able to parallelize was a looprai n PARALLELIZATION RESULTS
that iterates over the files to be compressed. This was the Benchmark| Seq.(sec.) Par. (sec.) Speedup
single largest construct in the profile and had only 3 vialati bzip2 40.92 11.82 3.46

. . 0gg 136.27 34.46 3.95
dependences. The WAW dependences shown in the profile par2 1195 533 178
indicate a naive parallelization would conflict on the sklare aescr 946 581 163

BZFI LE +bzf structure and the data structures reachable

from bzf such asst r eam In the sequential program, this

global data structure is used to keep track of the file handleversion each thread has its owmec and must compute its

current input buffer and output stream. When parallelizingvalue before starting encryption.

bzip2 to compress multiple files concurrently each thread To evaluate the performance of our parallel encryption

has a thread locaBZFI LE structure to operate on. implementation we encrypted a message that had 10 million
After parallelizing the first construct we removed it from blocks. Each block in AES is 128 bits. We executed on 4



threads. The sequential encryption took 9.46 seconds &nd tiparallelization [7] is a technique that supports specug#fi
parallel encryption took 5.81 seconds resulting in a sppeduexecuting regions of sequential programs. It includes a
of 1.63. profiler that detects dependences between execution phases
Oggenc-1.0.1.0ggencis a command-line encoding tool A transaction-based mechanism is employed to support
for Ogg Vorbis, a lossy audio compression scheme. Thepeculation. In [23], Prauret al. analyze parallelization
version we use contains 58417 lines of code. Weaggenc  opportunities by quantifying dependences among critical
in Alchemist on two small WAV files each about 16KB sections as a density computed over the number of executed
and used the profile to parallelize the program. The largednstructions. Their work collects profile for critical regis
construct identifies the main loop that iterates over the twayuarded by synchronization or constructs annotated by pro-
files being encoded. The profile identifies 6 violating staticgrammers as candidates for speculative execution. Notably
RAW dependences. Among the detected violations for théheir task level density profile does not provide direct
loop is a dependence on tle r ors flag that identifies guidance for programmers. ParaMeter [20] is an interactive
if an error occurred in encoding any of the files. There argprogram analysis and visualization system for large traces
also conflicts on a variable used to keep track of the sample® facilitate parallelization. It features fast trace coagsion
read. We parallelized the loop with POSIX threads so thaend visualization by using BDD. In comparison, Alchemist
multiple files can be encoded in parallel. Each thread hags a profiler that does not record the whole trace. It would
a localerr or s flag that keeps track of whether or not an be interesting to see if indexing can be integrated with
error occurred in the encoding of its file. Every thread alsoParaMeter to present a hierarchical view of traces. Regentl
has a local count of samples read. Our parallel version ofontext sensitive dependence profiling is used for specelat
oggenctakes as long as the most time consuming file. Ouoptimization and parallelization in [6], [8]. However cent
parallel version uses 4 threads. We used the parallel versicsensitivity is not adequate to model loop carry dependences
to encode 4 large WAV files. As expected the parallel versiorin comparison, the novelty of Alchemist lies in using index
achieved nearly linear speedup (3.95) with the sequentidtees to provide more fine-grained information.
version taking 136.27 seconds and the parallel versiongaki ~ Program Parallelization. Traditional automatic program
34.46 seconds. parallelization exploits concurrency across loop itenadi
using array dependence analyses [3], [9]. In programs which
exhibit more complex dataflow and control-flow mecha-
Profiling For Concurrency. Many existing program par- nisms, these techniques are not likely to be as effective.
allelization projects have profiling as an essential compoParallelizing general sequential programs in the presefce
nent. This is because statically identifying available-par side-effects has been explored in the context of the Jade
allelism, especially data parallelism, is hardeshi5] is parallel programming language [21]. A Jade programmer is
a hardware profiler for decomposing java programs intaresponsible for delimiting code fragments (tasks) thatdou
speculative threads. It focuses on decompositions formebe executed concurrently and explicitly specifying insats
from loops. It profiles the minimum dependence distancelescribing how different tasks access shared data. The run-
between loop iterations and uses that to guide threadime system is then responsible for exploiting available
level speculation (TLS). Compared toe3T, Alchemist is  concurrency and verifying data access invariants in order
a software profiler that targets C programs and is mordo preserve the semantics of the serial program. Recently,
general since it does not rely on TLS to remedy WAR speculative parallel execution was shown to be achievable
and WAW dependencies at runtime, but rather provideshrough thread level speculation [17], [14], [22], [28].&&®
feedback to the programmer who can then perform necessatgchniques speculatively execute concurrent threadsend r
code transformation to resolve these dependencies, and\bke execution in the presence of conflicts. Software trans-
treats any program construct as a potential paralleliaatioactional memory (STM) [13], [11], [12] ensures serializabl
candidate. BsH [17] is another TLS compiler that exploits execution of concurrent threads. Kulkasti al [16] present
program structure. It considers loop iterations and theitheir experience in parallelizing two large-scale irregul
continuations, subroutines and their continuations as thapplications using speculative parallelization. Bridgss
candidates for speculative thread composition. It modelsal [4] show that by using a combination of compiler and
the effects of concurrent execution, thread squashing, andrchitectural techniques, one can effectively parakela
prefetching that closely simulate program execution undetarge pool of SPEC benchmarks.
TLS. PosH is capable of profiling various constructs, which  Our work is also related to context-sensitive profiling [2],
is similar to Alchemist. However, as the profiling algorithm in which simple performance measurements are associated
is not explained in detalil, it is not clear how the authors-hanwith calling contexts. Alchemist demands more fine-grained
dle the problem of updating profiles for nesting constructscontext information. Central to Alchemist’s design is the
upon detecting dependences. Furthermore, likeTTWAW  challenging issue of managing index trees. The unique
and WAR dependences are not profiled. Behavior orientedharateristics of dependence, e.g., it is a two-tuple iozlat
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