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Abstract—Effectively migrating sequential applications to
take advantage of parallelism available on multicore platforms
is a well-recognized challenge. This paper addresses important
aspects of this issue by proposing a novel profiling technique to
automatically detect available concurrency in C programs. The
profiler, called Alchemist, operates completely transparently
to applications, and identifies constructs at various levels of
granularity (e.g., loops, procedures, and conditional statements)
as candidates for asynchronous execution. Various dependences
including read-after-write (RAW), write-after-read (WAR), and
write-after-write (WAW), are detected between a construct and
its continuation, the execution following the completion of the
construct. The time-ordered distance between program points
forming a dependence gives a measure of the effectiveness
of parallelizing that construct, as well as identifying the
transformations necessary to facilitate such parallelization.
Using the notion of post-dominance, our profiling algorithm
builds an execution index tree at run-time. This tree is used
to differentiate among multiple instances of the same static
construct, and leads to improved accuracy in the computed
profile, useful to better identify constructs that are amenable
to parallelization. Performance results indicate that the pro-
files generated by Alchemist pinpoint strong candidates for
parallelization, and can help significantly ease the burden of
application migration to multicore environments.
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I. I NTRODUCTION

The emergence of multicore architectures has now made
it possible to express large-scale parallelism on the desktop.
Migrating existing sequential applications to this platform
remains a significant challenge, however.Determining code
regions that are amenable for parallelization, and injecting
appropriate concurrency control into programs to ensure
safetyare the two major issues that must be addressed by
any program transformation mechanism. Assuming that code
regions amenable for parallelization have been identified,
techniques built upon transactional or speculation machin-
ery [24], [25], [7] can be used to guarantee that concurrent
operations performed by these regions which potentially
manipulate shared data in ways that are inconsistent with
the program’s sequential semantics can be safely revoked.
By requiring the runtime to detect and remedy dependency
violations, these approaches free the programmer from ex-
plicitly weaving a complex concurrency control protocol
within the application.

Identifying code regions where concurrent execution can
be profitably exploited remains an issue. In general, the bur-
den of determining the parts of a computation best suited for
parallelization still falls onto the programmer. Poor choices
can lead to poor performance. Consider a call to procedure
p that is chosen for concurrent execution with its calling
context. If operations inp share significant dependencies
with operations in the call’s continuation (the computation
following the call), performance gains that may accrue from
executing the call concurrently would be limited by the
need to guarantee that these dependencies are preserved. The
challenge becomes even more severe if we wish to extract
data parallelism to allow different instances of a code region
operating on disjoint memory blocks to execute concurrently.
Compared to function parallelism, which allows multiple
code regions to perform different operations on the same
memory block, data parallelism is often not as readily
identifiable because different memory blocks at runtime
usually are mapped to the same abstract locations at compile
time. Static disambiguation has been used with success to
some extent through data dependence analysis in the context
of loops, resulting in automatic techniques that parallelize
loop iterations. However, extracting data parallelism for
general programs with complex control flow and dataflow
mechanisms, remains an open challenge.

To mitigate this problem, many existing parallelization
tools are equipped with profiling components. POSH [17]
profiles the benefits of running a loop or a procedure as
speculative threads by emulating the effects of concurrent
execution, squashing and prefetching when dependencies are
violated. MIN-CUT [14] identifies code regions that can run
speculatively on CMPs by profiling the number of depen-
dence edges that cross a program point. TEST [5] profiles the
minimum dependence distance between speculative threads.
In [23], dependence frequencies are profiled for critical
regions and used as an estimation of available concurrency.
Dependences are profiled at the level of execution phases to
guide behavior-oriented parallelization in [7].

In this paper, we present Alchemist, a novel profiling
system for parallelization, that is distinguished from these
efforts in four important respects:

1) Generality.We assumeno specific underlying runtime
execution model such as transactional memory to deal
with dependency violations. Instead, Alchemist pro-



vides direct guidance for safe manual transformations
to break the dependencies it identifies.

2) Transparency.Alchemist considers all aggregate pro-
gram constructs (e.g., procedures, conditionals, loops,
etc.) as candidates for parallelization with no need for
programmer involvement to identify plausible choices.
The capability of profiling all constructs is important
because useful parallelism can be sometimes extracted
even from code regions that are not frequently exe-
cuted.

3) Precision. Most dependence profilers attribute de-
pendence information to syntactic artifacts such as
statements without distinguishing the context in which
a dependence is exercised. For example, although
such techniques may be able to tell that there is a
dependence between statementsx andy inside a loop
in a function foo(), and the frequency of the depen-
dence, they usually are unable to determine if these
dependences occur within the same loop iteration,
cross the loop boundary but not different invocations
of foo(), or cross both the loop boundary and the
method boundary. Observe that in the first case, the
loop body is amenable to parallelization. In the second
case, the method is amenable to paralelization. By
being able to distinguish among these different forms
of dependence, Alchemist is able to provide a more
accurate characterization of parallelism opportunities
within the program than would otherwise be possible.

4) Usability. Alchemist produces a ranked list of con-
structs and an estimated measure on the work neces-
sary to parallelize them by gathering and analyzing
profile runs. The basic idea is to profile dependence
distances for a construct, which are the time spans
of dependence edges between the construct and its
continuation. A construct with all its dependence
distances larger than its duration is amenable for
parallelization. The output produced by Alchemist
provides clear guidance to programmers on both the
potential benefits of parallelizing a given construct,
and the associated overheads of transformations that
enable such parallelization.

The paper makes the following contributions:

• Alchemist is a novel transparent profiling infrastructure
that given a C or C++ program and its input, produces
a list of program points denoting constructs that are
likely candidates for parallelization. Alchemist treats
any program construct as a potential parallelization
candidate. The implication of such generality is that a
detected dependence may affect the profiles of multiple
constructs, some of whom may have already completed
execution. A more significant challenge is to distinguish
among the various dynamic nesting structures in which
a dependence occurs to provide more accurate and

richer profiles. We devise a sophisticated online algo-
rithm that relies on building an index tree on program
execution to maintain profile history. More specifically,
we utilize a post-dominance analysis to construct a tree
at runtime that reflects the hierarchical nesting structure
of individual execution points and constructs.

• Alchemist supports profiling of Read-After-Write
(RAW) dependences as well as Write-After-Write
(WAW) and Write-After-Read (WAR) ones. RAW de-
pendencies provide a measure of the amount of avail-
able concurrency in a program that can be exploited
without code transformations, while removing WAR
and WAW dependencies typically require source-level
changes, such as making private copies of data.

• We evaluate profile quality on a set of programs that
have been parallelized elsewhere. We compare the
program points highly ranked by Alchemist with those
actually parallelized, and observe strong correlation
between the two. Using Alchemist, we also manually
parallelize a set of benchmarks to quantify its benefits.
Our experience shows that, with the help of Alchemist,
parallelizing medium-size C programs (on the order
of 10K lines of code) can lead to notable runtime
improvement on multicore platforms.

II. OVERVIEW

Our profiling technique detects code structures that can be
run asynchronously within their dynamic context. More pre-
cisely, as illustrated in Fig. 1, it identifies code structures like
C, delimited byCentry and Cexit, which can be spawned
as a thread and run simultaneously withC ’s continuation,
the execution following the completion ofC. C can be
a procedure, loop, or anif-then-else construct. Our
execution model thus follows the parallelization strategy
available usingfutures [10], [15], [25] that has been used
to introduce asynchronous execution into sequential Java,
Scheme and Lisp programs; it is also similar to the behavior-
oriented execution model [7] proposed for C. A futurejoins
with its continuation at a claim point, the point at which the
return value of the future is needed.

Our goal is to automatically identify constructs that are
amenable forfuture annotation and provide direct guidance
for the parallelization transformation. The basic idea is to
profile the duration of a construct and the time intervals
of the two conflicting memory references involved in any
dependence from inside the construct to its continuation.
Consider the sequential run in Fig. 1. Assume our profiling
mechanism reveals a dependence between execution pointsx

andy. The duration of constructC and the interval between
x andy are profiled asTdur andTdep, respectively. Let the
timestamps of an execution points in the sequential and the
parallel executions betseq(s) and tpar(s), respectively; the
interval betweenx andy in the parallel run is then
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Figure 1. Overview (the dashed lines represent the correspondence between execution points).
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int zip (in, out) 

{

    while (/* input buffer not empty*/) {

/* process one literal at a time*/

        if (/*processing buffer full*/)

            flush_block (&window[],…);

        flag_buf[last_flags++]=… ;

    }

    … = flush_block (&window[],…);

    outbuf[outcnt++]= /*checksum*/ 

}

off_t flush_block (buf, len, …)

{

     flag_buf[last_flags] = /*the current flag*/;

     input_len + = /* length of the block*/;

/* Encode literals to bits*/

     do {

          … flag =flag_buf[…];

         if (flag … ) {

             if (bi_valid > …) {

                 outbuf[outcnt++]=(char) bi_buf…;

                 bi_buf= /* encoding*/;

                 bi_valid + = … ;

            }

         }

     } while (/*not the last literal*/);

     last_flags=0;

/* Write out remaining bits*/

      outbuf[outcnt++]=(char) bi_buf…;

      return /* # of compressed literals*/;

}
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1. Method  main Tdur=20432742, inst=1

2. Loop (main,3404) Tdur=20431181, inst=1

    …  … 

9. Method flush_block Tdur=643408, inst=2

              RAW:  line 29 → line 9 Tdep=1

RAW: line 28 → line 10 Tdep=3       

RAW: line 14 → line 14 Tdep=4541215

RAW: line 22  → line 19 Tdep=4541231

… … 

Figure 2. Profilinggzip-1.3.5.

tpar(y) − tpar(x)
= (tseq(y) − (tseq(Cexit) − tseq(Centry))) − tseq(x)
= (tseq(y) − tseq(x)) − (tseq(Cexit) − tseq(Centry))
= Tdep − Tdur

as shown in Fig. 1.

The profile and the dependence types provide guidance to
programmers as follows.

• For RAW dependences, i.e.,x is a write andy is a
read of the same location, ifTdep > Tdur, construct
C is a candidate for asynchronous evaluation with its
continuation. That is because it indicates the distance
betweenx andy is positive in the parallel run, meaning
it is highly likely that wheny is reached,C has already
finished the computation atx and thus dependence can
be easily respected. A simple parallelization transfor-

mation is to annotateC as a future, which is joined
at any possible conflicting reads e.g.,y. More complex
transformations that inject barriers which stall the read
at y until it is guaranteed thatC will perform no further
writes to the same location (e.g.,x has completed) are
also possible.

• For WAR dependences, i.e.,x is a read andy is a write,
if C has been decided by the RAW profile to be par-
allelizable, two possible transformations are suggested
to the programmer. The first one is for dependences
with Tdep < Tdur, which implies that if the construct
is run asynchronously, the write may happen before
the read and thus the read may see a value from its
logical future, violating an obvious safety property.
Therefore, the programmer should create a private copy
of the conflict variable inC. For dependences with
Tdep > Tdur, the programmer can choose to join the



asynchronous execution beforey.
• WAW dependences are similar to WAR.
Consider the example in Fig. 2, which is abstracted from

the single file version ofgzip-1.3.5 [1]. It contains two
methodszip andflush_block. To simplify the presen-
tation, we inline methods called by these two procedures
and do not show statements irrelevant to our discussion.
The positions of the statements in the source that are shown
in the code snippet are listed on the right. Procedurezip
compresses one input file at a time. It contains awhile loop
that processes the input literals, calculating the frequencies
of individual substrings and storing literals into temporary
buffers. Whenever these buffers reach their limits, it calls
procedureflush_block to encode the literals and emit
the compressed results at line 6. During processing, the
while loop setsflags[] which will be used later during
encoding. The procedureflush_block first records the
current flag and updates the number of processed inputs
at lines 13-14; it scans the input buffer within the loop at
lines 16-25, encodes a literal into bits stored within buffer
bi_buf, which is eventually output to bufferoutbuf
at line 20. Variablebi_valid maintains the number of
result bits in the buffer, andoutcnt keeps track of the
current pointer in the output buffer. After all the literalsare
processed, the procedure resets thelast_flags variable
at line 26 and emits the remaining bits in the bit buffer. Note
that at line 20 in the encoding loop, bits are stored to the
output buffer at the unit of bytes and thus at the end, there
are often trailing bits remaining. The number of compressed
literals is returned at line 29.

The code in Fig. 2 is significantly simplified from the
actual program, which is comprised of much more complex
control flow and data flow, both further confounded by
aliasing. It is difficult for traditional static techniquesto
identify the places where concurrency can be exploited.
Runninggzip with Alchemist produces the results shown
in Fig. 2. Each row corresponds to a source code construct.
The profile containsTdur, approximated by the number of
instructions executed inside the construct and the number
of executions of the construct. For example, the first row
shows that themain function executes roughly 20 million
instructions once. The second row shows that the loop
headed by line 3404 in the original source executes roughly
20 million instructions once, i.e. there is one iteration ofthe
loop.

Let us focus on the third row, which corresponds to the
execution of calls to procedureflush_block. From the
profile, we see the procedure is called two times – the first
call corresponds to the invocation at line 6, and the other at
line 9. Some of the profiled RAW dependences between the
procedure and its continuation are listed. Note that while one
dependence edge can be exercised multiple times, the profile
shows the minimalTdep because it bounds the concurrency
that one can exploit. We can see that only the first two (out

of a total of fifteen) dependences, highlighted by the box,
do not satisfy the conditionTdep > Tdur, and thus hinder
concurrent execution. Further inspection shows that the first
dependence only occurs between the call site at line 9, which
is out of the main loop inzip(), and the return at 29. In
other words, this dependence does not prevent the call at 6
from being spawned as a future. The second dependence
is between the write tooutcnt at 28 and the read at
10. Again, this dependence only occurs when the call is
made at line 9. While these dependencies prevent the call to
flush_block on line 9 from running concurrently with
its continuation (the write tooutbuf), it does not address
the calls toflush_block made at line 6. Because these
calls occur within the loop, safety of their asynchronous
execution is predicated on the absence of dependences
within concurrent executions of the procedure itself, as well
as the absence of dependencies with operations performed
by the outer procedure. Snippets of the profile show that the
operation performed at line 14 has a dependence with itself
separated by an interval comprising roughly 4M instructions.
Observe that the duration of the loop itself is only 2M
instructions, with the remaining 2M instructions comprised
of actions performed within the iteration after the call. Also
observe that there is no return value from calls performed
within the loop, and thus dependencies induced by such
returns found at line 9, are not problematic here.

Method flush_block Tdur=643408, inst=2

WAW: line 28  → line 10 Tdep=7       

WAR: line 17 → line 7 Tdep=6702

WAR: line 26 → line 7 Tdep=6703

WAR: line 17 → line 13 Tdep=3915860

… … 

Figure 3. WAR and WAW profile.

Besides RAW dependencies, Alchemist also profiles WAR
and WAW dependencies. Unlike a RAW dependence which
can be broken by blocking execution of the read access until
the last write in the future upon which it depends completes,
WAR and WAW dependencies typically require manifest
code transformations. The WAR and WAW profile forgzip
is shown in Fig. 3. The interesting dependences, namely
those which do not satisfyTdep > Tdur, are highlighted in
the box. The first dependence is between the two writes
to outcnt at 28 and 10. Note that there are no WAW
dependences detected between writes tooutbuf as they
write to disjoint locations. Another way of understanding it
is that the conflict is reflected on the buffer indexoutcnt
instead of the buffer itself. As before, this dependence does
not compromise the potential for executing calls initiated
at 6 asynchronously. The second dependence is caused
because the read toflag_buf[] happens at 17 and
the write happens later at 7. While we might be able to



inject barriers between these two operations to prevent a
dependence violation, a code transformation that privatizes
flag_buf[] by copying its values to a local array is
a feasible alternative. Similarly, we can satisfy the third
dependence by hoisting the reset oflast_flags from
inside flush_block () and put it in the beginning
of the continuation, say, between lines 6 and 7. In the
meantime, we need to create a local copy oflast_flags
for flush_block(). While the decision to inject barriers
or perform code transformations demands a certain degree of
programmer involvement, Alchemist helps identify program
regions where these decisions need to be made, along
with supporting evidence to help with the decision-making
process. Of course, as with any profiling technique, the
completeness of the dependencies identified by Alchemist
is a function of the test inputs used to run the profiler.

void A ( ) {
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void C ( ) {
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void D ( ) {

    while (…) {

       s5;

       while (…)

           s4;

    }

}
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Figure 4. Execution Indexing Examples.

III. T HE PROFILING ALGORITHM

Most traditional profiling techniques simply aggreate in-
formation according to static artifacts such as instructions
and functions. Unfortunately, such a strategy is not adequate
for dependence profiling. Consider the example trace in
Fig. 4 (c). Assume a dependence is detected between the
second instance of 5 in the trace and the second instance
of 2. Simply recording the time interval between the two
instances or increasing a frequency counter is not sufficient
to decide available concurrency. We need to know that the
dependence indeed crossed the iteration boundaries of loops
2 and 4. This information is relevant to determine if the
iterations of these loops are amenable for parallelization. In
contrast, it is an intra-construct dependence for procedure
D and can be ignored if we wish to evaluate calls toD
concurrently with other actions. Thus, an exercised depen-
dence edge, which is detected between two instructions, has
various implications for the profiles of multiple constructs.
The online algorithm has to efficiently address this issue.

A. Execution Indexing

RAW, WAR, and WAW dependences are detected between
individual instructions at run time. Since our goal is to
identify available concurrency between constructs and their
futures, intra-construct dependences can be safely discarded.
An executed instruction often belongs to multiple constructs
at the same time. As a result, a dependence may appear as
an intra-construct dependence for some constructs, and as a
cross-boundary dependence for others.

In order to efficiently update the profile of multiple con-
structs upon detection of a dependence, we adopt a technique
called execution indexing[26] to create an execution index
tree that represents the nesting structure of an execution
point. Fig. 4 shows three examples of execution indexing.
In example (a), nodeA denotes the construct of procedure
A. As statements 2 and 3 are nested in procedureA, they
are children of nodeA in the index tree. ProcedureB is
also nested inA. Statement 6 is nested inB. The index
for an execution point is the path from the root to the
point, which illustrates the nesting structure of the point.
For example, the index of the first instance of statement 6
in trace (a) is[A,B]. Fig. 4 (b) shows an example for an
if-then-else construct. The construct led by statement
2 is nested in procedureC(), and construct 4 is nested
within construct 2, resulting in the index tree in the figure.
Note that statement 2 is not a child of node 2, but a child
of nodeC because it is considered as being nested in the
procedure instead of the construct led by itself. Example
(c) shows how to index loops. Since loop iterations are
often strong candidates for parallelization, each iteration
is considered as an instance of the loop construct so that
a dependence between iterations is considered as a cross
boundary dependence and hence should be profiled. We can
see in the index tree of example (c), the two iterations of
loop 4 are siblings nested in the first iteration of 2. The
index of52 (the second instance of statement 5) is[D, 2, 4],
exactly disclosing its nesting structure. From these examples,
we observe that (i) a dynamic instance of a construct is
represented by a subtree; (ii) the index for a particular
execution point is the path from the root to this point.

While Fig. 4 only shows simple cases, realistic appli-
cations may include control structures such asbreak,
continue, return, or evenlong_jump/ set_jump;
a naive solution based on the syntax of the source code
would fail to correctly index these structures. Control flow
analysis is required to solve the problem. The intuition is
that a construct is started by a predicate and terminated
by the immediate post-dominator of the predicate. Similar
to calling contexts, constructs never overlap. Therefore,a
similar stack structure can be used to maintain the current
index of an execution point. More precisely, a push is
performed upon the execution of a predicate, indicating the
start of a construct. A pop is performed upon the execution



of the immediate post-dominator of the top construct on the
stack, marking the end of that construct. The state of the
stack is indeed the index for the current execution point.

Rule Event Instrumentation
(1) Enter procedureX IDS.push(X)
(2) Exit procedureX IDS.pop()
(3) Non-loop predicate atp IDS.push(p)
(4) Loop predicate atp if (p==IDS.top()) IDS.pop();

IDS.push(p)
(5) Statements while (p=IDS.top()∧ s is the immediate

post-dominator ofp) IDS.pop()
*IDS is the indexing stack.

Figure 5. Instrumentation Rules for Indexing.

The instrumentation rules for execution indexing are pre-
sented in Fig. 5. The first two rules mark the start and
end of a procedure construct by pushing and popping the
entry associated with the procedure. In rule (3), an entry is
pushed if the predicate is not a loop predicate. Otherwise in
rule (4), the top entry is popped if the entry corresponds to
the loop predicate of the previous iteration, and the current
loop predicate is then pushed. Although rule (4) pushes and
pops the same value, it is not redundant as these operations
have side effects, which will be explained next. By doing so,
we avoid introducing a nesting relation between iterations.
Finally, if the top stack entry is a predicate and the current
statement is the predicate’s immediate post-dominator, the
top entry is popped (Rule 5). Irregular control flows such as
those caused bylong_jump andset_jump are handled
in the same way as that presented in [26].

Managing the Index Tree for an Entire Execution.
Unfortunately, the above stack-based method that is similar
to the one proposed in [26] only generates the index for the
current execution point, which is the state of the index stack.
It does not explicitly construct the whole tree. However, in
Alchemist, we need the tree because a detected dependence
may involve a construct that completed earlier. For instance,
assume in the execution trace of Fig. 4 (c), a dependence is
detected between51 and22. The index of51 is [D, 2, 4]. It
is nested in the first iteration of loop 4, which has completed
before22, and thus its index is no longer maintained by the
stack. In order to update the right profiles,51’s index needs
to be maintained.

A simple solution is to maintain the tree for the entire
execution. However, doing so is prohitively expensive and
unnecessary. The key observation is that if a construct
instanceC has ended for a period longer thanTdur(C),
the duration of the construct instance, it is safe to remove
the instance from the index tree. The reason is that any
dependence between a point inC and a future point, must
satisfy Tdep > Tdur(C) and hence does not affect the
profiling result. The implication is that the index tree can be
managed by using a construct pool, which only maintains
the construct instances that need to be indexed. Since one
node is created for one construct instance regardless of

Table I
The Algorithm for Managing the Index Tree.

pc is the program counter of the head of the construct.
PROFILE constrains the profile for constructs, indexed bypc.
pool is the construct pool.

1: IDS.push (pc)
2: {
3: c=pool .head();
4: while (timestamp − c.Texit < c.Texit − c.Tenter) {
5: c=pool .next();
6: }
7: pool .remove(c);
8: c.label= pc;
9: c.Tenter= timestamp;

10: c.Texit= 0;
11: c.parent= IDS[top-1];
12: IDS[top++]=c;
13: }
14:
15: IDS.pop ()
16: {
17: c=IDS[−− top];
18: c.Texit=timestamp;
19: pc=c.label;
20: PROFILE[pc].Ttotal+=c.Texit-c.Tenter;
21: PROFILE[pc].inst++;
22: pool .append(c)
23: }

the Tdur of the construct, only those constructs that get
repeatedly executed have many instances at runtime and pose
challenges to index tree management.

Theorem 1:Assume the maximum size of an instance
of a repeatedly executed construct isM , a statement can
serve as the immediate post-dominator for a maximum ofN

constructs, and the maximum nesting level isL. The memory
requirement of Alchemist isO(M · N + L).

Proof: Let i be the instruction count of an execution
point, constructs completed beforei−M are of no interest
because any dependence betweeni and any point in those
constructs must haveTdep > M . Thus, only constructs that
completed betweeni − M and i need to be indexed with
respect toi, i.e., the nodes for those constructs can not
be retired. As the maximum number of constructs that can
complete in one execution step isN according to rule (5) in
Fig. 5, the number of constructs completed in that duration
can not exceedM ·N . SinceL is the maximum number of
active constructs, i.e., constructs that have not terminated,
the space complexity isO(M · N + L).

The theorem says that the memory requirement of Al-
chemist is bounded if the size of any repeatedly executed
construct is bounded. In our experiment, a pre-allocated pool
of the size of one million dynamic constructs never led to
memory exhaustion. The pseudo-code for the algorithm is
presented in Table I. It consists of two functions:IDS.push
andIDS.pop. In the instrumentation rules presented earlier,
they are the push and pop operations of the index stack.



In the algorithm, variablepool denotes the construct pool.
Upon calling the push operation with the program counter
of the head instruction of a construct, usually a predicate or
a function entry, the algorithm finds the first available con-
struct from the pool by testing if it satisfies the condition at
line 4. Variabletimestamp denotes the current time stamp.
It is simulated by the number of executed instructions. If the
predicate is true,c can not be retired and the next construct
from pool is tested. The first construct that can be safely
retired is reused to store information for the newly entered
construct. Lines 8-11 initialize the construct structurec.
Specifically, line 11 establishes the connection fromc to
its enclosing construct, which is the top construct on the
stack. Line 12 pushesc to the stack.

Upon calling the pop function, the top construct is popped.
Its ending time stamp is recorded at line 18. The profile of
the popped construct, indexed by its pc in thePROFILE
array, is updated. The total number of executed instructions
for the construct is incremented by the duration of the
completed instance. Note that a construct may be executed
multiple times during execution. The number of executed
instances of the construct is incremented by one. Finally, the
data structure assigned to the completed construct instance
is appended to the construct pool so that it might be
reused later on. We adopt a lazy retiring strategy – a newly
completed construct is attached to the tail of the pool while
reuse is tried from the head. Hence, the time a completed
construct remains accessible is maximized.

B. The Profiling Algorithm

Functionprofile() in Table II explains the profiling
procedure. The algorithm takes as input a dependence edge
denoted as a tuple of six elements. The basic rule is to
update the profile of each nesting construct bottom up from
the enclosing construct of the dependence head up to the
first active (not yet completed) construct along the head’s
index. This is reflected in lines 7 and 14. The condition
at 7 dictates that a nesting construct, if subject to update,
must have completed (c.Tenter < c.Texit

1) and must not
retire. If a construct has not completed, the dependence must
be an intra-dependence for this construct and its nesting
ancestors. If the construct has retired and its residence
memory spacec has been reused, it must be true thatTh

falls out of the duration of the current construct occupying
c and thus condition at 7 is not true. Lines 8-13 are devoted
to updating the profile. It first tests if the dependence has
been recorded. If not, it is simply added to the construct’s
profile. If so, a further test to determine if theTdep of the
detected dependence is smaller than the recorded minimum
Tdep is performed. If yes, the minimumTdep is updated.

To illustrate the profiling algorithm, consider the example
trace and its index in Fig. 4 (c). Assume a dependence is

1Texit is reset upon entering a construct.

Table II
Profiling Algorithm.

pch andpct are the program counters for the head
and tail of the dependence.

ch, ct are the construct instances in which the head
and tail reside.

Th, Tt are the timestamps.
1: Profile(pch, ch, Th, pct, ct, Tt)
2: {
3: Tdep=Tt-Th;
4: pc=ch.label;
5: P=PROFILE[pc];
6: c=ch;
7: while (c.Tenter <= Th < c.Texit) {
8: if (P .hasEdge (pch → pct) {
9: Tmin=P .getTdep (pch → pct);

10: if (Tmin > Tdep)
11: P .setTdep (pch → pct, Tdep);
12: } else
13: P .addEdge (pch → pct, Tdep);
14: c=c.parent;
15: }
16: }

detected between52, with index[D, 2, 4], and22, with index
[D]. The input toprofile is the tuple< pch = 5, ch =
4̂r, Th = 6, pct = 2, ct = D̂, Tt = 8 >, in which
n̂ represents a construct headed byn. 4̂r represents the
node 4 on the right. The algorithm starts from the enclosing
construct of the head, which iŝ4r. As Tenter(4̂r) = 6 and
Texit(4̂r) = 7, the condition at line 7 in Table II is satisfied
as Th = 6; the profile is thus updated by adding the edge
to PROFILE[4]. The algorithm traverses one level up and
looks at 4̂r ’s parent 2̂. The condition is satisfied again as
Tenter(2̂) = 2 < Th = 6 < Texit(2̂) = 8; thus, the
dependence is added toPROFILE[2], indicating that it is
also an external dependence for2̂, which is the first iteration
of the outer while loop in code Fig 4(c). However, the parent
constructD̂ is still active withTexit = 0; thus, the condition
is not satisfied here andPROFILE[1] is not updated.

Recursion. The algorithm in Table I produces incorrect in-
formation in the presence of recursion. The problem resides
at line 20, where the total number of executed instructions of
the construct is updated. Assume a functionf() calls itself
and results in the index path of[f1, f2]. Here we use the
subscripts to distinguish the two construct instances. Upon
the end off̂1 and f̂2, Tdur(f̂1) andTdur(f̂2) are aggregated
to PROFILE[f ].Ttotal. However, asf̂2 is nested inf̂1, the
value ofTdur(f̂2) has already been aggregated toTdur(f̂1),
and thus is mistakenly added twice to theTtotal. The solution
is to use a nesting counter for each pc so that the profile is
aggregated only when the counter reaches zero.

Inadequacy of Context Sensitivity.In some of the recent
work [6], [8], context sensitive profiling [2] is used to
collect dependence information for parallelization. However,



context sensitivity is not sufficient in general. Consider the
following code snippet.

F() {
for (i...)

for (j...)
A();
B();

}
}

}

Assume there are four dependences between some execu-
tion insideA() and some execution insideB(). The first
one is within the samej iteration; the second one crosses
the j loop but is within the samei iteration; the third
one crosses thei loop but is within the same invocation
to F(); the fourth one crosses different calls toF(). They
have different implications for parallelization. For instance,
in case one, thej loop can be parallelized; in case two, the
i loop can be parallelized but thej loop may not; and so
on. In all the four cases, the calling context is the same. In
case four, even using a loop iteration vector [6] does not
help.

IV. EXPERIMENTATION

Alchemist is implemented on valgrind-2.2.0 [19]. The
evaluation consists of various sequential benchmarks. Some
of them have been considered in previous work and others
(to the best of our knowledge) have not. Relevant details
about the benchmarks are shown in Table III and discussed
below.

Table III
BENCHMARKS, NUMBER OF STATIC/DYNAMIC CONSTRUCTS AND

RUNNING TIMES GIVEN IN SECONDS.

Benchmark LOC Static Dynamic Orig. Prof.
197.parser 11K 603 31,763,541 1.22 279.5
bzip2 7K 157 134,832 1.39 990.8
gzip-1.3.5 8K 100 570,897 1.06 280.4
130.li 15K 190 13,772,859 0.12 28.8
ogg 58K 466 4,173,029 0.30 70.7
aes 1K 11 2850 0.001 0.396
par2 13K 125 4437 1.95 324.0
delaunay 2K 111 14,307,332 0.81 266.3

A. Runtime

The first experiment is to collect the runtime overhead of
Alchemist. The performance data is collected on a Pentium
Dual Core 3.2 GHZ machine with 2GB RAM equipped with
Linux Gentoo 3.4.5. The results are presented in Table III.
ColumnsStatic and Dynamic present the number of
static and dynamic constructs profiled. ColumnOrig.
presents the raw execution time. ColumnProf. presents
the times for running the programs in Alchemist. The

slow down factor ranges from 166-712 due to dependence
detection and indexing. Note that the valgrind infrastructure
itself incurs 5-10 times slowdown. The numbers of static
unique constructs and their dynamic instances are presented
in the third column of Table III. According to the profiling
algorithm mentioned earlier, profile is collected per dynamic
construct instance and then aggregated when the construct
instance is retired. As mentioned earlier, we used a fix-sized
construct pool so that the memory overhead is bounded. The
pool size is one million, with each construct entry in the
pool taking 132 bytes. We have not encountered overflow
with such a setting. Since Alchemist is intended to be used
as an offline tool, we believe this overhead is acceptable.
Using a better infrastructure such as Pin [18] may improve
runtime performance by a factor of 5-8, and implementing
the optimizations for indexing as described in [26] may lead
to another 2-3 factor improvement.

B. Profile Quality

The next set of experiments are devoted to evaluating pro-
file quality. To measure the quality of the profiles generated
by Alchemist we run two sets of experiments. For the first
set of experiments, we consider sequential programs that
have been parallelized in previous work. We observe how
parallelization is reflected in the profile. We also evaluate
the effectiveness of Alchemist in guiding the parallelization
process by observing the dependences demonstrated by
the profile and relating them to the code transformations
that were required in the parallelization of the sequential
programs. Furthermore, we run Alchemist on a sequential
program that can not be migrated to a parallel version to
see if the profile successfully shows that the program is not
amenable for parallelization.

For our other set of experiments, we parallelize various
programs using the output from Alchemist. We first run
the sequential version of the program through Alchemist
to collect profiles. We then look for large constructs with
few violating static RAW dependences and try to parallelize
those constructs. To do so, we use the WAW and WAR
profiles as hints for where to insert variable privatization
and thread synchronization between concurrently executing
constructs in the parallel implementation. We assume no
specific runtime support and parallelize programs using
POSIX threads (pthreads).

1) Parallelized Programs:We first consider programs
parallelized in previous work. We claim that a given con-
struct C is amenable for asynchronous evaluation if 1)
the construct is large enough to benefit from concurrent
execution and 2) the interval between its RAW depen-
dences are greater than the duration ofC. To verify our
hypothesis we examined programsgzip, 197.parserand
130.lispparallelized in [7]. The programs were parallelized
by marking possibly parallel regions in the code and then
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Figure 6. Size and number of violating static RAW dependencesfor constructs parallelized in [7]. For Figures 6(a) and 6(b), parallelized constructsC1 and
C9 represent a loop on line 3404 andflush_block, respectively. Forgzip, Fig. 6(b) shows the constructs that remain afterC1 and all nested constructs
with a single instance per instance ofC1 have been removed. ConstructC3 in Fig. 6(c) represents the parallelized loop on line 1302 in197.parserand
constructC2 in Fig. 6(d) represents the parallelized loop on line 63 in130.lisp.

running in a runtime system that executes the marked regions
speculatively.

Fig. 6 shows the profile information collected by Al-
chemist for the sequential versions ofgzip, 197.parserand
130.lisp. The figure shows the number of instructions (i.e.
total duration) and the number of violating static RAW
dependences for the constructs that took the most time in
each program. The duration of the constructs are normalized
to the total number of instructions executed by the program,
and the number of violating static RAW dependences are
normalized to the total number of violating static RAW
dependences detected in the profiled execution. Intuitively,
a construct is a good candidate if it has many instructions
and few violating dependences.

Gzip v1.3.5. The loop on line 3404 and the
flush_block procedure were parallelized in [7]. In Fig-
ures 6(a) and 6(b) constructC1 represents the loop and
C9 representsflush_block. The figure clearly shows
that C1 is a good candidate for concurrent execution be-
cause it is the largest construct and has very few violat-
ing RAW depedences. ParallelizingC1 makes constructs
C2, C3, C4, C5, andC8 no longer amenable to paralleliza-
tion because the constructs only have a single nested instance
for each instance ofC1. In other words, the constructs
are parallelized too as a result ofC1 being parallelized.
Thus, to identify more constructs amenable for asynchronous
execution, we removed constructsC1, C2, C3, C4, C5, and
C8. The remaining constructs are shown in Fig. 6(b).
ConstructsC9, C10 and C11 have the fewest violations
out of the remaining constructs, and the largest con-
structC9 (flush_block) becomes the next parallelization
candidate. The Alchemist WAW/WAR profile pinpointed
the conflicts betweenunsigned short out_buf and
int outcnt andunsigned short bi_buf andint
bi_valid that were mentioned in [7].

197.parser. Parser has also been parallelized in [7].

Fig. 6(c) presents the profile information. ConstructC3
corresponds to the loop (on line 1302) which was par-
allelized. Inspection of the code revealed that constructs
C1 and C2 (corresponding respectively to the loop in
read_dictionary and methodread_entry), while
both larger thanC3 and with less violating dependences,
were unable to be parallelized because they were I/O bound.

130.lisp.XLisp from Spec95, also parallelized by [7], is a
small implementation of lisp with object-oriented program-
ming. It contains two control loops. One reads expressions
from the terminal and the other performs batch processing
on files. In the parallel version, they marked the batch loop
as a potentially parallel construct to run speculatively intheir
runtime system. ConstructC2 in Fig.6(d) corresponds to the
batch loop inmain. C1 corresponds to methodxlload
which is called once before the batch loop, and then a single
time for each iteration of the loop. The reasonC1 executed
slightly more instructions thanC2 was because of the initial
call before the loop. Thus parallelizing constructC2, as was
done in the previous work, results in all but one of the calls
to xlload to be executed in parallel.

Delaunay Mesh Refinement.It is known that paral-
lelizing the sequential Delaunay mesh refinement algorithm
is extremely hard [16]. The result of Alchemist provides
confirmation. In particular, most computation intensive con-
structs have more than 100 static violating RAW depen-
dences. In fact, the construct with the largest number of
executed instructions has 720 RAW dependences.

2) Parallelization Experience:For the following bench-
marks, we have used profiles generated by Alchemist to im-
plement parallel versions of sequential programs. We report
our experience using Alchemist to identify opportunities for
parallelization and to provide guidance in the parallelization
process. We also report speedups achieved by the parallel
version on 2 dual-core 1.8GHZ AMD Opteron(tm) 865
processors with 32GB of RAM running Linux kernel version



2.6.9-34.

Table IV
PARALLELIZATION EXPERIENCE:THE PLACES THAT WE PARALLELIZED

AND THEIR PROFILES.

Progam Code Location Static Conflict
RAW WAW WAR

bzip2 6932 in main() 3 103 0
5340 in compressStream() 23 53 63

ogg 802 in main() 6 30 17
aes 855 in AES ctr128 encrypt 0 7 3
par2 887 in Par2Creator:: 1 12 19
par2 ProcessData ()

489 in Par2Creator:: 0 2 12
OpenSourceFiles()

Par2cmdline. Par2cmdline is a utility to create and
repair data files using Reed Solomon coding. The orig-
inal program was 13718 lines of C++ code. We gener-
ated a profile in Alchemist by runningpar2 to create
an archive for four text files. By looking at the pro-
file we were able to parallelize the loop at line 489 in
Par2Creator::OpenSourceFiles and the loop at
line 887 in Par2Creator::ProcessData. The loop
at line 489 was the second largest construct and only had
one violating static RAW dependence. The Alchemist profile
detected a conflict when a file is closed. The parallel version
moved file closing to guarantee all threads are complete
before closing files. The loop at line 887 was the eighth
largest construct with no violating static RAW dependences
and thus is the second most beneficial place to perform
parallelization. The loop processes each output block. We
parallelized this loop by evenly distributing the processing
of the output blocks among threads. We ran the parallel
version and the sequential version on the same large 42.5MB
WAV file to create an archive. The parallel version took 6.33
seconds compared to the sequential version which completed
in 11.25 seconds (speedup of 1.78).

Bzip2 v1.0.Bzip2takes one or more files and compresses
each file separately. We ranbzip2in Alchemist on two small
text files to generate profiling information. With the guidance
of the Alchemist profile, we were able to write a parallel
version ofbzip2 that achieves near linear speedup. The first
construct we were able to parallelize was a loop inmain
that iterates over the files to be compressed. This was the
single largest construct in the profile and had only 3 violating
dependences. The WAW dependences shown in the profile
indicate a naive parallelization would conflict on the shared
BZFILE *bzf structure and the data structures reachable
from bzf such asstream. In the sequential program, this
global data structure is used to keep track of the file handle,
current input buffer and output stream. When parallelizing
bzip2 to compress multiple files concurrently each thread
has a thread localBZFILE structure to operate on.

After parallelizing the first construct we removed it from

the profile along with all nested constructs with only a single
instance per iteration of the loop, as we did in Fig. 6(b)
with gzip. From the new constructs Alchemist identified
the opportunity to compress multiple blocks of a single
file in parallel, although the construct had an unusually
high number of violating static RAW dependences. Further
inspection showed the RAW dependences identified by the
profile resulted from a call toBZ2_bzWriteClose64
after the loop. Each iteration of the loop compresses 5000
byte blocks and if there is any data that is left over
after the last 5000 byte block,BZ2_bzWriteClose64
processes that data and flushes the output file. As with
the loop in main, the profile reported many WAW and
WAR dependences on thebzf structure. By examining the
violating dependences reported by Alchemist, we were able
to rewrite the sequential program so that multiple blocks
could be compressed in parallel. The parallelization process
included privatizing parts of the data in thebzf structure
to avoid the reported conflicts. The parallel version ofbzip2
achieves near-linear speedup both for compressing multiple
files and compressing a single file. We compressed two
42.5MB wav files with the original sequentialbzip2and our
parallel version with 4 threads. The sequential version took
40.92 seconds and the parallel version took 11.82 seconds
resulting in a speedup of 3.46.

AES Encryption (Counter Mode) in OpenSSL.AES is
a block cipher algorithm which can be used in many different
modes. We extracted the AES counter mode implementation
from OpenSSL. Based on the profile generated by Alchemist
while encrypting a message of size 512 (32 blocks each
128 bits long) we parallelized the implementation. The
encryption algorithm loops over the input until it has read in
an entire block and then callsAES_encrypt to encrypt the
block and then makes a call toAES_ctr128_inc(ivec)
to increment theivec. The incrementedivec is then used
by the next call toAES_encrypt to encrypt the next block.
We parallelized the main loop that iterates over the input
(sixth largest construct), which had no violating static RAW
dependences in the profile. The WAW/WAR dependences
in the profile included conflicts onivec. In our parallel

Table V
PARALLELIZATION RESULTS.

Benchmark Seq.(sec.) Par. (sec.) Speedup
bzip2 40.92 11.82 3.46
ogg 136.27 34.46 3.95
par2 11.25 6.33 1.78
aes ctr 9.46 5.81 1.63

version each thread has its ownivec and must compute its
value before starting encryption.

To evaluate the performance of our parallel encryption
implementation we encrypted a message that had 10 million
blocks. Each block in AES is 128 bits. We executed on 4



threads. The sequential encryption took 9.46 seconds and the
parallel encryption took 5.81 seconds resulting in a speedup
of 1.63.

Oggenc-1.0.1.Oggencis a command-line encoding tool
for Ogg Vorbis, a lossy audio compression scheme. The
version we use contains 58417 lines of code. We ranoggenc
in Alchemist on two small WAV files each about 16KB
and used the profile to parallelize the program. The largest
construct identifies the main loop that iterates over the two
files being encoded. The profile identifies 6 violating static
RAW dependences. Among the detected violations for the
loop is a dependence on theerrors flag that identifies
if an error occurred in encoding any of the files. There are
also conflicts on a variable used to keep track of the samples
read. We parallelized the loop with POSIX threads so that
multiple files can be encoded in parallel. Each thread has
a localerrors flag that keeps track of whether or not an
error occurred in the encoding of its file. Every thread also
has a local count of samples read. Our parallel version of
oggenctakes as long as the most time consuming file. Our
parallel version uses 4 threads. We used the parallel version
to encode 4 large WAV files. As expected the parallel version
achieved nearly linear speedup (3.95) with the sequential
version taking 136.27 seconds and the parallel version taking
34.46 seconds.

V. RELATED WORK

Profiling For Concurrency. Many existing program par-
allelization projects have profiling as an essential compo-
nent. This is because statically identifying available par-
allelism, especially data parallelism, is hard. TEST[5] is
a hardware profiler for decomposing java programs into
speculative threads. It focuses on decompositions formed
from loops. It profiles the minimum dependence distance
between loop iterations and uses that to guide thread-
level speculation (TLS). Compared to TEST, Alchemist is
a software profiler that targets C programs and is more
general since it does not rely on TLS to remedy WAR
and WAW dependencies at runtime, but rather provides
feedback to the programmer who can then perform necessary
code transformation to resolve these dependencies, and it
treats any program construct as a potential parallelization
candidate. POSH [17] is another TLS compiler that exploits
program structure. It considers loop iterations and their
continuations, subroutines and their continuations as the
candidates for speculative thread composition. It models
the effects of concurrent execution, thread squashing, and
prefetching that closely simulate program execution under
TLS. POSH is capable of profiling various constructs, which
is similar to Alchemist. However, as the profiling algorithm
is not explained in detail, it is not clear how the authors han-
dle the problem of updating profiles for nesting constructs
upon detecting dependences. Furthermore, like TEST, WAW
and WAR dependences are not profiled. Behavior oriented

parallelization [7] is a technique that supports speculatively
executing regions of sequential programs. It includes a
profiler that detects dependences between execution phases.
A transaction-based mechanism is employed to support
speculation. In [23], Praunet al. analyze parallelization
opportunities by quantifying dependences among critical
sections as a density computed over the number of executed
instructions. Their work collects profile for critical regions
guarded by synchronization or constructs annotated by pro-
grammers as candidates for speculative execution. Notably,
their task level density profile does not provide direct
guidance for programmers. ParaMeter [20] is an interactive
program analysis and visualization system for large traces
to facilitate parallelization. It features fast trace compression
and visualization by using BDD. In comparison, Alchemist
is a profiler that does not record the whole trace. It would
be interesting to see if indexing can be integrated with
ParaMeter to present a hierarchical view of traces. Recently,
context sensitive dependence profiling is used for speculative
optimization and parallelization in [6], [8]. However context
sensitivity is not adequate to model loop carry dependences.
In comparison, the novelty of Alchemist lies in using index
trees to provide more fine-grained information.

Program Parallelization. Traditional automatic program
parallelization exploits concurrency across loop iterations
using array dependence analyses [3], [9]. In programs which
exhibit more complex dataflow and control-flow mecha-
nisms, these techniques are not likely to be as effective.
Parallelizing general sequential programs in the presenceof
side-effects has been explored in the context of the Jade
parallel programming language [21]. A Jade programmer is
responsible for delimiting code fragments (tasks) that could
be executed concurrently and explicitly specifying invariants
describing how different tasks access shared data. The run-
time system is then responsible for exploiting available
concurrency and verifying data access invariants in order
to preserve the semantics of the serial program. Recently,
speculative parallel execution was shown to be achievable
through thread level speculation [17], [14], [22], [28]. These
techniques speculatively execute concurrent threads and re-
voke execution in the presence of conflicts. Software trans-
actional memory (STM) [13], [11], [12] ensures serializable
execution of concurrent threads. Kulkarniet. al [16] present
their experience in parallelizing two large-scale irregular
applications using speculative parallelization. Bridgeset.
al [4] show that by using a combination of compiler and
architectural techniques, one can effectively parallelize a
large pool of SPEC benchmarks.

Our work is also related to context-sensitive profiling [2],
in which simple performance measurements are associated
with calling contexts. Alchemist demands more fine-grained
context information. Central to Alchemist’s design is the
challenging issue of managing index trees. The unique
charateristics of dependence, e.g., it is a two-tuple relation,



also distinguishes our design. The concept offorward con-
trol dependence graph(FCDG) proposed by Sarkar [29] for
the purpose of parallelization is similar to our indexing tree.
The difference is that indexing tree is dynamic and FCDG
is static.

VI. CONCLUSION

This paper describes Alchemist, a novel dependence pro-
filing infrastructure. Alchemist istransparent, and treats any
program construct as a potential candidate for paralleliza-
tion. Dependence profile for all constructs can be collected
by one run using execution indexing technique. Alchemist
is general, as it does not rely on any specialized hardware
or software system support. We argue Alchemist isuseful
because it provides direct guidance for programmers to
perform parallelization transformation. Experimental results
show that Alchemist provides high quality information to
facilitate parallelization with acceptable profiling overhead.
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