CS 565

Programming Languages (graduate)

Spring 2026

Week |
Introduction, Background, Functional Programming

Administrivia

> Slides posted on course webpage
https://www.cs.purdue.edu/homes/suresh/565-Spring2026
> See course page for details on
- grading
- exams
- syllabus

https://www.cs.purdue.edu/homes/suresh/565-Sr

Topics

Foundations:

* Functional Programming

* Polymorphism and Higher-Order Programming

* Propositions, Evidence, and Relations
Programming Language Semantics:

* Operational Semantics
Types:
* Simple Types
* Simply-Typed Lambda Calculus
* Subtyping
* References and Linear/Affine Types
* System F
Program Logics:

* Hoare Logic (Axiomatic Semantics)
* Separation Logic

Automated Program Verification
* Verification-Aware Languages (Dafny)

Preliminaries

Sets: Basic Concepts
~ Sets as collections of distinct elements

>~ Membership: x ¢ A
Examples: {1,2,3}, @, {x e N | x is even]}
Operations
> Union (A u B), Intersection (A n B)
~ Difference (A \ B)
Example: {1,2,3} u {3,4} = {1,2,3,4}

» Cartesian Product: A x B = {(a,b) | acA, beB}
Example: {1,2} x {a,b} ={(1,a),(1,b),(2,a),(2,b}}

Preliminaries

Power Sets and Lattices

~ P(A) = all subsets of A
> Example: P({a,b}) = {2,{a},{b},{a,b}}

> Ordered by ¢, forms a complete lattice

let powerset (xs : 'a list) : 'a list list =
match xs with
| [1->11]]
| x :: rest->
let ps = powerset rest in

ps @ List.map (fun s -> x :: s) ps

Preliminaries

> A partially ordered set (L, <) is a lattice if every pair (x,y) € L has:
* aleast upper bound (join): x v y
* a greatest lower bound (meet): x A y
* Joins and meets are unique

> A complete lattice is a poset (partially-ordered set) where every

subset X € L has:
a supremum (VvX) — least upper bound

an infimum (AX) — greatest lower bound
Includes infinite joins and meets

Example:

Let A be any set

(P(A), c) forms a complete lattice

* Join (supremum): VX = uX, Meet (infimum): AX = nX
* Bottom element: @ ; Top element: A

Preliminaries

Functions and Relations

> Function f : A = B assigns one output in B per input in A
- Total vs partial functions
* Injective: f(x)=fy) = x=y
* Surjective: every beB has a preimage
* Bijective: both
- Image: (S) = {f(x) | xS}
- Pre-image: f1(T) = {x | f(x)eT}

> Relation R ¢ A x B, Examples: =, <, -
- All functions are relations
- Different kinds of relations:
* reflexive, symmetric, transitive (equivalence)
* reflexive, asymmetric, transitive (partial order)

Fixpoints

>Given a function f : L = L, a fixpoint x satisfies f(x) = x

- Fixpoints represent stable meanings of recursive definitions
- There may be many fixpoints in a lattice

- Least fixpoint is usually of interest in semantics

» Kleene fixpoint theorem

- Let (L, <) be a complete lattice
- Iff:L > Lis monotone (i.e., X ¢ Y = HX) c f(Y)) then:

* f has a least fixpoint
“lfp(f) = v { L, K1), (L), ..]

* Constructed by iterating from bottom

Preliminaries

Fixpoint example

Let A = {q, b, ¢}

- Consider the complete lattice (:P(A), <)
- Define #(X) = X u {a}

- Monotonicity: X ¢ Y = f(X) c {(Y)

- Kleene iteration: @ ¢ {a} c {a} c ...
- Least fixpoint: {a}

Preliminaries

Logic
> Propositional
- Connectives: A, v, 4, 2, &

* Truth tables define semantics
* Example: (P A Q) = P

> Predicate
- Quantifiers v and 3
* Predicates over domains
* Example: vneN. n+1>n

Lambda Calculus
11

* Lambda calculus was developed by Alonzo
Church in the 30s

- A core language in which everything is a
function

* Syntax of Lambda terms;
\JaraP®
t 1= X

Lambda
}\X - T abstraction
t €

Lambda Calculus

X € Var éAppWingafunction:é
n €N (Ax.x) 42

Lambda Calculus s

£ oRiT X AX.X
)\X. + ..
‘ £ + e
| D é MXX+X
‘ £ + t ..
<« € Var T — R P

£ o= X AX . X
Ax .t é ..
‘ £ + - oub|efunct|on
| n é - Ax.x + x
: ‘ £ + t ..
e | T e

nEN (A Ay.x) (7\XX)

Lambda Calculus

Conventions

£t si= x *iA?pIication associates to the
: eft:
AX-t s tu= (s t)u
t t * Group sequences of lambda
n abstractions:
5 AX y. X = AX. :
£+ t X y. X = Ax. Ay. X
* Bodies of abstraction extend
- X € Var as far to the right as possible:
n €E N AX V. Xy X =

e eeeeseemmeseeeeseeeemeseee e seee e seee e seencns s AX.(Ay.((X V) X))

Variable Scopes

't o= X 1.A variable x is bound when it
: occurs in the body t of a lambda
AxX.t abstraction Ax.t:
t t
n 2 .A variable x is free if it is not
bound by an enclosing lambda
t + t: expression:
x € Var :
n €N 3.A closed term has no free

S variables

Concept Check

What the free and bound variables in these terms!?
- AX.Ay.y X z

- (AX.Ay.y x) (5+2) Ax.x+1

- (Ax.X) (Ax.xy) (Az.(Ay.y) z)

a-Equivalence

Variables are bound to the closest
enclosing lambda:

The name of bound variables is
not important:

Expressions ti1 and t; that differ
only in bound variable names are

called a-equivalent

Concept Check

Which of these terms are a-equivalent?

(AX.X) ((AWw.w) ((AZ2.(Ay.y) 2)) =« (AX.X) ((Ax.X) ((AX.(Ax.X) X))
(AX.Ay.y xX) (5+2) Ax.x+1 =« (Ag.Ay.y g) (5+2) (Ay.y+1)

(AX.Ay.y X)(5+2)Ax.x+1 = ((Ag.Ay.y g)(5+2)) (Ax.x+1)

(AX.Ay.y x) (5+2) Ax.x+1 =q(Ax.Ay.y x) 7 Ax.x+1

(AX.Ay.y X 2)=a (Aa.Ab.b c 2z)

(AV.AX.X ¥V q)=a (AX.Ay.Y X 2)

Inference Rules

To describe the meaning of lambda-calculus expressions, we will use
a notation called inference (or reduction) rules.

Informally, a rule of the form:

A17A27°°°7An
t1 — To

reads:
Expression t1 evaluates to (or “reduces” to) t»
if the constraints defined by A4, A5, ..., A, hold

We'll delve into a more formal characterization of what these rules
signify later in the course ...

Semantics

D

I-IS-I t; — t1 value t; t, — t3
O £ tr — t1' t t1 t2 — t1 t2

=

=

ES value t

—

=

LLl

o

(Ax.t1) t2 — [x=t2]t:

Read [x=t,]t: as “replace all free
occurrences of x in t1 with t;”

value (Ax.t)

VALUE
RULES

REDUCTION RULES

Semantics s\
24
value t1 t2 — t3' t — t2
tl t2 — tl tz' tl + t2 — tl + tz
t1 — t1' tl —_— tl'
t: t2 — t1' to t; + t, — t1' + t
value t; n €7Z m€EYV7/

VALUE

(Ax.t1) t2 — [x=t2]t: n+m - n+47m

RULES

value (Ax.t)

Substitution

Need to ensure that we don’t inadvertently bind free variables!

 X=S X = S

X=s]y =y 1f xzy
x=s]Ax.t = Ax.t

'x=s]Ay.t = Ay.[xX=s]t where x#y
Xi=s]t to = [X=s]t1 [X=s]t:

[x=w](Ay.X) = Ay. W

[x=Az.2 W] (Ay.X) Ay z. z w

[x=y](AX.X) = AX.X

[X=w Vv Z2](A2.X 2) = Az. (WY 2Z) Z

[x=w Vv Z2](AZ2.X 2) =Az.(w Vv 2) Z

=q [x=w y 2] (Au.X u) = Au.(wy 2) u

Semantics
26 |

t; — t1' value t; t, — t2

t1 t, — ti1' t t: t2 — t1 t2

value t
(Ax.t1) t2 — [x=t2]t:

[-redex /

(AX. Ay. XVy) (Az. z) (AW. W) —
(AY. (Az. 2) y¥) (AW. W) —

(Az. 2) (AW. W) —
(AW W) A term with no redexes is

said to be in normal form

value t; t, — t5

t: t2 — t1 t2'

value t»

(Ax.t1) t2 — [x=t2]t:

(Ax.x) (Ax. x (At f.

— (Ax. x (At f. £f)
— (At £. t) (At f.

— (Af. (At £. £))
— At f£. f

£f) (At £. t)) (At f£. t)

(At £. t))

(At £. t)

f) (At f. t)

(At £. t)

Concept Check

ldentify any redexes in the following terms:

(AX.X) (AX.X)
Az.(AX.X) z

(Ax.x) ((Ay.y) (Az.(Ax.xX) 2))

AX v. X Vv X

Evaluation Strategies o\
29

Recall that lambda abstractions and numbers are values:

expressions

The lambda calculus’ values are the functions:

value AXx.t

This is called a call-by-value semantics: redexes are always the
top-most function that is applied to a value:

ti1 — t1' value t; t, — to'

t: t2 — t1' t2 t; t, — t1 to'
value t»

(AX.t1) t2 — [x=t2]t:

Examples ns
o4

(AX. X + x) ((AX. x + x) (5 + 3)) —
(AXx. X + x)((Ax. x + x) 8) —
(AX. x + X)(8 + 8) —
((Ax. x + x) 16) —

16 + 16 —

32

(AX.Ay.y X)(5+2) Ax.x+1
s (Ax.Av.y x) 7 Ax.x+1
—(Ay. v 7)) Ax.x+1
—>()\X. X+1) 7

— 8

Normalization

If every program in a language is guaranteed to always evaluate
to a normal term, we say the language is strongly normalizing.

Formally:

Statement of Strong Normalization:

For any term t, all sequences of reduction steps starting from t
eventually reaches a normal form t'.

Every program in a strongly normalizing language terminates.

Q

Is the lambda calculus strongly normalizing under beta
reduction!?

Does every expression eventually evaluate to a normal form?
No!

This is a diverging computation, i.e. one that does not terminate

We'll call this)

Q= Az (xx)Ax (xx))

Evaluation Strategies s
I

An alternative: beta-reductions are performed as soon as

possible:

ti, — t1
(Ax.t1) t2 — [X = t2]t: £ t, — t1' t,
(AX.Av.v x)(5+2)Ax.x+1
—(Ay.y (5+2)) Ax.x+1
s (Ax.x+1) (5+2)
—(5 + 2) + 1 (Af.£ 7)((AX.X X) Ay.y)

. 7 + 1 — ((AYy. ¥) (Ay. y)) 7

(
— 8 —>(7\y-y)7\
7

—_ term

duplicated!

o .Q,\\'\\N
(AX.X +X)(+ 6 N3
. §|51 + 6) + (5 + 6) o AW
—>11+(5+6) (A X+)5 (5
—>22+11 &yg+5) (5-:_66))
............................ —95+5 °) 11
VA can \ead — 10
o d \ical d L e
e \cae\Nor Str'\c’mess n \ead to
....‘.‘f}?‘?.‘??‘.?ﬂ.\!. wor KL

Concept Check

Evaluate this expression using both CBV and CBN strategies:

(AX.X) ((Ay.y) (Az.(Ax.xX) 2))

(Recall application is left-associative)

Eta-reduction
36 |]

One common additional reduction rule is called eta reduction:

x does not appear in t

(AXx.t Xx) — t

Captures the idea that Ax (Ay.y x) and Ay.y are equivalent

Properties

Church-Rosser Theorem (1)

If e —* e’ and e —* e” then there exists a term
e”’ such that e’ —* e’ and e” ——*e"”

(Here —* is the reflexive, transitive closure of —)

(S
BN
e’ 'e”

‘sfk >k",

b
nIRTY

S

- The reduction rules of the lambda calculus are confluent
- Normal forms are unique

Properties

Church-Rosser I

A reduction strategy that always reduces the leftmost,
outermost redex of a term will yield a normal form, if it
exists.

- A call-by-name evaluation strategy guarantees reduction to
normal form (if it exists)
- This property does not hold under by call-by-value. Why?

Expressivity

Church’s Thesis (1935): Informally, any function on the natural
numbers that can be effectively computed (i.e., can be expressed
as an algorithm) can be computed using the A-calculus. In other
words, A-calculus is equivalent in its expressive power to Turing
Machines.

- This property holds for the pure A-calculus, i.e., the
calculus without primitive support for numbers!

- This means that function abstraction and application are
sufficiently powerful to model numbers and their
operations.

Functional Programming
%l

WVe'll start our investigation by considering a small functional language
- These languages tend to have a small core set of features
* Based on lambda-calculus
- Extend this core with
* algebraic datatypes
* primitive support for recursion
* pattern-matching and conditionals
* strong typing
* syntactic sugar

- Written in Gallina, the specification and programming language for
Rocqg

(n :nat) : nat :=n + n.

Functions

- Functional languages tend to have a small core

- Standard libraries tend to have the usual suspects

- Functions are applied to arguments

- Functions are pure: consume values, produce values

double (n : nat) : nat :=n + n.

(double 1). (*

Functions

- Functional languages tend to have a small core

- Standard libraries tend to have the usual suspects

- Functions are applied to arguments

- Functions are pure: consume values, produce values

double (n : nat) : nat :=
plus n n.

(double 1).

Functions

- Functional languages tend to have a small core

- Standard libraries tend to have the usual suspects

- Functions are applied to arguments

- Functions are pure: consume values, produce values

concat (s1 : string) (s2 : string) (s3 : string) :
append s1 (append s2 s3).

(concat "Hello" " " "World").

Functions

- Functional languages tend to have a small core

- Standard libraries tend to have the usual suspects
- Functions are applied to arguments

- Functions are pure: consume value, produce value

concat (: string) : string =
append s1 (append s2 s3).

(concat "Hello" " " "World").

Functions

- Functional languages tend to have a small core

- Standard libraries tend to have the usual suspects

- Functions are applied to arguments

- Functions are pure: consume value, produce value
- Rocq can automatically infer many type annotations

concat =
append s1 (append s2 s3).

(concat "Hello" " " "World").

Building Blocks

Given the following ingredients:
- bool: a datatype for booleans
- andb: logical and
- orb: logical or
- negb: logical negation
Define a boolean equality function

eqb (: bool) : bool =

orb (andb b1 b2) (andb (negb b1) (negb b2)).

Algebraic Data Types

Enumerated types introduce nullary constructors:

bool : Type =
| true : bool

| false : bool.

Algebraic Data Types

- Enumerated types are the simplest data types in Rocq
- Type annotations can be inferred here as well

| true

| false.

Algebraic Data Types

- Enumerated types are the simplest data types in Rocqg
- Type annotations can be inferred here
- Constructors describe how to introduce a value of a type

| true
| false.

weekdays =
| monday | tuesday | wednesday | thursday | friday
. weekdays.

Pattern Matching

- Pattern matching lets a program use values of a type
- Rocq only permits total functions
- A total function is defined on all values in its domain

negb (b : bool) : bool :=
b
| true => false
| false => true

(negb true).

Pattern Matching

- Pattern matching lets a program use values of a type
- Rocq only permits total functions
- A total function is defined on all values in its domain

eqb (: bool) : bool :=
b1, b2
| true, true => true
| false, false => true

| false, true => false
| true, false => false

Pattern Matching

- Pattern matching lets a program use values of a type
- Rocq only permits total functions

- A total function is defined on all values in its domain
- Underscores are the wildcard pattern (don’t care)

eqgb (: bool) : bool :=
b1, b2
| true, true => true

| false, false => true
| |, =>false

Compound ADTs

- Can build new ADTs from existing ones:
- A color is either black, white, or a primary color
- Need to apply primary to something of type rgb

- ADTs are algebraic because they are built from a small set of
operators (sums of product).

rgb : Type :=1red | green | blue.

color ;=1 black | white

| primary (p : rgb).

(primary red).

Pattern Matching?

- Patterns on compound types need to mention arguments
- Can be a variable

monochrome (c : color) : bool :=
C
| black => true
| white => true

| primary p => false

Pattern Matching?

- Patterns on compound types need to mention arguments
= Can be a variable
= Can be a pattern for the type of the argument

isred (c : color) : bool =
C
| black => false
| white => false

| primary red => true
| primary _ => false

Concept Check

- How many colors are there!

- In general, each ADT defines an algebra whose operations are the
constructors

rgb : Type :=1red | green | blue.

color :=1 black | white
| primary (p : rgb).

(primary red).

Concept Check?

- Define a type for the ‘basic’ (h, a, and p) html tags:
- A header should include a nat indicating its importance

- The anchor tag should include a string for its destination

- The paragraph doesn’t need anything extra

tag : Type =
| h (importance : nat)
| a (href : string)

| p.

Concept Check?

- Define a pretty printer for opening a tag
(* pp (h 1) ="<h1>"%) %)
- Assume we have a natToString function

tag : Type =
| h (importance : nat)
| a (href : string)

| p.

Concept Check?

Define a pretty printer for opening a tag
(" pp (h 1) ="<h1>"%) %)

Assume we have a natToString function

pp (t : tag) : string :=

t
| hi =>concat "<h" (natToString i) “>”
| a hr => concat ""
| _ =>"<p>"

So Far:

rgb : Type =1 red | green | blue.

color := | black | white

| primary (p : rgb).

asEEEEEN,

s '

L 3 "
.

Natural Numbers

Functions

The interpretation of these constructors comes from how we use
them to compute:

tickNat : Type =
| stop
| tick (foo : tickNat).

pred (n : nat) : nat ;=

n
|O=>0
|Sm=>m

Recursion

Recursive functions use themselves in their definition

(n : nat) : bool :=

Recursion

Recursive functions use themselves in their definition

(n : nat) : bool :=

n
| O => true

| S O => false
| S (S m) =>iseven m

Recursion

Recursive functions use themselves in their definition

. nat) : nat ;=
n
| O =>m

|Sn’"=>S (plus N’ m)

(plus23). (*=57%)

Recursion

Recursive functions use themselves in their definition

. nat) : nat ;=
n
| O =>m
|Sn’"=>S (plus N’ m)

(plus 2 3). (F=57)

(* plus 2 3 = plus (S (S 0)) (S (S (S O))) *)

Recursion

Recursive functions use themselves in their definition

(. nat) : nat ;=

n
| O =>m
|Sn’"=>S (plus N’ m)

(plus 2 3).
(" plus (S (S O)) (S (S (S
S (plus (S O) (S (S (S 0)))))

Recursion

Recursive functions use themselves in their definition

. nat) : nat ;=

n
| O =>m
|Sn’"=>S (plus N’ m)

(plus 2 3). (*

(S (plus (S O) (S (S (S O)))) =
S (S (plus O (S (S (S O)))*)

5 *)

Recursion

Recursive functions use themselves in their definition
Recall: functions need to be total
Rocq requires functions be structurally recursive

. nat) : nat ;=

n
| O =>m
|Sn’"=>S (plus N’ m)

(plus 2 3). (* *)
(" S (S (plus O (S (S (S 0)))))
S(S(S(S(50))) =57

Recursion

Recursive functions use themselves in their definition
Recall: functions need to be total
Rocq requires functions be structurally recursive

: nat) : nat =
n
|1O=>0

| S n' => plus m (mult n' m)

Recursion

* Recursive functions use themselves in their definition
* Recall: functions need to be total
* Rocq requires functions be structurally recursive

: nat) : nat .=
n
| O =>m

| S n'=>S (plus m n’)

Putting it together: Syntax

2|

(OF ARITHMETIC + BOOLEAN EXPRESSIONS)

Backus-Naur Form (BNF) Definitions:

B ::=true

A:=N false
A+ A A=A
A-A A<A
A*A - B

... —

Abstract Syntax

(OF ARITHMETIC + BOOLEAN EXPRESSIONS)

Abstract Syntax
' Tree -

AN

Concrete Syntax LeJ>r<er
 142*3

1

Syntax in Coqg

LA = N aexp : Type =
| ANum (a : nat)
2 +:\ : | APlus (a1 a2 : aexp)
A . A | AMinus (a1 a2 : aexp)

| AMult (a1 a2 : aexp).

* One constructor per rule
* Nonterminal = inductive type being defined

Syntax in Coqg

: B ::= true bexp : Type =
. | false | BTrue
A=A | BFalse
~ 5 | BEq (a1 a2 : aexp)
A<A a

| BLe (a1 a2 : aexp)
- B | BNot (b : bexp)
B AB | BAnd (b1 b2 : bexp).

Evaluation

- Abstract Syntax :
1/ ™~
7N\

lll

Evaluation

The evaluator for axep is simply a recursive
function

aeval (a : aexp) :
a
| ANUm n =>n
| APlus a1 a2 => (aeval al) + (aeval a2)

| AMinus a1l a2 => (aeval al) - (aeval a2)
| AMult a1 a2 => (aeval al) * (aeval a2)

Evaluation

The evaluator for axep is simply a recursive
function

aeval (a :aexp) : nat =
a
| ANum n=>n
| APlus a1 a2 => (aeval al1) + (aeval a2)

| AMinus a1l a2 => (aeval al) - (aeval a2)
| AMult a1 a2 => (aeval al) * (aeval a2)

Evaluation

An evaluator for boolean expressions

beval (b : bexp) : bool :=
b
| BTrue => true
| BFalse => false
| BEg a1 a2 => eqb (aeval al) (aeval a2)

| BLe a1 a2 => leb (aeval al) (aeval a2)
| BNot b => negb (beval b)
| BAnd b1 b2 => andb (beval b1) (beval b2)

