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‣ Slides posted on course webpage
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‣ See course page for details on

-  grading
-  exams
-  syllabus
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Foundations:
★ Functional Programming
★ Polymorphism and Higher-Order Programming
★ Propositions, Evidence, and Relations

Programming Language Semantics:
★ Operational Semantics

Types:
★ Simple Types 
★ Simply-Typed Lambda Calculus
★ Subtyping 
★ References and Linear/Affine Types
★ System F

Program Logics:
★ Hoare Logic (Axiomatic Semantics)
★ Separation Logic

Automated Program Verification
★ Verification-Aware Languages (Dafny)

Topics
3



Preliminaries
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‣ Sets as collections of distinct elements 
‣Membership: x ∈ A 
  Examples: {1,2,3}, ∅, {x ∈ ℕ | x is even}

Sets: Basic Concepts

‣ Union (A ∪ B), Intersection (A ∩ B) 
‣ Difference (A \ B) 

Example: {1,2,3} ∪ {3,4} = {1,2,3,4}

Operations

‣ Cartesian Product: A × B = {(a,b) | a∈A, b∈B} 
Example: {1,2} × {a,b} = {(1,a),(1,b),(2,a),(2,b)} 



Preliminaries
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‣𝒫(A) = all subsets of A 

‣ Example: 𝒫({a,b}) = {∅,{a},{b},{a,b}} 

‣Ordered by ⊆, forms a complete lattice 

let powerset (xs : 'a list) : 'a list list = 
   match xs with 
     | [] -> [ [] ] 
     | x :: rest -> 
         let ps = powerset rest in 
         ps @ List.map (fun s -> x :: s) ps 

Power Sets and Lattices



Preliminaries
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‣  A partially ordered set (L, ≤) is a lattice if every pair (x,y) ∈ L has: 
• a least upper bound (join): x ∨ y 
• a greatest lower bound (meet): x ∧ y 
• Joins and meets are unique 

‣ A complete lattice is a poset (partially-ordered set) where every 
subset X ⊆ L has: 

- a supremum (⋁X) — least upper bound 
- an infimum (⋀X) — greatest lower bound 
- Includes infinite joins and meets

Example:  
Let A be any set 
•(𝒫(A), ⊆) forms a complete lattice 
•Join (supremum): ⋁X = ⋃X, Meet (infimum): ⋀X = ⋂X 
•Bottom element: ∅ ; Top element: A 



Preliminaries
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Functions and Relations
‣ Function f : A → B assigns one output in B per input in A 
-  Total vs partial functions 

• Injective: f(x)=f(y) ⇒ x = y 
• Surjective: every b∈B has a preimage  
• Bijective: both 

- Image: f(S) = {f(x) | x∈S} 
- Pre-image: f⁻¹(T) = {x | f(x)∈T} 

‣  Relation R ⊆ A × B, Examples: =, ≤, → 
- All functions are relations 
- Different kinds of relations: 

•reflexive, symmetric, transitive (equivalence) 
•reflexive, asymmetric, transitive (partial order) 



Fixpoints
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‣Given a function f : L → L, a fixpoint x satisfies f(x) = x 
- Fixpoints represent stable meanings of recursive definitions 
- There may be many fixpoints in a lattice 
- Least fixpoint is usually of interest in semantics 

‣ Kleene fixpoint theorem 
- Let (L, ≤) be a complete lattice 
- If f : L → L is monotone (i.e., X ⊆ Y ⇒ f(X) ⊆ f(Y))  then: 

* f has a least fixpoint 
           * lfp(f) = ⋁ { ⊥, f(⊥), f²(⊥), ... } 
           * Constructed by iterating from bottom 



Preliminaries
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Let A = {a, b, c} 

   - Consider the complete lattice (𝒫(A), ⊆) 

   - Define f(X) = X ∪ {a} 

 - Monotonicity: X ⊆ Y ⇒ f(X) ⊆ f(Y) 

   - Kleene iteration: ∅ ⊆ {a} ⊆ {a} ⊆ … 

   - Least fixpoint: {a} 

Fixpoint example



Preliminaries
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Logic
‣ Propositional 
- Connectives: ∧, ∨, ¬, →, ↔ 

        *  Truth tables define semantics 
       * Example: (P ∧ Q) → P 

‣ Predicate 
- Quantifiers ∀ and ∃ 

     * Predicates over domains 

      * Example: ∀n∈ℕ. n+1>n 



★Lambda calculus was developed by Alonzo 
Church in the 30s
- A core language in which everything is a 

function

★Syntax of Lambda terms: 

t ::= x
   | λx.t
   | t t

Lambda Calculus
11

Variable

Lambda 
abstraction

Application



Lambda Calculus
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t ::= x
   | λx.t
   | t t

x ∈ Var

Identity function:
λx.x



Lambda Calculus
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t ::= x
   | λx.t
   | t t
   | n
   | t + t
x ∈ Var
n ∈ N

Identity function:
λx.x

Double function:
λx.x + x

Applying a function:
(λx.x) 42

PLUS NUMBERS



Lambda Calculus
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t ::= x
   | λx.t
   | t t
   | n
   | t + t
x ∈ Var
n ∈ N

Identity function:
λx.x

Double function:
λx.x + x

Applying a function:
(λx.x) (λx.x)

PLUS NUMBERS



Lambda Calculus
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t ::= x
   | λx.t
   | t t
   | n
   | t + t
x ∈ Var
n ∈ N

Identity function:
λx.x

Double function:
λx.x + x

Applying a function:
(λx.λy.x) (λx.x)

PLUS NUMBERS



Lambda Calculus
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t ::= x
   | λx.t
   | t t
   | n
   | t + t
x ∈ Var
n ∈ N

Identity function:
\ x -> x

Double function:
\ x -> x + x

Applying a function:
(fun x -> x) 42

Identity function:
fun x -> x

Double function:
fun x -> x + x

PLUS NUMBERS



Conventions
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t ::= x
   | λx.t
   | t t
   | n
   | t + t
x ∈ Var
n ∈ N

★Application associates to the 
left:

s t u ≡ (s t) u

★Group sequences of lambda 
abstractions:

λx y. x ≡ λx. λy. x

★Bodies of abstraction extend 
as far to the right as possible:

λx y. x y x ≡
λx.(λy.((x y) x))



Variable Scopes
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t ::= x
   | λx.t
   | t t
   | n
   | t + t
x ∈ Var
n ∈ N

1.A variable x is bound when it 
occurs in the body t of a lambda 
abstraction λx.t:

2.A variable x is free if it is not 
bound by an enclosing lambda 
expression:

3.A closed term has no free 
variables



Concept Check
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What the free and bound variables in these terms?

- λx.λy.y x z

- (λx.λy.y x) (5+2) λx.x+1

- (λx.x) (λx.x y) (λz.(λy.y) z)



ɑ-Equivalence
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t ::= x
   | λx.t
   | t t
   | n
   | t + t
x ∈ Var
n ∈ N

1. Variables are bound to the closest 
enclosing lambda:

2. The name of bound variables is 
not important: 

3. Expressions t1 and t2 that differ 
only in bound variable names are 
called α-equivalent



Concept Check
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Which of these terms are α-equivalent?
(λx.x) ((λw.w) ((λz.(λy.y) z)) ≡α (λx.x) ((λx.x) ((λx.(λx.x) x))

(λx.λy.y x) (5+2) λx.x+1 ≡α (λq.λy.y q) (5+2) (λy.y+1)

(λx.λy.y x)(5+2)λx.x+1 ≡α ((λq.λy.y q)(5+2)) (λx.x+1)

(λx.λy.y x) (5+2) λx.x+1 ≡α(λx.λy.y x) 7 λx.x+1

(λx.λy.y x z)≡α (λa.λb.b c z)

(λy.λx.x y q)≡α (λx.λy.y x z)



Inference Rules
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To describe the meaning of lambda-calculus expressions, we will use 
a notation called inference (or reduction) rules.

Informally, a rule of the form:

<latexit sha1_base64="ICzQoQOes64i34jx49eexo9eMrM=">AAACV3icbVDLSsNAFJ3GV62vVpeKDBbBhZSkiLqsunGpYFVoSphMJ+3gZCbM3CglZOnH+Af+hVv7DX6D6KQV1OqFC4dz7uXce8JEcAOuOyo5M7Nz8wvlxcrS8srqWrW2fm1UqilrUyWUvg2JYYJL1gYOgt0mmpE4FOwmvDsr9Jt7pg1X8gqGCevGpC95xCkBSwXVs4rPZcR0dhJ4+ydBc98XPQXGQplnfkxgAJBB4OXY17w/AKK1esDfQjPPK0G17jbcceG/wPsC9dbW8+Xb4/bzRVB993uKpjGTQAUxpuO5CXQzooFTwfKKnxqWEHpH+qxjoSQxM91s/GyOdy3Tw5HStiXgMftzIyOxMcM4tJPFlWZaK8j/tE4K0XE34zJJgUk6MYpSgUHhIjnc45pREEMLCNXc3orpgGhCweY77QKD+NcfWeGXFB/q3OblTafzF1w3G95h4+DSq7dO0aTKaBPtoD3koSPUQufoArURRU/oBb2iUWlU+nDmnfJk1Cl97WygX+XUPgHwu7uO</latexit>

A1, A2, . . . , An

t1 ! t2

reads: 
    Expression     evaluates to (or “reduces” to)  
    if the constraints defined by                        hold

<latexit sha1_base64="TsZl3oYJFaSli29Jvf3YyZhtXOk=">AAACI3icbVBNS8NAEN34WeNHo4IXL8EieCqJiHos9eKxBfsBbQib7bZdupuE3YlQQn6JV3v0X3jzJl486D8R3LQ92NYHA4/3ZpiZF8ScKXCcT2NtfWNza7uwY+7u7R8UrcOjpooSSWiDRDyS7QAryllIG8CA03YsKRYBp61gdJf7rUcqFYvCBxjH1BN4ELI+Ixi05FtFsyswDAFS8N3MNH2r5JSdKexV4s5JqXJS/2Yv1deab/10exFJBA2BcKxUx3Vi8FIsgRFOM7ObKBpjMsID2tE0xIIqL50entnnWunZ/UjqCsGeqn8nUiyUGotAd+ZXqmUvF//zOgn0b72UhXECNCSzRf2E2xDZeQp2j0lKgI81wUQyfatNhlhiAjqr5S0wFAt/pPm+OP9QZjovdzmdVdK8LLvX5au6W6pU0QwFdIrO0AVy0Q2qoHtUQw1EUIKe0DOaGBPjzXg3Pmata8Z85hgtwPj6BR8XqJw=</latexit>

t1
<latexit sha1_base64="/1iG8CrOKVzFMXLEcQ4/PjOafOg=">AAACI3icbVDLSsNAFJ3UV42PRgU3boJFcFWSIuqy1I3LFuwD2hAm00k7dPJg5kYoIV/i1i79C3fuxI0L/RPBSduFbT1w4XDOvdx7jxdzJsGyPrXCxubW9k5xV9/bPzgsGUfHbRklgtAWiXgkuh6WlLOQtoABp91YUBx4nHa88V3udx6pkCwKH2ASUyfAw5D5jGBQkmuU9H6AYQSQglvNdN01ylbFmsFcJ/aClGunzW/2Un9tuMZPfxCRJKAhEI6l7NlWDE6KBTDCaab3E0ljTMZ4SHuKhjig0klnh2fmhVIGph8JVSGYM/XvRIoDKSeBpzrzK+Wql4v/eb0E/FsnZWGcAA3JfJGfcBMiM0/BHDBBCfCJIpgIpm41yQgLTEBltboFRsHSH2m+L84/FJnKy15NZ520qxX7unLVtMu1OpqjiM7QObpENrpBNXSPGqiFCErQE3pGU22qvWnv2se8taAtZk7QErSvXyDJqJ0=</latexit>

t2
<latexit sha1_base64="Ygqdbam9yePf+ZPAlWMRdvXQgmE="></latexit>

A1, A2, . . . , An

We’ll delve into a more formal characterization of what these rules 
signify later in the course …



Semantics
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t1 t2 ⟶ t1' t2

t1 ⟶ t1'
t1 t2 ⟶ t1 t2'

 value t1    t2 ⟶ t2'

value (λx.t)

(λx.t1) t2 ⟶ [x≔t2]t1 
value t2

RE
DU

CT
IO

N R
UL

ES
VA

LU
E 

RU
LE

S

This rule is called the beta reduction rule

Read [x≔t2]t1  as “replace all free 
occurrences of x in t1 with t2”



Semantics
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t1 t2 ⟶ t1' t2

t1 ⟶ t1'

t1 t2 ⟶ t1 t2'

 value t1    t2 ⟶ t2'

(λx.t1) t2 ⟶ [x≔t2]t1 
value t2

value (λx.t)

t1 + t2 ⟶ t1 + t2

t2 ⟶ t2'

t1 + t2 ⟶ t1' + t2

t1 ⟶ t1'

n + m ⟶ n +ℤ m

n ∈ ℤ m ∈ ℤ

value n
n ∈ ℤ

PLUS NUMBERS
RE
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RU
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Substitution
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[x≔w](λy.x) ≡ λy. w
[x≔λz.z w](λy.x) ≡ λy z. z w
[x≔y](λx.x) ≡ λx.x
[x≔w y z](λz.x z) ≡ λz.(w y z) z

Not sufficient when s 

is an open term

Need to ensure that we don’t inadvertently bind free variables!
[x≔s]x      ≡ s
[x≔s]y      ≡ y           if x≠y
[x≔s]λx.t    ≡ λx.t                                                                               
[x≔s]λy.t    ≡ λy.[x≔s]t   where x≠y 
[x≔s]t1 t2    ≡ [x≔s]t1 [x≔s]t2

[x≔w y z](λz.x z) ≢ λz.(w y z) z
     ≡α [x≔w y z](λu.x u) ≡ λu.(w y z) u



Semantics
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(λx. λy. x y) (λz. z) (λw. w) ⟶
(λy. (λz. z) y) (λw. w) ⟶
(λz. z) (λw. w) ⟶
(λw. w)

(λx. λy. x y) (λz. z) (λw. w) ⟶

A term with no redexes is 
said to be in normal form

Redexes are 

highlighted in 

blue

t1 t2 ⟶ t1' t2

t1 ⟶ t1'
t1 t2 ⟶ t1 t2'

 value t1    t2 ⟶ t2'

(λx.t1) t2 ⟶ [x≔t2]t1 
value t2

-redexβ



Example 
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(λx.x) (λx. x (λt f. f) (λt f. t)) (λt f. t)
⟶ (λx. x (λt f. f) (λt f. t)) (λt f. t)
⟶ (λt f. t) (λt f. f) (λt f. t)

t1 t2 ⟶ t1' t2

t1 ⟶ t1'
t1 t2 ⟶ t1 t2'

 value t1    t2 ⟶ t2'

(λx.t1) t2 ⟶ [x≔t2]t1 
value t2

⟶ (λf. (λt f. f)) (λt f. t)
⟶ λt f. f



Concept Check
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Identify any redexes in the following terms:

(λx.x) (λx.x)

λz.(λx.x) z

(λx.x) ((λy.y) (λz.(λx.x) z))

λx y. x y x



Recall that lambda abstractions and numbers are values:

The lambda calculus’ values are the functions:

This is called a call-by-value semantics: redexes are always the 
top-most function that is applied to a value:

values expressions

 value λx.t

t1 t2 ⟶ t1' t2
t1 ⟶ t1'

t1 t2 ⟶ t1 t2'
 value t1    t2 ⟶ t2'

(λx.t1) t2 ⟶ [x≔t2]t1 
value t2

CALL-BY-VALUE

AKA STRICTEvaluation Strategies
29



(λx. x + x) ((λx. x + x) (5 + 3)) ⟶

(λx. x + x)((λx. x + x) 8) ⟶

(λx. x + x)(8 + 8) ⟶

((λx. x + x) 16) ⟶

16 + 16 ⟶

32

PLUS NUMBERS

Examples
30

(λx.λy.y x)(5+2) λx.x+1
⟶(λx.λy.y x) 7 λx.x+1 
⟶(λy. y 7) λx.x+1
⟶(λx. x+1) 7 
⟶ 7+1
⟶ 8



Normalization
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- If every program in a language is guaranteed to always evaluate 
to a normal term, we say the language is strongly normalizing. 

- Formally:
- Statement of Strong Normalization:
- For any term t, all sequences of reduction steps starting from t 

eventually reaches a normal form t'.

- Every program in a strongly normalizing language terminates. 



Ω
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- Is the lambda calculus strongly normalizing under beta 
reduction? 
- Does every expression eventually evaluate to a normal form?                                
- No!

This is a diverging computation, i.e. one that does not terminate
We’ll call this Ω 

Ω   ≡
<latexit sha1_base64="4eh/tBzzq6Rt17QGIZgmmPmgFyY="></latexit>

(� x. (x x))(� x. (x x))



t1 t2 ⟶ t1' t2

t1 ⟶ t1'
(λx.t1) t2 ⟶ [x ≔ t2]t1 

(λx.λy.y x)(5+2)λx.x+1
⟶(λy.y (5+2)) λx.x+1
⟶(λx.x+1) (5+2) 
⟶(5 + 2) + 1
⟶ 7 + 1
⟶ 8

Evaluation Strategies
33

CALL-BY-NAME

AKA LAZY

An alternative: beta-reductions are performed as soon as 
possible:

(λf.f 7)((λx.x x) λy.y)
⟶ ((λy. y) (λy. y)) 7
⟶ (λy. y) 7 
⟶ 7 term

duplicated!



34

Evaluation Strategies

(λx.x + x)(5 + 6)
⟶ (5 + 6) + (5 + 6)
⟶ 11 + (5 + 6)
⟶ 11 + 11
⟶ 22

Laziness can lead 

to duplicated work!
Strictness can lead to 

unnecessary work!

(λx y.x + x) 5 (5 + 6)
⟶ (λy.5 + 5) (5 + 6)
⟶ (λy.5 + 5) 11 
⟶ 5 + 5
⟶ 10

CALL-BY-NAME

CALL-BY-VALUE



Concept Check
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Evaluate this expression using both CBV and CBN strategies: 

(λx.x) ((λy.y) (λz.(λx.x) z))

(Recall application is left-associative)



One common additional reduction rule is called eta reduction:

Captures the idea that λx. (λy.y x) and λy.y are equivalent

Eta-reduction
36

(λx.t x) ⟶  t

x does not appear in t 



Properties
Church-Rosser Theorem (1)

 

37

If e ⟶* e’ and e ⟶* e’’ then there exists a term
e’’’ such that e’ ⟶* e’’’ and e’’ ⟶* e’’’

(Here ⟶* is the reflexive, transitive closure of ⟶)

e

e’ e’’

e’’’

* *

* *

- The reduction rules of the lambda calculus are confluent
- Normal forms are unique



Properties
Church-Rosser II

38

A reduction strategy that always reduces the leftmost, 
outermost redex of a term will yield a normal form, if it 
exists.

- A call-by-name evaluation strategy guarantees reduction to 
normal form (if it exists)

- This property does not hold under by call-by-value.  Why?



Expressivity
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Church’s Thesis (1935): Informally, any function on the natural 
numbers that can be effectively computed (i.e., can be expressed 
as an algorithm) can be computed using the -calculus.  In other 
words, -calculus is equivalent in its expressive power to Turing 
Machines.

λ
λ

- This property holds for the pure -calculus, i.e., the 
calculus without primitive support for numbers!

- This means that function abstraction and application are 
sufficiently powerful to model numbers and their 
operations.

λ



Functional Programming

We’ll start our investigation by considering a small functional language 
  - These languages tend to have a small core set of features

* Based on lambda-calculus
  - Extend this core with 
       * algebraic datatypes
       * primitive support for recursion
       * pattern-matching and conditionals
       * strong typing
       * syntactic sugar
  - Written in Gallina, the specification and programming language for 
Rocq

40

Definition double (n : nat) : nat := n + n.



Functions

- Functional languages tend to have a small core
- Standard libraries tend to have the usual suspects
- Functions are applied to arguments
- Functions are pure: consume values, produce values

41

Definition double (n : nat) : nat := n + n.

Eval compute in (double 1). (* = 2 *)



Functions

Definition double (n : nat) : nat := 
plus n n.

Eval compute in (double 1). (* = 2 *)

- Functional languages tend to have a small core
- Standard libraries tend to have the usual suspects
- Functions are applied to arguments
- Functions are pure: consume values, produce values

42



- Functional languages tend to have a small core
- Standard libraries tend to have the usual suspects
- Functions are applied to arguments
- Functions are pure: consume values, produce values

Functions

Definition concat (s1 : string) (s2 : string) (s3 : string) := 
 append s1 (append s2 s3).

Eval compute in (concat "Hello" " " "World"). 
(* = "Hello World" *)

43



Functions

Definition concat (s1 s2 s3 : string) : string := 
 append s1 (append s2 s3).

Eval compute in (concat "Hello" " " "World"). 
(* = "Hello World" *)

- Functional languages tend to have a small core
- Standard libraries tend to have the usual suspects
- Functions are applied to arguments
- Functions are pure: consume value, produce value

44



Functions
- Functional languages tend to have a small core
- Standard libraries tend to have the usual suspects
- Functions are applied to arguments
- Functions are pure: consume value, produce value
- Rocq can automatically infer many type annotations

45

Definition concat s1 s2 s3 := 
 append s1 (append s2 s3).

Eval compute in (concat "Hello" " " "World"). 
(* = "Hello World" *)



Building Blocks

Given the following ingredients: 
- bool: a datatype for booleans 
- andb: logical and 
- orb: logical or
- negb: logical negation

Define a boolean equality function

46

Definition eqb (b1 b2 : bool) : bool := 
 orb (andb b1 b2) (andb (negb b1) (negb b2)).



Algebraic Data Types
Enumerated types introduce nullary constructors:

47

Inductive bool : Type := 
| true : bool
| false : bool.



Algebraic Data Types
- Enumerated types are the simplest data types in Rocq
- Type annotations can be inferred here as well

48

Inductive bool := 
| true
| false.



Algebraic Data Types
- Enumerated types are the simplest data types in Rocq
- Type annotations can be inferred here
- Constructors describe how to introduce a value of a type

49

Inductive bool := 
| true
| false.

Inductive weekdays :=
  | monday | tuesday | wednesday | thursday | friday 
: weekdays.



Pattern Matching
- Pattern matching lets a program use values of a type
- Rocq only permits total functions
  - A total function is defined on all values in its domain 

50

Definition negb (b : bool) : bool :=
  match b with
  | true => false
  | false => true
  end.

Eval compute in (negb true).  (* = false *)



Pattern Matching
- Pattern matching lets a program use values of a type
- Rocq only permits total functions
   - A total function is defined on all values in its domain 

51

Definition eqb (b1 b2 : bool) : bool := 
  match b1, b2 with
  | true, true => true
  | false, false => true
  | false, true => false
  | true, false => false
  end.



Pattern Matching
- Pattern matching lets a program use values of a type
- Rocq only permits total functions
   - A total function is defined on all values in its domain

- Underscores are the wildcard pattern (don’t care) 

52

Definition eqb (b1 b2 : bool) : bool := 
  match b1, b2 with
  | true, true => true
  | false, false => true
  | _, _ => false
  end.



Compound ADTs
- Can build new ADTs from existing ones:
   - A color is either black, white, or a primary color
   - Need to apply primary to something of type rgb
-  ADTs are algebraic because they are built from a small set of 
operators (sums of product).

53

Inductive rgb : Type := | red | green | blue.

Inductive color := | black | white
   | primary (p : rgb).

Eval compute in (primary red). (* = primary red *)



Pattern Matching2

- Patterns on compound types need to mention arguments
   - Can be a variable

54

Definition monochrome (c : color) : bool :=
  match c with
  | black => true
  | white => true
  | primary p => false
  end.



Pattern Matching2

- Patterns on compound types need to mention arguments
   - Can be a variable
   - Can be a pattern for the type of the argument

55

Definition isred (c : color) : bool :=
  match c with
  | black => false
  | white => false
  | primary red => true
  | primary _ => false
  end.



Concept Check
- How many colors are there?
- In general, each ADT defines an algebra whose operations are the 
constructors

56

Inductive rgb : Type := | red | green | blue.

Inductive color := | black | white
  | primary (p : rgb).

Eval compute in (primary red). (* = primary red *)



Concept Check2

- Define a type for the ‘basic’ (h, a, and p) html tags:
  - A header should include a nat indicating its importance 
  - The anchor tag should include a string for its destination
  - The paragraph doesn’t need anything extra

57

Inductive tag : Type := 
| h (importance : nat)
| a (href : string)
| p.



Concept Check2

- Define a pretty printer for opening a tag 
             (* pp (h 1) = “<h1>” *) *)

- Assume we have a natToString function

58

Inductive tag : Type := 
| h (importance : nat)
| a (href : string)
| p.



Concept Check2

★ Define a pretty printer for opening a tag 
★ (* pp (h 1) = “<h1>” *) *)
★ Assume we have a natToString function

59

Definition pp (t : tag) : string :=
  match t with
  | h i => concat "<h" (natToString i) “>”
  | a hr => concat "<a href='" hr "'>"
  | _ => “<p>"
  end.



So Far:
60

Inductive rgb : Type := | red | green | blue.

Inductive color := | black | white
  | primary (p : rgb).

rgb

color



Natural Numbers
61

Inductive nat : Type :=
| O
| S (n : nat).

nat

O

S O

O

S O

S (S O)

S (S (S O))

…

…

…



Functions
The interpretation of these constructors comes from how we use 
them to compute: 

62

Definition pred (n : nat) : nat :=
  match n with
  | O => O
  | S m => m
  end.

Inductive tickNat : Type :=
| stop
| tick (foo : tickNat).



Recursion

Fixpoint iseven (n : nat) : bool :=
???

Recursive functions use themselves in their definition 

63



Recursion

Fixpoint iseven (n : nat) : bool :=
  match n with
  | O => true
  | S O => false
  | S (S m) => iseven m
  end.

Recursive functions use themselves in their definition 

64



Recursion
Recursive functions use themselves in their definition 

65

Fixpoint plus (n m : nat) : nat :=
  match n with
  | O => m
  | S n’ => S (plus n’ m)
  end.
Eval compute in (plus 2 3). (* = 5 *)



Recursion
Recursive functions use themselves in their definition 

66

Fixpoint plus (n m : nat) : nat :=
  match n with
  | O => m
  | S n’ => S (plus n’ m)
  end.
Eval compute in (plus 2 3). (* = 5 *)
(* plus 2 3 = plus (S (S O)) (S (S (S O))) *)



Recursion
Recursive functions use themselves in their definition 

67

Fixpoint plus (n m : nat) : nat :=
  match n with
  | O => m
  | S n’ => S (plus n’ m)
  end.
Eval compute in (plus 2 3). (* = 5 *)
(* plus (S (S O)) (S (S (S O))) = 

S (plus (S O) (S (S (S O))))*)



Recursion
Recursive functions use themselves in their definition 

68

Fixpoint plus (n m : nat) : nat :=
  match n with
  | O => m
  | S n’ => S (plus n’ m)
  end.
Eval compute in (plus 2 3). (* = 5 *)
(* S (plus (S O) (S (S (S O)))) = 

S (S (plus O (S (S (S O)))))*)



Recursion
★ Recursive functions use themselves in their definition 
★ Recall: functions need to be total

★Rocq requires functions be structurally recursive

69

Fixpoint plus (n m : nat) : nat :=
  match n with
  | O => m
  | S n’ => S (plus n’ m)
  end.
Eval compute in (plus 2 3). (* = 5 *)
(* S (S (plus O (S (S (S O))))) = 

S (S (S (S (S O)))) = 5 *)



Recursion
★ Recursive functions use themselves in their definition 
★ Recall: functions need to be total

★Rocq requires functions be structurally recursive

70

Fixpoint mult (n m : nat) : nat :=
  match n with
  | O => O
  | S n' => plus m (mult n' m)
  end.



Recursion
★ Recursive functions use themselves in their definition 
★ Recall: functions need to be total

★Rocq requires functions be structurally recursive

71

Fixpoint plus (n m : nat) : nat :=
  match n with
  | O => m
  | S n' => S (plus m n’)
  end. X



Putting it together: Syntax
72

 A ::= ℕ
      | A + A
      | A - A
      | A * A

 B ::= true
     | false
     | A = A
     | A ≤ A
     | ¬ B
     | B ⋀ B

(OF ARITHMETIC + BOOLEAN EXPRESSIONS)

Backus-Naur Form (BNF) Definitions: 



Abstract Syntax
73

“1+2*3”
Concrete Syntax +

Abstract Syntax
Tree

1 *
2 3

Lexer
+

Parser

(OF ARITHMETIC + BOOLEAN EXPRESSIONS)



Syntax in Coq
74

 A ::= ℕ
      | A + A
      | A - A
      | A * A

Inductive aexp : Type :=
  | ANum (a : nat) 
  | APlus (a1 a2 : aexp)
  | AMinus (a1 a2 : aexp)
  | AMult  (a1 a2 : aexp).

★ One constructor per rule
★ Nonterminal = inductive type being defined



Syntax in Coq
75

 B ::= true
     | false
     | A = A
     | A ≤ A
     | ¬ B
     | B ⋀ B

Inductive bexp : Type :=
  | BTrue 
  | BFalse 
  | BEq (a1 a2 : aexp)
  | BLe (a1 a2 : aexp) 
  | BNot (b : bexp)
  | BAnd (b1 b2 : bexp).



Evaluation
76

+
Abstract Syntax

1 *
2 3

????
Meaning

7



Evaluation
77

Fixpoint aeval (a : aexp) :  (* ?? *)  := 
  match a with
  | ANum n => n
  | APlus a1 a2 => (aeval a1) + (aeval a2)
  | AMinus a1 a2 => (aeval a1) - (aeval a2)
  | AMult a1 a2 => (aeval a1) * (aeval a2)
  end.

★ The evaluator for axep is simply a recursive 
function



Evaluation
78

Fixpoint aeval (a : aexp) :  nat  := 
  match a with
  | ANum n => n
  | APlus a1 a2 => (aeval a1) + (aeval a2)
  | AMinus a1 a2 => (aeval a1) - (aeval a2)
  | AMult a1 a2 => (aeval a1) * (aeval a2)
  end.

★ The evaluator for axep is simply a recursive 
function



★ An evaluator for boolean expressions

Evaluation
79

Fixpoint beval (b : bexp) : bool := 
  match b with
  | BTrue => true
  | BFalse => false
  | BEq a1 a2 => eqb (aeval a1) (aeval a2)
  | BLe a1 a2 => leb (aeval a1) (aeval a2)
  | BNot b => negb (beval b)
  | BAnd b1 b2 => andb (beval b1) (beval b2)
  end.


