

# CS 565

Programming Languages (graduate)  
Spring 2026

Week 1

Introduction, Background, Functional Programming

# Administrivia

2

- ▶ Slides posted on course webpage  
<https://www.cs.purdue.edu/homes/suresh/565-Spring2026>
- ▶ See course page for details on
  - grading
  - exams
  - syllabus

# Topics

3

## Foundations:

- ★ Functional Programming
- ★ Polymorphism and Higher-Order Programming
- ★ Propositions, Evidence, and Relations

## Programming Language Semantics:

- ★ Operational Semantics

## Types:

- ★ Simple Types
- ★ Simply-Typed Lambda Calculus
- ★ Subtyping
- ★ References and Linear/Affine Types
- ★ System F

## Program Logics:

- ★ Hoare Logic (Axiomatic Semantics)
- ★ Separation Logic

## Automated Program Verification

- ★ Verification-Aware Languages (Dafny)

# Preliminaries

4

## Sets: Basic Concepts

- Sets as collections of distinct elements
- Membership:  $x \in A$

Examples:  $\{1,2,3\}$ ,  $\emptyset$ ,  $\{x \in \mathbb{N} \mid x \text{ is even}\}$

## Operations

- Union ( $A \cup B$ ), Intersection ( $A \cap B$ )
- Difference ( $A \setminus B$ )

Example:  $\{1,2,3\} \cup \{3,4\} = \{1,2,3,4\}$

- Cartesian Product:  $A \times B = \{(a,b) \mid a \in A, b \in B\}$

Example:  $\{1,2\} \times \{a,b\} = \{(1,a), (1,b), (2,a), (2,b)\}$

# Preliminaries

5

## Power Sets and Lattices

- $\mathcal{P}(A)$  = all subsets of A
- Example:  $\mathcal{P}(\{a,b\}) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}$
- Ordered by  $\subseteq$ , forms a complete lattice

```
let powerset (xs : 'a list) : 'a list list =
  match xs with
  | [] -> [ [] ]
  | x :: rest ->
    let ps = powerset rest in
    ps @ List.map (fun s -> x :: s) ps
```

# Preliminaries

6

- A partially ordered set  $(L, \leq)$  is a *lattice* if every pair  $(x, y) \in L$  has:
  - a least upper bound (join):  $x \vee y$
  - a greatest lower bound (meet):  $x \wedge y$
  - Joins and meets are unique
- A complete lattice is a poset (partially-ordered set) where every subset  $X \subseteq L$  has:
  - a supremum ( $\vee X$ ) – least upper bound
  - an infimum ( $\wedge X$ ) – greatest lower bound
  - Includes infinite joins and meets

## Example:

Let  $A$  be any set

- $(\mathcal{P}(A), \subseteq)$  forms a complete lattice
- Join (supremum):  $\vee X = \cup X$ , Meet (infimum):  $\wedge X = \cap X$
- Bottom element:  $\emptyset$  ; Top element:  $A$

# Preliminaries

7

## Functions and Relations

- ▶ Function  $f : A \rightarrow B$  assigns one output in  $B$  per input in  $A$ 
  - Total vs partial functions
    - Injective:  $f(x)=f(y) \Rightarrow x = y$
    - Surjective: every  $b \in B$  has a preimage
    - Bijective: both
  - Image:  $f(S) = \{f(x) \mid x \in S\}$
  - Pre-image:  $f^{-1}(T) = \{x \mid f(x) \in T\}$
- ▶ Relation  $R \subseteq A \times B$ , Examples:  $=, \leq, \rightarrow$ 
  - All functions are relations
  - Different kinds of relations:
    - reflexive, symmetric, transitive (equivalence)
    - reflexive, asymmetric, transitive (partial order)

# Fixpoints

8

- ▶ Given a function  $f : L \rightarrow L$ , a fixpoint  $x$  satisfies  $f(x) = x$ 
  - Fixpoints represent stable meanings of recursive definitions
  - There may be many fixpoints in a lattice
  - Least fixpoint is usually of interest in semantics
- ▶ Kleene fixpoint theorem
  - Let  $(L, \leq)$  be a complete lattice
  - If  $f : L \rightarrow L$  is monotone (i.e.,  $X \subseteq Y \Rightarrow f(X) \subseteq f(Y)$ ) then:
    - \*  $f$  has a least fixpoint
    - \*  $\text{lfp}(f) = \vee \{ \perp, f(\perp), f^2(\perp), \dots \}$
    - \* Constructed by iterating from bottom

# Preliminaries

9

## Fixpoint example

Let  $A = \{a, b, c\}$

- Consider the complete lattice  $(\mathcal{P}(A), \subseteq)$
- Define  $f(X) = X \cup \{a\}$
- Monotonicity:  $X \subseteq Y \Rightarrow f(X) \subseteq f(Y)$
- Kleene iteration:  $\emptyset \subseteq \{a\} \subseteq \{a\} \subseteq \dots$
- Least fixpoint:  $\{a\}$

# Preliminaries

10

## Logic

- ▶ Propositional
  - Connectives:  $\wedge, \vee, \neg, \rightarrow, \leftrightarrow$ 
    - \* Truth tables define semantics
    - \* Example:  $(P \wedge Q) \rightarrow P$
- ▶ Predicate
  - Quantifiers  $\forall$  and  $\exists$ 
    - \* Predicates over domains
    - \* Example:  $\forall n \in \mathbb{N}. n + 1 > n$

# Lambda Calculus

11

★ Lambda calculus was developed by Alonzo Church in the 30s

- A core language in which *everything* is a function

★ Syntax of Lambda terms:

$$t ::= x$$
$$| \lambda x. t$$
$$| t \ t$$

Variable

Lambda abstraction

Application



# Lambda Calculus

12

$t ::= x$   
|  $\lambda x. t$   
|  $t \ t$

$x \in \text{Var}$

Identity function:

$\lambda x. x$

# Lambda Calculus

PLUS NUMBERS

13

$t ::= x$   
|  $\lambda x. t$   
|  $t \ t$   
|  $n$   
|  $t + t$

$x \in \text{Var}$   
 $n \in \mathbb{N}$

Identity function:

$$\lambda x. x$$

Double function:

$$\lambda x. x + x$$

Applying a function:

$$(\lambda x. x) \ 42$$

# Lambda Calculus

PLUS NUMBERS

14

$t ::= x$   
|  $\lambda x. t$   
|  $t \ t$   
|  $n$   
|  $t + t$

$x \in \text{Var}$   
 $n \in \mathbb{N}$

Identity function:

$\lambda x. x$

Double function:

$\lambda x. x + x$

Applying a function:

$(\lambda x. x) (\lambda x. x)$

# Lambda Calculus

PLUS NUMBERS

15

$t ::= x$   
|  $\lambda x. t$   
|  $t \ t$   
|  $n$   
|  $t + t$

$x \in \text{Var}$   
 $n \in \mathbb{N}$

Identity function:

$$\lambda x. x$$

Double function:

$$\lambda x. x + x$$

Applying a function:

$$(\lambda x. \lambda y. x) \ ( \lambda x. x )$$

# Lambda Calculus

PLUS NUMBERS

16

$t ::= x$   
|  $\lambda x. t$   
|  $t \ t$   
|  $n$   
|  $t + t$

$x \in \text{Var}$   
 $n \in \mathbb{N}$

Identity function:

`fun x -> x`

Double function:

`fun x -> x + x`

Applying a function:

`(fun x -> x) 42`

# Conventions

17

|                    |
|--------------------|
| $t ::= x$          |
| $  \lambda x. t$   |
| $  t \ t$          |
| $  n$              |
| $  t + t$          |
| $x \in \text{Var}$ |
| $n \in \mathbb{N}$ |

★ Application associates to the left:

$$s \ t \ u \equiv (s \ t) \ u$$

★ Group sequences of lambda abstractions:

$$\lambda x \ y. \ x \equiv \lambda x. \ \lambda y. \ x$$

★ Bodies of abstraction extend as far to the right as possible:

$$\begin{aligned} \lambda x \ y. \ x \ y \ x &\equiv \\ \lambda x. (\lambda y. ((x \ y) \ x)) \end{aligned}$$

# Variable Scopes

18

```
t ::= x
     | λx.t
     | t t
     | n
     | t + t
```

$x \in \text{Var}$

$n \in \mathbb{N}$

1. A variable  $x$  is **bound** when it occurs in the body  $t$  of a lambda abstraction  $\lambda x.t$ :
2. A variable  $x$  is **free** if it is not bound by an enclosing lambda expression:
3. A **closed** term has no free variables

# Concept Check

19

What the **free** and **bound** variables in these terms?

- $\lambda x. \lambda y. y \ x \ z$
- $(\lambda x. \lambda y. y \ x) \ (5+2) \ \lambda x. x+1$
- $(\lambda x. x) \ (\lambda x. x \ y) \ (\lambda z. (\lambda y. y) \ z)$

# $\alpha$ -Equivalence

20

|                    |
|--------------------|
| $t ::= x$          |
| $  \lambda x. t$   |
| $  t t$            |
| $  n$              |
| $  t + t$          |
| $x \in \text{var}$ |
| $n \in \mathbb{N}$ |

1. Variables are bound to the closest enclosing lambda:
2. The name of bound variables is not important:
3. Expressions  $t_1$  and  $t_2$  that differ only in bound variable names are called  **$\alpha$ -equivalent**

# Concept Check

21

Which of these terms are  **$\alpha$ -equivalent**?

$$(\lambda x.x) ((\lambda w.w) ((\lambda z.(\lambda y.y) z))) \equiv_{\alpha} (\lambda x.x) ((\lambda x.x) ((\lambda x.(\lambda x.x) x)))$$

$$(\lambda x.\lambda y.y\ x) (5+2) \lambda x.x+1 \equiv_{\alpha} (\lambda q.\lambda y.y\ q) (5+2) (\lambda y.y+1)$$

$$(\lambda x.\lambda y.y\ x) (5+2) \lambda x.x+1 \equiv_{\alpha} ((\lambda q.\lambda y.y\ q)(5+2)) (\lambda x.x+1)$$

$$(\lambda x.\lambda y.y\ x) (5+2) \lambda x.x+1 \equiv_{\alpha} (\lambda x.\lambda y.y\ x) 7 \lambda x.x+1$$

$$(\lambda x.\lambda y.y\ x\ z) \equiv_{\alpha} (\lambda a.\lambda b.b\ c\ z)$$

$$(\lambda y.\lambda x.x\ y\ q) \equiv_{\alpha} (\lambda x.\lambda y.y\ x\ z)$$

# Inference Rules

22

To describe the meaning of lambda-calculus expressions, we will use a notation called *inference (or reduction) rules*.

Informally, a rule of the form:

$$\frac{A_1, A_2, \dots, A_n}{t_1 \rightarrow t_2}$$

reads:

Expression  $t_1$  evaluates to (or “reduces” to)  $t_2$   
if the constraints defined by  $A_1, A_2, \dots, A_n$  hold

We’ll delve into a more formal characterization of what these rules signify later in the course ...

# Semantics

23

## REDUCTION RULES

$$\frac{t_1 \rightarrow t_1'}{t_1 \ t_2 \rightarrow t_1' \ t_2}$$

$$\frac{\text{value } t_1 \quad t_2 \rightarrow t_2'}{t_1 \ t_2 \rightarrow t_1 \ t_2'}$$

$$\frac{\text{value } t_2}{(\lambda x. t_1) \ t_2 \rightarrow [x=t_2]t_1}$$

Read  $[x=t_2]t_1$  as “replace all free occurrences of  $x$  in  $t_1$  with  $t_2$ ”

*This rule is called the beta reduction rule*

$$\frac{}{\text{value } (\lambda x. t)}$$

## VALUE RULES

# Semantics

PLUS NUMBERS

24

REDUCTION RULES

$$\frac{\text{value } t_1 \quad t_2 \rightarrow t_2'}{t_1 \ t_2 \rightarrow t_1 \ t_2'}$$

$$\frac{t_1 \rightarrow t_1'}{t_1 \ t_2 \rightarrow t_1' \ t_2}$$

$$\frac{\text{value } t_2}{(\lambda x. t_1) \ t_2 \rightarrow [x=t_2]t_1}$$

VALUE RULES

$$\frac{}{\text{value } (\lambda x. t)}$$

$$\frac{t_2 \rightarrow t_2'}{t_1 + t_2 \rightarrow t_1 + t_2}$$

$$\frac{t_1 \rightarrow t_1'}{t_1 + t_2 \rightarrow t_1' + t_2}$$

$$\frac{n \in \mathbb{Z} \quad m \in \mathbb{Z}}{n + m \rightarrow n +_{\mathbb{Z}} m}$$

$$\frac{n \in \mathbb{Z}}{\text{value } n}$$

# Substitution

25

Need to ensure that we don't inadvertently bind free variables!

$$[x:=s]x \equiv s$$

$$[x:=s]y \equiv y \quad \text{if } x \neq y$$

$$[x:=s]\lambda x. t \equiv \lambda x. t$$

$$[x:=s]\lambda y. t \equiv \lambda y. [x:=s]t \text{ where } x \neq y$$

$$[x:=s]t_1 t_2 \equiv [x:=s]t_1 [x:=s]t_2$$

$$[x:=w](\lambda y. x) \equiv \lambda y. w$$

$$[x:=\lambda z. z \ w](\lambda y. x) \equiv \lambda y. z. z \ w$$

$$[x:=y](\lambda x. x) \equiv \lambda x. x$$

$$[x:=w \ y \ z](\lambda z. x \ z) \equiv \lambda z. (w \ y \ z) \ z$$

$$[x:=w \ y \ z](\lambda z. x \ z) \neq \lambda z. (w \ y \ z) \ z$$

$$\equiv_a [x:=w \ y \ z](\lambda u. x \ u) \equiv \lambda u. (w \ y \ z) \ u$$

Not sufficient when  $s$  is an open term

# Semantics

26

$$\frac{t_1 \rightarrow t_1'}{t_1 \ t_2 \rightarrow t_1' \ t_2}$$

$$\frac{\text{value } t_1 \quad t_2 \rightarrow t_2' \rightarrow t_2'}{t_1 \ t_2 \rightarrow t_1 \ t_2'}$$

$$\frac{\text{value } t_2}{(\lambda x. t_1) \ t_2 \rightarrow [x=t_2]t_1}$$

$\beta$ -redex

$(\lambda x. \lambda y. x y) (\lambda z. z) (\lambda w. w) \rightarrow$   
 $(\lambda y. (\lambda z. z) y) (\lambda w. w) \rightarrow$   
 $(\lambda z. z) (\lambda w. w) \rightarrow$   
 $(\lambda w. w)$

A term with no redexes is said to be in **normal form**

Redexes are highlighted in blue

# Example

27

$$\frac{t_1 \rightarrow t_1'}{t_1 \ t_2 \rightarrow t_1' \ t_2}$$

$$\frac{\text{value } t_1 \quad t_2 \rightarrow t_2'}{t_1 \ t_2 \rightarrow t_1 \ t_2'}$$

$$\frac{\text{value } t_2}{(\lambda x. t_1) \ t_2 \rightarrow [x=t_2]t_1}$$

$(\lambda x. x) \ (\lambda x. x \ (\lambda t. f. f) \ (\lambda t. f. t)) \ (\lambda t. f. t)$   
 $\rightarrow (\lambda x. x \ (\lambda t. f. f) \ (\lambda t. f. t)) \ (\lambda t. f. t)$   
 $\rightarrow (\lambda t. f. t) \ (\lambda t. f. f) \ (\lambda t. f. t)$   
 $\rightarrow (\lambda f. (\lambda t. f. f)) \ (\lambda t. f. t)$   
 $\rightarrow \lambda t. f. f$

# Concept Check

28

Identify any redexes in the following terms:

$$(\lambda x. x) \ (\lambda x. x)$$
$$\lambda z. (\lambda x. x) \ z$$
$$(\lambda x. x) \ (((\lambda y. y) \ (\lambda z. (\lambda x. x) \ z)) )$$
$$\lambda x \ y. \ x \ y \ x$$

# Evaluation Strategies

CALL-BY-VALUE  
AKA STRICT

29

Recall that lambda abstractions and numbers are values:



The lambda calculus' values are the functions:

---

value  $\lambda x.t$

This is called a *call-by-value* semantics: redexes are always the top-most function that is applied to a value:

$$\frac{t_1 \rightarrow t_1'}{t_1 \ t_2 \rightarrow t_1' \ t_2}$$

$$\frac{\text{value } t_1 \quad t_2 \rightarrow t_2'}{t_1 \ t_2 \rightarrow t_1 \ t_2'}$$

value  $t_2$

---

$$(\lambda x.t_1) \ t_2 \rightarrow [x=t_2]t_1$$

# Examples

PLUS NUMBERS

30

$$\begin{aligned} (\lambda x. x + x) ((\lambda x. x + x) (5 + 3)) &\rightarrow \\ (\lambda x. x + x) ((\lambda x. x + x) 8) &\rightarrow \\ (\lambda x. x + x) (8 + 8) &\rightarrow \\ ((\lambda x. x + x) 16) &\rightarrow \\ 16 + 16 &\rightarrow \\ 32 \end{aligned}$$
$$\begin{aligned} (\lambda x. \lambda y. y \ x) (5+2) \ \lambda x. x+1 & \\ \rightarrow (\lambda x. \lambda y. y \ x) 7 \ \lambda x. x+1 & \\ \rightarrow (\lambda y. y 7) \ \lambda x. x+1 & \\ \rightarrow (\lambda x. x+1) 7 & \\ \rightarrow 7+1 & \\ \rightarrow 8 & \end{aligned}$$

# Normalization

- If every program in a language is guaranteed to always evaluate to a normal term, we say the language is *strongly normalizing*.
  - Formally:
  - **Statement of Strong Normalization:**
  - For any term  $t$ , all sequences of reduction steps starting from  $t$  eventually reaches a normal form  $t'$ .
- Every program in a strongly normalizing language terminates.

- Is the lambda calculus strongly normalizing under beta reduction?
  - Does every expression eventually evaluate to a normal form?
  - No!

This is a diverging computation, i.e. one that does not terminate  
We'll call this  $\Omega$

$$\Omega \equiv (\lambda x. (x\ x))(\lambda x. (x\ x))$$

# Evaluation Strategies

CALL-BY-NAME  
AKA LAZY

33

An alternative: beta-reductions are performed as soon as possible:

$$(\lambda x. t_1) \ t_2 \rightarrow [x = t_2] t_1$$

$$\frac{t_1 \rightarrow t_1'}{t_1 \ t_2 \rightarrow t_1' \ t_2}$$

$$\begin{aligned} & (\lambda x. \lambda y. y \ x) (5+2) \lambda x. x+1 \\ \rightarrow & (\lambda y. y (5+2)) \ \lambda x. x+1 \\ \rightarrow & (\lambda x. x+1) (5+2) \\ \rightarrow & (5 + 2) + 1 \\ \rightarrow & 7 + 1 \\ \rightarrow & 8 \end{aligned}$$

$$\begin{aligned} & (\lambda f. f \ 7) ((\lambda x. x \ x) \ \lambda y. y) \\ \rightarrow & ((\lambda y. y) (\lambda y. y)) 7 \\ \rightarrow & (\lambda y. y) 7 \\ \rightarrow & 7 \end{aligned}$$

term duplicated!

# Evaluation Strategies

34

## CALL-BY-NAME

$$\begin{aligned} & (\lambda x. x + x)(5 + 6) \\ \rightarrow & (5 + 6) + (5 + 6) \\ \rightarrow & 11 + (5 + 6) \\ \rightarrow & 11 + 11 \\ \rightarrow & 22 \end{aligned}$$

Laziness can lead to duplicated work!

## CALL-BY-VALUE

$$\begin{aligned} & (\lambda x. y. x + x) 5 (5 + 6) \\ \rightarrow & (\lambda y. 5 + 5) (5 + 6) \\ \rightarrow & (\lambda y. 5 + 5) 11 \\ \rightarrow & 5 + 5 \\ \rightarrow & 10 \end{aligned}$$

Strictness can lead to unnecessary work!

# Concept Check

35

Evaluate this expression using both CBV and CBN strategies:

$$(\lambda x. x) \ ((\lambda y. y) \ (\lambda z. (\lambda x. x) \ z))$$

(Recall application is left-associative)

# Eta-reduction

36

One common additional reduction rule is called **eta reduction**:

$$\frac{x \text{ does not appear in } t}{(\lambda x. t \ x) \rightarrow t}$$

Captures the idea that  $\lambda x. (\lambda y. y \ x)$  and  $\lambda y. y$  are equivalent

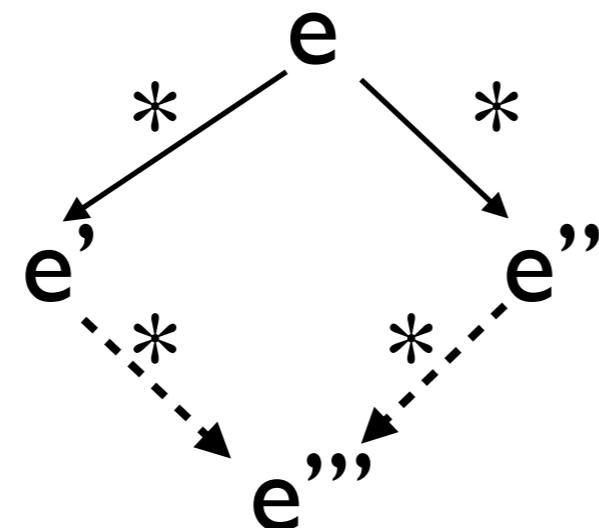
# Properties

37

## Church-Rosser Theorem (I)

If  $e \rightarrow^* e'$  and  $e \rightarrow^* e''$  then there exists a term  $e'''$  such that  $e' \rightarrow^* e'''$  and  $e'' \rightarrow^* e'''$

(Here  $\rightarrow^*$  is the reflexive, transitive closure of  $\rightarrow$ )



- The reduction rules of the lambda calculus are confluent
- Normal forms are unique

# Properties

38

## Church-Rosser II

A reduction strategy that always reduces the leftmost, outermost redex of a term will yield a normal form, if it exists.

- A call-by-name evaluation strategy guarantees reduction to normal form (if it exists)
- This property does not hold under by call-by-value. Why?

# Expressivity

39

Church's Thesis (1935): Informally, any function on the natural numbers that can be effectively computed (i.e., can be expressed as an algorithm) can be computed using the  $\lambda$ -calculus. In other words,  $\lambda$ -calculus is equivalent in its expressive power to Turing Machines.

- This property holds for the pure  $\lambda$ -calculus, i.e., the calculus without primitive support for numbers!
- This means that function abstraction and application are sufficiently powerful to model numbers and their operations.

# Functional Programming

40

We'll start our investigation by considering a small functional language

- These languages tend to have a small core set of features
  - \* Based on lambda-calculus
- Extend this core with
  - \* algebraic datatypes
  - \* primitive support for recursion
  - \* pattern-matching and conditionals
  - \* strong typing
  - \* syntactic sugar
- Written in Gallina, the specification and programming language for Rocq

**Definition** `double (n : nat) : nat := n + n.`

# Functions

41

- Functional languages tend to have a small core
- Standard libraries tend to have the usual suspects
- Functions are **applied** to arguments
- Functions are **pure**: consume values, produce values

**Definition** double (n : nat) : nat := n + n.

**Eval** compute in (double 1). (\* = 2 \*)

# Functions

42

- Functional languages tend to have a small core
- Standard libraries tend to have the usual suspects
- Functions are **applied** to arguments
- Functions are **pure**: consume values, produce values

```
Definition double (n : nat) : nat :=  
  plus n n.
```

```
Eval compute in (double 1). (* = 2 *)
```

# Functions

43

- Functional languages tend to have a small core
- Standard libraries tend to have the usual suspects
- Functions are **applied** to arguments
- Functions are **pure**: consume values, produce values

**Definition** concat (s1 : string) (s2 : string) (s3 : string) :=  
append s1 (append s2 s3).

**Eval** compute in (concat "Hello" " " "World").  
(\* = "Hello World" \*)

# Functions

44

- Functional languages tend to have a small core
- Standard libraries tend to have the usual suspects
- Functions are **applied** to arguments
- Functions are **pure**: consume value, produce value

**Definition** concat (s1 s2 s3 : string) : string :=  
append s1 (append s2 s3).

**Eval** compute in (concat "Hello" " " "World").  
(\* = "Hello World" \*)

# Functions

45

- Functional languages tend to have a small core
- Standard libraries tend to have the usual suspects
- Functions are **applied** to arguments
- Functions are **pure**: consume value, produce value
- Rocq can automatically infer many type annotations

**Definition** concat s1 s2 s3 :=

append s1 (append s2 s3).

**Eval** compute in (concat "Hello" " " "World").

(\* = "Hello World" \*)

# Building Blocks

46

Given the following ingredients:

- bool: a datatype for booleans
- andb: logical and
- orb: logical or
- negb: logical negation

Define a boolean equality function

**Definition** eqb (b1 b2 : bool) : bool :=  
orb (andb b1 b2) (andb (negb b1) (negb b2)).

# Algebraic Data Types

47

Enumerated types introduce nullary constructors:

```
Inductive bool : Type :=
| true : bool
| false : bool.
```

# Algebraic Data Types

48

- Enumerated types are the simplest data types in Rocq
- Type annotations can be inferred here as well

```
Inductive bool :=  
| true  
| false.
```

# Algebraic Data Types

49

- Enumerated types are the simplest data types in Rocq
- Type annotations can be inferred here
- Constructors describe how to **introduce** a value of a type

```
Inductive bool :=
```

```
| true
```

```
| false.
```

```
Inductive weekdays :=
```

```
| monday | tuesday | wednesday | thursday | friday
```

```
: weekdays.
```

# Pattern Matching

50

- Pattern matching lets a program use values of a type
- Rocq only permits **total** functions
  - A total function is defined on all values in its domain

```
Definition negb (b : bool) : bool :=  
  match b with  
  | true => false  
  | false => true  
  end.
```

Eval compute in (negb true). (\* = false \*)

# Pattern Matching

51

- Pattern matching lets a program use values of a type
- Rocq only permits **total** functions
  - A total function is defined on all values in its domain

```
Definition eqb (b1 b2 : bool) : bool :=  
  match b1, b2 with  
  | true, true => true  
  | false, false => true  
  | false, true => false  
  | true, false => false  
  end.
```

# Pattern Matching

52

- Pattern matching lets a program use values of a type
- Rocq only permits **total** functions
  - A total function is defined on all values in its domain
- Underscores are the wildcard pattern (don't care)

```
Definition eqb (b1 b2 : bool) : bool :=  
  match b1, b2 with  
  | true, true => true  
  | false, false => true  
  | _, _ => false  
  end.
```

# Compound ADTs

53

- Can build new ADTs from existing ones:
  - A color is either black, white, or a primary color
  - Need to apply primary to something of type `rgb`
  - ADTs are **algebraic** because they are built from a small set of operators (sums of product).

**Inductive** `rgb` : Type := | `red` | `green` | `blue`.

**Inductive** `color` := | `black` | `white`  
| `primary` (`p` : `rgb`).

**Eval** `compute in` (`primary red`). (\* = primary red \*)

# Pattern Matching<sup>2</sup>

54

- Patterns on compound types need to mention arguments
  - Can be a **variable**

```
Definition monochrome (c : color) : bool :=  
  match c with  
  | black => true  
  | white => true  
  | primary p => false  
  end.
```

# Pattern Matching<sup>2</sup>

55

- Patterns on compound types need to mention arguments
  - Can be a **variable**
  - Can be a **pattern** for the type of the argument

```
Definition isred (c : color) : bool :=  
  match c with  
  | black => false  
  | white => false  
  | primary red => true  
  | primary _ => false  
  end.
```

# Concept Check

56

- How many colors are there?
- In general, each ADT defines an algebra whose operations are the constructors

**Inductive** rgb : Type := | red | green | blue.

**Inductive** color := | black | white  
| primary (p : rgb).

**Eval** compute **in** (primary red). (\* = primary red \*)

# Concept Check<sup>2</sup>

57

- Define a type for the ‘basic’ (h, a, and p) html tags:
  - A header should include a nat indicating its importance
  - The anchor tag should include a string for its destination
  - The paragraph doesn’t need anything extra

**Inductive** tag : Type :=

```
| h (importance : nat)  
| a (href : string)  
| p.
```

# Concept Check<sup>2</sup>

58

- Define a pretty printer for opening a tag

( $\text{(* PP (h l) = “<h l>” *) *)$ )

- Assume we have a `natToString` function

**Inductive** tag : Type :=

| h (importance : nat)  
| a (href : string)  
| p.

# Concept Check<sup>2</sup>

59

- ★ Define a pretty printer for opening a tag
  - ★ (\* pp (h 1) = “<h1>” \*) \*)
  - ★ Assume we have a natToString function

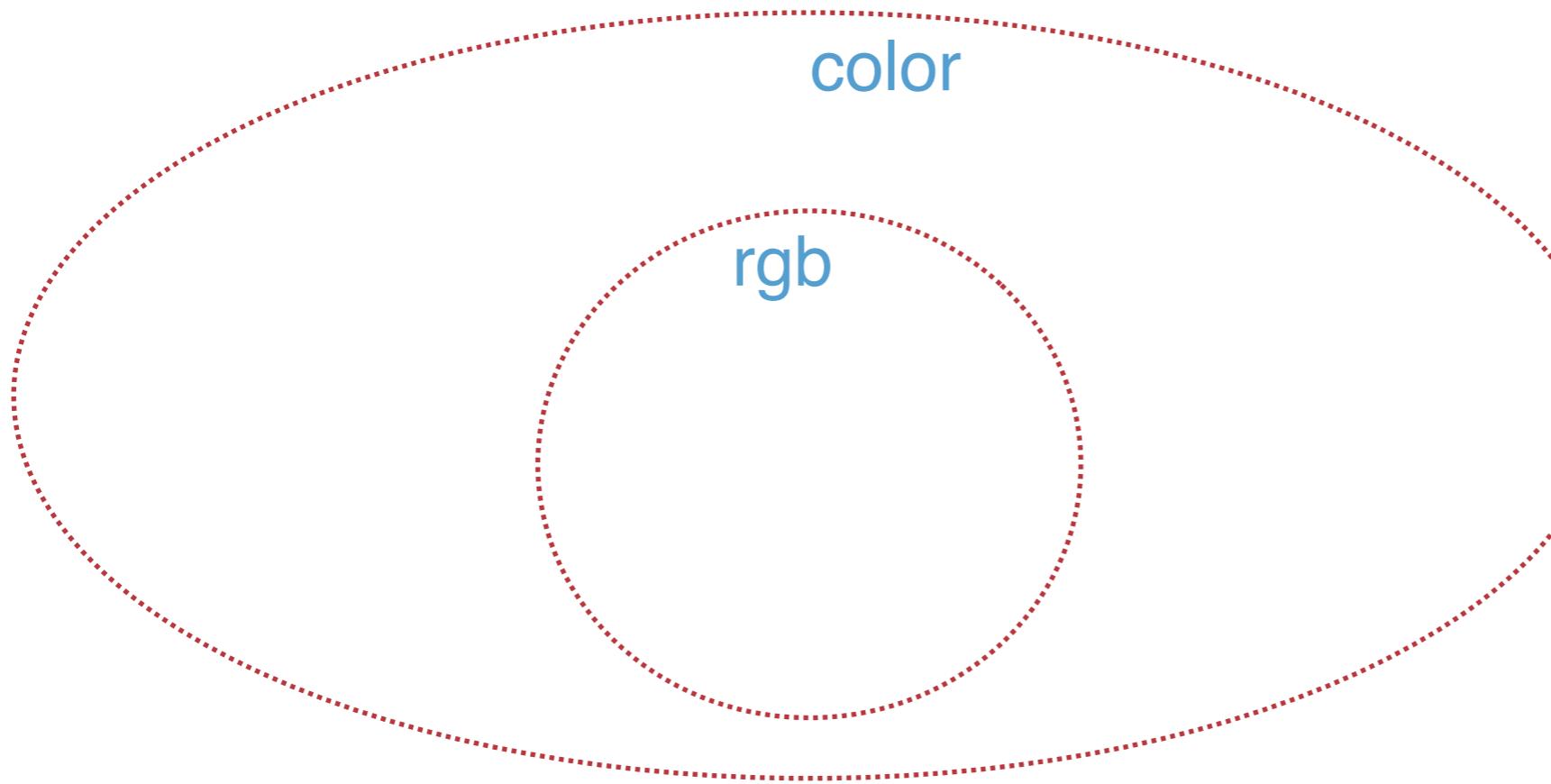
```
Definition pp (t : tag) : string :=  
  match t with  
  | h i => concat "<h" (natToString i) ">"  
  | a hr => concat "<a href=" hr ">"  
  | _ => "<p>"  
  end.
```

# So Far:

60

**Inductive** `rgb` : Type := | red | green | blue.

**Inductive** `color` := | black | white  
| primary (p : `rgb`).



# Natural Numbers

61

```
Inductive nat : Type :=
```

```
  | O
  | S (n : nat).
```



# Functions

62

The *interpretation* of these constructors comes from how we use them to compute:

```
Inductive tickNat : Type :=
| stop
| tick (foo : tickNat).
```

```
Definition pred (n : nat) : nat :=
match n with
| 0 => 0
| S m => m
end.
```

# Recursion

63

Recursive functions use themselves in their definition

```
Fixpoint iseven (n : nat) : bool :=  
???
```

# Recursion

64

Recursive functions use themselves in their definition

```
Fixpoint iseven (n : nat) : bool :=  
  match n with  
  | 0 => true  
  | S 0 => false  
  | S (S m) => iseven m  
  end.
```

# Recursion

65

Recursive functions use themselves in their definition

```
Fixpoint plus (n m : nat) : nat :=  
  match n with  
  | 0 => m  
  | S n' => S (plus n' m)  
  end.  
Eval compute in (plus 2 3). (* = 5 *)
```

# Recursion

66

Recursive functions use themselves in their definition

```
Fixpoint plus (n m : nat) : nat :=  
  match n with  
  | O => m  
  | S n' => S (plus n' m)  
  end.
```

```
Eval compute in (plus 2 3). (* = 5 *)  
(* plus 2 3 = plus (S (S O)) (S (S (S O))) *)
```

# Recursion

67

Recursive functions use themselves in their definition

```
Fixpoint plus (n m : nat) : nat :=  
  match n with  
  | O => m  
  | S n' => S (plus n' m)  
  end.
```

```
Eval compute in (plus 2 3). (* = 5 *)  
(* plus (S (S O)) (S (S (S O)))) =  
  S (plus (S O) (S (S (S O)))))*
```

# Recursion

68

Recursive functions use themselves in their definition

```
Fixpoint plus (n m : nat) : nat :=  
  match n with  
  | O => m  
  | S n' => S (plus n' m)  
  end.
```

```
Eval compute in (plus 2 3). (* = 5 *)  
(* S (plus (S O) (S (S (S O))))) =  
  S (S (plus O (S (S (S O)))))*)
```

# Recursion

69

- ★ Recursive functions use themselves in their definition
- ★ Recall: functions need to be **total**
  - ★ Rocq requires functions be structurally recursive

```
Fixpoint plus (n m : nat) : nat :=  
  match n with  
  | O => m  
  | S n' => S (plus n' m)  
  end.
```

```
Eval compute in (plus 2 3). (* = 5 *)  
(* S (S (plus O (S (S (S O)))))) =  
  S (S (S (S (S O))))) = 5 *)
```

# Recursion

70

- ★ Recursive functions use themselves in their definition
- ★ Recall: functions need to be **total**
  - ★ Rocq requires functions be structurally recursive

```
Fixpoint mult (n m : nat) : nat :=  
  match n with  
  | 0 => 0  
  | S n' => plus m (mult n' m)  
  end.
```

# Recursion

71

- ★ Recursive functions use themselves in their definition
- ★ Recall: functions need to be **total**
  - ★ Rocq requires functions be structurally recursive

```
Fixpoint plus (n m : nat) : nat :=  
  match n with  
  | O => m  
  | S n' => S (plus m n')  
  end.
```



# Putting it together: Syntax

72

(OF ARITHMETIC + BOOLEAN EXPRESSIONS)

Backus-Naur Form (BNF) Definitions:

A ::= N  
| A + A  
| A - A  
| A \* A

B ::= true  
| false  
| A = A  
| A ≤ A  
|  $\neg$  B  
| B  $\wedge$  B

# Abstract Syntax

73

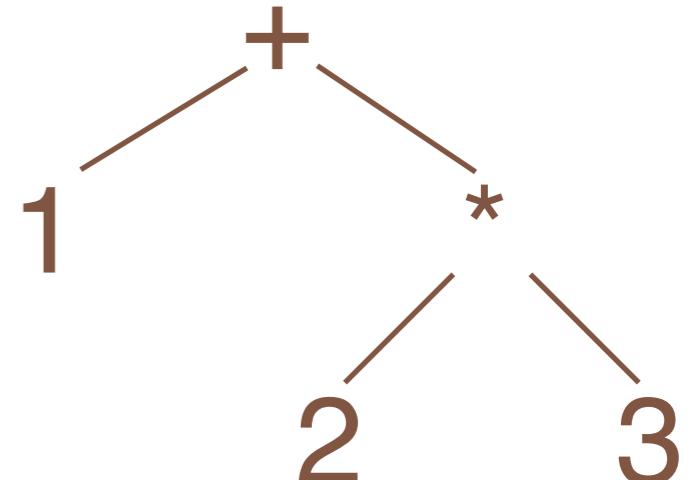
(OF ARITHMETIC + BOOLEAN EXPRESSIONS)

Concrete Syntax

“1+2\*3”

Lexer  
+  
Parser

Abstract Syntax  
Tree



# Syntax in Coq

74

```
A ::= N
  | A + A
  | A - A
  | A * A
```

```
Inductive aexp : Type :=
  | ANum (a : nat)
  | APlus (a1 a2 : aexp)
  | AMinus (a1 a2 : aexp)
  | AMult (a1 a2 : aexp).
```

- ★ One constructor per rule
- ★ Nonterminal = inductive type being defined

# Syntax in Coq

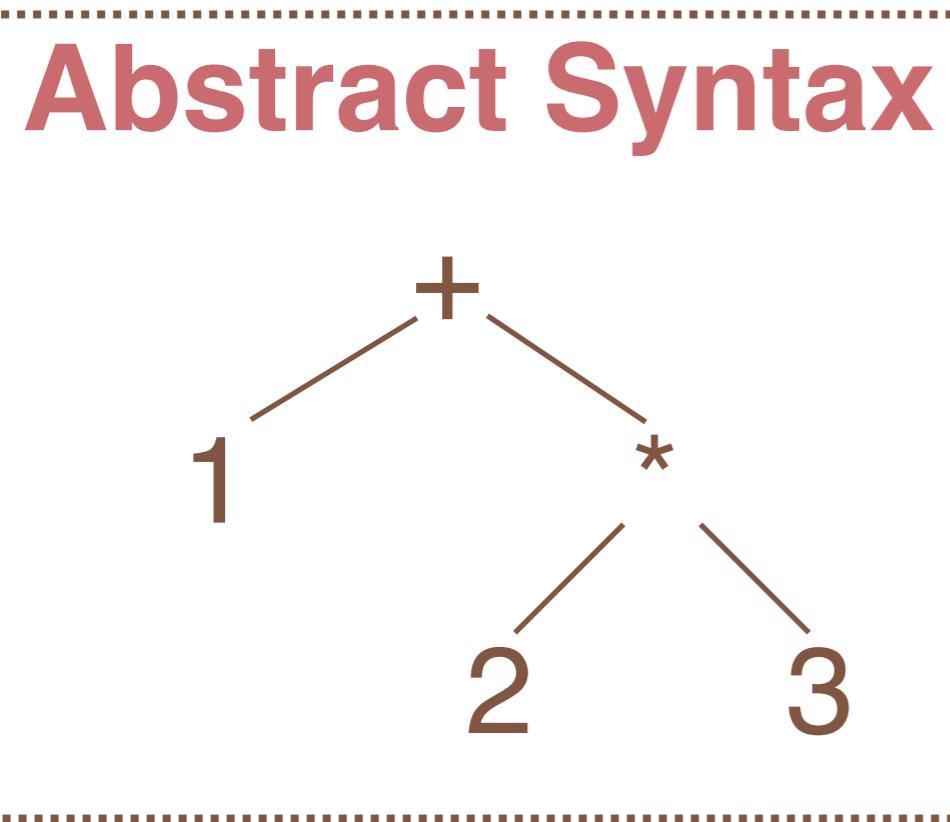
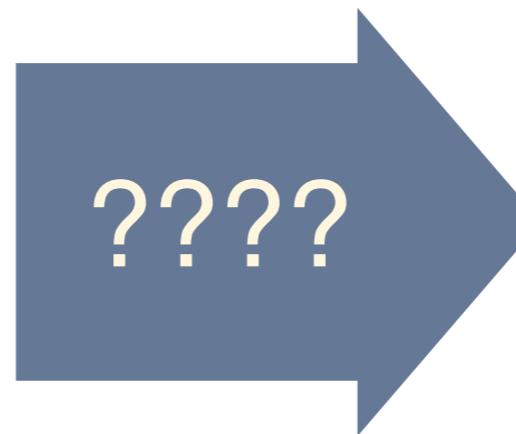
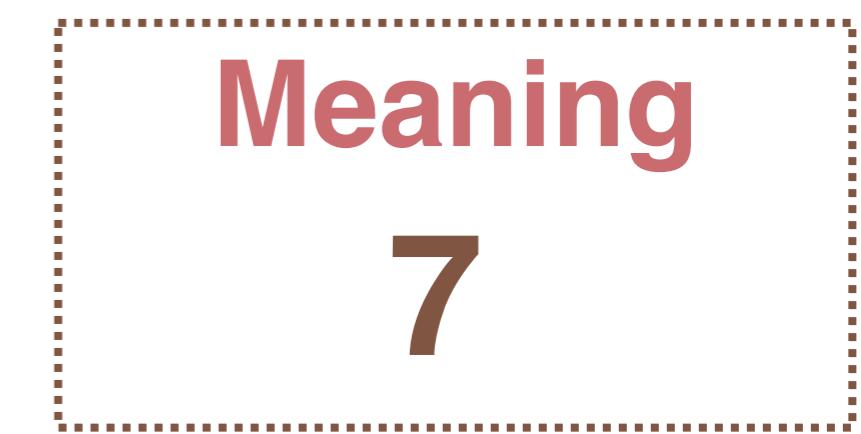
75

```
B ::= true
| false
| A = A
| A ≤ A
| ¬ B
| B ∧ B
```

```
Inductive bexp : Type :=
| BTrue
| BFalse
| BEq (a1 a2 : aexp)
| BLe (a1 a2 : aexp)
| BNot (b : bexp)
| BAnd (b1 b2 : bexp).
```

# Evaluation

76



# Evaluation

77

- ★ The evaluator for `axep` is simply a recursive function

```
Fixpoint aeval (a : aexp) : (* ?? *) :=  
  match a with  
  | ANum n => n  
  | APlus a1 a2 => (aeval a1) + (aeval a2)  
  | AMinus a1 a2 => (aeval a1) - (aeval a2)  
  | AMult a1 a2 => (aeval a1) * (aeval a2)  
  end.
```

# Evaluation

78

- ★ The evaluator for `axep` is simply a recursive function

```
Fixpoint aeval (a : aexp) : nat :=  
  match a with  
  | ANum n => n  
  | APlus a1 a2 => (aeval a1) + (aeval a2)  
  | AMinus a1 a2 => (aeval a1) - (aeval a2)  
  | AMult a1 a2 => (aeval a1) * (aeval a2)  
  end.
```

# Evaluation

79

- ★ An evaluator for boolean expressions

```
Fixpoint beval (b : bexp) : bool :=
  match b with
  | BTrue => true
  | BFalse => false
  | BEq a1 a2 => eqb (aeval a1) (aeval a2)
  | BLe a1 a2 => leb (aeval a1) (aeval a2)
  | BNot b => negb (beval b)
  | BAnd b1 b2 => andb (beval b1) (beval b2)
  end.
```