CS 565

Programming Languages (graduate) Spring 2025

Week 8

Type Systems and Simply-Typed Lambda
Calculus

Today

- Identify key concepts in type systems:
- Type systems as inductive relations
- Type safety

III-Typed Imp⁺

- Let's weaken IMP's expression language slightly:

```
e ::= B | N | e * e | e + e
| true | false | ¬ e | e ∧ e
| Id | e = e | e < e | e ? e : e
```

- Looks good, we can now write (and evaluate):

$$x * ((y > 3) ? 3 : y)$$

- But we can also write:

$$x * ((3 + (6 \land 5)) ? 3 : y)$$

- How do we evaluate this? What's the problem?

Bad Behaviors

- What constitutes a "bad" expression in our IMP variant?
 - * One that adds two booleans: true + 3 \rightarrow ?
 - * One with a non-boolean conditional: 3 ? $x : y \rightarrow ?$
 - *A use of an unassigned variable: $x + y \rightarrow ?$
- What about Coq?
 - * Bad pattern match discriminees: match 0 with [] -> ...
 - * Function applied to wrong argument types: plus 9 minus
 - *Application of non-function: 9 minus

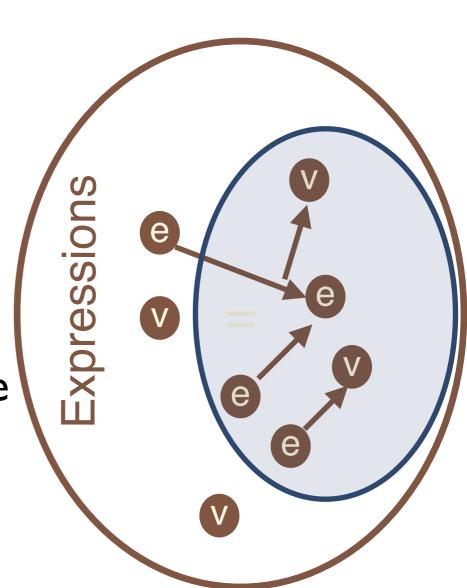
What about other languages?

Static Semantics

A recipe for defining a language:

- 1.Syntax:
 - What are the valid expressions?
- 2. Semantics (Dynamic Semantics):
 - How do I evaluate valid expressions?
- 3. Sanity Checks (Static Semantics):
 - What expressions are "good", i.e have meaningful evaluations?

Type systems identify a subset of good expressions



Typing Imp⁺

A recipe for type systems:

- 1. Define bad programs
- 2. Define typing rules for classifying programs
- 3. Show that the type system is sound, i.e. that it only identifies good programs

A recipe for type systems:

- 1. Define bad programs
- 2. Define typing rules for classifying programs
- 3. Show that the type system is sound, i.e. that it only identifies good programs

Typing Imp⁺

- First step is to define badness:
 - Needs to be broad, program-independent properties
 - Some user-provided specification is okay (type annotations)
- What are bad Imp expressions?

- Those that evaluate to a stuck expression: a normal form that isn't a value

lyping Imp⁺

- First step is to define badness:
 - erties - Needs to be broad, program
 - "Well-typed programs cannot go wrong" - Some user-pr anno
- What ar

A Theory of Type Polymorphism in Programming (Milner 78)

$$x * ((y > 3) ? 3 : y)$$

- Those that evaluate to a stuck expression: a normal form that isn't a value

Typing Imp⁺

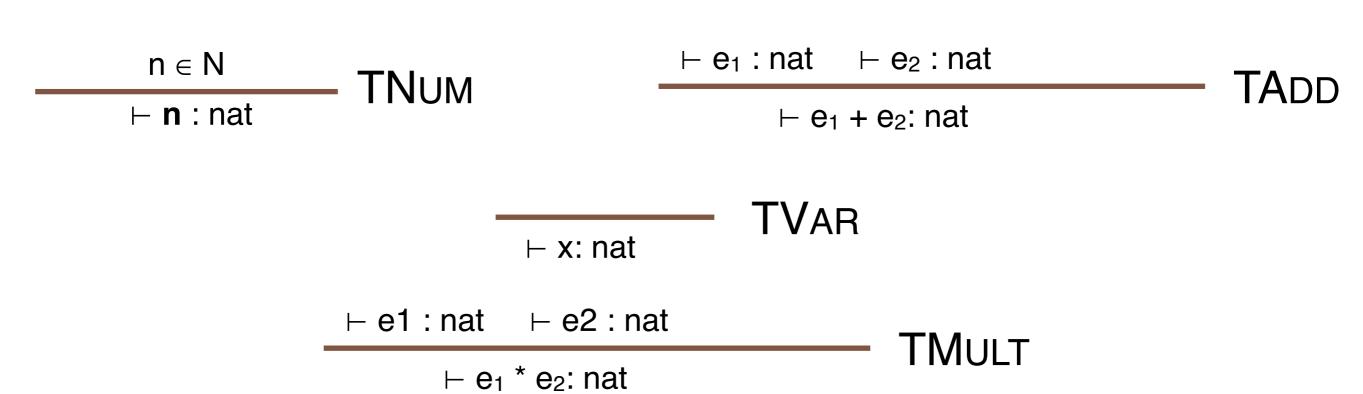
A recipe for type systems:

- 1. Define bad programs
- 2. Define typing rules for classifying programs
- 3. Show that the type system is sound, i.e. that it only identifies good programs

Next, define a classifier for good, well-formed programs:

⊢ e :T

Goal is to classify good uses of each type of expression:



Goal is to classify good uses of each type of expression:

Goal is to classify good uses of each type of expression:

Goal is to classify good uses of each type of expression:

Typing Imp⁺

A recipe for type systems:

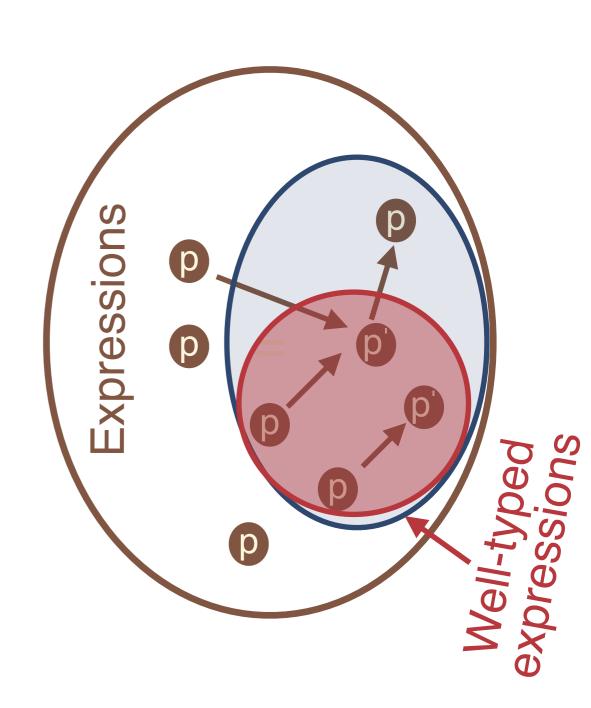
- 1. Define bad programs
- 2. Define a typing rules for classifying programs
- 3. Show that the type system is sound, i.e. that it only identifies good programs

Type Safety

- When is a type system correct?
 - * Need to show this classification is sound. i.e. no false positives:

 \vdash e:T \rightarrow ~ e is bad!

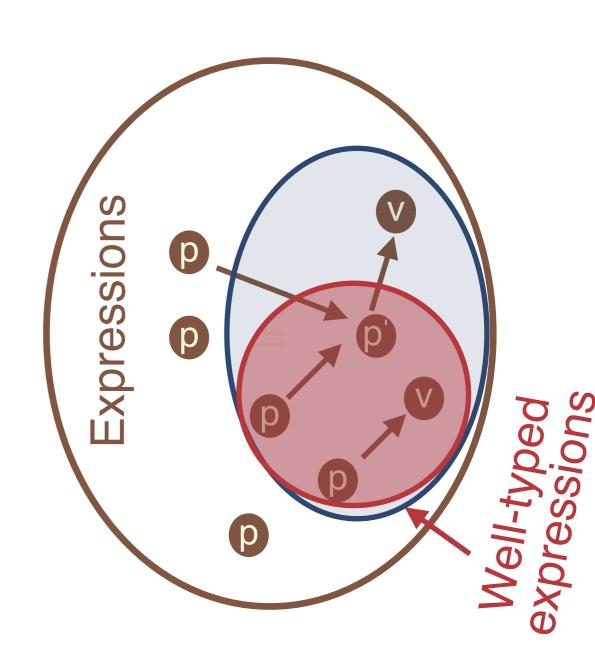
- If the a language's type system is sound, it is said to be type-safe.
- Soundness relates provable claims to semantic property



Progress

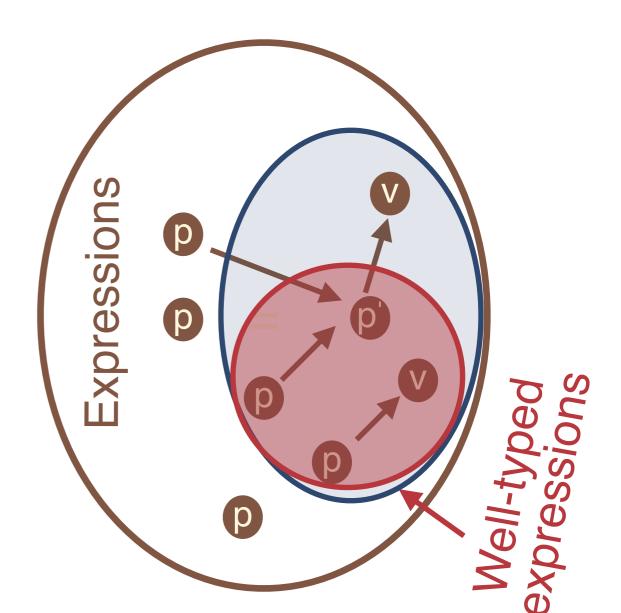
Theorem [PROGRESS]: Suppose e is a well-typed expression (\vdash e:T). Then either e is a value or there exists some e' such that e evaluates to e' (σ , e \rightarrow e').

Values:



Preservation

Theorem [PRESERVATION]: Suppose e is a well-typed term (\vdash e :T). Then, if e evaluates to e', e' is also a well-typed term under the empty context, with the same type as e (\vdash e' :T).



Type Soundness

Theorem [Type Soundness]: If an expression e has type T, and e reduces to e' in zero or more steps, then e' is not a stuck term.

Proof.

By induction on σ , $e \rightarrow^* e' \dots$

Qed.

★ Corollary [Normalization]: If an expression e has type T, e reduces to a value in zero or more steps.

Example

$$\vdash$$
 e₁: bool \vdash e₂: nat
 \vdash e₁ + e₂: nat

Example

 $0 ? e_1 : e_2 \longrightarrow e_1$

Example

 $0 ? e_1 : e_2 \longrightarrow e_1$

Recap

- Type systems classify semantically meaningful expressions
- Our recipe for defining a type system
 - I. Define bad states (irreducible, non-value expressions)
 - 2. Define a typing judgement and rules classifying good expressions (\vdash e :T)
 - 3. Show that the type system is sound, i.e. that good expressions don't reduce to bad states

Simply-Typed Lambda Calculus

- A language with constants (numbers)
- Function abstraction (variables introduced as function arguments)
- Function application (The text also considers Booleans, and conditionals)
- ★ What are bad states for terms in this language?
 - \star Applying a non-function to an argument: λy . I y
 - \star Adding a function: ($\lambda y.y$) + I
 - ★ Terms with free variables? x I

Typing STLC

- ★ We first define the syntax of terms
- ★ Updated Syntax: (notice that functions (also known as abstractions) have their types annotated)

```
T ::= T \rightarrow T \mid nat
n \in \mathbb{N}
t := x \mid \lambda x : T. t \mid t t
                                                                              n | t + 1
                                                 t_1 \longrightarrow t_1'
 value t_1 t_2 \rightarrow t_2'
                                               t_1 t_2 \longrightarrow t_1' t_2
     t_1 t_2 \longrightarrow t_1 t_2'
                                                                                        value n
            value t<sub>2</sub>
                                                                                    value (λx:T.t)
 (\lambda x:T. t_1) t_2 \longrightarrow [x:=t_2]t_1
```

 $n \in N$

Typing STLC

Γ maps bound variables to their types

★ Here are the typing rules:

_____ ΤΝυм Γ ⊢ n : nat

 $\frac{\Gamma[x \mapsto T_1] \vdash t : T_2}{\Gamma \vdash \lambda x : T_1 . t : T_1 \rightarrow T_2} \quad \text{TABS}$

 $\frac{\Gamma \vdash t : nat}{\Gamma \vdash t+1 : nat}$ TINC

$$\frac{\Gamma(x) = T}{\Gamma \vdash x : T} \quad TVAR$$

Concept Check

★Can you type this term:

$$((\lambda x: \square.x) (\lambda x: \square.\lambda y: \square.y x)) 1 (\lambda x: \square.x)$$

- ★Can you type (λy : .x y)?
- ★What about Ω : ($\lambda x : \Box .x x$) ($\lambda x : \Box .x x$)?

Type Soundness

- ★ Theorem [TYPE SOUNDNESS]: If an STLC term t has type T in the empty context, and t reduces to t' in zero or more steps, either t' is a value, or it can be reduced further (i.e. t' isn't a stuck term).
- ★ This is an example of a metatheory proof.
 - ★ The prefix meta- (μετα) means 'beyond' in Greek.
- ★ theory: noun I the·o·ry I 'thē-ə-rē: the general or abstract principles of a body of fact or a science.
- ★ In this sense, a type system is a theory for deducing whether a program is well-formed.
- ★ Properties of that theory are thus meta-theoretic properties

Progress

- ★ Theorem [PROGRESS]: Suppose t is a closed, well-typed term (i.e. ⊢ t : T). Then either t is a value or there exists some t' such that t evaluates to t'.
- ★ Proof relies on following lemmas:
- ★ Lemma [Canonical Form of Nat]: If t has type nat in the empty context and t is a value, then t is a number.
- **★ Lemma** [Canonical Form of Arrow]: If t has type T -> T in the empty context and t is a value, then t is a lambda abstraction.

Preservation

- **Theorem** [PRESERVATION]: Suppose t is a well-typed term under the empty context (i.e. ⊢ t : T). Then, if t evaluates to t', t' is also a well-typed term under the empty context, with the same type as t.
- ★ Proof relies on following Lemma:
- ★ Lemma [Preservation of Types under Substitution]: Suppose t is a well-typed term under context Γ[x→S] (Γ[x→S] ⊢ t: T). Then, if s is a well-typed term under Γ with type S, t[x→s] is a well-typed term under context Γ with type T (Γ⊢ t[x→s] : T).

Normalization

★ Theorem [NORMALIZATION]: If an expression e has type T in the empty context, e reduces to a value in zero or more steps.

Why is STLC normalizing but not IMP?

STLC+Pairs

★ Updated Syntax:

STLC+Pairs

★ Updated Semantics:

$$\begin{array}{c} t_1 \longrightarrow t_1' \\ \hline (t_1,\,t_2) \longrightarrow (t_1',\,t_2) \\ \hline t_1 \longrightarrow t_1' \\ \hline fst\,t_1 \longrightarrow fst\,t_1' \\ \hline t_1 \longrightarrow t_1' \\ \hline snd\,t_1 \longrightarrow snd\,t_1' \\ \end{array}$$

value
$$t_1$$
 $t_2 \rightarrow t_2$ '
 $(t_1, t_2) \rightarrow (t_1, t_2)$
value t_1 value t_2
 $fst (t_1, t_2) \rightarrow t_1$

value t_1 value t_2
 $fst (t_1, t_2) \rightarrow t_2$

value t₁ value t₂ value (t₁, t₂)

STLC+Pairs

★ Updated Typing Rules:

$$\frac{\Gamma \vdash t_1 : T_1 * T_2}{\Gamma \vdash \mathsf{fst}\ t_1 : T_1} \quad \mathsf{TFst}$$

$$\frac{\Gamma \vdash t_1 : T_1 * T_2}{\Gamma \vdash snd \ t_1 : T_2} \quad TSND$$

STLC+Sums

★ Updated Syntax:

```
T::= ... | T + T

t::= ... | in<sub>L</sub> T t

| in<sub>R</sub> T t
| case t of
| in<sub>L</sub> x => t
| in<sub>R</sub> x => t
```

. . . .

value t₁
value in_L T t₁

value t₁
value in_R T t₁

STLC+Sums

★ Updated Semantics:

$$\frac{t_1 \longrightarrow t_1'}{\text{in}_L \ T \ t_1 \longrightarrow \text{in}_L \ T \ t_1'}$$

$$\frac{t_1 \longrightarrow t_1'}{\text{in}_R \ T \ t_1 \longrightarrow \text{in}_R \ T \ t_1'}$$

$$t \longrightarrow t'$$

case t of in_L $x => t_1 \mid in_R x => t_2 \rightarrow case t'$ of in_L $x => t_1 \mid in_R x => t_2$

value t

case in
$$L$$
 T t of in L x => t_1 I in R x => $t_2 \longrightarrow [x=t]t_1$

value t

case in_R T t of in_L x =>
$$t_1$$
 I in_R x => $t_2 \rightarrow [x=t]t_2$

STLC+Sums

★ Updated Typing Rules:

$$\begin{array}{c} \Gamma \vdash t : T_1 \\ \hline \Gamma \vdash \text{in}_{L} T_2 \, t : T_{1+} T_2 \end{array} & \text{TIN}_{L} \\ \hline \\ \begin{array}{c} \Gamma \vdash t : T_2 \\ \hline \Gamma \vdash \text{in}_{R} T_1 \, t : T_{1+} T_2 \end{array} & \text{TIN}_{L} \\ \hline \\ \Gamma \vdash t : T_1 + T_2 \\ \hline \\ \Gamma [x \mapsto T_1] \vdash t_1 : T_3 \\ \hline \\ \Gamma \vdash \text{case t of in}_{L} \, x \Rightarrow t_1 \, \text{l in}_{R} \, x \Rightarrow t_2 : T_3 \end{array} & \text{TCASE}$$

STLC+Fix

★ Updated Syntax:

$$t ::= \dots \mid fix \mid t$$

★ Updated Semantics:

$$fix (\lambda x:T.t_1) \longrightarrow [x:=fix (\lambda x:T.t_1)]t_1$$

STLC+Fix

```
let F = (\f. \x. test x=0 then 1 else x * (f (pred x))) in (fix F) 3
\rightarrow (\x. test x=0 then 1 else x * (fix F (pred x))) 3
\rightarrow test 3=0 then 1 else 3 * (fix F (pred 3))
\rightarrow 3 * (fix F (pred 3))
\rightarrow 3 * ((\x. test x=0 then 1 else x * (fix F (pred x))) (pred 3))
\rightarrow 3 * ((\x. test x=0 then 1 else x * (fix F (pred x))) 2)

→ 3 * test 2=0 then 1 else 2 * (fix F (pred 2))
\rightarrow 3 * 2 * (fix F (pred 2))
→* 3 * 2 * 1 * 1
```

STLC+Fix

★ Updated Typing Rules:

$$\frac{\Gamma \vdash t : T_1 \rightarrow T_1}{\Gamma \vdash \text{fix } t : T_1} \quad \text{TFIX}$$

STLC+Records

★ Updated Syntax:

```
T:= ... | {i<sub>1</sub>:T<sub>1</sub>, ..., i<sub>n</sub>:T<sub>n</sub>}
t:= ... | {i<sub>1</sub>=t<sub>1</sub>, ..., i<sub>n</sub>=t<sub>n</sub>}
| t.i
```

```
value t_1 ... value t_n value \{i_1=t_1,\ldots,\ i_n=t_n\}
```

STLC+Records

★ Updated Semantics:

 $value \ t_1 \quad \dots \quad value \ t_{m\text{-}1} \qquad t_m \longrightarrow t_m'$

 $\{i_1=t_1, \ ..., \ i_m=t_m, \ ..., \ i_n=t_n\} \ \longrightarrow \{i_1=t_1, \ ..., \ i_m=t_m', \ ..., \ i_n=t_n\}$

value t₁ ... value t_n

$$\{i_1{=}t_1,\;\ldots,\;i_n{=}t_n\}.i_j\;\longrightarrow\;t_j$$

STLC+Records

★ Updated Typing Rules:

$$\frac{\Gamma \vdash t : \{i_1,:T_1,\ldots,i_n:T_n\}}{\Gamma \vdash t.i_j:T_j}$$
 TPROJ

The Limitations of F1 (STLC)

- □ In F_I each function works exactly for one type
- Example: the identity function
 - id = $\lambda x:\tau . x:\tau \rightarrow \tau$
 - We need to write one version for each type
 - Even more important: sort : $(\tau \to \tau \to bool) \to \tau$ array \to unit
- The various sorting functions differ only in typing
 - At runtime they perform exactly the same operations
 - We need different versions only to keep the type checker happy
- □ Two alternatives:
 - Circumvent the type system (see C, Java, ...), or
 - Use a more flexible type system that lets us write only one sorting function

Polymorphism

Informal definition

A function is polymorphic if it can be applied to "many" types of arguments

- Various kinds of polymorphism depending on the definition of "many"
 - subtype (or bounded) polymorphism "many" = all subtypes of a given type
 - ad-hoc polymorphism

"many" = depends on the function choose behavior at runtime (depending on types, e.g. sizeof)

- parametric predicative polymorphism "many" = all monomorphic types
- parametric impredicative polymorphism "many" = all types