CS 565

Programming Languages (graduate)

Spring 2025

Week 8

Type Systems and Simply-Typed Lambda
Calculus

Types

Today

- ldentify key concepts in type systems:
- Type systems as inductive relations
- Type safety

ll-Typed Imp*

- Let’s weaken IMP’s expression language slightly:

e ::=B | N | e*e | e+e
| true | false | ~ e | e A e
| Id | e=e | e<e | e?2e: e

- Looks good, we can now write (and evaluate):
X * ((y>3) 2 3 :Y)

- But we can also write:
X * ((3 + (6 AND5)) 2 3 ¢ v)

— How do we evaluate this? What'’s the problem?

Bad Behaviors

- What constitutes a “bad” expression in our IMP variant?
* One that adds two booleans: true + 3 — ?
* One with a non-boolean conditional: 3 ? x : v — ?

* A use of an unassigned variable: x + v — ?

- What about Coq!?

* Bad pattern match discriminees:match 0 with [] -> ..
* Function applied to wrong argument types: plus 9 minus
* Application of non-function: 9 minus

What about other languages?

Static Semantics

A recipe for defining a language:

1.Syntax:
- What are the valid expressions!?

2.Semantics (Dynamic Semantics):
- How do | evaluate valid expressions?

3.Sanity Checks (Static Semantics):

- What expressions are “‘good”, i.e have
meaningful evaluations!?

0
C

9O
%
)
O
| -
Q.
X

LL

Type systems identify a subset of good
expressions

lyping Imp*

A recipe for type systemes:
1. Define bad programs
2. Define typing rules for classifying programs

3.Show that the type system is sound, i.e. that it only identifies
good programs

lyping Imp*

A recipe for type systemes:
1. Define bad programs
2. Define typing rules for classifying programs

3.Show that the type system is sound, i.e. that it only identifies
good programs

lyping Imp*

- First step is to define badness:
Needs to be broad, program-independent properties
Some user-provided specification is okay (type annotations)
- What are bad Imp expressions!?
3 ? true : 4

true + 3
X * ((y>3) 23 :Y)

- Those that evaluate to a stuck expression: a normal form that
isn’t a value

Typing Imp*
9 |

- First step is to define badness:
- Needs to be broad, prograrg
- Some user-~.ms

X*((y>3)?3:y)

- Those that evaluate to a stuck expression: a normal form that
isn’t a value

lyping Imp*

A recipe for type systemes:
1. Define bad programs
2. Define typing rules for classifying programs

3.Show that the type system is sound, i.e. that it only identifies
good programs

Typing Rules

Next, define a classifier for good, well-formed programs:
—e:T

Goal is to classify good uses of each type of expression:

neN ei:nat + e2:nat
TNUM — [ADD
— Nn : nat - e1 + e2: nat
TVAR
— X: nat

Fel:nat + e2:nat

TMuLT

~ e * e2: nat

Typing Rules
12 |

Goal is to classify good uses of each type of expression:

~ e : bool
~ true : bool TTRUE — TNOT
~ = e: bool
TFALSE - et :bool + e2:bool
— false : bool —— X X X X TAND

~ e1 A e2: bool

Typing Rules

Goal is to classify good uses of each type of expression:

er:nat + e2:nat

TLE

-~ eq < e2: bool

Fe1: T Feo:T

TEQ

— e1 = e2: bool

ei:bool FHex: T Fes: T

TCOND

—e1?ex:e3: T

Typing Rules
14|

Goal is to classify good uses of each type of expression:

ei:bool FHex: T Fes: T

TCOND

—e1?ex:e3: T

ei:nat + e2: nat

TADD

 e1 + e2: nat

3 ? true : 4
true + 3
F X + ((y > 3) ? true : vy)

lyping Imp*

A recipe for type systemes:
Define bad programs
Define a typing rules for classifying programs

Show that the type system is sound, i.e. that it
only identifies good programs

Type Safety
16|

- When is a type system correct?

* Need to show this classification is
sound. i.e. no false positives:

—e:T — ~eisbad!

- If the a language’s type system is
sound, it is said to be type-safe.

- Soundness relates provable claims to
semantic property

Expressions

Progress

Theorem [PROGRESS]: Suppose e is a well-typed expression
(Fe:T).Then either e is a value or there exists some e' such that e

evaluates to e' (0,e — ¢&).

Values:

TVALUE
value true L
Q
neN 7
NUMVALUE D
value n o
o
>
LLI

Preservation
18|

* Theorem [PRESERVATION]: Suppose e is a well-typed term (- e : T).
Then, if e evaluates to €', €' is also a well-typed term under the empty
context, with the same type as e (- ¢e':T).

0
C
9
%
7!
O
| -
o
>
LL]

Type Soundness

Theorem [Type Soundness]: If an expression e has type T,and e
reduces to €' in zero or more steps, then e' is not a stuck term.

Proof.

By induction on 0,e —*¢€'...

Qed.

* Corollary [Normalization]: If an expression e has type T, e
reduces to a value in zero or more steps.

Example

~eq:bool + es:nat

TBADD

 e1 + e2: nat

Example

0?eq:e2 - e

Example

0?eq:€0 — e1

Fej:nat Fex: T Fes: T

TCOND2

eit?ex:e3: T

Recap

- Type systems classify semantically meaningful expressions
- Our recipe for defining a type system

|. Define bad states (irreducible, non-value expressions)

2. Define a typing judgement and rules classifying good
expressions (-~ e:T)

3. Show that the type system is sound, i.e. that good expressions
don’t reduce to bad states

Simply-Typed Lambda Calculus

- A language with constants (numbers)

- Function abstraction (variables introduced as function arguments)
- Function application

(The text also considers Booleans, and conditionals)

* What are bad states for terms in this language!?
* Applying a non-function to an argument: Ay. | y
* Adding a function: (Ay.y) + |
* Terms with free variables? x |

Typing STLC
X

* We first define the syntax of terms

* Updated Syntax: (notice that functions (also known as
abstractions) have their types annotated)

T ::= T - T | nat

n € N
t ::=x | Ax ¢ T. t 't t | n|t+1
value ti to — b bty S nEN
nle—ht bl — bt value n
value to :

(AX:T. t1) to — [X=t2]ty SN value (Ax:T.t)

Typing STLC
26

[—t:T

[maps bound variables to their types
* Here are the typing rules:

[— n:nat Thum
[[Xxe T1]—1t: T2 TABS
[AXT1d: T1—To2 r et nat
' TINC
[— t+1 : nat
[—t1:T1 2T T +to:Ty
[Ftito: T2 TAPP F[(x)=T
' — TVAR

[—x:T

Concept Check

HE 22

*Can you type this term:

((AX:L_X) (AX:L_LAY:.L Ly x)) 1 (AX LX)

*Can you type (Ay L _.xy)?

*What about Q: (AX :_.X X) (AX X X)?

Type Soundness

Theorem [TYPE SOUNDNESS]: If an STLC term t has type T
in the empty context, and t reduces to t' in zero or more
steps, either t'is a value, or it can be reduced further (i.e. t'
iIsn’t a stuck term).
This is an example of a metatheory proof.

The prefix meta- (ueta) means ‘beyond’ in Greek.

theory: noun | the-o-ry | 'thé-a-ré: the general or abstract
principles of a body of fact or a science.

In this sense, a type system is a theory for deducing
whether a program is well-formed.

Properties of that theory are thus meta-theoretic properties

Progress

Theorem [PROGRESS]: Suppose t is a closed, well-typed term
(i,e. F1:T). Then eithertis a value or there exists some t’

such that t evaluates to t'.
Proof relies on following lemmas:

Lemma [CANONICAL FORM OF NAT]: If t has type nat in the
empty context and t is a value, then t is a number.

Lemma [CANONICAL FORM OF ARROW]: If t has type T -> T in the
empty context and t is a value, then t is a lambda abstraction.

Preservation

Theorem [PRESERVATION]: Suppose t is a well-typed term under
the empty context (i.e. =t : T). Then, if t evaluates to t', t’ is also

a well-typed term under the empty context, with the same type
as t.

Proof relies on following Lemma:

Lemma [PRESERVATION OF TYPES UNDER SUBSTITUTION]:
Suppose t is a well-typed term under context I'[x»S] (Ix~»S] -t
T). Then, if s is a well-typed term under [with type S, t[x~s] is a
well-typed term under context I' with type T ('+ t[x~s] : T).

Normalization

* Theorem [NORMALIZATION]: If an expression e has type T in
the empty context, e reduces to a value in zero or more
steps.

Why is STLC normalizing but not IMP?

STLC+Pairs

* Updated Syntax:

T ::= T ->T | nat | T * T
t = X N

Ax : T. t
t t

(t,t)

fst t

snd t

STLC+Pairs

* Updated Semantics:

th — 1y valuets to — to
(t1, t2) — (t1, t2) (11, t2) — (t1, t2)
th — t value ty value t2
fstt1 — fst ty' fst (4, t2) — 14
t .ty value ty value t2
snd t1 — snd ty' fst (t1, o) — to

value t1 value to
value (ti, t2)

STLC+Pairs

* Updated Typing Rules:

[—t1:T1 TrEt:Ts

TPAIR
[(ty,t2) : T1 " T2

[t :T1*T>

TFST
[~ fstty : T+

[t :T1* T

TSND
[—sndti:T>

STLC+Sums

* Updated Syntax:

T ::= .. T + T

t ::= .. ing T t
inRTt
case t of

ian=>t
\inRx=>t

value t; value t;
value ing T ty value ing T ty

STLC+Sums

* Updated Semantics:

4 — 14 1 — 14

N Tt —in Tty INRTt1 — INRTt4

t -t

casetofinnx=tilinpx==>t —caset'of innx=tlinkx=>t

value t
casein. Ttof inLx=>t11Ingr X =>1t — [X:=t]t

value t
caseing Ttof inLx=>t1lInr X =>tx — [x=t]t2

STLC+Sums

JEZZ2

* Updated Typing Rules:

[—1t: T
_ TINL
[inLTot:T14To
F[=t:T> TING

[FINnRT1t:T14+T>

[=t: T+ T2
X+ T1] 11 : T3
[[X+» To] —-12: T3
[[—casetof inLx=tlinpx=>1t:T3

TCASE

STLC+Fix

* Updated Syntax:
to=...1fixt

* Updated Semantics:

1 — t4'

fix t1 — fix t4'

fix (AX:T.t1) — [x=fix (AX:T.t1)]t1

STLC+Fix

let F = (M. \x. test x=0 then 1 else x * (f (pred x))) in (fix F) 3

— (\X. test x=0 then 1 else x * (fix F (pred x))) 3

—, test 3=0 then 1 else 3 * (fix F (pred 3))

— 3 * (fix F (pred 3))

— 3 " ((\x. test x=0 then 1 else x * (fix F (pred x))) (pred 3))
— 37 ((\x. test x=0 then 1 else x * (fix F (pred x))) 2)

— 3 *test 2=0 then 1 else 2 * (fix F (pred 2))

— 3727 (fix F (pred 2))

3211

STLC+Fix

* Updated Typing Rules:

[—t:T1TH

_ TFIX
[~ fixt: Ty

STLC+Records

* Updated Syntax:

T ::= .. {11.:T1., .., 1n:Tn}
t ::= ... {i1=t1, oo J in=tn}
t.1

valueti ... valuetg
Value {i1=t11 -y in=tn}

STLC+Records

* Updated Semantics:

valuet; ... value tm-1 tn — tm!

{i1=t1, “nuy im=tm, “ ey in=tn} — {i1=t1, “auy im=tm', “eny in=tn}

t -t

t.i —tli

valueti ... valuet,

{i1=t1, “eay |n=tn}|J — tj

STLC+Records

* Updated Typing Rules:

F—t1:T1 TTret: T2 ... TH1th:Th
[~ {i1=t1, ceny in=tn}:{i11:T1u sy in:Tn}

TRCD

=t {1 T, ..., in:Th}
[Lo T,

TPROJ

The Limitations of F1 (STLC)

O In F| each function works exactly for one type

O Example: the identity function
" id=AXT.X:TT
" We need to write one version for each type
" Even more important: sort:(T — T — bool) = T array — unit
O The various sorting functions differ only in typing
= At runtime they perform exactly the same operations
" We need different versions only to keep the type checker happy
O Two alternatives:
= Circumvent the type system (see C, Java, ...), or
= Use a more flexible type system that lets us write only one sorting function

Polymorphism

O Informal definition

A function is polymorphic if it can be applied to “many” types of
arguments

O Various kinds of polymorphism depending on the definition of “many”
= subtype (or bounded) polymorphism
“many” = all subtypes of a given type
" ad-hoc polymorphism
“many”’ = depends on the function
choose behavior at runtime (depending on types, e.g. sizeof)
B parametric predicative polymorphism
“many” = all monomorphic types
® parametric impredicative polymorphism

“many” = all types

