CS 565

Programming Languages

Spring 2025

Week |5
Course Review



Functional Programming

We'll start our investigation by considering a small functional language
- These languages tend to have a small core set of features
- Datatypes, functions, and their application

- Written in Gallina, the specification and programming language for
Cogq

(n :nat) : nat :=n +n.




Week 1

Programming in Gallina



Functions

- Functional languages tend to have a small core

- Standard libraries tend to have the usual suspects

- Functions are applied to arguments

- Functions are pure: consume values, produce values

double (n : nat) : nat :=n + n.

(double 1). (*




Compound ADTs

- Can build new ADTs from existing ones:
- A color is either black, white, or a primary color
- Need to apply primary to something of type rgb

- ADTs are algebraic because they are built from a small set of
operators (sums of product).

rgb : Type :=1red | green | blue.

color ;=1 black | white

| primary (p : rgb).

(primary red).




Week 2

Induction



Nat Induction

2

Mathematical Induction for Natural Numbers:
For any predicate P on natural numbers, if:

. P(0)

2. P(n) implies P(n+1)
Then:
for all n, P(n) holds.




Tree Induction

Works for trees too:
For any number n, and tree t

element (insert t n) n = true.
'roof: By induction on . Induction Hypothesis

Next, suppose t = node n' It rt] where
element (insert It n) n = true and element (insert rt n) n = true.
We must show: ‘ element (insert (node n' lt rt) n) n = truel
By definition, this is equivalent to:
element (if (cmp n n') then node n' (insert cmp It n) rt
else node y It (insert cmp rt n)

» Consider the case when cmp n n’ = true.

We must show: element (node n' (insert cmp It n) rt) n = true.
This follows from the IH.
» Consider the case when cmp n n’ = false.

We must show: element (node n' It (insert cmp rt n)) n = true.
This follows from the IH.



Week 3

Functional Programming and
Polymorphism



Total Maps

Standard operations: higher-order functions:

map : Type := string -> nat.

lookup (m : map) (x : string) : nat := m x.
empty : map = fun x => 0.

update (m : map) (x : string) (v : nat) : map :=
y => if (eqb_string x y) Vv my.

example : map := update (update empty “x” 1) “y” 2.

What is the behavior of m!?

m : map =

update (update (funy =>42) “x” 7 ) “z” 10.



Generic Lists

Coq supports type abstraction in data type declarations via
type parameters:

list (X : Type) : Type =

| nil
| cons (x : X) (I : list X).

& B

list is a function from types to types:




Week 4

Inductive Propositions



Propositions

A proposition is a factual claim.

Have seen a couple of propositions (in Coq) so far:
equalities: 0+ n=n
implications: P -> Q
universally quantified propositions: forall x, P

A proof is some evidence for the truth of a proposition

A proof system is a formalization of particular kinds of
evidence.



Propositions

Can have polymorphic predicates:

injective {AB} (f : A->B) : Prop :=
XYy :A fx=fy->x=y.

Equality is a polymorphic binary predicate:

@eq.



Judgement

A judgement is a claim of a proof system

The judgement || |—£\_| is read as:
“assuming the propositions in [ are true,A is true”.

We'll see other judgements over the course of the
semester:



Inference Rules
16 |

Proof systems construct evidence of judgements via
inference rules:

CAEB 1| |FLA—SB MEAT
[FA—B - T -B

Inference Rules




Inductively Defined Propositions

- Goal:

N-ary relation on natural numbers

Form of evidence of membership in that relation
- Step 0: Name the relation type:

- Step 1: Give the relation type a sighature type:
- Step 2: Enumerate evidence constructors:

even : nat -> Prop =

lev_O :even O
| even_2: n : nat, even n -> even (S (S n)).




Week 5

Curry-Howard Isomorphism



Observation

Two ways of thinking about —:

- As a type constructor:

f: A — B denotes the type of a function that
transforms elements of A into elements of B

- As a logical implication:

A — B establishes the validity of proposition B
given the validity of proposition A

How are these notions related?



Observation

They are exactly the same!

Logical implication models the type of functions
that transforms evidence (aka proofs):

A — B represents the type of all functions that given
evidence for the validity of A, returns a proof (aka
evidence) for the validity of B



Semantics

21

AS A RELATION

Key Idea: Define evaluation as a Inductive Relation

aevalR: total_map — A — N — Proposition
* Ternary relation on states, expressions and values

* Read ‘o, a U n’ as ‘a evaluates to n in state o’

* Relation precisely spells out what values program can
evaluate to

* Put another way, rules define an “abstract machine’ for
executing expression



Week 6

Big-Step Semantics and IMP



Semantics
cevalR: (Id =& N) = C = (Id — N) — Proposition

Ternary relation on initial states, commands and
final state

Read ‘o, ¢ U 0’ as ‘when run in initial state o, ¢
produces (i.e. evaluates to) final state o’



Semantics
2

Inference Rules for Y (commands
EWHILET

o1,0 U true o01,Cc U 0o oz,whilebdocend U o3

o1,while b do cend U 03

o,b U false
o, whilebdocend U o

Why is this a better formulation than the
definition of ceval?



Big-Step Semantics

- Binary relation on pairs of syntax and values
- Read ||’ as ‘evaluates to’

- Specifies what values program can map to

- Good for whole program reasoning
- Compiler Correctness; program equivalence;

- Bad for talking about intermediate states
- Concurrent programs; errors



Week 7

Smallstep Operational Semantics and
Denotational Semantics



Step Size

Big-Step reduction
relation is from syntax,
to values.

Cn+eCm —:C(n+m,

= | |
L]
.l IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 'IIIIIIIIII:

Small-Step reduction
relation is from syntax,
to syntax.



Small-Step Termination

- How to tell when we're ‘done’ evaluating!?
- Define a class of syntactic values:

value Cn

Now we can talk about making progress

Theorem [STRONG PROGRESS]$

For any term t, either t is a value or there exists a term t'
such thatt — t.




Normal Form
29 |

A term e that isn’t reducible is in normal form.
“Je.e - €

How is this different from a value?

Syntactic versus semantic.

Do not need to coincide!



Semantics Recap

- We've considered several flavors of Operational Semantics:

- Abstract machine specifies how an expression is
executed:

- 0, ¢l 0’ reads as ‘when run in initial state O, c produces (i.e.
evaluates to) final state O’

- €] — ez reads as ‘e| reduces to e in a single step’
- €] —™* ez reads as ‘e| reduces to e, in zero or more steps’



Recap (Denotational Semantics)

Key Idea: define semantics via translation to a well-understood
semantic domain:

- Using sets, we can model partial and total functions on state

- Can also represent nondeterministic semantics

- Can relate different kinds of semantics
Denotational semantics are designed to be compositional

Denotational semantics are useful for reasoning about program
equivalence



Week 8

Type Systems and Simply-Typed Lambda
Calculus



Static Semantics

A recipe for defining a language:

1.Syntax:
- What are the valid expressions!?

2.Semantics (Dynamic Semantics):
- How do | evaluate valid expressions?

3.Sanity Checks (Static Semantics):

- What expressions are “‘good”, i.e have
meaningful evaluations!?

0
C

9O
%
)
O
| -
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X

LL

Type systems identify a subset of good
expressions




Type Safety
34|

- When is a type system correct?

* Need to show this classification is
sound. i.e. no false positives:

—e:T — ~eisbad!

- If the a language’s type system is
sound, it is said to be type-safe.

- Soundness relates provable claims to
semantic property

Expressions




Progress
35

Theorem [PROGRESS]: Suppose e is a well-typed expression
(Fe:T).Then either e is a value or there exists some e' such that e

evaluates to e' (0,e — ¢&).

Values:

TVALUE
value true L
Q
neN 7
NUMVALUE D
value n o
o
>
LLI




Preservation
36 |

* Theorem [PRESERVATION]: Suppose e is a well-typed term (- e : T).
Then, if e evaluates to €', €' is also a well-typed term under the empty
context, with the same type as e (- ¢e':T).

0
C
9
%
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O
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o
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Type Soundness

Theorem [Type Soundness]: If an expression e has type T,and e
reduces to €' in zero or more steps, then e' is not a stuck term.

Proof.

By induction on 0,e —*¢€'...

Qed.

* Corollary [Normalization]: If an expression e has type T, e
reduces to a value in zero or more steps.



Typing STLC
38

[ —t:T

[ maps bound variables to their types
* Here are the typing rules:

[ — n:nat Thum
[[Xxe T1]—1t: T2 TABS
[ AXT1d: T1—To2 r et nat
' TINC
[ — t+1 : nat
[ —t1:T1 2T T +to:Ty
[ Ftito: T2 TAPP F[(x)=T
' — TVAR

[ —x:T



Normalization

* Theorem [NORMALIZATION]: If an expression e has type T in
the empty context, e reduces to a value in zero or more
steps.

Why is STLC normalizing but not IMP?



STLC+Fix

* Updated Syntax:
to=...1fixt

* Updated Semantics:

1 — t4'

fix t1 — fix t4'

fix (AX:T.t1) — [x=fix (AX:T.t1)]t1



Week ¢

Subtyping



Subsumption

Would like this to typecheck:
Dist (x=2, y=2, R=0, G=140, B=255)

[t :T1 Ti< To
[ —t1:T>

TSuUB

How to define T | <:T2?

Substitutability: If T| <:T2,then any value of type T| must be usable in
every way a T2 is.

The difficulty is ensuring this is safe (i.e. doesn’t break type safety)!



Variance
a3 |

Variance is a property on the arguments of type constructors like
function types (A —B), tuples (AxB), and record types
F(A) is covariant over A if A<t A" implies that F(A) <t F(A")
F(B) is contravariant over B if B' <! B implies that F(B) < F(B')
F(T) is invariant over T otherwise

S1<T1 So<To
S1xSo<Tix To

SB-TUPLE

T1<'S1 So<iTo
S12So<Ti—=To

SB-ARROW




Week 10

Axiomatic Semantics and Hoare Logic



Hoare Triple
N

- Step | B: Define a judgement for claims about
programs involving assertions

- Partial Correctness Triple:

terminates
In a state,




Validity

We can now precisely define
a partial Hoare Triple is valid;

VALIDITY

The rule admits the
possibility that there

is no such o’



Hoare While!

| Is a loop Invariant:
- Holds before loop
- Holds after each loop iteration
- Holds when the loop exits

(I AbYc{l}

—{I} while b do cend {l A b
& { } HLWHILE



Rule Review
a8 |

HLASSIGN HLSKIP
HQ[X=a]}X=a{Q} —{Q)} skip {Q}

—{P} c1 {R} —{R} c2 {Q}
—{P} c1;c2 {Q}

—{P A b} c1{Q} —{P A =b} c2 {Q}
—{P} if b then c1 else c2 {Q}

HLSEQ

HLIF

—{l A b} c{l}
—{1} while b do c end {IA-Db}

HLWHILE



Loop Invariants

Hoare Logic is a structural model-theoretic proof system
- Rules characterize a set of states consistent with the requirements

imposed by the pre- and post-conditions
- Highly mechanical: intermediate states can almost always be

automatically constructed
- One major exception:

—{l A b} c{l}
—{I} while b do c end {IA—Db}

The invariant must:
- be weak enough to be implied by the precondition
- hold across each iteration
- be strong enough to imply the postcondition

HLWHILE



Loops

{{ True }} —>
{{ min

o
Il

a min a b }}

X = ay
{{ min
= b;
{{ min
= 0;

{{ Inv
while X <>

Y :

2 :

X b=min a b }}
XY =min a b }}

+}
0 && Y <> 0 do

{{ Inv
{{ 2

/\ (X <> 0) /\ Y <>0) }} ->
l + min (X - 1) (Y - 1) = min a b }}

X :
{{
Y =

+ + 1+ 1]+

{1
Z :=

H N N K N X

<

{{ In

end

L;
1 + min X (Y - 1) = min a b }}
1;
1l + min X Y = min a b }}
1;
}}

{{ ~(X <>0 /\ Y <>0) /\ Inv) }} —>
{{ Z = min a b }}

This style of proof
construction is known
as weakest
precondition inference

|dentify a precondition
that satisfies the largest
set of states that still
enable verification of
the postcondition

Can automate this
inference once we
know the loop
invariant



Week 11 - 13

Dafny



Dafny

- Applies Hoare reasoning to programs

- User provides specifications in the form of pre- and
postconditions, along with other assertions

- Dafny verifies that the program meets the specification

>When successful, Dafny guarantees (total) functional correctness of the
program

Correctness:

- Reflects base-level semantic properties (no runtime errors (e.g.,
divide-by-zero, null pointer dereferences, etc.)

- But, also justifies higher-level application-specific properties (e.g.,

correctness of distributed systems, ...)



Specifications

- Specifications are meant to capture salient behavior of an application, eliding
issues of efficiency and low-level representation.

forall kiint :: 0 <= k < a.Length ==> 0 < a[k]
- Specifications in Dafny can be arbitrarily sophisticated.
- We can think of Dafny as being two smaller languages rolled into one:

- An imperative core that has methods, loops, arrays, if statements... and
other features found in realistic programming languages. This core can
be compiled and executed.

- A pure (functional) specification language that supports functions, sets,

predicates, algebraic datatypes, etc. This language is used by the prover
but is not compiled.



Invariants

method loopEx (n : nat)

{ Dafny will not verify this
var 1 : int := 0; program. Why?
while (1 < n)
invariant 0 <= 1 Need invariants to be inductive!
{ - hold in the initial state
i :=1+ 1; - hold in every state reachable from the initial state
} - strong enough to imply the postcondition
assert 1 == n;
}

method loopExCheckFixed (n : nat)
{

var 1 : int := 0;
while (1 < n)
invariant 0 <= 1 <= n
{
1 := 1 + 1;
}

assert 1 == n;



Decreases clause

function seqSum (s : seqg<int>, lo : int, hi : int) : int
requires 0 <= lo <= hi <= |s|
{
if (lo == hi) then 0 else s[lo] + segSum(s, lo+l, hi)
}

Dafny complains that it cannot prove the recursive call terminates -
it is unable to identify a termination metric that signals every
recursive call gets “smaller”

function seqSum (s : seqg<int>, lo : int, hi : int) : int
requires 0 <= lo <= hi <= |s|
decreases hi - 1lo
{
if (lo == hi) then 0 else s[lo] + segSum(s, lo+l, hi)
}

What about using -lo as a decreases clause!?



Lemmas

Sometimes, the property we wish to prove cannot be automatically
verified. To help Dafny, we can provide lemmas, theorems that exist
in service of proving some other property.

method FindZero(a: array<int>) returns (index: int)
requires forall i :: 0 <= i < a.Length ==> 0 <= a[i]
requires forall i :: 0 < i < a.Length ==> a[i-1]-1 <= a[i]
{
}

Precondition restricts input array such that all elements are greater than or equal to zero
and each successive element in the array can decrease by at most one from the previous
element.

We can take advantage of this observation in searching for the first zero in the array, by
skipping elements. E.g., if a[j] = 7, then index of next possible zero cannot be before
alj + a[j]], i.e., if j = 3, then first possible zero can only be at a[10]



Lemmas and Induction

Express this inductive property:
assert count(a + b) == count([a[0]]) + count(a[l..] + b);

using recursion

lemma DistributivelLemma(a: seq<bool>, b: seq<bool>)

ensures count(a + b) == count(a) + count(b)
{
if == [] {
assert a + b == b;
} else {
DistributiveLemma(a[l..], b);
assert a + == [a[0]] + (a[l..] + b);
}
}
function count(a: seg<bool>): nat
{
if |a] == 0 then 0 else

(1f a[0] then 1 else 0) + count(a[l..])



Proof Calculations
58 |

Proof that Nil is idempotent over list appends

lemma prop app Nil(xs: list)
ensures app(xs, Nil) == xs;
{
match xs {
case Nil =>
case Cons(y,ys) =>
calc { app(xs,Nil) ;
== app(Cons(y,ys), Nil);
== Cons(y, app(ys,Nil));
== { prop_app_Nil(app(ys,Nil)); } // proof hint



Proof Calculations and Induction

lemma {:induction false} MirrorMirror<T>(t: Tree)
ensures mirror (mirror(t)) ==

{
match t

case Leaf( ) =>

case Node(left,right) =>
calc

{

mirror (mirror (Node(left,right)));

mirror (Node(mirror(right),mirror(left)));

Node(mirror(mirror(left mirror(mirror(right

{ MirrorMirror(left); MirrorMirror (right); }




Proofs by Contradiction

General shape: 10 -=> (R /\ !R)

lemma Lem(args) Q
requires P(X)

ensures Q(x)

{
if 1Q(x) // property is false
{
assert !P(Xx) // contradiction: precondition is
assert false // true and false
}

assert Q(x)

slide adapted from Albert Nymeyer



Functional data structures

- In addition to support for inductive datatypes, Dafny also has
specialized support for certain kinds of functional data structures,
specifically sets and sequences.

- A set is an order-less immutable collection of distinct elements

{2,3,3,2} =={2,2,2,3,3,3} == {2, 3}
{2,4,4,3,5} =={5,3,4,4,2} == { 2, 3,4, 5}
- Sets can be used in both specification and code

method Main()
{

var a: set<int> := {1,2,3,4};

var b: set<int> := {4,3,2,1,1,2,3,4};
assert |a| == |b|== 4; // same length
assert a - b == {}; // same sets
print a, b; // can print them

slides adapted from Albert Nymeyer



Sequences

A sequence is an ordered immutable list of (possibly non-unique)
elements

method SeqgsAreOrdered() {

var s: seg<int> := [2,1,3];
var t: seqg<int> := [1,2,3];
assert s != t;

method CheckLength() {

var a:array<int> := new int[][1,2,3,4];

var s:set<int> := {1,2,3,4,4,3,2,1,1,1,1,1};
var t:seg<int> := [1,2,3,4];

assert a.Length == |s| == |t| == 4;



Two-State Predicates

- Specifications for imperative programs often need to relate the
value of a structure in the pre-state (before the method
executes) and the post-state (after the method completes).

- Use old(E) to refer to the value of E in the prestate

>old tracks heap dereferences

method Increment(a : array<int>, 1i:
requires 0 <= 1 < a.Length
modifies a
ensures a[i] == old(a)[1i] + 1

a[i] := a[i] + 1;

int)
VS.

method Increment(a : array<int>, 1i:
requires 0 <= 1 < a.Length
modifies a
ensures af[i]

int)

old(a[i]) + 1

a[i] := a[i] + 1;



Week 14

Separation Logic



Motivation

- Hoare Logic is defined in terms of assertions on states:

- states are maps from variables to their values

> most programming languages also support the notion of a heap:

- variables map to addresses

- the contents at a given address can be shared and aliased

~Embedding notions of sharing and mutation into the logic is problematic

- Separation Logic enables local reasoning about memory

> It is a substructural logic that controls how memory (heaps) are
constructed and used

> In classical logical systems (e.g., Hoare logic) can:

- add (weaken) or contract (duplicate) assumptions. Here, think of assumptions as claims we
can make about resources (aka states or memory)
- Substructural logics restrict how assumptions can be introduced:

- can’t invent extra memory to satisfy predicates
- can’t duplicate memory



Separation Logic

Rather than trying to explicitly reason about heap structure and aliasing
within Hoare Logic, introduce new logical operators to reason about
how heaps (aka resources) are used

- emp: empty heap

- X = v: heap has a cell at x with value v

- P * Q: separating conjunction (disjoint parts of the heap)

- P —* Q:separating implication (hypothetical heap extension)

Assertions now describe heap and variable conditions
- Conjunction (*), implication (-*)
- Emp and points-to relation

Example: means: the heap can be divided into disjoint
hie P s parts, one which satisfies P (* = £ )and the
B other which satisfies Q (? = &)




Frame Rule

Note that in the rule:
{x = vy xy = v }tx| i=vi{x > v3xy— vy}

the assertion on y is unused and provides no meaningful information
relevant to the proof

W) ¢ 19}
WFp ¢ 19xF;

Importantly, the following is not valid:

W) ¢ {¢;
WAFy ¢ {¢NF;




Magic Wand (Separating Implication)
o

P —* Q
reads:

Extending a heap h with another (disjoint) heap that
satisfies P, results in a new heap that satisfies

VW W Ah B =P — hah EQ




