CS 565

Programming Languages (graduate)

Spring 2025

Week 14
Separation Logic

Readings

- Software Foundations, Vol. 6
- Separation Logic, O’'Hearn CACM, 2/19

- Local Reasoning about Programs that Alter Data Structures,
O’Hearn, Reynolds, Yang, CSL, 10/01

- Separation Logic: A Logic for Shared Mutable Data
Structures, LICS, 2002

Motivation

- Hoare Logic is defined in terms of assertions on states:

- states are maps from variables to their values

> most programming languages also support the notion of a heap:

- variables map to addresses

- the contents at a given address can be shared and aliased

~Embedding notions of sharing and mutation into the logic is problematic

- Separation Logic enables local reasoning about memory

> It is a substructural logic that controls how memory (heaps) are
constructed and used

> In classical logical systems (e.g., Hoare logic) can:

- add (weaken) or contract (duplicate) assumptions. Here, think of assumptions as claims we
can make about resources (aka states or memory)
- Substructural logics restrict how assumptions can be introduced:

- can’t invent extra memory to satisfy predicates
- can’t duplicate memory

Example

j := null;
while i <> null do { l l l
k = *(i + 1); /

(1 + 1) =733 i/)
j = 1i;

1 = k; k _
)] el L
] znj iz
if i 7
k k ~

J| nil . _

while i <> nil do {
k = *(1 + 1);
*(1 + 1) = 33

J = 1;
1 = k;
}
Invariants:

i and j are pointers into a list structure
the reversal of the original list can be obtained by concatenating
the reversal of the list reachable from i to the list reachable from j

The correctness of the invariant crucially relies on the assumption that
there is no aliasing among list elements:

augment invariant to assert that only nil is reachable from i and |
- What about other structures that may point into this list?

The Heap

- A heap is a partial function that maps addresses to values

» assume addresses and values are both ints

> thus, addresses are also values

- Two new instructions:
> x:=[e] //load the contents of the address referenced by e into x

> [el] := e2 /] store the value of e2 into the address referenced by el

Semantics:
- a state consists of a heap h and local memory y

vt el addr ~" =~[x— h(addr)]
) o= o] = ()

vyHell addr ~F €2 v A’ = hladdr — v]

(h,v) F lel] :=e2 = (W,7)

Axiomatic Rules

Load
{es = n} x:=leq] {x=n}

Store
{True} [61] =V {61 —> U}
Consider the following rule:
{txPpzAyP WAz 3} z:=4 { [[x]] » 4 A1yl #[z]] }

|s this a reasonable assertion?

In general, the validity of a triple must take aliasing properties into
account, either in the precondition (establish that w <> z) or in the post-
condition (establish that [[y]] maybe 3 or 4)

Separation Logic

Rather than trying to explicitly reason about heap structure and aliasing
within Hoare Logic, introduce new logical operators to reason about
how heaps (aka resources) are used

- emp: empty heap

- X > v: heap has a cell at x with value v

- P * Q: separating conjunction (disjoint parts of the heap)

- P —* Q:separating implication (hypothetical heap extension)

Assertions now describe heap and variable conditions
- Conjunction (*), implication (-*)
- Emp and points-to relation

Example: means: the heap can be divided into disjoint
hie P s parts, one which satisfies P (* = £)and the
B other which satisfies Q (? = &)

More Formally...

h=PxQ

means

th,hg.hl@hQZh/\hl — P A ho :Q

where

hi @ hs

means the union of the resources “owned” by h_| and the resources
owned by h_2

h1 @ ha = ha © hy
h1 @ (ha @ h3) = (h1 © ha) © Iy

It is expected that heaps be disjoint (resources owned by one are not
also owned by the other)

Memory

- The heap consists of a collection of memory cells, each indexed by an
address

- Each memory cell provides a resource
- The assertion:

{1 X P2 *y+H> 3}

means.

the heap can be split into two disjoint regions, one that
satisfies the assertion that the memory cell with address x
contains 2 and the other that satisfies the assertion that the
memory cell with address y contains 3

In other words, x and y are not aliases for the same cell

So, the following proof rule is sound:
{x = vy xy = v }x| i=vi{x > v3 %y — vy}

Frame Rule

Note that in the rule:
{x = vy xy = v }tx| i=vi{x > v3xy— vy}

the assertion on y is unused and provides no meaningful information
relevant to the proof

W) ¢ 19}
WFp ¢ 19xF;

Importantly, the following is not valid:

W) ¢ {¢;
WAFy ¢ {¢NF;

Frame Rule

The following is a valid inference:

{x—>w} |[w:=4 {[x]—4}
{x—wxy—zxw— 3A|z|=v} W =4 {x—wxy—zxwr—4A|z| =0}

While the following is not, because z and w may denote the same
address:

{x—>w} [w:=4 {[x]— 4}

{x—wAy—zAw—3A[zl=0v} [W]:=4 {x—wAy—zAw—4A|z] =0}

Points-to

What does x — v mean?®

(h,y) Ex—v= h(x) =v Adom(h) = {x}

That is, the assertion holds in a singleton heap that
only contains the resource at location x

{emp} x = new(3) {xtH 3}

{x—> vV} free x {emp }

Magic Wand (Separating Implication)
0

P —* Q
reads:

Extending a heap h with another (disjoint) heap that
satisfies P, results in a new heap that satisfies

VW W Ah B =P — hah EQ

Magic Wand Example

x> 1Fy—2 —F (x—=1*xy— 2)

Starting from a heap that stores 1 at address X, if we add another
heap that stores 2 at address y, then we can conclude that the
combined heap maps x to 1 and y to 2

>k

lseg(x,y) - lseg(y,z) —* lseg(x,z)
[seg(a, b) represents a list indexed at a upto but not including b

The formula states:
Assuming a list whose root is at address x that does not include
the node indexed at y
If there is another (disjoint) list indexed at y that does not include

the node indexed at z
The heap containing both list segments contains a list segment

from x to z (exclusive)

Concept Check

Which assertions are valid®

» P => P * P
» P * Q => P
X > 3 =X 3 * X 3
X > 3 => X 3 *y > 42
» X > 3 = 0 < [x]
(x > =) * (x > =)
(P -) * (QFP -) =>P #Q
» (PP 3) ¥ (Q /= 3) =>P # 0

Summary

Separation Logic is useful to verify properties of programs that make use of
references (i.e., memory addresses). It can help identify errors involving:

> using memory before allocation or using it after freeing
> inadvertent use of aliased memory
> freeing memory that is not allocated
> allocation without freeing
Generalizes to any system that manipulates resources
> networks
> concurrency
> distributed programming

The frame rule enables compositional (local) reasoning

> to verify a property involving the heap, we can safely ignore all parts of
the heap unrelated to the parts reachable from the command being
analyzed

Example
e ...

A program that swaps the value of two memory cells
t = [X];

b := [y]
[x] := Db;

[yl == €

Precondition:
(X — U1 Xy UQ)

Postcondition:

(X — v *y > v1)

Example
e ...

(XHUl*YH/UQ)
t = [X] // local assignment, t =y,
(X%Ul*yHUQ)

b := [y] // local assignment, b=y,
(X > V1 %y — vg)

[x] := b // store
(Xva*yi—)vg)

[y] := t // store

(XH”UQ*Y'%Ul)

Example
2l

X := malloc();
[X] := 42

Precondition:

{ emp }

Postcondition:

{ x —» 42 }

Proof rule for malloc:

{emp} x:=malloc() {x+— —}

Example

X = malloc();
[X] := 42;
free(x)

Both the pre- and post-condition should be { emp }

{ emp }
X := malloc();

{ X -}
[X] := 42;

{ x —» 42 }
free(x);

{ emp }

Proof rule for free:

(x> v} free(x)

{e

p}

Example

Deep copy contents of one list to another:

p = Xj;

q := Y

while (p != null) {
templ := [p];
temp2 := [q];
[p] := temp2;
[gq] := templ;

p :=[p + 1];

q := [q + 1]

}
List predicate:
list(x,8) =
x=nullAs=|[]Ae

viav,ns'.x—vi¥x+1ln*lst(n,s)As=v: s

1%

Shallow copy much
simpler:

<Ko
[
<X

/

Example

Precondition:

{list(x,s¢) * list(y,s,)} where |s,| = |s,]

Postcondition:

list(x, 85) * list(y, S4)

list_seg(r,r,[]) = emp

P = X;
q =y list_seg(r,s,v::vs)=3dn.r— v,n*1list_segn,s,vs)ifr #s
while (p != null) {

templ := [p];

temp2 := [q];

=t 2; . - . .

(@) - tem1] Loop invariant (spatial):

p := [p + 1];

q := [q + 1] 38y ,81,,8, .5, -11st_seg(x,p,s;) *1ist(p,s;) *1ist_seg(y,q,s,) * 1ist(q, s,)

}

Loop invariant (content):

|Sla| = |S2a| AVI < |S1a[i] .51 [i] = old(sza[i]) A sy [i] = old(sla[i])

list(x,8) =

i i= null; Xx=null As =[] Aemp
while i # null do { vay,ns'.x—v¥x+ 1l n*listtn,s)As=v: s’

k := [1 + 1];

[1 + 1] == J; Precondition:

j = i s

1 := k; {llSt(la S())}
}

Postcondition:
Uist(G, rev(sy))}

Loop invariant:

s, 8, . list(1, 50) * list(3, $,) A so = rev(s,) + s,

list(1, sy) from precondition

Jiis= nules | — — 1 '
while i # null do { j = null =>list(3, [])
kK := [1 + 1]; S1=S(),Sz=[]
[1 + 1] := J;
J = 1i;
1 := k;
} Invariant holds

s, 8, . list(1,s)) * list(j, s,) A sy = rev(s,) + s,

j := null;
while 1 # null do {
leple= faied 1]
sl O invariant:
= . .
J?_ = ks s, 8, . list(1,s)) * list(J, $y) A 5o = rev(s,) + s,
} ist:

/

dv,n,s’". x> v*¥*x+ 1 n*listtn,s)As=v:is

list(i,s): unreversed list remaining
list(j, v :: s,): reversed list extend by head node (justified by assignment - j := |
rev(v :: s,) = rev(s,) + [V]
- Sg=rev(s,) +(v:iis)=rev(v:s)+s
list(i,s') ®list(j,v :: $5) Asg=rev(v ::s,)) + s

Jj := null;
while i1 # null do {

k ¢:= [1 + 1]7;

i+ 1] = 5 invariant:
j o= i; s, 8, . list(1,s)) * list(J, $y) A 5o = rev(s,) + s,
1 := k;
}
When 1 = null,

- sy =[], list(1, []) = emp

list(], s9) A sy = rev(s,) = list(j, rev(sy))

Bi-Abduction

A logical proof typically asserts the validity of statements of the form:
A I B which states that B holds assuming A is true

To infer properties of problems in Separation Logic, an alternative proof
inference technique called Bi-abduction is used:

A *antiFrame = B * frame

Here, the anti-frame refers to missing part of the heap that may be
accessed, while the frame is the part of the heap that is implied by the

original heap that is valid after B is satisfied

A bi-abduction inference procedure enables modular inter-procedural
reasoning

Anti-frame
Eleeee

Current heap (Pre): x — |

Wish to call a function f whose specification requires:
(X _*y—7)

Add an anti-frame to the caller’s heap that includes y

Example

A function invokes a method (free_list) to deallocate a list

Spec for free_list: { list(x) } free_list(x) {emp}
where
list(x) = (x =null Aemp) VvV (dy.x — y*list(y))

Suppose the heap state prior to the call is determined to be:
Pre = (x.next » y*y.next — z)

Is the call to free list safe?

Can we extend Pre with a heap A such that Pre * A F list(x)
- Infer an anti-frame that z is a list in the heap:
= (x.next —» y*y.next — z) *list(z)
Suppose the client expects a post-condition:{ a — v }
- But, free_list’s post-condition is { emp }. Infer a frame that represents the portion
of the heap consistent with the heap returned by free list and the post-condition:
{emp * a — v}

