
CS 565
Programming Languages (graduate)

Spring 2024

Week 8

Type Systems

Types
2

- Identify key concepts in type systems:
- Type systems as inductive relations
- Type safety
-

Today

Ill-Typed Imp+
3

- Let’s weaken IMP’s expression language slightly:
e ::= B | N | e * e | e + e
 | true | false | ¬ e | e ⋀ e
 | Id | e = e | e < e | e ? e : e

- Looks good, we can now write (and evaluate):
 x * ((y > 3) ? 3 : y)

- But we can also write:
 x * ((3 + (6 ⋀ 5)) ? 3 : y)

- How do we evaluate this? What’s the problem?

Bad Behaviors
4

- What constitutes a “bad” expression in our IMP variant?
 * One that adds two booleans: true + 3 ⟶ ?
 * One with a non-boolean conditional: 3 ? x : y ⟶ ?
 * A use of an unassigned variable: x + y ⟶ ?

- What about Coq?
 * Bad pattern match discriminees: match 0 with [] -> …
 * Function applied to wrong argument types: plus 9 minus
 * Application of non-function: 9 minus

What about other languages?
Badness is

language
specific!

Static Semantics
5

=

A recipe for defining a language:

1.Syntax:
- What are the valid expressions?

2.Semantics (Dynamic Semantics):
- How do I evaluate valid expressions?

3.Sanity Checks (Static Semantics):
- What expressions are “good”, i.e have

meaningful evaluations?

Type systems identify a subset of good
expressions

v

v

e

v
e

e

e

Ex
pr

es
si

on
s v

Typing Imp+
6

A recipe for type systems:
1. Define bad programs
2. Define typing rules for classifying programs
3.Show that the type system is sound, i.e. that it only identifies
good programs

Typing Imp+
7

A recipe for type systems:
1. Define bad programs
2. Define typing rules for classifying programs
3.Show that the type system is sound, i.e. that it only identifies
good programs

Typing Imp+
8

- First step is to define badness:
- Needs to be broad, program-independent properties
- Some user-provided specification is okay (type annotations)

 - What are bad Imp expressions?
3 ? true : 4

true + 3

 x * ((y > 3) ? 3 : y)

- Those that evaluate to a stuck expression: a normal form that
isn’t a value

Typing Imp+
9

- First step is to define badness:
 - Needs to be broad, program-independent properties
 - Some user-provided specification is okay (type
 annotations)

 - What are bad Imp expressions?
3 ? true : 4

true + 3

 x * ((y > 3) ? 3 : y)

 - Those that evaluate to a stuck expression: a normal form that
isn’t a value

“Well-typed programs

cannot go wrong”

A Theory of Type Polymorphism in

Programming (Milner 78)

Typing Imp+
10

A recipe for type systems:
1. Define bad programs
2. Define typing rules for classifying programs
3.Show that the type system is sound, i.e. that it only identifies
good programs

Typing Rules
11

n ∈ N
 ⊢ n : nat TNUM

 ⊢ e1 + e2: nat

 ⊢ e1 : nat ⊢ e2 : nat
TADD

Next, define a classifier for good, well-formed programs:

⊢ e : T

Goal is to classify good uses of each type of expression:

 ⊢ e1 * e2: nat

 ⊢ e1 : nat ⊢ e2 : nat
TMULT

⊢ x: nat
TVAR

Typing Rules
12

 ⊢ true : bool TTRUE

Goal is to classify good uses of each type of expression:

 ⊢ false : bool TFALSE

 ⊢ ¬ e: bool

 ⊢ e : bool
TNOT

 ⊢ e1 ⋀ e2: bool

 ⊢ e1 : bool ⊢ e2 : bool
TAND

Typing Rules
13

 ⊢ e1 < e2: bool

 ⊢ e1 : nat ⊢ e2 : nat
TLE

Goal is to classify good uses of each type of expression:

 ⊢ e1 = e2: bool

 ⊢ e1 : T ⊢ e2 : T TEQ

 ⊢ e1 ? e2 : e3 : T

 ⊢ e1 : bool ⊢ e2 : T ⊢ e3 : T TCOND

Typing Rules
14

Goal is to classify good uses of each type of expression:

3 ? true : 4

true + 3

⊢ x + ((y > 3) ? true : y)

 ⊢ e1 ? e2 : e3 : T

 ⊢ e1 : bool ⊢ e2 : T ⊢ e3 : T TCOND

 ⊢ e1 + e2: nat

 ⊢ e1 : nat ⊢ e2 : nat
TADD

Typing Imp+
15

A recipe for type systems:
1. Define bad programs
2. Define a typing rules for classifying programs
3.Show that the type system is sound, i.e. that it
only identifies good programs

Type Safety
16

- When is a type system correct?
★ Need to show this classification is

sound. i.e. no false positives:

 ⊢ e : T → ~ e is bad!
- If the a language’s type system is

sound, it is said to be type-safe.

- Soundness relates provable claims to
semantic property

=p

p

p

pˈp

pˈ

p

Ex
pr

es
si

on
s p

W
el

l-t
yp

ed
ex

pr
es

sio
ns

Progress
17

Theorem [PROGRESS]: Suppose e is a well-typed expression
(⊢e:T). Then either e is a value or there exists some e' such that e
evaluates to e' (σ, e ⟶ e').

 Values:

 value true TVALUE

n ∈ N
 value n

NUMVALUE =p

p

p

vp

pˈ

p
Ex

pr
es

si
on

s v

W
el

l-t
yp

ed
ex

pr
es

sio
ns

Preservation
18

★ Theorem [PRESERVATION]: Suppose e is a well-typed term (⊢ e : T).
Then, if e evaluates to e', e' is also a well-typed term under the empty
context, with the same type as e (⊢ e' : T).

=p

p

p

vp

pˈ

p
Ex

pr
es

si
on

s

W
el

l-t
yp

ed
ex

pr
es

sio
ns

v

Type Soundness
19

Theorem [Type Soundness]: If an expression e has type T, and e
reduces to e' in zero or more steps, then e' is not a stuck term.

Proof.
By induction on σ, e ⟶* e'…

Qed.
★ Corollary [Normalization]: If an expression e has type T, e

reduces to a value in zero or more steps.

Example
20

 ⊢ e1 + e2: nat

 ⊢ e1 : bool ⊢ e2 : nat
TBADD

Example
21

0 ? e1 : e2 ⟶ e1

Example
22

0 ? e1 : e2 ⟶ e1

 ⊢ e1 ? e2 : e3 : T

 ⊢ e1 : nat ⊢ e2 : T ⊢ e3 : T TCOND2

Recap
23

- Type systems classify semantically meaningful expressions
- Our recipe for defining a type system
 1. Define bad states (irreducible, non-value expressions)
 2. Define a typing judgement and rules classifying good
expressions (⊢ e : T)
 3. Show that the type system is sound, i.e. that good expressions
don’t reduce to bad states

The Limitations of F1 (simply-typed λ-calculus)
24

 In F1 each function works exactly for one type
 Example: the identity function

 id = λx:τ. x : τ → τ
 We need to write one version for each type
 Even more important: sort : (τ → τ → bool) → τ array → unit

 The various sorting functions differ only in typing
 At runtime they perform exactly the same operations
 We need different versions only to keep the type checker happy

 Two alternatives:
 Circumvent the type system (see C, Java, ...), or
 Use a more flexible type system that lets us write only one sorting function

Polymorphism
25

 Informal definition
 A function is polymorphic if it can be applied to “many” types of

arguments
 Various kinds of polymorphism depending on the definition of “many”

 subtype (or bounded) polymorphism
“many” = all subtypes of a given type

 ad-hoc polymorphism
“many” = depends on the function
choose behavior at runtime (depending on types, e.g. sizeof)

 parametric predicative polymorphism
“many” = all monomorphic types

 parametric impredicative polymorphism
“many” = all types

System F
26

The fundamental problem addressed by a type theory is to insure that
programs have meaning. The fundamental problem caused by a type
theory is that meaningful programs may not have meanings ascribed
to them. The quest for richer type systems results from this tension.

—Mark Manasse.
- System F is a calculus in which polymorphic functions can be written.

- Name was coined by Jean-Yves Girad, was originally a logic
- A “core” calculus for parametric polymorphism.

- Used to formalize module systems, approaches to data abstraction
- Enough for type safe ‘pure’ OO programming (w/o inheritance)

System F
27

Here is the syntax , with new bits highlighted.

t ::= x | λx:T.t | t t
 | ΛX.t
 | t [T]

v ::= λx:T.t | ΛX.t

T ::= T → T
 | ∀X.T
 | X

Type variables have a different interpretation than before.

⇐ Type Abstraction
⇐ Type Application

⇐ Universal Type
⇐ Type Variable

Examples
28

 Examples:
 id = ΛX.λx:X. x : ∀X.X → X

 id[int] = λx:int. x : int → int
 id[bool] = λx:bool. x : bool → bool
 “id 5” is invalid. Use “id [int] 5” instead

 double = ΛX. λf:X→X. f (f x)
 polyf = λf:(∀X.X→X). (f [int] 1, f [bool] True)

 polyf id

System F
29

Here are the new bits of the operational semantics

e1 e2 ⟶ e1' e2

e1 ⟶ e1'
EAPP1 v e2 ⟶ v e2'

e2 ⟶ e2'
EAPP2

(λx:T.e) v ⟶ e1 [x ↦ v]
EAPPABS

(ΛX.e1) [T] ⟶ e1 [X ≔ T]
ETAPPTABS

e1 [T2] ⟶ e1' [T2]
e1 ⟶ e1'

ETAPP

System F
30

Here are the new bits of the typing rules

Γ, [x ↦ T1] ⊢ t : T2

Γ ⊢ λx:T1.t : T1→T2
TABS

Γ(x) = T
Γ ⊢ x : T TVAR

Γ ⊢ t1 : T1→T2 Γ ⊢ t2 : T1

Γ ⊢ t1 t2 : T2
TAPP

Γ ⊢ t1 : ∀X.T2

Γ ⊢ t1 [T1] : T2[X ≔ T1]
TTAPP

Γ, X ⊢ t : T2

Γ ⊢ ΛX.t : ∀X.T2
TTABS

Observations
31

- Based on the type of a term we can prove properties of that term

- There is only one value of type ∀X.X → X

 The polymorphic identity function
- There is no value of type ∀X.X

- Take the function: reverse : ∀X. X List → t List

 * This function cannot inspect the elements of the list
 * It can only produce a permutation of the original list
 * If L1 and L2 have the same length and let “match” be a function
that compares two
 lists element-wise according to an arbitrary predicate then
 “match L1 L2” ≡ “match (reverse L1) (reverse L2)” !

Encoding Base Types in F2
32

 Booleans
 bool = ∀X.X → X → X (given any two things, select one)
 There are exactly two values of this type !

 true = ΛX. λx:X.λy:t. X
 false = ΛX. λx:X.λy:t. X

 not = λb:bool. ΛX.λx:X.λy:X. b [X] y x
 Naturals

 nat = ∀X. (X → X) → X → X (given a successor and zero element
compute a natural number)

 0 = ΛX. λx:X → X. λz:X. z
 succ(e) = ΛX. λs:X → X. λz:X. s (e [X] s z)
 add = λn:nat. λm:nat. ΛX. λs:X → X. λz:X. n [X] s (m [X] s z)
 mul = λn:nat. λm:nat. ΛX. λs:X → X. λz:X. n [X] (m [X] s) z

System F Metatheory
33

System F shares many of STLC’s meta-theoretic properties:
Theorem [Progress]: Suppose t is a closed, well-typed term (i.e. ⊢
p : T). Then either t is a value or there exists some t’ such that t
evaluates to t'.

Theorem [Preservation]: Suppose t is a well-typed term under
context Γ (i.e. Γ ⊢ p : T). Then, if t evaluates to t’, t’is also a well-typed
term under context Γ, with the same type as t.

Theorem [Normalization]: Suppose t is a closed, well-typed term (i.e.
⊢ p : T). Then, t halts, that is there must exist some value v, such that
t evaluates to v.

System F Meta-theory
34

OTOH, the metatheory System F diverges from STLC in key ways
with respect to type inference:

⌈x⌉ = x
⌈λx∶T.M⌉ = λx.⌈M⌉
⌈M1 M2⌉ = ⌈M1⌉ ⌈M2⌉
⌈ΛX.t⌉ = ⌈t⌉
⌈t1 [T2]⌉ = ⌈t1⌉

Theorem [Type Inference is Undecidable]: Suppose m is a closed term in the
untyped lambda calculus. Then it is undecidable if there exists some well-typed
term system F term, t , such that ⌈t ⌉ = m.

