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Types
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- Identify key concepts in type systems:
- Type systems as inductive relations 
- Type safety
-

Today



Ill-Typed Imp+
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- Let’s weaken IMP’s expression language slightly:
e  ::= B | N | e * e | e + e 
     | true | false | ¬ e | e ⋀ e
     | Id | e = e | e < e | e ? e : e

- Looks good, we can now write (and evaluate): 
 x * ((y > 3) ? 3 : y)

- But we can also write: 
 x * ((3 + (6 ⋀ 5)) ? 3 : y)

- How do we evaluate this?  What’s the problem?



Bad Behaviors
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- What constitutes a “bad” expression in our IMP variant?
   * One that adds two booleans:  true + 3  ⟶ ?
   * One with a non-boolean conditional:  3 ? x : y ⟶ ?
   * A use of an unassigned variable:  x + y  ⟶ ?

- What about Coq?
   * Bad pattern match discriminees: match 0 with  [ ] -> …
   * Function applied to wrong argument types:  plus 9 minus
   * Application of non-function:   9 minus

What about other languages?
Badness is 

language 
specific!



Static Semantics
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=

A recipe for defining a language:

1.Syntax: 
- What are the valid expressions?

2.Semantics (Dynamic Semantics): 
- How do I evaluate valid expressions? 

3.Sanity Checks (Static Semantics): 
- What expressions are “good”, i.e have 

meaningful evaluations?

Type systems identify a subset of good 
expressions
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Typing Imp+
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A recipe for type systems:
1. Define bad programs 
2. Define typing rules for classifying programs
3.Show that the type system is sound, i.e. that it only identifies 
good programs



Typing Imp+
7

A recipe for type systems:
1. Define bad programs 
2. Define typing rules for classifying programs
3.Show that the type system is sound, i.e. that it only identifies 
good programs



Typing Imp+
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- First step is to define badness: 
- Needs to be broad, program-independent properties
- Some user-provided specification is okay (type annotations)

  - What are bad Imp expressions? 
3 ? true : 4 

true + 3

 x * ((y > 3) ? 3 : y)

- Those that evaluate to a stuck expression:  a normal form that 
isn’t a value



Typing Imp+
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- First step is to define badness: 
  - Needs to be broad, program-independent properties
  - Some user-provided specification is okay (type    
    annotations)

  - What are bad Imp expressions? 
3 ? true : 4 

true + 3

 x * ((y > 3) ? 3 : y)

  - Those that evaluate to a stuck expression:  a normal form that 
isn’t a value

“Well-typed programs 

cannot go wrong”

A Theory of Type Polymorphism in 

Programming (Milner 78)



Typing Imp+
10

A recipe for type systems:
1. Define bad programs 
2. Define typing rules for classifying programs
3.Show that the type system is sound, i.e. that it only identifies 
good programs



Typing Rules
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n ∈ N
 ⊢ n : nat TNUM

 ⊢ e1 + e2: nat

 ⊢ e1 : nat     ⊢ e2 : nat
TADD

Next, define a classifier for good, well-formed programs:

⊢ e : T

Goal is to classify good uses of each type of expression:

 ⊢ e1 * e2: nat

 ⊢ e1 : nat     ⊢ e2 : nat
TMULT

⊢ x: nat
TVAR



Typing Rules
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 ⊢ true : bool TTRUE

Goal is to classify good uses of each type of expression:

 ⊢ false : bool TFALSE

 ⊢ ¬ e: bool

 ⊢ e : bool
TNOT

 ⊢ e1 ⋀ e2: bool

 ⊢ e1 : bool   ⊢ e2 : bool
TAND



Typing Rules
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 ⊢ e1 < e2: bool

 ⊢ e1 : nat     ⊢ e2 : nat
TLE

Goal is to classify good uses of each type of expression:

 ⊢ e1 = e2: bool

 ⊢ e1 : T     ⊢ e2 : T TEQ

 ⊢ e1 ? e2 : e3 : T

 ⊢ e1 : bool     ⊢ e2 : T      ⊢ e3 : T TCOND



Typing Rules
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Goal is to classify good uses of each type of expression:

3 ? true : 4 

true + 3

⊢ x + ((y > 3) ? true : y)

 ⊢ e1 ? e2 : e3 : T

 ⊢ e1 : bool     ⊢ e2 : T      ⊢ e3 : T TCOND

 ⊢ e1 + e2: nat

 ⊢ e1 : nat     ⊢ e2 : nat
TADD



Typing Imp+
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A recipe for type systems:
1. Define bad programs 
2. Define a typing rules for classifying programs
3.Show that the type system is sound, i.e. that it 
only identifies good programs



Type Safety
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- When is a type system correct?
★ Need to show this classification is 

sound. i.e. no false positives:

 ⊢ e : T   →   ~ e is bad!
- If the a language’s type system is 

sound, it is said to be type-safe. 

- Soundness relates provable claims to 
semantic property
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Progress
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Theorem [PROGRESS]: Suppose e is a well-typed expression               
(⊢e:T). Then either e is a value or there exists some  e' such that e 
evaluates to e' (σ, e ⟶ e').

  Values:

 value true TVALUE

n ∈ N
 value n

NUMVALUE =p
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Preservation
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★ Theorem [PRESERVATION]: Suppose e is a well-typed term (⊢ e : T). 
Then, if e evaluates to e', e' is also a well-typed term under the empty 
context, with the same type as e (⊢ e' : T).
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Type Soundness
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Theorem [Type Soundness]: If an expression e has type T, and e 
reduces to e' in zero or more steps, then e' is not a stuck term.

Proof.
By induction on σ, e ⟶* e'…

Qed.
★ Corollary [Normalization]: If an expression e has type T, e 

reduces to a value in zero or more steps. 



Example
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 ⊢ e1 + e2: nat

 ⊢ e1 : bool     ⊢ e2 : nat
TBADD



Example
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0 ? e1 : e2 ⟶ e1



Example
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0 ? e1 : e2 ⟶ e1

 ⊢ e1 ? e2 : e3 : T

 ⊢ e1 : nat     ⊢ e2 : T      ⊢ e3 : T TCOND2



Recap
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- Type systems classify semantically meaningful expressions
- Our recipe for defining a type system
 1. Define bad states (irreducible, non-value expressions )
 2. Define a typing judgement and rules classifying good 
expressions   (⊢ e : T)
 3. Show that the type system is sound, i.e. that good expressions 
don’t reduce to bad states



The Limitations of F1 (simply-typed λ-calculus)
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 In F1 each function works exactly for one type
 Example: the identity function

 id = λx:τ. x : τ → τ
 We need to write one version for each type
 Even more important:   sort : (τ → τ → bool) → τ array → unit

 The various sorting functions differ only in typing
 At runtime they perform exactly the same operations
 We need different versions only to keep the type checker happy

 Two alternatives:
 Circumvent the type system (see C, Java, ...), or
 Use a more flexible type system that lets us write only one sorting function



Polymorphism
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 Informal definition
    A function is polymorphic if it can be applied to “many” types of 

arguments
 Various kinds of polymorphism depending on the definition of “many”

 subtype (or bounded) polymorphism
“many” = all subtypes of a given type

 ad-hoc polymorphism
“many” = depends on the function
choose behavior at runtime (depending on types, e.g. sizeof)

 parametric predicative polymorphism
“many” = all monomorphic types

 parametric impredicative polymorphism
“many” = all types



System F
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The fundamental problem addressed by a type theory is to insure that 
programs have meaning. The fundamental problem caused by a type 
theory is that meaningful programs may not have meanings ascribed 
to them. The quest for richer type systems results from this tension. 

—Mark Manasse.
- System F is a calculus in which polymorphic functions can be written. 

- Name was coined by Jean-Yves Girad, was originally a logic
- A “core” calculus for parametric polymorphism.

- Used to formalize module systems, approaches to data abstraction
- Enough for type safe ‘pure’ OO programming (w/o inheritance)



System F
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Here is the syntax , with new bits highlighted.

t ::=  x | λx:T.t | t t 
     | ΛX.t 
     | t [T]

v ::=  λx:T.t | ΛX.t

T ::=  T → T 
     | ∀X.T 
     | X

Type variables have a different interpretation than before. 

⇐ Type Abstraction
⇐ Type Application

⇐ Universal Type
⇐ Type Variable



Examples
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 Examples:
 id = ΛX.λx:X. x             :    ∀X.X → X

 id[int] = λx:int. x           :     int → int
 id[bool] = λx:bool. x     :     bool → bool
 “id 5” is invalid. Use “id [int] 5” instead 

 double = ΛX. λf:X→X. f (f x)
 polyf = λf:( ∀X.X→X). (f [int] 1, f  [bool] True)

          polyf id



System F
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Here are the new bits of the operational semantics

e1 e2 ⟶ e1' e2

e1 ⟶ e1'
EAPP1 v e2 ⟶ v e2'

e2 ⟶ e2'
EAPP2

(λx:T.e) v ⟶ e1 [x ↦ v] 
EAPPABS

(ΛX.e1) [T] ⟶ e1 [X ≔ T] 
ETAPPTABS

e1 [T2] ⟶ e1' [T2]
e1 ⟶ e1'

ETAPP



System F
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Here are the new bits of the typing rules

Γ, [x ↦ T1] ⊢ t : T2

Γ ⊢ λx:T1.t : T1→T2
TABS

Γ(x) = T
Γ ⊢ x : T TVAR

Γ ⊢ t1 : T1→T2       Γ ⊢ t2 : T1

Γ ⊢ t1 t2 : T2
TAPP

Γ ⊢ t1 : ∀X.T2

Γ ⊢ t1 [T1] : T2[X ≔ T1]
TTAPP

Γ, X ⊢ t : T2

Γ ⊢ ΛX.t : ∀X.T2
TTABS



Observations
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- Based on the type of a term we can prove properties of that term

- There is only one value of type ∀X.X  → X

       The polymorphic identity function
- There is no value of type ∀X.X

- Take the function: reverse : ∀X. X List → t List

    * This function cannot inspect the elements of the list
    * It can only produce a permutation of the original list
    * If L1 and L2 have the same length and let “match” be a function 
that compares two 
         lists element-wise according to an arbitrary predicate then 
         “match L1 L2”   ≡ “match (reverse L1) (reverse L2)” !



Encoding Base Types in F2
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 Booleans
 bool = ∀X.X → X → X  (given any two things, select one)
 There are exactly two values of this type !

 true = ΛX. λx:X.λy:t. X
 false = ΛX. λx:X.λy:t. X

 not = λb:bool. ΛX.λx:X.λy:X. b [X] y x
 Naturals

 nat = ∀X. (X → X) → X → X (given a successor and zero element 
compute a natural number)

 0 = ΛX. λx:X → X.  λz:X. z
 succ(e) = ΛX. λs:X → X. λz:X. s (e [X] s z)
 add = λn:nat. λm:nat. ΛX. λs:X → X. λz:X. n [X] s (m [X] s z)
 mul = λn:nat. λm:nat. ΛX. λs:X → X. λz:X. n [X] (m [X] s) z



System F Metatheory
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System F shares many of STLC’s meta-theoretic properties: 
Theorem [Progress]: Suppose t is a closed, well-typed term (i.e.     ⊢ 
p : T). Then either t is a value or there exists some t’ such that t 
evaluates to t'.

Theorem [Preservation]: Suppose t is a well-typed term under 
context Γ (i.e. Γ ⊢ p : T). Then, if t evaluates to t’, t’is also a well-typed 
term under context Γ, with the same type as t.

Theorem [Normalization]: Suppose t is a closed, well-typed term (i.e.  
⊢ p : T). Then, t halts,  that is there must exist some value v, such that 
t evaluates to v.



System F Meta-theory
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OTOH, the metatheory System F diverges from STLC in key ways 
with respect to type inference: 

⌈x⌉      = x
⌈λx∶T.M⌉ = λx.⌈M⌉
⌈M1 M2⌉   = ⌈M1⌉ ⌈M2⌉
⌈ΛX.t⌉   = ⌈t⌉
⌈t1 [T2]⌉   = ⌈t1⌉

Theorem [Type Inference is Undecidable]: Suppose m is a closed term in the 
untyped lambda calculus. Then it is undecidable if there exists some well-typed 
term system F term, t , such that ⌈t ⌉ = m.


