CS 565 Programming Languages (graduate) Spring 2024

Week 8

Type Systems

Today

- Identify key concepts in type systems:
- Type systems as inductive relations
- Type safety

Ill-Typed Imp+

- Let's weaken IMP's expression language slightly:

- Looks good, we can now write (and evaluate):

x * ((y > 3) ? 3 : y)

- But we can also write:

 $x * ((3 + (6 \land 5)) ? 3 : y)$

- How do we evaluate this? What's the problem?

Bad Behaviors

- What constitutes a "bad" expression in our IMP variant?
 - * One that adds two booleans: true + 3 \rightarrow ?
 - * One with a non-boolean conditional: 3 ? $x : y \rightarrow ?$
 - * A use of an unassigned variable: $x + y \rightarrow ?$
- What about Coq?
 - * Bad pattern match discriminees: match 0 with [] -> ... * Function applied to wrong argument types: plus 9 minus * Application of non-function: 9 minus

Badness is

language specific!

What about other languages?

Static Semantics

5

- A recipe for defining a language:
 - 1.Syntax:
 - What are the valid expressions?
 - 2.Semantics (Dynamic Semantics):
 - How do I evaluate valid expressions?
 - 3. Sanity Checks (Static Semantics):
 - What expressions are "good", i.e have meaningful evaluations?
- Type systems identify a subset of good expressions



A recipe for type systems:

- 1. Define bad programs
- 2. Define typing rules for classifying programs
- 3.Show that the type system is sound, i.e. that it only identifies good programs

Typing Imp⁺

A recipe for type systems:

1. Define bad programs

2. Define typing rules for classifying programs

3.Show that the type system is sound, i.e. that it only identifies good programs

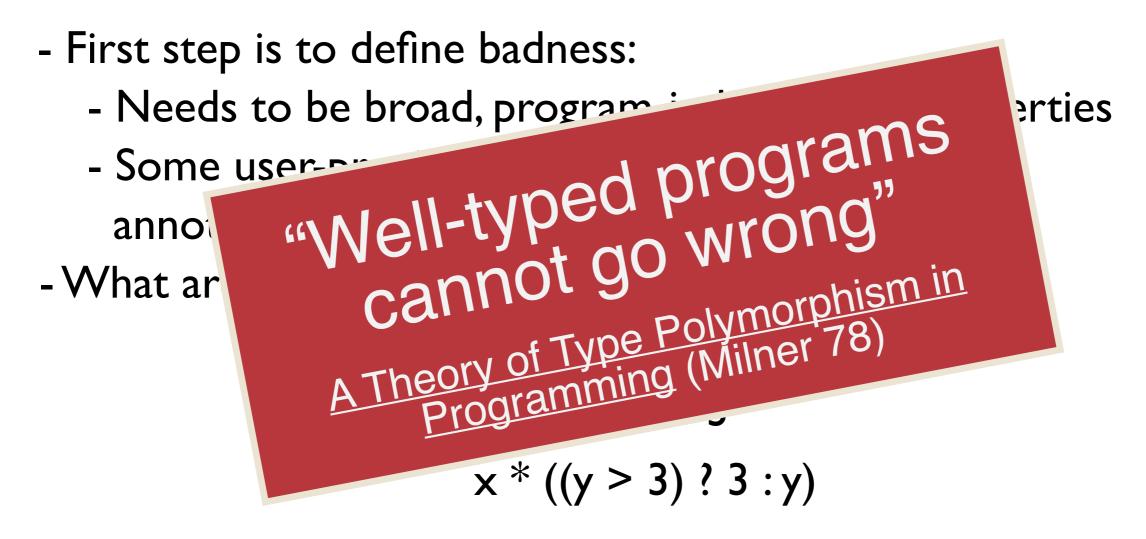
Typing Imp⁺

- First step is to define badness:
 - Needs to be broad, program-independent properties
 - Some user-provided specification is okay (type annotations)
- What are bad Imp expressions?

3 ? true : 4 true + 3 x * ((y > 3) ? 3 : y)

- Those that evaluate to a stuck expression: a normal form that isn't a value

Typing Imp⁺



- Those that evaluate to a stuck expression: a normal form that isn't a value

10

A recipe for type systems:

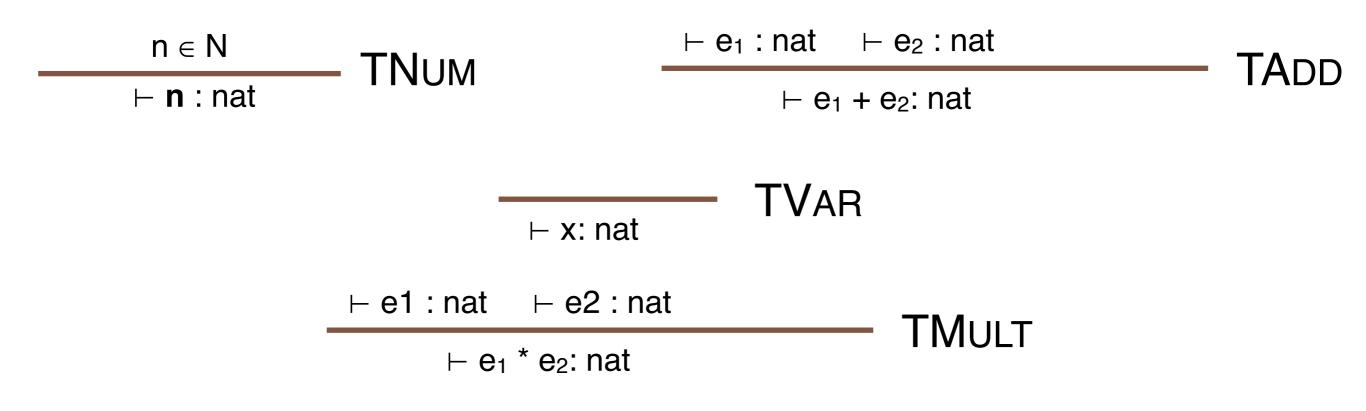
1. Define bad programs

2. Define typing rules for classifying programs

3.Show that the type system is sound, i.e. that it only identifies good programs

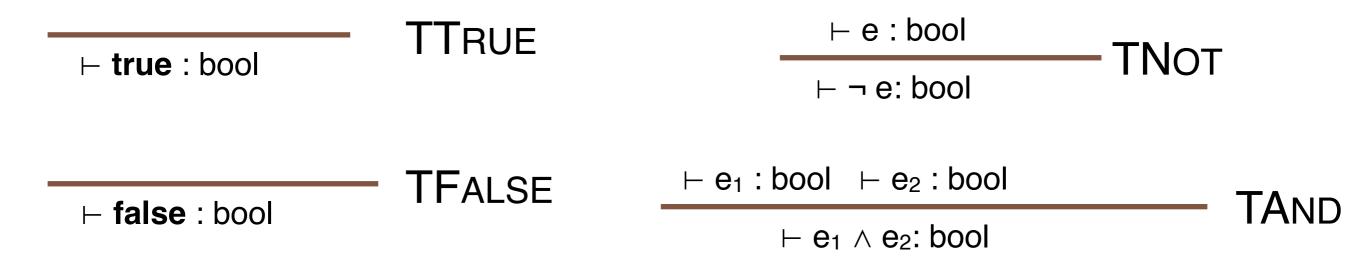
Next, define a classifier for good, well-formed programs: $\vdash e:T$

Goal is to classify good uses of each type of expression:



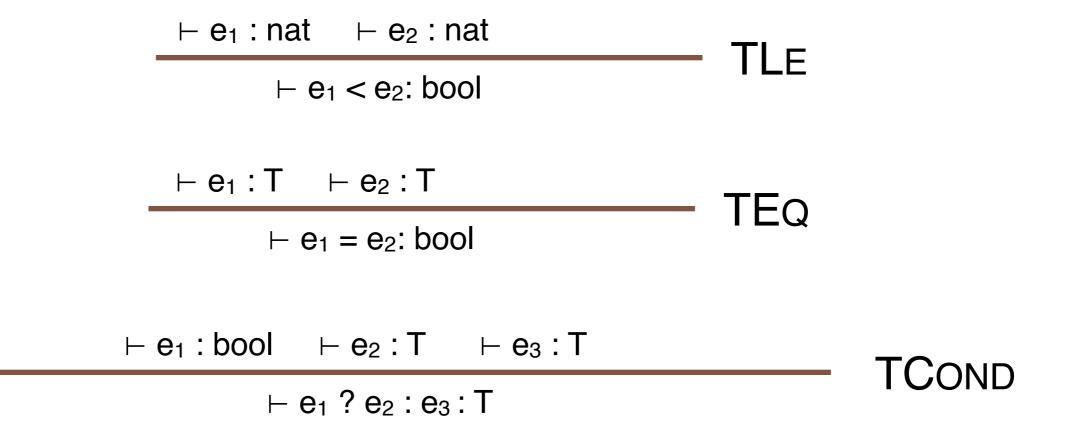
Typing Rules

Goal is to classify good uses of each type of expression:



13

Goal is to classify good uses of each type of expression:



Typing Rules

14

Goal is to classify good uses of each type of expression:

 $\vdash e_1$: bool $\vdash e_2$: T $\vdash e_3$: T TCOND $\vdash e_1 ? e_2 : e_3 : T$ $\vdash e_1$: nat $\vdash e_2$: nat TADD \vdash e₁ + e₂: nat 3 ? true : 4 true + 3 $\vdash x + ((y > 3) ? true : y)$

A recipe for type systems:

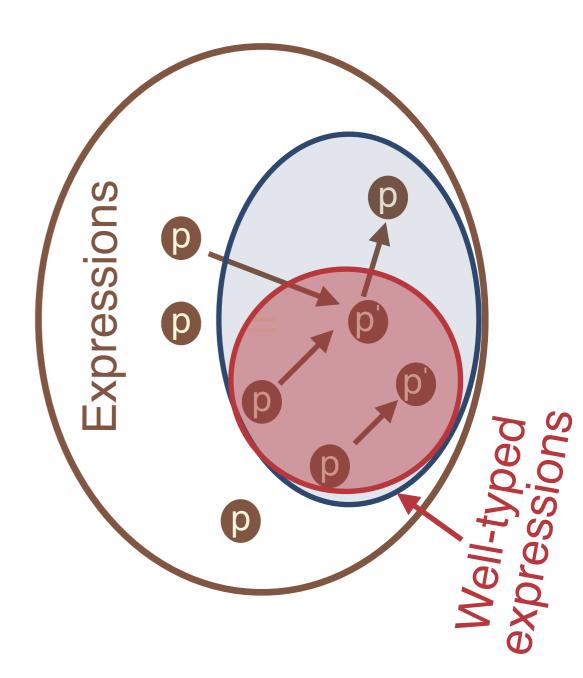
- 1. Define bad programs
- 2. Define a typing rules for classifying programs

3.Show that the type system is sound, i.e. that it only identifies good programs

Type Safety

16

- When is a type system correct?
 - Need to show this classification is sound. i.e. no false positives:
 - $\vdash e:T \rightarrow \sim e is bad!$
- If the a language's type system is sound, it is said to be type-safe.
- Soundness relates provable claims to semantic property

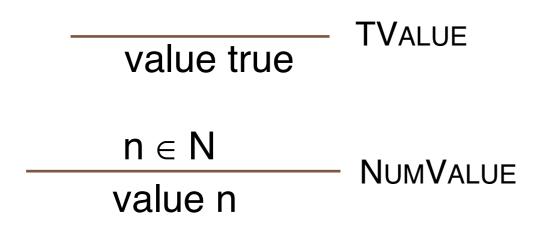


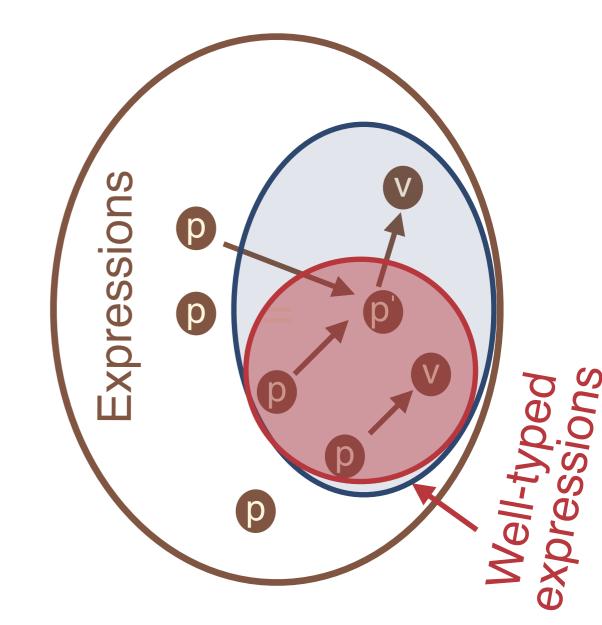
Progress

17

Theorem [PROGRESS]: Suppose e is a well-typed expression (\vdash e:T). Then either e is a value or there exists some e' such that e evaluates to e' (σ , e \rightarrow e').

Values:

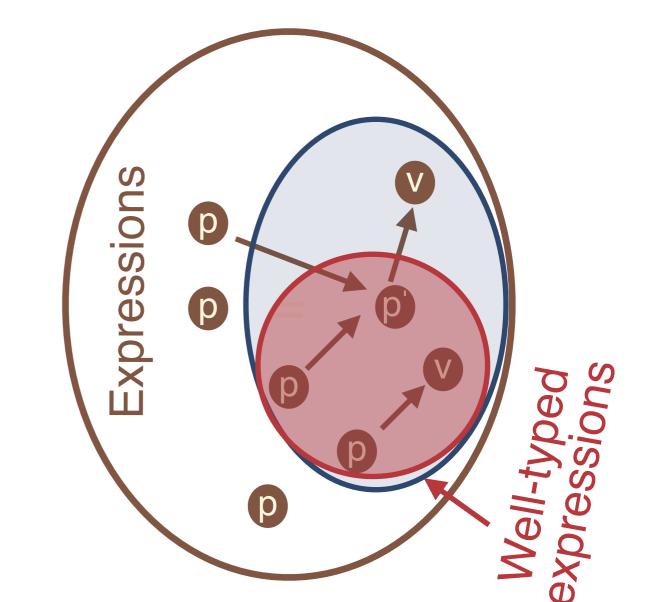




Preservation

18

* **Theorem** [PRESERVATION]: Suppose e is a well-typed term (\vdash e :T). Then, if e evaluates to e', e' is also a well-typed term under the empty context, with the same type as e (\vdash e' :T).



Theorem [Type Soundness]: If an expression e has type T, and e reduces to e' in zero or more steps, then e' is not a stuck term.

Proof.

By induction on σ , $e \longrightarrow^* e'$...

Qed.

 Corollary [Normalization]: If an expression e has type T, e reduces to a value in zero or more steps.

$0 ? e_1 : e_2 \longrightarrow e_1$

$$0 ? e_1 : e_2 \longrightarrow e_1$$

- Type systems classify semantically meaningful expressions
- Our recipe for defining a type system
 - I. Define bad states (irreducible, non-value expressions)
 - 2. Define a typing judgement and rules classifying good expressions $(\vdash e:T)$

3. Show that the type system is sound, i.e. that good expressions don't reduce to bad states

The Limitations of F1 (simply-typed λ -calculus)

- **24**
 - In F₁ each function works exactly for one type
 - Example: the identity function
 - id = $\lambda x: \tau \cdot \tau \rightarrow \tau$
 - We need to write one version for each type
 - Even more important: sort : $(\tau \rightarrow \tau \rightarrow bool) \rightarrow \tau$ array \rightarrow unit
 - The various sorting functions differ only in typing
 - At runtime they perform exactly the same operations
 - We need different versions only to keep the type checker happy
 - Two alternatives:
 - Circumvent the type system (see C, Java, ...), or
 - Use a more flexible type system that lets us write only one sorting function

Polymorphism

- 25
 - Informal definition

A function is polymorphic if it can be applied to "many" types of arguments

- Various kinds of polymorphism depending on the definition of "many"
 - subtype (or bounded) polymorphism

```
"many" = all subtypes of a given type
```

ad-hoc polymorphism

"many" = depends on the function

choose behavior at runtime (depending on types, e.g. sizeof)

parametric predicative polymorphism

"many" = all monomorphic types

parametric impredicative polymorphism

"many" = all types

System F

26

The fundamental problem addressed by a type theory is to insure that programs have meaning. The fundamental problem caused by a type theory is that meaningful programs may not have meanings ascribed to them. The quest for richer type systems results from this tension. —Mark Manasse.

- System F is a calculus in which polymorphic functions can be written.
 - Name was coined by Jean-Yves Girad, was originally a logic
- A "core" calculus for parametric polymorphism.
 - Used to formalize module systems, approaches to data abstraction
 - Enough for type safe 'pure' OO programming (w/o inheritance)

System F

27

Here is the syntax , with new bits highlighted.

- $t ::= x | \lambda x:T.t | t t$ | \Lapha X.t \Leftarrow Type Abstraction | t [T] \Leftarrow Type Application
- $v ::= \lambda x:T.t \mid \Lambda X.t$
- T ::= T → T $| \forall X.T \Leftarrow Universal Type$ $| X \Leftrightarrow Type Variable$

Type variables have a different interpretation than before.

Examples

- **28**
- Examples:
 - id = $\Lambda X.\lambda x:X.x$: $\forall X.X \rightarrow X$
 - $id[int] = \lambda x:int. x$: $int \rightarrow int$
 - id[bool] = λx :bool.x : bool → bool
 - "id 5" is invalid. Use "id [int] 5" instead
 - double = ΛX . λf : X → X. f (f x)
 - polyf = λf:(∀X.X→X). (f [int] I, f [bool] True) polyf id

29

Here are the new bits of the operational semantics

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} e_{1} \rightarrow e_{1}' \\ \hline e_{1} e_{2} \rightarrow e_{1}' e_{2} \end{array} & EAPP_{1} \end{array} & \begin{array}{c} \begin{array}{c} e_{2} \rightarrow e_{2}' \\ \hline V e_{2} \rightarrow V e_{2}' \end{array} & EAPP_{2} \end{array}$$

$$\begin{array}{c} \hline (\lambda x:T.e) \lor \rightarrow e_{1} \left[X \mapsto \lor \right] \end{array} & EAPPABS \end{array}$$

$$\begin{array}{c} \begin{array}{c} e_{1} \rightarrow e_{1}' \\ \hline e_{1} \left[T_{2} \right] \rightarrow e_{1}' \left[T_{2} \right] \end{array} & ETAPP \end{array}$$

$$\begin{array}{c} \hline (\Lambda X.e_{1}) \left[T \right] \rightarrow e_{1} \left[X \coloneqq T \right] \end{array} & ETAPPTABS \end{array}$$

30

Here are the new bits of the typing rules

$$\begin{array}{c} \hline{\Gamma, [X \mapsto T_{1}] \vdash t : T_{2}} \\ \hline{\Gamma \vdash \lambda x : T_{1}.t : T_{1} \rightarrow T_{2}} \\ \hline{\Gamma \vdash t_{1} : T_{1} \rightarrow T_{2}} \\ \hline{\Gamma \vdash t_{1} : T_{1} \rightarrow T_{2}} \\ \hline{\Gamma \vdash t_{1} : T_{2} : T_{2}} \\ \hline{\Gamma \vdash t_{1} : T_{2}} \\ \hline{\Gamma \vdash t_{1} : T_{2}} \\ \hline{\Gamma \vdash t_{1} : \forall X.T_{2}} \\ \hline{\Gamma \vdash t_{1} : \forall X.T_{2}} \\ \hline{\Gamma \vdash t_{1} : T_{2}[X := T_{1}]} \\ \end{array}$$

Observations

- Based on the type of a term we can prove properties of that term
- There is only one value of type $\forall X.X \rightarrow X$

The polymorphic identity function

- There is no value of type $\forall X.X$
- Take the function: reverse : $\forall X. X \text{ List} \rightarrow t \text{ List}$

*This function cannot inspect the elements of the list

* It can only produce a permutation of the original list

* If L1 and L2 have the same length and let "match" be a function that compares two

lists element-wise according to an arbitrary predicate then

"match L | L2" = "match (reverse L |) (reverse L2)" !

Encoding Base Types in F2

32

- Booleans
 - bool = $\forall X.X \rightarrow X \rightarrow X$ (given any two things, select one)
 - There are exactly two values of this type !
 - true = $\Lambda X. \lambda x: X. \lambda y: t. X$
 - false = $\Lambda X. \lambda x: X. \lambda y: t. X$
 - not = λb:bool. ΛΧ.λx:Χ.λy:Χ. b [X] y x
- Naturals
 - nat = ∀X. (X → X) → X → X (given a successor and zero element compute a natural number)
 - $0 = \Lambda X. \lambda x: X \rightarrow X. \lambda z: X. z$
 - succ(e) = ΛX . $\lambda s: X \rightarrow X$. $\lambda z: X$. s (e [X] s z)
 - add = λ n:nat. λ m:nat. ΛX . λ s: $X \rightarrow X$. λ z:X. n [X] s (m [X] s z)
 - mul = λ n:nat. λ m:nat. Λ X. λ s:X → X. λ z:X. n [X] (m [X] s) z

System F Metatheory

System F shares many of STLC's meta-theoretic properties: Theorem [Progress]: Suppose t is a closed, well-typed term (i.e. \vdash p :T). Then either t is a value or there exists some t' such that t evaluates to t'.

Theorem [Preservation]: Suppose t is a well-typed term under context Γ (i.e. $\Gamma \vdash p$:T). Then, if t evaluates to t', t'is also a well-typed term under context Γ , with the same type as t.

Theorem [Normalization]: Suppose t is a closed, well-typed term (i.e. $\vdash p$:T). Then, t halts, that is there must exist some value v, such that t evaluates to v.

System F Meta-theory

OTOH, the metatheory System F diverges from STLC in key ways with respect to type inference:

```
\begin{bmatrix} x \end{bmatrix} = x

\begin{bmatrix} \lambda x:T.M \end{bmatrix} = \lambda x. \begin{bmatrix} M \end{bmatrix}

\begin{bmatrix} MI M2 \end{bmatrix} = \begin{bmatrix} MI \end{bmatrix} \begin{bmatrix} M2 \end{bmatrix}

\begin{bmatrix} \Lambda X.t \end{bmatrix} = \begin{bmatrix} t \end{bmatrix}

\begin{bmatrix} tI \begin{bmatrix} T2 \end{bmatrix} = \begin{bmatrix} tI \end{bmatrix}
```

34

Theorem [Type Inference is Undecidable]: Suppose m is a closed term in the untyped lambda calculus. Then it is undecidable if there exists some well-typed term system F term, t, such that [t] = m.