CS 565

Programming Languages (graduate) Spring 2024

Week 5
Curry-Howard Correspondence, Induction Principles

Observation

Two ways of thinking about \rightarrow :

- As a type constructor:
$f: A \rightarrow B$ denotes the type of a function that transforms elements of A into elements of B
- As a logical implication:
$A \rightarrow B$ establishes the validity of proposition B given the validity of proposition A

How are these notions related?

Observation

They are exactly the same!
Logical implication models the type of functions that transforms evidence (aka proofs):
$A \rightarrow B$ represents the type of all functions that given evidence for the validity of A, returns a proof (aka evidence) for the validity of B

Curry-Howard Isomorphism

Propositions ~ Types
 Proofs ~ Values

- a proof is a program and its type is the proposition it proves
- the return type of a function is a theorem whose validity is established by the types of its arguments

Propositions

Inductive ev : nat \rightarrow Prop :=
| ev_0 : ev 0

```
    ev_SS (n : nat) (H : ev n) : ev (S (S n))
```

Read ":" to mean "proof of"
The type of ev_SS is:

$$
\forall \mathrm{n} . \quad \mathrm{ev} \mathrm{n} \rightarrow \text { ev }(\mathrm{S}(\mathrm{~S} \mathrm{n}))
$$

What is an element that inhabits ev 4 ?
It is the proof object (proof tree): ev_SS 2 (ev_SS 0 ev_0)

This object is built via the following proof script:

$$
\begin{aligned}
& \text { apply ev_SS. } \\
& \text { apply ev_SS. } \\
& \text { apply ev_0. }
\end{aligned}
$$

Alternatively

6

Theorem ev_plus4: $\forall \mathrm{n}$, ev $\mathrm{n} \rightarrow \mathrm{ev}(4+\mathrm{n})$. Proof.
intros n H.
simpl.
apply ev_SS. apply ev_SS. apply H.
Qed.
Here is an object that has this type:

```
Definition ev_plus4' : }\forall\textrm{n},\textrm{ev n}->\mathrm{ ev (4 + n) :=
    fun (n : nat) => fun (H : ev n) =>
    ev_SS (S (S n)) (ev_SS n H).
```

Also:

Definition ev_plus4', (n : nat) (H : ev n) : ev (4 + n) := ev_SS (S (S n)) (ev_SS n H).

Observation

- Quantification allows us to refer to the value of an argument in the type of another:

$$
\forall \mathrm{n}, \mathrm{ev} \mathrm{n} \rightarrow \mathrm{ev}(4+\mathrm{n})
$$

- Implication is essentially a degenerate form of quantification:

```
| (x: nat), nat
\forall (_: nat), nat
nat }->\mathrm{ nat
```

$\forall\left(Z_{-} P\right), Q$ is the same as
$\mathrm{P} \rightarrow \mathrm{Q}$

Equality

```
Inductive eq {X:Type} : X -> X -> Prop :=
    | eq_refl : }\forall\textrm{x}, eq x x
```

Given a set X, define a family of propositions that characterize what it means for two elements x and y to be equal.

The only evidence for equality is when two elements are "semantically" identical.

- semantic equivalence means convertibility of terms according to a set of meaning-preserving computation rules.

LoOicol Connectives

Inductive and (P Q : Prop) : Prop := | conj: P-> $Q \rightarrow$ and P.

Inductive or (P Q : Prop) : Prop :=
or_introl : $P->$ or $P Q$
or_intror : $\mathrm{Q} \rightarrow$ or P Q.

This is a form of product type, defined over propositions (cf. prod in Poly.v)

This is a form of sum type, defined over propositions

Induction Principles

```
Inductive nat :
|
S (n : nat).
```

Inductive time :
day
night.

```
Check nat_ind :
    forall P : nat -> Prop,
        P O ->
        (forall n : nat, P n -> P (S n)) ->
        forall n : nat, P n.
```

 Check time_ind :
 forall P : time -> Prop,
 P day ->
 P night ->
 forall \(t\) : time, \(P\) t.
 More generally, for a type with n constructors, an induction principle of the following shape is generated:

```
t_ind : forall P : t -> Prop,
    ... case for c1 ... ->
    ... case for c2 ... -> ...
    ... case for cn ... ->
    forall n : t, P n
```


Polymorphism

```
Inductive list (X:Type) : Type :=
| nil : list X
cons : X -> list X -> list X.
```

```
list_ind :
    forall (X : Type) (P : list X -> Prop),
        P [] ->
        (forall (x : X) (l : list X), P l -> P (x :: l)) ->
    forall l : list X, P l
```

list_ind is a polymorphic function parameterized over type X

Induction Principles for Propositions

```
Inductive ev : nat -> Prop :=
    | ev_0 : ev 0
    ev_SS : forall n : nat, ev n -> ev (S (S n)))
```

Check ev_ind :
forall P : nat -> Prop, P 0 ->
(forall n : nat, ev $n ~->P n->P(S ~(S n)))$->
forall n : nat, ev n $->$ P .

