
Week 5
 Curry-Howard Correspondence,

Induction Principles

Programming Languages (graduate)
Spring 2024

CS 565

Observation
2

Two ways of thinking about :

- As a type constructor:
 f: A B denotes the type of a function that
 transforms elements of A into elements of B

- As a logical implication:
 A B establishes the validity of proposition B
 given the validity of proposition A

How are these notions related?

→

→

→

Observation
3

They are exactly the same!

Logical implication models the type of functions
that transforms evidence (aka proofs):

A B represents the type of all functions that given
evidence for the validity of A, returns a proof (aka
evidence) for the validity of B

→

Curry-Howard Isomorphism
4

Propositions Types
Proofs Values

∼
∼

- a proof is a program and its type is the proposition it proves
- the return type of a function is a theorem whose validity is established

 by the types of its arguments

Propositions
5

Inductive ev : nat Prop :=
| ev_0 : ev 0
| ev_SS (n : nat) (H : ev n) : ev (S (S n))

→

Read “:” to mean “proof of”

The type of ev_SS is:

n. ev n ev (S (S n))∀ →

What is an element that inhabits ev 4?

It is the proof object (proof tree):
ev_SS 2 (ev_SS 0 ev_0)

This object is built via
the following proof script:
 apply ev_SS.
 apply ev_SS.
 apply ev_0.

Alternatively
6

Theorem ev_plus4: n, ev n ev (4 + n).
Proof.
 intros n H.
 simpl.
 apply ev_SS. apply ev_SS. apply H.
Qed.

∀ →

Here is an object that has this type:
Definition ev_plus4’ : n, ev n ev (4 + n) :=
 fun (n : nat) => fun (H : ev n) =>
 ev_SS (S (S n)) (ev_SS n H).

∀ →

Also:

Definition ev_plus4’’ (n : nat) (H : ev n) : ev (4 + n) :=
 ev_SS (S (S n)) (ev_SS n H).

Observation
7

- Quantification allows us to refer to the value
of an argument in the type of another:

- Implication is essentially a degenerate form of
quantification:

 (x: nat), nat
 (_: nat), nat
 nat nat

∀
∀

→

n, ev n ev (4 + n)∀ →

 (_ : P), Q is the same as
P Q

∀
→

Equality
8

Inductive eq {X:Type} : X -> X -> Prop :=
 | eq_refl : x, eq x x.∀

Given a set X, define a family of propositions that characterize
what it means for two elements x and y to be equal.

The only evidence for equality is when two elements are
“semantically” identical.
 - semantic equivalence means convertibility of terms according
to a set of meaning-preserving computation rules.

Logical Connectives
9

Inductive and (P Q : Prop) : Prop :=
 | conj : P -> Q -> and P Q.

Inductive or (P Q : Prop) : Prop :=
 | or_introl : P -> or P Q
 | or_intror : Q -> or P Q.

This is a form of product type, defined
over propositions (cf. prod in Poly.v)

This is a form of sum type, defined
over propositions

Induction Principles
10

Inductive nat :
| 0
| S (n : nat).

Check nat_ind :
 forall P : nat -> Prop,
 P 0 ->
 (forall n : nat, P n -> P (S n)) ->
 forall n : nat, P n.

More generally, for a type with n constructors, an induction principle of the following
shape is generated:

 t_ind : forall P : t -> Prop,
 ... case for c1 ... ->

 ... case for c2 ... -> ...
 ... case for cn ... ->

 forall n : t, P n

Check time_ind :
 forall P : time -> Prop,
 P day ->
 P night ->
 forall t : time, P t.

Inductive time :
| day
| night.

Polymorphism
11

 Inductive list (X:Type) : Type :=
 | nil : list X
 | cons : X -> list X -> list X.

 list_ind :
 forall (X : Type) (P : list X -> Prop),
 P [] ->
 (forall (x : X) (l : list X), P l -> P (x :: l)) ->
 forall l : list X, P l

list_ind is a polymorphic function parameterized
over type X

Induction Principles for Propositions
12

Inductive ev : nat -> Prop :=
 | ev_0 : ev 0
 | ev_SS : forall n : nat, ev n -> ev (S (S n)))

Check ev_ind :
 forall P : nat -> Prop,
 P 0 ->
 (forall n : nat, ev n -> P n -> P (S (S n))) ->
 forall n : nat, ev n -> P n.

