
Course Review

CS 565
Programming Languages (graduate)

Spring 2024

Week 14

FUNCTIONAL
PROGRAMMING

Algebraic Data Types
- Enumerated types are the simplest data types in Coq
- Type annotations can be inferred here
- Constructors describe how to introduce a value of a type

3

Inductive bool :=
| true
| false.

Inductive weekdays :=
 | monday | tuesday | wednesday | thursday
 | friday : weekdays.

Pattern Matching
- Pattern matching lets a program use values of a type
- Coq only permits total functions
 - A total function is defined on all values in its domain

4

Definition negb (b : bool) : bool :=
 match b with
 | true => false
 | false => true
 end.

Eval compute in (negb true). (* = false *)

Total Maps
Standard operations: higher-order functions:

5

Definition total_map : Type := string -> nat.
Definition lookup (m : map) (x : string) : nat := m x.
Definition empty : map := fun x => 0.
Definition update (m : map) (x : string) (v : nat) : map :=
 fun y => if (eqb_string x y) then v else m y.

Definition example : map := update (update empty “x” 1) “y” 2.

Definition m : map :=
update (update (fun y => 42) “x” 7) “z” 10.

What is the behavior of m?

Generic Lists
Coq supports type abstraction in data type declarations via
type parameters:

list is a function from types to types:

6

Inductive list (X : Type) : Type :=
| nil
| cons (x : X) (l : list X).

Check list. (* : Type -> Type *)

INDUCTION

Tree Induction

Mathematical Induction for Binary Trees:
For any predicate Q on binary trees, if:

1. Q(leaf)
2. Q(t1) and Q(t2) implies Q(node n t1 t2)

Then:
 for all t, Q(t) holds.

Works for trees too:
8

Lists
9

Inductive list {X : Type} : Type :=
| nil
| cons (x : X) (l : list).

Mathematical Induction for Lists:
For any predicate Q on lists, if:

1. Q(nil)
2. Q(l) implies Q(cons x l)

Then:
 for all l, Q(l) holds.

a list constructed by adding x
to the head of l

PROPOSITIONS,
DEPENDENT TYPES, AND
CONSTRUCTIVE PROOFS

Propositions
11

A proposition is a factual claim.
Have seen a couple of propositions (in Coq) so far:
equalities: 0 + n = n
implications: P -> Q
universally quantified propositions: forall x, P

A proof is some evidence for the truth of a proposition
A proof system is a formalization of particular kinds of
evidence.

Propositions
Propositions are first-class entities in Coq. Can name them:

We can also write parameterized propositions
(predicates)

12

Definition plus_claim : Prop := 2 + 2 = 4.
Theorem ProofExample : plus_claim.
Proof.
… (* unfold plus_claim*)

Definition is_three (n : nat) : Prop := n = 3.
Theorem ProofExample2 : is_three 3.
Proof.
… (* unfold is_three *)

Γ, A ⊢ B
Γ ⊢A → B

I→

Γ⊢A → B Γ⊢A
Γ ⊢B

E→

Inference Rules
13

Inference Rules

Proof systems construct evidence of judgements via
inference rules:

Γ⊢T

Axioms

Γ ⊢A
A ∈ Γ

Proof

Haven’t we already seen a number of proofs?

What is a proof?
A proof tree in the Calculus of co-Inductive Constructions.

14

Theorem ProofExample
 : forall n m : nat, n = 0 -> m = 0 -> n + m = 0.
Proof.
 intros n m Hn Hm.
 rewrite Hn. rewrite Hm.
 reflexivity.

proofscript

formal
^

Propositions
15

Inductive ev : nat Prop :=
| ev_0 : ev 0
| ev_SS (n : nat) (H : ev n) : ev (S (S n))

→

Read “:” to mean “proof of”

The type of ev_SS is:

n. ev n ev (S (S n))∀ →

What is an element that inhabits ev 4?

It is the proof object (proof tree):
ev_SS 2 (ev_SS 0 ev_0)

This object is built via
the following proof script:
 apply ev_SS.
 apply ev_SS.
 apply ev_0.

Alternatively
16

Theorem ev_plus4: n, ev n ev (4 + n).
Proof.
 intros n H.
 simpl.
 apply ev_SS. apply ev_SS. apply H.
Qed.

∀ →

Here is an object that has this type:
Definition ev_plus4’ : n, ev n ev (4 + n) :=
 fun (n : nat) => fun (H : ev n) =>
 ev_SS (S (S n)) (ev_SS n H).

∀ →

Also:

Definition ev_plus4’’ (n : nat) (H : ev n) : ev (4 + n) :=
 ev_SS (S (S n)) (ev_SS n H).

Observation
17

- Quantification allows us to refer to the value
of an argument in the type of another:

- Implication is essentially a degenerate form of
quantification:

 (x: nat), nat
 (_: nat), nat
 nat nat

∀
∀

→

n, ev n ev (4 + n)∀ →

 (_ : P), Q is the same as
P Q

∀
→

Induction Principles
18

Inductive nat :
| 0
| S (n : nat).

Check nat_ind :
 forall P : nat -> Prop,
 P 0 ->
 (forall n : nat, P n -> P (S n)) ->
 forall n : nat, P n.

More generally, for a type with n constructors, an induction principle of the following
shape is generated:

 t_ind : forall P : t -> Prop,
 ... case for c1 ... ->

 ... case for c2 ... -> ...
 ... case for cn ... ->

 forall n : t, P n

Check time_ind :
 forall P : time -> Prop,
 P day ->
 P night ->
 forall t : time, P t.

Inductive time :
| day
| night.

BIGSTEP AND SMALLSTEP
SEMANTICS

- Binary relation on pairs of syntax and values
- Read ‘⇓’ as ‘evaluates to’
- Specifies what values program can map to

 - Good for whole program reasoning
 - Compiler Correctness; program equivalence;

 - Bad for talking about intermediate states
 - Concurrent programs; errors

Big-Step Semantics
20

ValuesSyntax 5-2+3 ⇓ 6

 - Binary relation on pairs of expressions
 - Read ‘e1 ⟶e2’ as ‘reduces to’
 - Specifies single transition of abstract machine
 - Exposes intermediate states

Small-Step
21

Small-Step Termination
22

 - How to tell when we’re ‘done’ evaluating?
 - Define a class of syntactic values:

value C n
 Now we can talk about making progress
 Theorem [STRONG PROGRESS]:
For any term t, either t is a value or there exists a term t'
such that t ⟶ t'.

Normal Form
23

 A term e that isn’t reducible is in normal form.
 ¬ ∃ e'. e ⟶ e'

 How is this different from a value?
 Syntactic versus semantic.
 Do not need to coincide!

MultiStep Relation
24

We generically lift single-step to full execution as
the transitive, reflexive closure:

 e ⟶* e
REFL

 e1 ⟶* e3

 e1 ⟶* e2 e2 ⟶ e3 TRANS

So: (C 1)+((C 2) + (C 3))+((C 4)+(C 6))) ⟶* 16:

1+((2+3)+(4+6)) ⟶ 1+(5+(4+6)) ⟶ 1+(5+10)
⟶ 6+10 ⟶ 16

TYPE SYSTEMS

Typing Imp+
26

A recipe for type systems:
1. Define bad programs
2. Define typing rules for classifying programs
3.Show that the type system is sound, i.e. that it only identifies
good programs

Typing Rules
27

n ∈ N
 ⊢ n : nat TNUM

 ⊢ e1 + e2: nat

 ⊢ e1 : nat ⊢ e2 : nat
TADD

Next, define a classifier for good, well-formed programs:

⊢ e : T

Goal is to classify good uses of each type of expression:

 ⊢ e1 * e2: nat

 ⊢ e1 : nat ⊢ e2 : nat
TMULT

⊢ x: nat
TVAR

Progress
28

Theorem [PROGRESS]: Suppose e is a well-typed expression
(⊢e:T). Then either e is a value or there exists some e' such that e
evaluates to e' (σ, e ⟶ e').

 Values:

 value true TVALUE

n ∈ N
 value n

NUMVALUE =p

p

p

vp

pˈ

p
Ex

pr
es

si
on

s v

W
el

l-t
yp

ed
ex

pr
es

sio
ns

Preservation
29

★ Theorem [PRESERVATION]: Suppose e is a well-typed term (⊢ e : T).
Then, if e evaluates to e', e' is also a well-typed term under the empty
context, with the same type as e (⊢ e' : T).

=p

p

p

vp

pˈ

p
Ex

pr
es

si
on

s

W
el

l-t
yp

ed
ex

pr
es

sio
ns

v

Type Soundness
30

Theorem [Type Soundness]: If an expression e has type T, and e
reduces to e' in zero or more steps, then e' is not a stuck term.

Proof.
By induction on σ, e ⟶* e'…

Qed.
★ Corollary [Normalization]: If an expression e has type T, e

reduces to a value in zero or more steps.

Variance
Variance is a property on the arguments of type constructors like
function types (A →B), tuples (A𐄂B), and record types
F(A) is covariant over A if A <: A' implies that F(A) <: F(A')
F(B) is contravariant over B if B' <: B implies that F(B) <: F(B')
F(T) is invariant over T otherwise

31

T1 <: S1 S2 <: T2

S1 → S2 <: T1 → T2
SB-ARROW

S1 <: T1 S2 <: T2

S1 𐄂 S2 <: T1 𐄂 T2
SB-TUPLE

HOARE LOGIC

Hoare Triple
33

- Step 1B: Define a judgement for claims about
programs involving assertions

- Partial Correctness Triple:

{P} c {Q}

 then that final

state satisfies Q
If we start in

 a

state satisfying P And c
terminates
in a state,

Hoare Skip
34

{P} c {Q} ≡
∀σ. σ ⊧ P → ∀σˈ. σ, c ⇓ σˈ → σˈ ⊧ Q

Use our intuition about what we want to be able to
prove to guide definition of rules

Hoare Assign
35

⊢{[X≔a]Q} X:=a {Q}
HLASSIGN

{[X≔a]Q} X:=a {Q} ≡
∀σ. σ ⊧ [X≔a]Q →
 ∀σˈ. σ, X:=a ⇓ σˈ → σˈ ⊧ Q

Hoare Seq
36

⊢{P} c1; c2 {Q}
HLSEQ

⊢{P} c1 {R} ⊢{R} c2 {Q}

Hoare While?
37

⊢{Q} while b do c end {Q ⋀ ¬b}

⊢{Q ⋀ b} c {Q}

⊢{X < 3} while (X < 3) do X := X + 1 end {X = 3}

⊢{X < 4} while (X < 3) do X := X + 1 end {X < 4 ⋀
 ¬X < 3 }

⊢{X < 4 ⋀ X < 3} X := X + 1 {X < 4}

Hoare While
38

⊢{I} while b do c end {I ⋀ ¬b}

⊢{I ⋀ b} c {I}

I is a loop invariant:
- Holds before loop
- Holds after each loop iteration
- Holds when the loop exits

HLWHILE

Loop Invariants
39

Hoare Logic is a structural model-theoretic proof system
- Rules characterize a set of states consistent with the requirements
imposed by the pre- and post-conditions

- Highly mechanical: intermediate states can almost always be
automatically constructed

- One major exception:

⊢{I} while b do c end {I⋀¬b}
HLWHILE

⊢{I ⋀ b} c {I}

The invariant must:
 - be weak enough to be implied by the precondition
 - hold across each iteration
 - be strong enough to imply the postcondition

DAFNY

Decreases clause
41

function seqSum (s : seq<int>, lo : int, hi : int) : int
requires 0 <= lo <= hi <= |s|

{
if (lo == hi) then 0 else s[lo] + seqSum(s, lo+1, hi)

}

Dafny complains that it cannot prove the recursive call terminates -
it is unable to identify a termination metric that signals every
recursive call gets “smaller”

function seqSum (s : seq<int>, lo : int, hi : int) : int
requires 0 <= lo <= hi <= |s|

 decreases hi - lo
{

if (lo == hi) then 0 else s[lo] + seqSum(s, lo+1, hi)
}

What about using -lo as a decreases clause?

Proof Calculations
42

Adapted from slides of Bryan Parno

Constructive proofs that involve rewrites and simplification

calc {
 (x + y) * (x - y);
==
 (x * x) - (x * y) + (y * x) - (y * y);
==
 (x * x) - (x * y) + (x * y) - (y * y);
==
 (x * x) - (y * y);
}

Proof Calculations and Induction
43

lemma {:induction false} MirrorMirror<T>(t: Tree)
ensures mirror(mirror(t)) == t
{

match t
case Leaf(_) =>
case Node(left,right) =>

calc
{

mirror(mirror(Node(left,right)));
==
mirror(Node(mirror(right),mirror(left)));
==
Node(mirror(mirror(left)),mirror(mirror(right)));
== // IH

 { MirrorMirror(left); MirrorMirror(right); }
 Node(left, right);

}
}

Proofs by Contradiction
General shape:

lemma Lem(args)

 requires P(x)

 ensures Q(x)

 {

 if !Q(x) // property is false

 {

 assert !P(x) // contradiction: precondition is

 assert false // true and false

 }

 assert Q(x)

}

44

!Q -> (R /\ !R)
———————————————-
 Q

slide adapted from Albert Nymeyer

