CS 565

Programming Languages (graduate) Spring 2024

Week 14
Course Review

Functional

 Programming
Algebraic Data Types

- Enumerated types are the simplest data types in Coq
- Type annotations can be inferred here
- Constructors describe how to introduce a value of a type

Inductive bool :=
I true
I false.
Inductive weekdays :=
I monday I tuesday I wednesday I thursday I friday : weekdays.

Pattern Matching

- Pattern matching lets a program use values of a type
- Coq only permits total functions
- A total function is defined on all values in its domain

Definition negb (b : bool) : bool := match b with | true => false | false => true end.

Eval compute in (negb true). (${ }^{*}=$ false *)

Total Maps

Standard operations: higher-order functions:

```
Definition total_map : Type := string -> nat.
Definition lookup (m : map) (x : string) : nat := m x.
Definition empty : map := fun x => 0.
Definition update (m : map) (x : string) (v : nat) : map :=
    fun y => if (eqb_string x y) then v else m y.
```

 Definition example : map := update (update empty "x" 1) "y" 2.

What is the behavior of m ?

Definition m : map :=
update (update (fun $y=>42$) "x" 7) " z " 10 .

Generic Lists

6

Coq supports type abstraction in data type declarations via type parameters:

```
Inductive list (X : Type) : Type :=
    | nil
    I cons (x : X) (I : list X).
```


list is a function from types to types:
Check list. (*: Type -> Type *)

INDUCTION

Tree Induction

Works for trees too:

Mathematical Induction for Binary Trees:
For any predicate Q on binary trees, if:
I. Q (leaf)
2. $\mathrm{Q}\left(\mathrm{t}_{1}\right)$ and $\mathrm{Q}\left(\mathrm{t}_{2}\right)$ implies Q (node $\mathrm{n} \mathrm{t}_{1} \mathrm{t}_{2}$)

Then:
for all $\mathrm{t}, \mathrm{Q}(\mathrm{t})$ holds.

Lists

Inductive list $\{X$: Type $\}$: Type := I nil
 I cons (x : X) (I : list).

Mathematical Induction for Lists:

For any predicate Q on lists, if:
I. Q(nil)
2. $\mathrm{Q}(\mathrm{I})$ implies Q (cons $\times \mathbb{I}$)

Then:
for all I, Q(I) holds.
a list constructed by adding x to the head of I

PROPOSITIONS, DEPENDENT TYPES, AND CONSTRUCTIVE PROOFS

Propositions

A proposition is a factual claim. Have seen a couple of propositions (in Coq) so far:
equalities: $0+n=n$
implications: P -> Q
universally quantified propositions: forall x, P
A proof is some evidence for the truth of a proposition A proof system is a formalization of particular kinds of evidence.

Propositions

Propositions are first-class entities in Coq. Can name them:

```
Definition plus_claim : Prop := 2 + 2 = 4.
Theorem ProofExample : plus_claim.
Proof.
... (* unfold plus_claim*)
```

We can also write parameterized propositions (predicates)

Definition is_three ($\mathrm{n}: \mathrm{nat}$) : Prop := $\mathrm{n}=3$.
Theorem ProofExample2 : is_three 3.
Proof.
... (* unfold is_three *)

Inference Rules

Proof systems construct evidence of judgements via inference rules:

Axioms

$$
\overline{\Gamma \vdash T} \quad \frac{\mathrm{~A} \in \Gamma}{\Gamma \vdash A}
$$

Inference Rules

Proof

Haven't we already seen a number of proofs?

```
Theorem ProofExample
    : forall n m : nat, n=0 -> m = 0 -> n + m = 0.
Proof.
    intros n m Hn Hm.
    rewrite Hn. rewrite Hm.
    reflexivity.
```

formal
What is a \wedge Proof?
A proof tree in the Calculus of co-Inductive Constructions.

Droonosinions

Inductive ev : nat \rightarrow Prop :=
| ev_0 : ev 0

```
    ev_SS (n : nat) (H : ev n) : ev (S (S n))
```

Read ":" to mean "proof of"

The type of ev_SS is:

$$
\forall \mathrm{n} . \quad \mathrm{ev} \mathrm{n} \rightarrow \mathrm{ev}(\mathrm{~S}(\mathrm{~S} \mathrm{n}))
$$

What is an element that inhabits ev 4?

It is the proof object (proof tree): ev_SS 2 (ev_SS 0 ev_0)

This object is built via the following proof script:

$$
\begin{aligned}
& \text { apply ev_SS. } \\
& \text { apply ev_SS. } \\
& \text { apply ev_0. }
\end{aligned}
$$

Alternatively

16
Theorem ev_plus4: $\forall \mathrm{n}$, ev $\mathrm{n} \rightarrow \mathrm{ev}(4+\mathrm{n})$. Proof.
intros n H.
simpl.
apply ev_SS. apply ev_SS. apply H.
Qed.
Here is an object that has this type:

```
Definition ev_plus4' : }\forall\textrm{n},\textrm{ev n}->\mathrm{ ev (4 + n) :=
    fun (n : nat) => fun (H : ev n) =>
    ev_SS (S (S n)) (ev_SS n H).
```

Also:
Definition ev_plus4', (n : nat) (H : ev n) : ev ($4+\mathrm{n}$) := ev_SS (S (S n)) (ev_SS n H).

Observation

- Quantification allows us to refer to the value of an argument in the type of another:

$$
\forall \mathrm{n}, \mathrm{ev} \mathrm{n} \rightarrow \mathrm{ev}(4+\mathrm{n})
$$

- Implication is essentially a degenerate form of quantification:

```
| (x: nat), nat
\forall (_: nat), nat
nat }->\mathrm{ nat
```

$\forall\left(Z_{-} P\right), Q$ is the same as
$\mathrm{P} \rightarrow \mathrm{Q}$

Induction Principles

```
Inductive nat :
|
S (n : nat).
```

Inductive time :
day
night.

```
Check nat_ind :
    forall P : nat -> Prop,
        P O ->
        (forall n : nat, P n -> P (S n)) ->
        forall n : nat, P n.
```

 Check time_ind :
 forall P : time -> Prop,
 P day ->
 P night ->
 forall \(t\) : time, \(P\) t.
 More generally, for a type with n constructors, an induction principle of the following shape is generated:

```
t_ind : forall P : t -> Prop,
    ... case for c1 ... ->
    ... case for c2 ... -> ...
    ... case for cn ... ->
    forall n : t, P n
```


BIGSTEP AND SMALLSTEP SEMANTICS

Big-Step Semantics

- Binary relation on pairs of syntax and values
- Read ‘لl' as ‘evaluates to’
- Specifies what values program can map to

$$
\text { Syntax } \frac{5-2+3 \Downarrow 6}{}
$$

- Good for whole program reasoning
- Compiler Correctness; program equivalence;
- Bad for talking about intermediate states
- Concurrent programs; errors

Small-Step

- Binary relation on pairs of expressions
- Read 'e ${ }_{\mathrm{I}} \rightarrow \mathrm{e}_{2}$ ' as 'reduces to'
- Specifies single transition of abstract machine
- Exposes intermediate states

Small-Step Termination

- How to tell when we're 'done’ evaluating?
- Define a class of syntactic values:

value Cn

Now we can talk about making progress Theorem [STRONG Progress]:
For any term t, either t is a value or there exists a term t^{\prime} such that $\mathrm{t} \longrightarrow \mathrm{t}^{\prime}$.

Normal Form

A term e that isn't reducible is in normal form.

$$
\neg \exists e^{\prime} . \mathrm{e} \longrightarrow \mathrm{e}^{\prime}
$$

How is this different from a value?
Syntactic versus semantic.
Do not need to coincide!

MultiStep Relation

We generically lift single-step to full execution as the transitive, reflexive closure:

So: (C 1)+((C 2) + (C 3))+((C 4)+(C 6))) $\rightarrow{ }^{*} 16$:
$1+((2+3)+(4+6)) \rightarrow 1+(5+(4+6)) \rightarrow 1+(5+10)$
$\rightarrow 6+10 \rightarrow 16$

TYPE SYSTEMS

Typing Imp+

A recipe for type systems:

1. Define bad programs
2. Define typing rules for classifying programs
3. Show that the type system is sound, i.e. that it only identifies good programs

Next, define a classifier for good, well-formed programs:

$$
\vdash \text { e :T }
$$

Goal is to classify good uses of each type of expression:
$\frac{\mathrm{n} \in \mathrm{N}}{\vdash \mathrm{n}: \mathrm{nat}}$ TNUM

Progress

Theorem [PROGRESS]: Suppose e is a well-typed expression ($\vdash \mathrm{e}: \mathrm{T})$. Then either e is a value or there exists some e^{\prime} such that e evaluates to $e^{\prime}\left(\sigma, e \longrightarrow e^{\prime}\right)$.

Values:

Preservation

\star Theorem [PRESERVATION]: Suppose e is a well-typed term $(\vdash \mathrm{e}: \mathrm{T})$. Then, if e evaluates to e^{\prime}, e^{\prime} is also a well-typed term under the empty context, with the same type as e $\left(\vdash \mathrm{e}^{\prime}: \mathrm{T}\right)$.

Type Soundness

Theorem [Type Soundness]: If an expression e has type T, and e reduces to e^{\prime} in zero or more steps, then e^{\prime} is not a stuck term.
Proof.
By induction on $\sigma, \mathrm{e} \rightarrow$ * $\mathrm{e}^{\prime} .$. .

Qed.

* Corollary [Normalization]: If an expression e has type T, e reduces to a value in zero or more steps.

Variance

Variance is a property on the arguments of type constructors like function types $(A \rightarrow B)$, tuples $(A \times B)$, and record types
$F(A)$ is covariant over A if $A<A^{\prime}$ implies that $F(A)<: F\left(A^{\prime}\right)$ $F(B)$ is contravariant over B if $B^{\prime}<: B$ implies that $F(B)<: F\left(B^{\prime}\right)$ $\mathrm{F}(\mathrm{T})$ is invariant over T otherwise

$$
\begin{array}{cc}
\frac{S_{1}<: T_{1} \quad S_{2}<: T_{2}}{S_{1} \times S_{2}<: T_{1} \times T_{2}} & \text { SB-TUPLE } \\
\\
\begin{array}{c}
T_{1}<: S_{1} \quad S_{2}<: T_{2} \\
S_{1} \rightarrow S_{2}<: T_{1} \rightarrow T_{2}
\end{array} & \text { SB-ARROW }
\end{array}
$$

HOARE LOGIC

Hoare Triple

- Step IB: Define a judgement for claims about programs involving assertions
- Partial Correctness Triple:

$$
\{P\} \subset\{Q\}
$$

> And c
terminates
in a state,

Hoare Skip

Use our intuition about what we want to be able to prove to guide definition of rules

$$
\begin{aligned}
& \{P\} c\{Q\} \equiv \\
& \forall \sigma . \sigma \vDash P \rightarrow \forall \sigma^{\prime} . \sigma, c \sqrt{ } \sigma^{\prime} \rightarrow \sigma^{\prime} \vDash Q
\end{aligned}
$$

Hoare Assign

$$
\begin{aligned}
& \{X:=a] Q\} X=a\{Q\} \equiv \\
& \forall \sigma . \sigma \vDash[X:=a] Q \rightarrow \\
& \forall \sigma^{\prime} \cdot \sigma, X=a \| \sigma^{\prime} \rightarrow \sigma^{\prime}=Q
\end{aligned}
$$

$$
\stackrel{-\{[X:=a] Q\} X=a\{Q\}}{ }
$$

HLAssign

Hoare Seq

$$
\frac{\vdash\{\mathrm{P}\} \mathrm{C}_{1}\{\mathrm{R}\} \vdash\{\mathrm{R}\} \mathrm{C}_{2}\{\mathrm{Q}\}}{\vdash\{\mathrm{P}\} \mathrm{C}_{1} ; \mathrm{C}_{2}\{\mathrm{Q}\}}
$$

HLSeq

Hoare While?

$$
\vdash\{X<4 \wedge X<3\} X:=X+1\{X<4\}
$$

$\vdash\{X<4\}$ while $(X<3)$ do $X:=X+1$ end $\{X<4 \wedge$

$$
7 x<3\}
$$

$\vdash\{X<3\}$ while $(X<3)$ do $X:=X+1$ end $\{X=3\}$

$$
\vdash\{Q \wedge b\} c\{Q\}
$$

$\vdash\{\mathrm{Q}\}$ while b do c end $\{\mathrm{Q} \wedge \neg \mathrm{b}\}$

Hoare While

I is a loop invariant:

- Holds before loop
- Holds after each loop iteration
- Holds when the loop exits

$$
\vdash\{I \wedge b\} c\{I\}
$$

$\vdash\{I\}$ while b do c end $\{I \wedge \neg b\}$

Loop Invariants

Hoare Logic is a structural model-theoretic proof system

- Rules characterize a set of states consistent with the requirements imposed by the pre- and post-conditions
- Highly mechanical: intermediate states can almost always be automatically constructed
- One major exception:

$$
\vdash\{I \wedge b\} c\{l\}
$$

$\vdash\{l\}$ while b do c end $\{\ \wedge \neg b\}$

The invariant must:

- be weak enough to be implied by the precondition
- hold across each iteration
- be strong enough to imply the postcondition

DAFNY

Decreases clause

```
function seqSum (s : seq<int>, lo : int, hi : int) : int
    requires 0 <= lo <= hi <= |s|
{
    if (lo == hi) then 0 else s[lo] + seqSum(s, lo+1, hi)
}
```

Dafny complains that it cannot prove the recursive call terminates it is unable to identify a termination metric that signals every recursive call gets "smaller"

```
function seqSum (s : seq<int>, lo : int, hi : int) : int
    requires 0 <= lo <= hi <= |s|
    decreases hi - lo
{
    if (lo == hi) then 0 else s[lo] + seqSum(s, lo+1, hi)
}
```

What about using -lo as a decreases clause?

Proof Calculations

Constructive proofs that involve rewrites and simplification

```
calc {
    (x + y) * (x - y);
==
    (x * x) - (x * y) + (y * x) - (y * y);
==
==
    (x * x) - (y * y);
}
```


Proof Calculations and Induction

```
lemma {:induction false} MirrorMirror<T>(t: Tree)
    ensures mirror(mirror(t)) == t
    {
        match t
            case Leaf(_) =>
            case Node(left,right) =>
                calc
                {
                    mirror(mirror(Node(left,right)));
                ==
                mirror(Node(mirror(right),mirror(left)));
                ==
                Node(mirror(mirror(left)),mirror(mirror(right)));
    { MirrorMirror(left); MirrorMirror(right); }
    Node(left, right);
        }
    }
```


Proofs by Contradiction

General shape:

```
lemma Lem(args)
        requires P(x)
        ensures Q(x)
```

 \{
 if ! \(Q(x)\)
 \{
 assert ! P(x) // contradiction: precondition is
 assert false
 \}
 assert \(Q(x)\)
 \}

