CS 565

Programming Languages (graduate)

Spring 2024

Week 10
Axiomatic Semantics and Hoare Logic

Semantics
2)

Before Break (Programming Language Foundations):

- Operational Semantics
* Simple abstract machine shows how to evaluate expression

Can Prove:

Determinism of Evaluation
- Soundness of Program Transformations
Program Equivalence

Axiomatic Semantics

Axiomatic Semantics

- Meaning given by proof rules
- Useful for reasoning about properties of specific programs

- Step |: Define a language of claims

- Step 2: Define a set of rules (axioms) to build proofs
of claims
- Step 3:Verify specific programs

Assertions
Al

Not unusual to see pre- and post-conditions in code
comments:

/*Precondltlon 0 <= i <= A.length
. Postcondition: returns A[i]*/

publlc int get(int 1) {
return A[1]

- Step | A: Define a language of assertions to capture
these sorts of claims

Assertions

Step | A: Define a language of assertions to capture
these claims about states

Examples:

The value of the variable X is greater than 4
The variable Y holds an even humber
The value of X is half of the value of Z

Formalize claims in some logic with variables

Coq (Software Foundations)
smt-lib (many automated verifiers)

First-order logic: v, 3, A, >, X =Y

Hoare Triple
6

- Step | B: Define a judgement for claims about
programs involving assertions

- Partial Correctness Triple:

terminates
In a state,

Hoare Triple

An Axiomatic Basis for
Computer Programming

C. A. R. HoAre
The Queen’s Unwversity of Belfast,* Northern Ireland

In this paper an attempt is made to explore the logical founda-
tions of computer programming by use of techniques which
were first applied in the study of geometry and have later
been extended to other branches of mathematics. This in-
volves the elucidation of sets of axioms and rules of inference
which can be used in proofs of the properties of computer
programs. Examples are given of such axioms and rules, and
a formal proof of a simple theorem is displayed. Finally, it is
argued that important advantages, both theoretical and prac-
tical, may follow from a pursuance of these topics.

KEY WORDS AND PHRASES:
proofs of programs, formal language definition, programming language

axiomatic method, theory of programming’

design, machine-independent programming, program documentation
CR CATEGORY: 4.0, 4.21, 4.22, 5.20, 5.21, 5.23, 5.24

C. A. R. Hoare.
Commun. ACM 12, 10

of axioms it is possible to deduce such simple theorems as:
r=x+yXO0
y<r>r+yXgqg=0-—-y)+yX A+ q)
The proof of the second of these is:
A5 (r—y)+y X (1+9q)
= —-y)+ yGX1+yXg)

A9 =(r—-y)+ +y Xq)
A3 =(r—y)+y)+yXqg
A6 =r+y Xq providedy <r

The axioms Al to A9 are, of course, true of the tradi-
tional infinite set of integers in mathematics. However,
they are also true of the finite sets of “integers’ which are
manipulated by computers provided that they are con-
fined to monnegative numbers. Their truth is independent
of the size of the set; furthermore, it is largely independent
of the choice of technique applied in the event of “over-
flow”’; for example:

(1) Strict interpretation: the result of an overflowing
operation does not exist; when overflow occurs, the offend-
ing program never completes its operation. Note that in
this case, the equalities of Al to A9 are strict, in the sense
that both sides exist or fail to exist together.

(2) Firm boundary: the result of an overflowing opera-
tion 1s taken as the maximum value represented.

1969. An axiomatic basis for computer programming.
(Oct.

1969), 576-580.

Hoare Triple

Step |B: Define a judgement for claims about
programs involving assertions

Partial Correctness Triple:

1P} c{Qj
Total Correctness Triple:

[P] c [Q]

A triple that makes a true claim is said to be valid

Hoare Triples

What should these mean:

{True} ¢ {X = 5}

Vm. {X m} ¢ {X =m + 5}
[X <= Y] c [Y <= X]

Concept Check

Which of these should be valid?
(X =2} X := X + 1 {X = 3}

{X = 2} X :=5; Y := 3 {X =5}
{False} skip {True}
[Y = 5] X :=Y + 3 [X = 5]

{True} while true do SKIP end {False}
‘True] while true do SKIP end [False]
‘'True] while true do SKIP end [True]

Axiomatic Semantics
]

- Step |: Define a language of claims

- Step 2: Define a set of rules (axioms) to build proofs
of claims
- Step 3:Verify specific programs

Imp Assertions

One assertion language for Imp commands is:

X € Id N € N
A ::=N | A+A]|A-A]|A*A]| X
P, Q ::= T 1 | A <A
P AQ | PV Q

Examples Assertions:

The value of the variable X is greater than 4
The variableY holds an even number
The value of X is half of the value of Z

Satisfiability

* We define a semantics for this
language to identify when a state

O satisfies an assertion P:

OFl

g, a1ldvi Og,alve Vvi<yVe
OFadl1<az

g,atdvi g,aldve vi=yVw
OFai =az

Satistability

We define a semantics for this

language to identify when a state O
satisfies an assertion P:

orP oFQ
oEP AQ

okrP oFrQ
otEP Vv Q oP Vv Q

ok -P

Validity

Proving Validity

- That gives us the first part of axiomatic semantics
* Step |: Define a language of claims

- How to prove that {P} c {Q} is valid?

* Could reason directly about the semantics of c

* Step 2: Define a set of rules (axioms) to build proofs of
claims without reasoning directly about states and
executions

Proof Rules

How to prove that {P} ¢ {Q} is valid?
- Could reason directly about the semantics of c

- Step 2: Define a set of rules (axioms) to build proofs of
claims without reasoning directly about states and
executions

Hoare Skip

Use our intuition about what we want to be able to
prove to guide definition of rules

{P}C{Q} =

vc otP - vo.o,cl O —>0|:Q

Hoare Skip?

{?}sklp{Q}—
VvVo.0k? = vo.o,skipllo — o I=Q

—{?} skip {Q}

Hoare Skip!

{Q}sklp{Q}—
vo.0kQ — vo.o,skipllo = 0o |=Q

HLSKIP

—{Q} skip {Q}

Hoare Assign?

{ ?? }X=a{Q} =
va ok ??7 —
. vo.o,X=al o —>0|=Q

—{ ?? }X=a{Q}

Hoare Assign!
22

{[X a]Q} X=a{Q} =
va ok[X:=a]Q —
. vo.o,X=allo = o |=Q

—H{[X=a]Q} X=a {Q}

HLASSIGN

Hoare Assignbad
23

* Why not this “forward” rule?

—{P} X=a {[X:==a]P}

Hoare Assign!
24

{[X a]Q} X=a{Q} =
va ok[X:=a]Q —
. vo.o,X=allo = o |=Q

—H{[X=a]Q} X=a {Q}

HLASSIGN

Hoare Seq?

{'7}01 c2{Q} =
vc OE"? —
- vo.o,ci:cll o —>0|=Q

—{ ? } c1;c2{Q)}

Hoare Seq®

{ ?}c1;c2{Q} =
_‘v’01 O1E? — VOs.
 (302.0,c1l 02 A 0, c2\l 03) =

—{ ? }c1;c2{Q}

Hoare Seq?

{ ?1 }c1;c2{Q} =
_v01 O1F 7?1 = VOs.
 (302.0,c1l 02 A 0,c2 O3) —

—{?1}c1{?2} F{72}C2{Q}
—{ ?1 } c1; c2{Q}

Hoare Seq!

{P}C1 c2{Q} =
vc oEP —
. VvOo.o,ci;cll o —>0|=Q

—{P}c1{R} H{R}c2{Q}
—{P} c1;c2{Q}

HLSEC

Hoare Seq!

—{P}c1{R} H{R}c2{Q}

—{P} c1; c2 {Q}
HLSEQ

Hoare If!
EX e

—{P A b}c1{Q} H{P A =b}c2{Q}
—{P} if b then c1 else c2 end {Q}

HLIF

Proof Rules
EN e

- What if Assertions don'’t align?

{(X=2} X = X + 1 {X = 3}

- Have rule for strengthening postconditions and
weakening preconditions

—{Pw}c{Qs} P—=Pw Qs—Q
—{P;c{Q}

HLCONSEQ |

HLASSIGN
F{X+1=3} X =X +1{X =3} X=2— X+1 =3 X=3—X=3

H{X=2} X=X+ 1{X =3} HLCONSEQ

Rule Review
32 |

HLASSIGN HLSKIP
HQ[X=a]}X=a{Q} —{Q)} skip {Q}

—{P} c1 {R} —{R} c2 {Q}
—{P} c1;c2 {Q}
—{P A b} c1 {Q} —H{P A —b} c2{Q}
—{P} if b then c1 else c2 {Q}
—{Pw} c{Qs} P=Pw Qs—Q
—{P} c{Q}

HLSEQ

HLIF

HLCONSEQ

Hoare While?

—{X <3} while (X<3)do X:=X+1end{X =3}

—1?rC7)
—{?} while b do cend {Q}

Hoare While?

HX <4} X =X+ 1{X<4}

—{X <4} while (X<3)do X :=X+1end{X<4}
—{X <3} while (X<3)do X:=X+1end{X =3}

—HQ }c{Q}
—{Q} while bdo cend{Q }

Hoare While?

HX <4 AX<3 X =X+1{X<4}

—{X <4} while (X<3)do X :=X+1end{X<4}
—{X <3} while (X<3)do X:=X+1end{X =3}

—{Q Ab}c{Q}
—{Q} while bdo cend{Q }

Hoare While?

FHX<4 AX<3} X =X+1{X<4}

—H{X <4} while (X<3)do X:=X+1end{X<4A
-X<3}

—{X <3} while (X<3)do X:=X+1end{X =3}

—{Q A b}c{Q}
—{Q} while b do cend {Q A -b}

Hoare While!

| Is a loop Invariant:
- Holds before loop
- Holds after each loop iteration
- Holds when the loop exits

(I AbYc{l}

—{I} while b do cend {l A b
& { } HLWHILE

Rule Review
38 |

HLASSIGN HLSKIP
HQ[X=a]}X=a{Q} —{Q)} skip {Q}

—{P} c1 {R} —{R} c2 {Q}
—{P} c1;c2 {Q}

—{P A b} c1{Q} —{P A =b} c2 {Q}
—{P} if b then c1 else c2 {Q}

HLSEQ

HLIF

—{l A b} c{l}
—{1} while b do c end {IA-Db}

HLWHILE

Hoare in Action
EX

- Want to build proof trees:

o
o
®
H(z-1)-x-1)=p-mAx=0}z==z-1;x=x-{(z1)-X-1)=p-m}
r=p-mA (x=0)}
na, {z=p-m A (x=0)}
Of {z =

(Zz=p-mA (x=0)}

—{p=p} z :==p{z = p}
p-mA (x=0)}
FH{m=m}x:=m{Xx=m}

FH{m=m}Xx:=m;z:=p #-m A (x=0)}

—H{True } x:=m;z =®Whilex20doz:=z-1;x:=x-1end{z=p-m}

Decorated Programs
I I,

ldea: include assertions in program

{True}—=> {m=m}

X:=m;
{X=m}->{X=mAp=p}
Z=p;
{X=mAZ=p}—2>{Z-X=p-m}
while X #0 do
{Z-X=p-mAXz0}—=>{(Z-1)-(X-1)=p-m}
Z=7-1;
{Z-(X-1)=p-m}
X =X-1
{Z-X=p-m}

Decorated Programs
a4y

- ldea: include assertions in program

- If each individual command is correct, so is the
program

{X=mAY=n}
X=X+Y
{77}

Y =X-Y
{77}
X=X-Y
{X=nAY=m}

Decorated Programs
424

- ldea: include assertions in program

- If each individual command is correct, so is the
program

{X=mAY=n}
X=X+Y

{77}

Y =X-Y
{X-Y=nAY=m}
X=X-Y
{X=nAY=m}

Decorated Programs
N

- ldea: include assertions in program

- If each individual command is correct, so is the
program

{X=mAY=n}

X=X+Y
{X-(X-Y)=nAX-Y=m}
Y =X-Y
{X-Y=nAY=m}
X=X-Y

{X=nAY=m}

Decorated Programs

4y
- ldea: include assertions in program

- If each individual command is correct, so is the
program

{X=mAY=n}—
X+Y)-(X+Y)-Y)=nAX+Y)-Y=m)

X=X+Y
{X-(X-Y)=nAX-Y=m}
Y =X-Y
{X-Y=nAY=m}
X=X-Y

{X=nAY=m}

Loop Invariants
e q ...

- Largely straightforward
- Except for loops!

{X=m}
while X #0 do
X:=X-1
end

{X=0}

Loop Invariants

? needs to

: i nough to be implied by
Largely straightf 1.0e Yé%%‘fsepre g tion,

- Except for loc h to imply the
trong enoug
Ziggps"s po%tcondl ion

{(X=mArY=n} > {?} RO IR iteration of the
while X # 0 do loop
{2 AX20} = {[X=X-1][Y:=Y-1] ?}
Y =Y-1;
{[X=X-1] 7}
X=X-1
1?}
end
{?2AX=0}=2{Y=n-m}

Loop Invariants
- Largely straightfc

? needs to

- olied by
k enough to be implie
1iRg Yc\g%%‘s precondition,

| the
trong enough 10 imply
Ziggps‘,s po%tcondl%on

{X=mAY=n} - { TrRRIEEEITC R AR iteration O
while X # 0 do 00D
{True AX =0} = {[X=X-1][Y=Y-1] True }
Y =Y-1;
{[X:=X-1] True }
X =X-1
{ True }
end
{TfUG/\X:O} —»{Y=n_m}

- Except for loo

fthe

mLOOP Invariants

? needs to

- Lar °
gely Stl‘alght 1 be weak enough 10 be implied by
the loop's precondition,

- Except for loc _
2. be strongd enou%h to imply the
loop's postcondition

3.be preserved by one iter
loop

{X=mAY=n} — {True
while X # 0 do
{True AX£0} = {[X=
Y=Y-1;
{ [X=X-1] True }
X:=X-1
 True ; ? is True?

end
{True AX=0} 2{Y=n-m}

ation of the

What fails 10 hold when

Loop Invariants

49
* Largely straightforwart

? needs 10 |
1 be weak enough 10 be implied by
* Except for loops! the loop's precondmo.n, e

trong enough to Imply
Ziggps‘,s po%tcondl%on

X=mAY-= — {Y-X =
{X=m n} = A 3.be preserved by on

e iteration of the

while X £ 0 do

{Y-X=n-m A X=z0}=[X: =n-m
Y=Y-1;

{Y-X=n-m[X=X-1]}
X =X-1

{Y-X=n-m}

end

{Y-X=n-mAX=0} 2{Y=n-m}

Recap

Developed a logic for proving that {P} c {Q} is valid
We defined a set of rules (axioms) to build proofs of
claims without reasoning directly about states and

executions
Saw how to verify specific programs

