
Axiomatic Semantics and Hoare Logic

CS 565

Programming Languages (graduate)

Spring 2024

Week 10

Semantics
2

- Operational Semantics
★ Simple abstract machine shows how to evaluate expression

Before Break (Programming Language Foundations):

Can Prove:
- Determinism of Evaluation
- Soundness of Program Transformations
- Program Equivalence

Metatheoretic

Properties

Axiomatic Semantics
3

Axiomatic Semantics
 - Meaning given by proof rules
 - Useful for reasoning about properties of specific programs

- Step 1: Define a language of claims
- Step 2: Define a set of rules (axioms) to build proofs

of claims
- Step 3: Verify specific programs

Assertions
4

- Not unusual to see pre- and post-conditions in code
comments:

- Step 1A: Define a language of assertions to capture
these sorts of claims

/*Precondition: 0 <= i <= A.length
 Postcondition: returns A[i]*/

public int get(int i) {
return A[i]

}

Assertions
5

- Step 1A: Define a language of assertions to capture
these claims about states

- Examples:
★The value of the variable X is greater than 4
★The variable Y holds an even number
★The value of X is half of the value of Z

- Formalize claims in some logic with variables
★Coq (Software Foundations)
★ smt-lib (many automated verifiers)
★First-order logic: ∀, ∃, ⋀, →, X = Y

Hoare Triple
6

- Step 1B: Define a judgement for claims about
programs involving assertions

- Partial Correctness Triple:

{P} c {Q}

 then that final

state satisfies Q
If we start in

 a

state satisfying P And c
terminates
in a state,

Hoare Triple
7

C. A. R. Hoare. 1969. An axiomatic basis for computer programming.
Commun. ACM 12, 10 (Oct. 1969), 576–580.

Hoare Triple
8

- Step 1B: Define a judgement for claims about
programs involving assertions

- Partial Correctness Triple:
{P} c {Q}

- Total Correctness Triple:
[P] c [Q]

- A triple that makes a true claim is said to be valid

Hoare Triples
9

What should these mean:
{True} c {X = 5}

∀m. {X = m} c {X = m + 5}
[X <= Y] c [Y <= X]

Concept Check
10

Which of these should be valid?
{X = 2} X := X + 1 {X = 3}
{X = 2} X := 5; Y := 3 {X = 5}
{False} skip {True}
[Y = 5] X := Y + 3 [X = 5]
{True} while true do SKIP end {False}
[True] while true do SKIP end [False]
[True] while true do SKIP end [True]

Axiomatic Semantics
11

- Step 1: Define a language of claims
- Step 2: Define a set of rules (axioms) to build proofs

of claims
- Step 3: Verify specific programs

Imp Assertions
12

One assertion language for Imp commands is:
X ∈ Id N ∈ ℕ

A ::= N | A + A | A - A | A * A | X

P, Q ::= T | ⊥ | A < A | A = A
 | P ⋀ Q | P ⋁ Q | ¬P

Examples Assertions:
The value of the variable X is greater than 4
The variable Y holds an even number
The value of X is half of the value of Z

Satisfiability
13

★ We define a semantics for this
language to identify when a state
σ satisfies an assertion P:

σ ⊧ P

σ, a1 ⇓ v1 σ, a2 ⇓ v2 v1 <N v2
σ ⊧ a1 < a2

σ, a1 ⇓ v1 σ, a2 ⇓ v2 v1 =N v2
σ ⊧ a1 = a2

σ ⊧T

Satisfability
14

We define a semantics for this
language to identify when a state σ
satisfies an assertion P: σ ⊧ P

σ ⊧ P σ ⊧ Q
σ ⊧ P ⋀ Q

σ ⊧ P
σ ⊧ P ⋁ Q

 σ ⊧ Q
σ ⊧ P ⋁ Q

σ ⊭ P
σ ⊧ ¬P

Validity
15

We can now precisely define when
a partial Hoare Triple is valid:

σ ⊧ P
VALIDITY {P} c {Q} ≡

∀σ. σ ⊧ P →
 ∀σˈ. σ, c ⇓ σˈ
→
 σˈ ⊧ Q then that finalstate satisfies Q

If we start in a

state satisfying P
And c

terminates
in a state,

Proving Validity
16

- That gives us the first part of axiomatic semantics
★Step 1: Define a language of claims

- How to prove that {P} c {Q} is valid?
★Could reason directly about the semantics of c
★Step 2: Define a set of rules (axioms) to build proofs of

claims without reasoning directly about states and
executions

⊢{P} c {Q}

Proof Rules
17

How to prove that {P} c {Q} is valid?
- Could reason directly about the semantics of c
- Step 2: Define a set of rules (axioms) to build proofs of

claims without reasoning directly about states and
executions

⊢{P} c {Q}

Hoare Skip
18

{P} c {Q} ≡
∀σ. σ ⊧ P → ∀σˈ. σ, c ⇓ σˈ → σˈ ⊧ Q

Use our intuition about what we want to be able to
prove to guide definition of rules

Hoare Skip?
19

⊢{?} skip {Q}

{?} skip {Q} ≡
∀σ. σ ⊧ ? → ∀σˈ. σ, skip ⇓ σˈ → σˈ ⊧ Q

Hoare Skip!
20

⊢{Q} skip {Q} HLSKIP

{Q} skip {Q} ≡
∀σ. σ ⊧ Q → ∀σˈ. σ, skip ⇓ σˈ → σˈ ⊧ Q

Hoare Assign?
21

⊢{ ?? } X:=a {Q}

{ ?? } X:=a {Q} ≡
∀σ. σ ⊧ ?? →
 ∀σˈ. σ, X:=a ⇓ σˈ → σˈ ⊧ Q

Hoare Assign!
22

⊢{[X≔a]Q} X:=a {Q}
HLASSIGN

{[X≔a]Q} X:=a {Q} ≡
∀σ. σ ⊧ [X≔a]Q →
 ∀σˈ. σ, X:=a ⇓ σˈ → σˈ ⊧ Q

Hoare Assignbad
23

⊢{P} X:=a {[X≔a]P}

★ Why not this “forward” rule?

Hoare Assign!
24

⊢{[X≔a]Q} X:=a {Q}
HLASSIGN

{[X≔a]Q} X:=a {Q} ≡
∀σ. σ ⊧ [X≔a]Q →
 ∀σˈ. σ, X:=a ⇓ σˈ → σˈ ⊧ Q

Hoare Seq?
25

⊢{ ? } c1; c2 {Q}

{ ? } c1; c2 {Q} ≡
∀σ. σ ⊧ ? →
 ∀σˈ. σ, c1; c2 ⇓ σˈ → σˈ ⊧ Q

Hoare Seq?
26

⊢{ ? } c1; c2 {Q}

{ ? } c1; c2 {Q} ≡
∀σ1. σ1 ⊧ ? → ∀σ3.
 (∃σ2. σ, c1 ⇓ σ2 ⋀ σ, c2 ⇓ σ3) →
 σ3 ⊧ Q

Hoare Seq?
27

⊢{ ?1 } c1; c2 {Q}
⊢{?1} c1 {?2} ⊢{?2} c2 {Q}

{ ?1 } c1; c2 {Q} ≡
∀σ1. σ1 ⊧ ?1 → ∀σ3.
 (∃σ2. σ, c1 ⇓ σ2 ⋀ σ, c2 ⇓ σ3) →
 σ3 ⊧ Q

Hoare Seq!
28

⊢{P} c1; c2 {Q} HLSEQ

{ P } c1; c2 {Q} ≡
∀σ. σ ⊧ P →
 ∀σˈ. σ, c1; c2 ⇓ σˈ → σˈ ⊧ Q

⊢{P} c1 {R} ⊢{R} c2 {Q}

Hoare Seq!
29

⊢{P} c1; c2 {Q}
HLSEQ

⊢{P} c1 {R} ⊢{R} c2 {Q}

Hoare If!
30

⊢{P} if b then c1 else c2 end {Q}

HLIF

⊢{P ⋀ b} c1 {Q} ⊢{P ⋀ ¬b} c2 {Q}

Proof Rules
31

- What if Assertions don’t align?

- Have rule for strengthening postconditions and
weakening preconditions

{X=2} X ≔ X + 1 {X = 3}

⊢{P} c {Q}
HLCONSEQ

⊢{PW} c {QS} P→PW QS→Q

⊢{X=2} X ≔ X + 1 {X = 3} HLCONSEQ

⊢{X+1=3} X ≔ X + 1 {X = 3}
HLASSIGN

X=2→ X+1 =3 X=3→X=3

Rule Review
32

⊢{Q} skip {Q}
HLSKIP

⊢{P} c1;c2 {Q}
HLSEQ

⊢{P} c1 {R} ⊢{R} c2 {Q}

⊢{P} if b then c1 else c2 {Q} HLIF
⊢{P ⋀ b} c1 {Q} ⊢{P ⋀ ¬b} c2 {Q}

⊢{Q[X≔a]}X≔a{Q}
HLASSIGN

⊢{P} c {Q}
HLCONSEQ

⊢{PW} c {QS} P→PW QS→Q

Hoare While?
33

⊢{?} while b do c end {Q}

⊢{?} c {?}

⊢{X < 3} while (X < 3) do X := X + 1 end {X = 3}

Hoare While?
34

⊢{Q} while b do c end {Q }

⊢{Q } c {Q}

⊢{X < 3} while (X < 3) do X := X + 1 end {X = 3}
⊢{X < 4} while (X < 3) do X := X + 1 end {X < 4}

⊢{X < 4} X := X + 1 {X < 4}

Hoare While?
35

⊢{Q} while b do c end {Q }

⊢{Q ⋀ b} c {Q}

⊢{X < 3} while (X < 3) do X := X + 1 end {X = 3}
⊢{X < 4} while (X < 3) do X := X + 1 end {X < 4}

⊢{X < 4 ⋀ X < 3} X := X + 1 {X < 4}

Hoare While?
36

⊢{Q} while b do c end {Q ⋀ ¬b}

⊢{Q ⋀ b} c {Q}

⊢{X < 3} while (X < 3) do X := X + 1 end {X = 3}

⊢{X < 4} while (X < 3) do X := X + 1 end {X < 4 ⋀
 ¬X < 3 }

⊢{X < 4 ⋀ X < 3} X := X + 1 {X < 4}

Hoare While!
37

⊢{I} while b do c end {I ⋀ ¬b}

⊢{I ⋀ b} c {I}

I is a loop invariant:
- Holds before loop
- Holds after each loop iteration
- Holds when the loop exits

HLWHILE

Rule Review
38

⊢{Q} skip {Q}
HLSKIP

⊢{P} c1;c2 {Q}
HLSEQ

⊢{P} c1 {R} ⊢{R} c2 {Q}

⊢{P} if b then c1 else c2 {Q} HLIF
⊢{P ⋀ b} c1 {Q} ⊢{P ⋀ ¬b} c2 {Q}

⊢{I} while b do c end {I⋀¬b}
HLWHILE

⊢{I ⋀ b} c {I}

⊢{Q[X≔a]}X≔a{Q}
HLASSIGN

Hoare in Action
39

⊢{ True } x := m; z := p; while x ≠ 0 do z := z - 1; x := x - 1 end {z = p - m }

⊢{ m = m } x := m; z := p; while x ≠ 0 do z := z - 1; x := x - 1 end {z = p - m ⋀ (x = 0)}

- Want to build proof trees:

⊢{ m = m } x := m {x = m} ⊢{x=m} z := p; while x ≠ 0 do z := z - 1; x := x - 1 end {z = p - m ⋀ (x = 0)}

⊢{x = m ⋀ p=p} z := p; while x ≠ 0 do z := z - 1; x := x - 1 end {z = p - m ⋀ (x = 0)}

⊢{p=p} z := p {z = p} ⊢{x = m ⋀ z=p} while x ≠ 0 do z := z - 1; x := x - 1 end {z = p - m ⋀ (x = 0)}

⊢{(z - 1) - (x - 1) = p - m } while x ≠ 0 do z := z - 1; x := x - 1 {z = p - m ⋀ (x = 0)}

⊢{(z - 1) - (x - 1) = p - m ⋀ x = 0 } z := z - 1; x := x - 1{(z - 1) - (x - 1) = p - m}

Proof is compositional:

it follows structure of

program!

Decorated Programs
40

Idea: include assertions in program
 { True } → { m = m }
 X := m;
 { X = m } → { X = m ⋀ p = p }
 Z := p;
 { X = m ⋀ Z = p } → { Z - X = p - m }
 while X ≠ 0 do
 { Z - X = p - m ⋀ X ≠ 0 } → { (Z - 1) - (X - 1) = p - m }
 Z := Z - 1;
{ Z - (X - 1) = p - m }
 X := X - 1
 { Z - X = p - m }
 end;
 { Z - X = p - m ⋀ ¬ (X ≠ 0) } → { Z = p - m }

Decorated Programs
41

- Idea: include assertions in program

- If each individual command is correct, so is the
program

{ X = m ⋀ Y = n }
 X := X + Y
{ ?? }
 Y := X - Y
{ ?? }
 X := X - Y
{ X = n ⋀ Y = m }

Decorated Programs
42

- Idea: include assertions in program

- If each individual command is correct, so is the
program

{ X = m ⋀ Y = n }
 X := X + Y
{ ?? }
 Y := X - Y
{ X - Y = n ⋀ Y = m }
 X := X - Y
{ X = n ⋀ Y = m }

Decorated Programs
43

- Idea: include assertions in program

- If each individual command is correct, so is the
program

{ X = m ⋀ Y = n }
 X := X + Y
{X - (X - Y) = n ⋀ X - Y = m}
 Y := X - Y
{ X - Y = n ⋀ Y = m }
 X := X - Y
{ X = n ⋀ Y = m }

Decorated Programs
44

- Idea: include assertions in program

- If each individual command is correct, so is the
program

{ X = m ⋀ Y = n} →
{(X + Y) - ((X + Y) - Y) = n ⋀ (X + Y) - Y = m}
 X := X + Y
{X - (X - Y) = n ⋀ X - Y = m}
 Y := X - Y
{ X - Y = n ⋀ Y = m }
 X := X - Y
{ X = n ⋀ Y = m }

Loop Invariants
45

- Largely straightforward

- Except for loops!

{ X = m }
 while X ≠ 0 do
 X ::= X - 1
 end
{ X = 0 }

Loop Invariants
46

- Largely straightforward
- Except for loops!

{ X = m ⋀ Y = n } → { ? }
 while X ≠ 0 do
 { ? ⋀ X ≠ 0 } → { [X≔X-1] [Y≔Y-1] ?}
 Y := Y - 1;
 { [X≔X-1] ? }
 X := X - 1
 { ? }
 end
{ ? ⋀ X = 0 } → { Y = n - m }

? needs to

1.be weak enough to be implied by
the loop's precondition,

2.be strong enough to imply the
loop's postcondition

3.be preserved by one iteration of the

loop

Loop Invariants
47

- Largely straightforward
- Except for loops!

{ X = m ⋀ Y = n } → { True }
 while X ≠ 0 do
 { True ⋀ X ≠ 0 } → { [X≔X-1] [Y≔Y-1] True }
 Y := Y - 1;
 { [X≔X-1] True }
 X := X - 1
 { True }
 end
{ True ⋀ X = 0 } → { Y = n - m }

? needs to

1.be weak enough to be implied by
the loop's precondition,

2.be strong enough to imply the
loop's postcondition

3.be preserved by one iteration of the

loop

Loop Invariants
48

- Largely straightforward
- Except for loops!

{ X = m ⋀ Y = n } → { True }
 while X ≠ 0 do
 { True ⋀ X ≠ 0 } → { [X≔X-1] [Y≔Y-1] True}
 Y := Y - 1;
 { [X≔X-1] True }
 X := X - 1
 { True }
 end
{ True ⋀ X = 0 } → { Y = n - m }

? needs to

1.be weak enough to be implied by
the loop's precondition,

2.be strong enough to imply the
loop's postcondition

3.be preserved by one iteration of the

loop

What fails to hold when
? is True?

Loop Invariants
49

★ Largely straightforward
★ Except for loops!

{ X = m ⋀ Y = n } → {Y-X = n - m }
 while X ≠ 0 do
 {Y-X = n - m ⋀ X ≠ 0}→{[X≔X-1][Y≔Y-1]Y-X = n - m}
 Y := Y - 1;
 { Y - X = n - m [X≔X-1] }
 X := X - 1
 { Y - X= n - m }
 end
{ Y - X = n - m ⋀ X = 0 } → { Y = n - m }

? needs to

1.be weak enough to be implied by
the loop's precondition,

2.be strong enough to imply the
loop's postcondition

3.be preserved by one iteration of the

loop

Success!

Recap
50

- Developed a logic for proving that {P} c {Q} is valid
 We defined a set of rules (axioms) to build proofs of
 claims without reasoning directly about states and
 executions
- Saw how to verify specific programs

⊢{P} c {Q}

