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Semantics
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- Operational Semantics
★ Simple abstract machine shows how to evaluate expression

Before Break (Programming Language Foundations):

Can Prove:
- Determinism of Evaluation
- Soundness of Program Transformations
- Program Equivalence

Metatheoretic

Properties



Axiomatic Semantics
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Axiomatic Semantics
    -  Meaning given by proof rules
    -  Useful for reasoning about properties of specific programs

- Step 1: Define a language of claims
- Step 2: Define a set of rules (axioms) to build proofs 

of claims 
-  Step 3: Verify specific programs



Assertions
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- Not unusual to see pre- and post-conditions in code 
comments: 

- Step 1A: Define a language of assertions to capture 
these sorts of claims

/*Precondition: 0 <= i <= A.length 
  Postcondition: returns A[i]*/ 

public int get(int i) {
return A[i]

}



Assertions
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- Step 1A: Define a language of assertions to capture 
these claims about states

- Examples: 
★The value of the variable X is greater than 4
★The variable Y holds an even number
★The value of X is half of the value of Z

- Formalize claims in some logic with variables
★Coq (Software Foundations)
★ smt-lib (many automated verifiers)
★First-order logic: ∀, ∃, ⋀, →, X = Y



Hoare Triple
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- Step 1B: Define a judgement for claims about  
programs involving assertions

- Partial Correctness Triple:

{P} c {Q}

 then that final

state satisfies Q
If we start in

 a

state satisfying P And c 
terminates
in a state,



Hoare Triple
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C. A. R. Hoare. 1969. An axiomatic basis for computer programming. 
Commun. ACM 12, 10 (Oct. 1969), 576–580.



Hoare Triple
8

- Step 1B: Define a judgement for claims about  
programs involving assertions

- Partial Correctness Triple:
{P} c {Q}

- Total Correctness Triple:
[P] c [Q]

- A triple that makes a true claim is said to be valid



Hoare Triples
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What should these mean:
{True} c {X = 5}

∀m. {X = m} c {X = m + 5}
[X <= Y] c [Y <= X]



Concept Check
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Which of these should be valid?
{X = 2} X := X + 1 {X = 3}
{X = 2} X := 5; Y := 3 {X = 5}
{False} skip {True}
[Y = 5] X := Y + 3 [X = 5]
{True} while true do SKIP end {False}
[True] while true do SKIP end [False]
[True] while true do SKIP end [True]



Axiomatic Semantics
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- Step 1: Define a language of claims
- Step 2: Define a set of rules (axioms) to build proofs 

of claims 
- Step 3: Verify specific programs



Imp Assertions
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One assertion language for Imp commands is:
X ∈ Id                      N ∈  ℕ      

A ::= N  | A + A | A - A | A * A | X 

P, Q ::= T   |   ⊥       |   A < A   |   A = A 
             |   P ⋀ Q   |   P ⋁ Q   |   ¬P

Examples Assertions: 
The value of the variable X is greater than 4
The variable Y holds an even number
The value of X is half of the value of Z



Satisfiability
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★ We define a semantics  for this 
language to identify when a state 
σ satisfies an assertion P:

σ ⊧ P

σ, a1 ⇓ v1    σ, a2 ⇓ v2       v1 <N v2
σ ⊧ a1 < a2

σ, a1 ⇓ v1    σ, a2 ⇓ v2       v1 =N v2
σ ⊧ a1 = a2

σ ⊧T           



Satisfability
14

We define a semantics  for this 
language to identify when a state σ 
satisfies an assertion P: σ ⊧ P

σ ⊧ P        σ ⊧ Q 
σ ⊧ P ⋀ Q 

σ ⊧ P   
σ ⊧ P ⋁ Q 

 σ ⊧ Q 
σ ⊧ P ⋁ Q 

σ ⊭ P   
σ ⊧ ¬P



Validity
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We can now precisely define when 
a partial Hoare Triple is valid: 

σ ⊧ P
VALIDITY {P} c {Q}  ≡ 

∀σ. σ ⊧ P → 
        ∀σˈ. σ, c ⇓ σˈ 
→
                  σˈ ⊧ Q  then that finalstate satisfies Q

If we start in a

state satisfying P
And c 

terminates
in a state,



Proving Validity
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- That gives us the first part of axiomatic semantics
★Step 1: Define a language of claims

- How to prove that {P} c {Q} is valid? 
★Could reason directly about the semantics of c
★Step 2: Define a set of rules (axioms) to build proofs of 

claims without reasoning directly about states and 
executions

⊢{P} c {Q}



Proof Rules
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How to prove that {P} c {Q} is valid? 
- Could reason directly about the semantics of c
- Step 2: Define a set of rules (axioms) to build proofs of 

claims without reasoning directly about states and 
executions

⊢{P} c {Q}



Hoare Skip
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{P} c {Q} ≡
∀σ. σ ⊧ P →  ∀σˈ. σ, c ⇓ σˈ → σˈ ⊧ Q

Use our intuition about what we want to be able to 
prove to guide definition of rules



Hoare Skip?
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⊢{?} skip {Q}

{?} skip {Q} ≡
∀σ. σ ⊧ ? →  ∀σˈ. σ, skip ⇓ σˈ → σˈ ⊧ Q



Hoare Skip!
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⊢{Q} skip {Q} HLSKIP

{Q} skip {Q} ≡
∀σ. σ ⊧ Q →  ∀σˈ. σ, skip ⇓ σˈ → σˈ ⊧ Q



Hoare Assign?
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⊢{  ??  } X:=a {Q}

{  ??  } X:=a {Q} ≡
∀σ. σ ⊧   ??   →
   ∀σˈ. σ, X:=a ⇓ σˈ → σˈ ⊧ Q



Hoare Assign!
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⊢{[X≔a]Q} X:=a {Q}
HLASSIGN

{[X≔a]Q} X:=a {Q} ≡
∀σ. σ ⊧ [X≔a]Q →
   ∀σˈ. σ, X:=a ⇓ σˈ → σˈ ⊧ Q



Hoare Assignbad
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⊢{P} X:=a {[X≔a]P}

★ Why not this “forward” rule?



Hoare Assign!
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⊢{[X≔a]Q} X:=a {Q}
HLASSIGN

{[X≔a]Q} X:=a {Q} ≡
∀σ. σ ⊧ [X≔a]Q →
   ∀σˈ. σ, X:=a ⇓ σˈ → σˈ ⊧ Q



Hoare Seq?
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⊢{ ? } c1; c2 {Q}

{ ? } c1; c2 {Q} ≡
∀σ. σ ⊧ ? →
   ∀σˈ. σ, c1; c2 ⇓ σˈ → σˈ ⊧ Q



Hoare Seq?
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⊢{ ? } c1; c2 {Q}

{ ? } c1; c2 {Q} ≡
∀σ1. σ1 ⊧ ? → ∀σ3.
    (∃σ2. σ, c1 ⇓ σ2 ⋀ σ, c2 ⇓ σ3) →
    σ3 ⊧ Q



Hoare Seq?
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⊢{ ?1 } c1; c2 {Q}
⊢{?1} c1 {?2}  ⊢{?2} c2 {Q}

{ ?1 } c1; c2 {Q} ≡
∀σ1. σ1 ⊧ ?1 → ∀σ3.
    (∃σ2. σ, c1 ⇓ σ2 ⋀ σ, c2 ⇓ σ3) →
    σ3 ⊧ Q



Hoare Seq!
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⊢{P} c1; c2 {Q} HLSEQ

{ P } c1; c2 {Q} ≡
∀σ. σ ⊧ P →
   ∀σˈ. σ, c1; c2 ⇓ σˈ → σˈ ⊧ Q

⊢{P} c1 {R}  ⊢{R} c2 {Q}



Hoare Seq!
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⊢{P} c1; c2 {Q}
HLSEQ

⊢{P} c1 {R}  ⊢{R} c2 {Q}



Hoare If!
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⊢{P} if b then c1 else c2 end {Q}

HLIF

⊢{P ⋀ b} c1 {Q}  ⊢{P ⋀ ¬b} c2 {Q}



Proof Rules
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- What if Assertions don’t align?

- Have rule for strengthening postconditions and 
weakening preconditions

{X=2} X ≔ X + 1 {X = 3}

⊢{P} c {Q}
HLCONSEQ

⊢{PW} c {QS} P→PW QS→Q

⊢{X=2} X ≔ X + 1 {X = 3} HLCONSEQ

⊢{X+1=3} X ≔ X + 1 {X = 3}
HLASSIGN

X=2→ X+1 =3 X=3→X=3



Rule Review
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⊢{Q} skip {Q}
HLSKIP

⊢{P} c1;c2 {Q}
HLSEQ

⊢{P} c1 {R} ⊢{R} c2 {Q}

⊢{P} if b then c1 else c2 {Q} HLIF
⊢{P ⋀ b} c1 {Q} ⊢{P ⋀ ¬b} c2 {Q}

⊢{Q[X≔a]}X≔a{Q}
HLASSIGN

⊢{P} c {Q}
HLCONSEQ

⊢{PW} c {QS} P→PW QS→Q



Hoare While?
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⊢{?} while b do c end {Q}

⊢{?} c {?}

⊢{X < 3} while (X < 3) do  X := X + 1 end {X = 3}



Hoare While?
34

⊢{Q} while b do c end {Q    }

⊢{Q    } c {Q}

⊢{X < 3} while (X < 3) do  X := X + 1 end {X = 3}
⊢{X < 4} while (X < 3) do  X := X + 1 end {X < 4}

⊢{X < 4} X := X + 1 {X < 4}



Hoare While?
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⊢{Q} while b do c end {Q      }

⊢{Q ⋀ b} c {Q}

⊢{X < 3} while (X < 3) do  X := X + 1 end {X = 3}
⊢{X < 4} while (X < 3) do  X := X + 1 end {X < 4}

⊢{X < 4 ⋀ X < 3} X := X + 1 {X < 4}



Hoare While?
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⊢{Q} while b do c end {Q ⋀ ¬b}

⊢{Q ⋀ b} c {Q}

⊢{X < 3} while (X < 3) do  X := X + 1 end {X = 3}

⊢{X < 4} while (X < 3) do  X := X + 1 end {X < 4 ⋀
                                           ¬X < 3 }

⊢{X < 4 ⋀ X < 3} X := X + 1 {X < 4}



Hoare While!
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⊢{I} while b do c end {I ⋀ ¬b}

⊢{I ⋀ b} c {I}

I is a loop invariant: 
- Holds before loop
- Holds after each loop iteration
- Holds when the loop exits

HLWHILE



Rule Review
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⊢{Q} skip {Q}
HLSKIP

⊢{P} c1;c2 {Q}
HLSEQ

⊢{P} c1 {R} ⊢{R} c2 {Q}

⊢{P} if b then c1 else c2 {Q} HLIF
⊢{P ⋀ b} c1 {Q} ⊢{P ⋀ ¬b} c2 {Q}

⊢{I} while b do c end {I⋀¬b}
HLWHILE

⊢{I ⋀ b} c {I}

⊢{Q[X≔a]}X≔a{Q}
HLASSIGN



Hoare in Action
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⊢{ True } x := m; z := p; while x ≠ 0 do z := z - 1; x := x - 1 end {z = p - m }

⊢{ m = m } x := m; z := p; while x ≠ 0 do z := z - 1; x := x - 1 end {z = p - m ⋀ (x = 0)}

- Want to build proof trees:

⊢{ m = m } x := m {x = m} ⊢{x=m} z := p; while x ≠ 0 do z := z - 1; x := x - 1 end {z = p - m ⋀ (x = 0)}

⊢{x = m ⋀ p=p} z := p; while x ≠ 0 do z := z - 1; x := x - 1 end {z = p - m ⋀ (x = 0)}

⊢{p=p} z := p {z = p} ⊢{x = m ⋀ z=p} while x ≠ 0 do z := z - 1; x := x - 1 end {z = p - m ⋀ (x = 0)}

⊢{(z - 1) - (x - 1) = p - m } while x ≠ 0 do z := z - 1; x := x - 1 {z = p - m ⋀ (x = 0)}

⊢{(z - 1) - (x - 1) = p - m ⋀ x = 0 } z := z - 1; x := x - 1{(z - 1) - (x - 1) = p - m}

Proof is compositional: 

it follows structure of 

program!



Decorated Programs
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Idea: include assertions in program
 { True } →  { m = m }
    X := m;
 { X = m } → { X = m ⋀ p = p }
    Z := p;
 { X = m ⋀ Z = p } → { Z - X = p - m }
    while X ≠ 0 do
 { Z - X = p - m ⋀ X ≠ 0 } → { (Z - 1) - (X - 1) = p - m }
      Z := Z - 1;
{ Z - (X - 1) = p - m }
        X := X - 1
 { Z - X = p - m }
    end;
 { Z - X = p - m ⋀ ¬ (X ≠ 0) } →  { Z = p - m }



Decorated Programs
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- Idea: include assertions in program

- If each individual command is correct, so is the 
program

{ X = m ⋀ Y = n }
  X := X + Y
{ ?? }
  Y := X - Y
{ ?? }
  X := X - Y
{ X = n ⋀ Y = m }



Decorated Programs
42

- Idea: include assertions in program

- If each individual command is correct, so is the 
program

{ X = m ⋀ Y = n }
  X := X + Y
{ ?? }
  Y := X - Y
{ X - Y = n ⋀ Y = m }
  X := X - Y
{ X = n ⋀ Y = m }



Decorated Programs
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- Idea: include assertions in program

- If each individual command is correct, so is the 
program

{ X = m ⋀ Y = n }
  X := X + Y
{X - (X - Y) = n ⋀ X - Y = m}
  Y := X - Y
{ X - Y = n ⋀ Y = m }
  X := X - Y
{ X = n ⋀ Y = m }



Decorated Programs
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- Idea: include assertions in program

- If each individual command is correct, so is the 
program

{ X = m ⋀ Y = n} → 
{(X + Y) - ((X + Y) - Y) = n ⋀ (X + Y) - Y = m}
  X := X + Y
{X - (X - Y) = n ⋀ X - Y = m}
  Y := X - Y
{ X - Y = n ⋀ Y = m }
  X := X - Y
{ X = n ⋀ Y = m }



Loop Invariants
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- Largely straightforward

-  Except for loops!

{ X = m }
   while X ≠ 0 do
    X ::= X - 1
   end
{ X = 0 }



Loop Invariants
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- Largely straightforward
-  Except for loops!

{ X = m ⋀ Y = n }  →  { ? }
   while X ≠ 0 do
   { ? ⋀ X ≠ 0 }  →  { [X≔X-1] [Y≔Y-1] ?}
      Y := Y - 1;
   { [X≔X-1] ? }
      X := X - 1
   { ? }
   end
{ ? ⋀ X = 0 } → { Y = n - m }

? needs to

1.be weak enough to be implied by 
the loop's  precondition,

2.be strong enough to imply the 
loop's postcondition

3.be preserved by one iteration of the 

loop



Loop Invariants
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- Largely straightforward
-  Except for loops!

{ X = m ⋀ Y = n }  →  { True }
   while X ≠ 0 do
   { True ⋀ X ≠ 0 }  →  { [X≔X-1] [Y≔Y-1] True }
      Y := Y - 1;
   { [X≔X-1] True }
      X := X - 1
   { True }
   end
{ True ⋀ X = 0 }  → { Y = n - m }

? needs to

1.be weak enough to be implied by 
the loop's  precondition,

2.be strong enough to imply the 
loop's postcondition

3.be preserved by one iteration of the 

loop



Loop Invariants
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- Largely straightforward
-  Except for loops!

{ X = m ⋀ Y = n }  →  { True }
   while X ≠ 0 do
   { True ⋀ X ≠ 0 }  →  { [X≔X-1] [Y≔Y-1] True}
      Y := Y - 1;
   { [X≔X-1] True }
      X := X - 1
   { True }
   end
{ True ⋀ X = 0 }  → { Y = n - m }

? needs to

1.be weak enough to be implied by 
the loop's  precondition,

2.be strong enough to imply the 
loop's postcondition

3.be preserved by one iteration of the 

loop

What fails to hold when
? is True?



Loop Invariants
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★ Largely straightforward
★  Except for loops!

{ X = m ⋀ Y = n }  →  {Y-X = n - m }
   while X ≠ 0 do
   {Y-X = n - m ⋀ X ≠ 0}→{[X≔X-1][Y≔Y-1]Y-X = n - m}
      Y := Y - 1;
   { Y - X = n - m [X≔X-1] }
      X := X - 1
   { Y - X= n - m }
   end
{ Y - X = n - m ⋀ X = 0 }  → { Y = n - m }

? needs to

1.be weak enough to be implied by 
the loop's  precondition,

2.be strong enough to imply the 
loop's postcondition

3.be preserved by one iteration of the 

loop

Success!



Recap
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- Developed a logic for proving that {P} c {Q} is valid 
          We defined a set of rules (axioms) to build proofs of   
          claims without reasoning directly about states and 
          executions
- Saw how to verify specific programs

⊢{P} c {Q}


