Introduction to Lambda Calculus

Lecture 7
CS 565
02/08/09
Lambda Calculus

- So far, we’ve explored some simple but non-interesting languages
 - language of arithmetic expressions
 - IMP (arithmetic + while loops)
- We now turn our attention to a simple but interesting language
 - Turing complete (can express loops and recursion)
 - Higher-order (functional objects are values)
 - Interesting variable binding and scoping issues
 - Foundation for many real-world programming languages
 - Lisp, Scheme, ML, Haskell, Dylan,
Suppose we want to describe a function that adds three to any input:

- `plus3 x = succ (succ (succ x))`
- Read “`plus3` is a function which, when applied to any number `x`, yields the successor of the successor of the successor of `x`”
- Note that the function which adds 3 to any number need not be named `plus3`; the name “`plus3`” is just a convenient shorthand for naming this function

- `(plus3 x) (succ 0) ≡ ((\x. (succ (succ (succ 0)))) (succ 0))`
Basics

- There are two new primitive syntactic forms:
 - \(\lambda x. t \)

 "The function which when given a value \(v \), yields \(t \) with \(v \) substituted for \(x \) in \(t \)."
 - \((t_1 \, t_2)\)

 "the function \(t_1 \) applied to argument \(t_2 \)"

Key point: functions are anonymous: they don’t need to be named (e.g., plus3). For convenience we’ll sometimes write:

\[
\text{plus3} \, x \equiv \lambda x. (\text{succ} \, (\text{succ} \, (\text{succ} \, x)))
\]

but the naming is a metalanguage operation.
Consider the abstraction:

\[g \equiv \lambda f. (f (f (\text{succ} 0))) \]

The argument \(f \) is used in a function position (in a call).

We call \(g \) a higher-order function because it takes another function as an input.

Now,

\[(g \ \text{plus} 3) = (\lambda f. (f (f (\text{succ} 0))))\]

\[= (\lambda x. (\text{succ} (\text{succ} (\text{succ} x))))\]

\[= ((\lambda x. (\text{succ} (\text{succ} (\text{succ} x)))) (\text{succ} 0))\]

\[= ((\lambda x. (\text{succ} (\text{succ} (\text{succ} x)))) (\text{succ} (\text{succ} (\text{succ} 0))))\]

\[= ((\lambda x. (\text{succ} (\text{succ} (\text{succ} x)))) (\text{succ} (\text{succ} (\text{succ} (\text{succ} 0)))))\]

\[= (\text{succ} (\text{succ} (\text{succ} (\text{succ} (\text{succ} (\text{succ} (\text{succ} 0)))))))\]
Abstractions

Consider

\[
\text{double} \equiv \lambda f. \lambda y. (f (f y))
\]

The term yielded by applying double is another function \((\lambda y. (f (f y))\)

Thus, double is also a higher-order function because it returns a function when applied to an argument.
Example

(double plus3 0)

= ((\ f. \ y. (f (f y)))
 (\ x. (succ (succ (succ x)))) 0)
= ((\ y. ((\ x. (succ (succ (succ x))))
 ((\ x. (succ (succ (succ x)))) y))
 0)
= ((\ x. (succ (succ (succ x))))
 (succ (succ (succ 0))))
= (succ (succ (succ (succ (succ (succ 0))))))
Key Issues

- How do we perform substitution:
 - how do we bind “free variables”, the variables that are non-local in the function
 - Think about the occurrences of \(f \) in
 \[
 \lambda y. (f (f y))
 \]

- How do we perform application:
 - There may be several different application subterms within a larger term.
 - How do we decide the order to perform applications?
Pure Lambda Calculus

- The only value is a function
 - Variables denote functions
 - Functions always take functions as arguments
 - Functions always return functions as results

- Minimalist
 - Can express essentially all modern programming constructs
 - Can apply syntactic reasoning techniques (e.g. operational semantics) to understand behavior.
Scope

- The λ abstraction $\lambda \, x. \, t$ binds variable x.
- The scope of the binding is t.
- Occurrences of x that are not within the scope of an abstraction binding x are said to be free:
 - $\lambda \, x. \, \lambda \, y. \, (x \, y \, z)$
 - $\lambda \, x. \, ((\lambda \, y. \, z \, y) \, y)$
- Occurrences of x that are within the scope of an abstraction binding x are said to be bound by the abstraction.
Free Variables

- Intuitively, the free variables of an expression are "non-local" variables.
- Define $FV(M)$ formally thus:
 - $FV(x) = \{x\}$
 - $FV(M_1 M_2) = FV(M_1) \cup FV(M_2)$
 - $FV(\lambda x. M) = FV(M) - \{x\}$
- Free variables become bound after substitution.
- But, if proper care is not taken, this may lead to unexpected results:
 - $(\lambda x.\lambda y. y x) y = \lambda y. y y)
- We say that term M is α-congruent to N if N results from M by a series of changes to bound variables:
 - $\lambda x. (x y) \alpha$-congruent to $\lambda z. (z y)$ not α-congruent to $\lambda y. (y y)$
 - $\lambda x.x (\lambda x.x) \alpha$-congruent to $\lambda x'.x' (\lambda x.x)$ and α-congruent to $\lambda x'.x'(\lambda x''.x'')$
Substitution

- $\lambda x. M \alpha$-congruent to $\lambda y. M[y/x]$ if y is not free or bound in M.

- Define this more generally:
 - Let x be a variable, and M and N expressions. Then $[M/x]N$ is the expression N':
 - N is a variable:
 - $N = x$ then $N' = M$
 - $N \neq x$ then $N' = N$
 - N is an application ($Y \ Z$):
 - $N' = ([M/x]Y) ([M/x]Z)$
Substitution (cont)

- N is an abstraction $\lambda y. Y$:
 - $y = x$ then $N' = N$
 - $y \neq x$ then:
 - x does not occur free in Y or if y does not occur free in M:
 - $N' = \lambda y.[M/x]Y$
 - x does occur free in Y and y does occur free in M:
 - $N' = \lambda z.[M/x][[z/y]Y]$ for fresh z
Example

- $(\lambda p. (\lambda q. (\lambda p. p(p q)) (\lambda r. (+ p r)))) (+ p 4))$ 2
- $[(+ p 4)/q]((\lambda p. p(p q))(\lambda r. (+ p r)))$
- $[[(+ p 4)/q](\lambda p. p(p q))][(+ p 4)/q](\lambda r. (+ p r))$ (by case 2)
- $[[(+ p 4)/q](\lambda p. p(p q))](\lambda r. (+ p r))$ (by case 3.2.1 since q does not occur free in $(+ p r)$)
- $(\lambda a. [(+ p 4)/q][[a/p](p(p q))])(\lambda r. (+ p r))$ (by case 3.3.2)
- $(\lambda a. a (a (+ p 4)))(\lambda r. (+ p r))$
- $(\lambda p. (\lambda a. a (a (+ p 4)))(\lambda r. (+ p r)))$ 2
Operational Semantics

- **Values:**
 - $\lambda x. t$

- **Computation rule:**
 - $((\lambda x. t) v) \rightarrow t[v/x]$

- **Congruence rules**
 - $t_1 \rightarrow t_1'$
 \[
 \frac{}{(t_1 \cdot t_2) \rightarrow (t_1' \cdot t_2)}
 \]
 - $t_2 \rightarrow t_2'$
 \[
 \frac{}{(v \cdot t_2) \rightarrow (v \cdot t_2')}\]
 - x not free in t
 \[
 \frac{}{\lambda x. (t \cdot x) \rightarrow t}\]

The first computation rule is referred to as the β-substitution or β-conversion rule.

$((\lambda x. t_1) \cdot t_2)$ is called a β-redex.

The last congruence rule is referred as the η-conversion rule.

$(\lambda x. (t \cdot x))$

where x not in $FV(t)$ is an η-redex

η-conversion related to notion of function extensionality. Why?
Multiple arguments

The λ calculus has no built-in support to handle multiple arguments.

However, we can interpret λ terms that when applied yield another λ term as effectively providing the same effect:

Example:

- \(\text{double} \equiv \lambda f. \lambda x. (f (f x)) \)

 We can think of double as a two-argument function.

Representing a multi-argument function in terms of single-argument higher-order functions is known as currying.
Programming Examples: Booleans

true ≡ \(\lambda \ t. \lambda \ f. \ t \)
false ≡ \(\lambda \ t. \lambda \ f. \ f \)

\[(true \lor \ w) \rightarrow ((\lambda \ t.\lambda \ f. \ t) \lor) \ w) \rightarrow\]
\[(((\lambda \ f. \ v) \ w) \rightarrow\]
\[\bigwedge \ v\]

\[(false \lor \ w) \rightarrow ((\lambda \ t.\lambda \ f. \ f) \lor) \ w) \rightarrow\]
\[(((\lambda \ f. \ f) \ w) \rightarrow\]
\[\bigwedge \ w\]
Booleans (cont)

- not \(\equiv \lambda b. b \) false true

 The function that returns true if \(b\) is false, and false if \(b\) is true.

- and \(\equiv \lambda b. \lambda c. b \) c false

 The function that given two Boolean values \((v\) and \(w)\)
 returns \(w\) if \(v\) is true and false if \(v\) is false. Thus,
 \((\text{and} \ v \ w)\) yields true only if both \(v\) and \(w\) are true.
Pairs

- We can encode common operations on pairs thus:
 - pair ≡ \(\lambda f . \lambda s . \lambda b . b f s \)
 - fst ≡ \(\lambda p . p \) true
 - snd ≡ \(\lambda p . p \) false

Example:

\[
(fst (pair v w)) \rightarrow \\
(fst ((\lambda f . \lambda s . \lambda b . b f s) v w)) \rightarrow \\
(fst (\lambda s . \lambda b . b v s) w)) \rightarrow \\
((\lambda p . p \) true) (\lambda b . (b v w))) \rightarrow \\
((\lambda b . (b v w)) \) true) \rightarrow \\
(true v w) \rightarrow^* v
\]
Numbers (Church Numerals)

- There are no explicit operations to manipulate numbers.
- Encode numbers using higher-order functions:
 - zero $\equiv \lambda s. \lambda z. z$
 - one $\equiv \lambda s. \lambda z. (s \ z)$
 - two $\equiv \lambda s. \lambda z. (s (s \ z))$

Read “s” as successor and “z” as zero.
Numbers

- **succ**: $\lambda n. \lambda s. \lambda z . s \ (n \ s \ z)$

 A function that takes s and z and applies s repeatedly to z.

- **plus**: $\lambda m. \lambda n. \lambda s. \lambda z . m \ s \ (n \ s \ z)$

 takes two Church numerals and yields another Church numeral that given s and z applies s iterated n times to z and then applies s iterated m times to the result.
Example

(plus one two succ zero) →

(plus (λ s.λ z. (s z)) (λ s. λ z. (s (s z)))
 succ zero) →

(λ s. λ z. ((λ s. λ z. (s z))
 s
 ((λ s.λ z. (s (s z)) s z)
 succ zero) →

(((λ s. λ z. (s z))
 succ
 ((λ s. λ z. (s (s z))) succ zero)) →

(((λ s. λ z. (s z))
 succ
 (succ (succ (succ zero)))) →

(succ (succ (succ zero))))