Lambda Calculus

- So far, we’ve explored some simple but non-interesting languages
 - language of arithmetic expressions
 - IMP (arithmetic + while loops)
- We now turn our attention to a simple but interesting language
 - Turing complete (can express loops and recursion)
 - Higher-order (functional objects are values)
 - Interesting variable binding and scoping issues
 - Foundation for many real-world programming languages
 - Lisp, Scheme, ML, Haskell, Dylan,
Intuition

Suppose we want to describe a function that adds three to any input:

- `plus3 x = succ (succ (succ x))`
- Read “`plus3` is a function which, when applied to any number `x`, yields the successor of the successor of the successor of `x`”
- Note that the function which adds 3 to any number need not be named `plus3`; the name “`plus3`” is just a convenient shorthand for naming this function

\[
(plus3 \ x) \ (succ \ 0) \equiv
((\lambda \ x. \ (succ \ (succ \ (succ \ 0)))) \ (succ \ 0))
\]
Basics

- There are two new primitive syntactic forms:
 - \(\lambda x. t \)
 "The function which when given a value \(v \), yields \(t \) with \(v \) substituted for \(x \) in \(t \)."
 - \((t_1 t_2)\)
 "the function \(t_1 \) applied to argument \(t_2 \)"

Key point: functions are anonymous: they don’t need to be named (e.g., plus3). For convenience we’ll sometimes write:

\[
\text{plus3 } x \equiv \lambda x. (\text{succ} (\text{succ} (\text{succ} x)))
\]

but the naming is a metalanguage operation.
Abstractions

Consider the abstraction:

\[g \equiv \lambda f. (f \ (f \ (\text{succ} \ 0))) \]

The argument \(f \) is used in a function position (in a call).

We call \(g \) a higher-order function because it takes another function as an input.

Now,

\[(g \ \text{plus3}) = (\lambda f. (f \ (f \ (\text{succ} \ 0)))) \]

\[(\lambda x . (\text{succ} \ (\text{succ} \ (\text{succ} \ x)))) \]

\[= (((\lambda x. (\text{succ} \ (\text{succ} \ (\text{succ} \ x)))) \ (\text{succ} \ 0)))) \]

\[= (((\lambda x. (\text{succ} \ (\text{succ} \ (\text{succ} \ x)))) \ (\text{succ} \ (\text{succ} \ (\text{succ} \ (\text{succ} \ 0)))))) \]

\[= (\text{succ} \ 0))))))))))) \]
Abstractions

Consider

double ≡ λ f. λ y. (f (f y))

The term yielded by applying double is another function (λ y. (f (f y))

Thus, double is also a higher-order function because it returns a function when applied to an argument.
Example

\((\text{double plus3 0})\)

\[= ((\lambda f. \lambda y. (f (f y)))
 (\lambda x. (\text{succ (succ (succ x)))))) 0)\]
\[= ((\lambda y. ((\lambda x. (\text{succ (succ (succ x))))))
 ((\lambda x. (\text{succ (succ (succ x)))))) y))
 0)\]
\[= ((\lambda x. (\text{succ (succ (succ x)))))
 (\text{succ (succ (succ 0))))\)
\[= (\text{succ (succ (succ (succ (succ (succ 0))))))}\]
Key Issues

- How do we perform substitution:
 - how do we bind “free variables”, the variables that are non-local in the function
 - Think about the occurrences of f in
 \[\lambda y. (f (f y)) \]

- How do we perform application:
 - There may be several different application subterms within a larger term.
 - How do we decide the order to perform applications?
Pure Lambda Calculus

- The only value is a function
 - Variables denote functions
 - Functions always take functions as arguments
 - Functions always return functions as results
- Minimalist
 - Can express essentially all modern programming constructs
 - Can apply syntactic reasoning techniques (e.g. operational semantics) to understand behavior.
Scope

- The λ abstraction $\lambda x. t$ binds variable x.
- The scope of the binding is t.
- Occurrences of x that are not within the scope of an abstraction binding x are said to be free:
 - $\lambda x. \lambda y. (x y z)$
 - $\lambda x. ((\lambda y. z y) y)$
- Occurrences of x that are within the scope of an abstraction binding x are said to be bound by the abstraction.
Free Variables

- Intuitively, the free variables of an expression are "non-local" variables.
- Define $FV(M)$ formally thus:
 - $FV(x) = \{x\}$
 - $FV(M_1 \ M_2) = FV(M_1) \cup FV(M_2)$
 - $FV(\lambda \ x. M) = FV(M) - \{x\}$
- Free variables become bound after substitution.
- But, if proper care is not taken, this may lead to unexpected results:
 - $(\lambda x. \lambda y. y \ x) \ y = \lambda y. \ y \ y$
- We say that term M is α-congruent to N if N results from M by a series of changes to bound variables:
 - $\lambda x. (x \ y)$ α-congruent to $\lambda z. (z \ y)$ not α-congruent to $\lambda y. (y \ y)$
 - $\lambda x. x \ (\lambda x. x)$ α-congruent to $\lambda x'. x' \ (\lambda x. x)$ and α-congruent to $\lambda x'. x' (\lambda x''. x'')$
Substitution

- $\lambda x. M \alpha$-congruent to $\lambda y. M[y/x]$ if y is not free or bound in M.

- Define this more generally:
 - Let x be a variable, and M and N expressions. Then $[M/x]N$ is the expression N':
 - N is a variable:
 - $N = x$ then $N' = M$
 - $N \neq x$ then $N' = N$
 - N is an application ($Y Z$):
 - $N' = ([M/x]Y) ([M/x]Z)$
Substitution (cont)

- N is an abstraction $\lambda y.Y$:
 - $y = x$ then $N' = N$
 - $y \neq x$ then:
 - x does not occur free in Y or if y does not occur free in M:
 - $N' = \lambda y.[M/x]Y$
 - x does occur free in Y and y does occur free in M:
 - $N' = \lambda z.[M/x]([z/y]Y)$ for fresh z
Example

- $\lambda p. (\lambda q. (\lambda p.p(p \ q))(\lambda r. (+ p r)))(+ p 4))$ 2
- $[(+ p 4)/q][(\lambda p.p(p \ q))(\lambda r. (+ p r))]$
- $[(+ p 4)/q](\lambda p.p(p \ q)))([(+ p 4)/q](\lambda r. (+ p r))$ (by case 2)
- $[(+ p 4)/q](\lambda p.p(p \ q)))(\lambda r.(+ p r))$ (by case 3.2.1 since q does not occur free in (+ p r)
- $\lambda a.[(+ p 4)/q][(a/p)(p(p \ q)))](\lambda r. (+ p r))$ (by case 3.3.2)
- $\lambda a.a (a (+ p 4)))(\lambda r. (+ p r))$
Operational Semantics

- **Values:**
 - \(\lambda x. \, t \)

- **Computation rule:**
 - \(((\lambda x. \, t) \, v) \rightarrow t[v/x] \)

- **Congruence rules**
 - \(t_1 \rightarrow t_1' \)
 - \((t_1 \, t_2) \rightarrow (t_1' \, t_2) \)

 - \(t_2 \rightarrow t_2' \)
 - \((v \, t_2) \rightarrow (v \, t_2') \)

- \(x \) not free in \(t \)
 - \(\lambda x. \, (t \, x) \rightarrow t \)

The first computation rule is referred to as the \(\beta \)-substitution or \(\beta \)-conversion rule. \(((\lambda x. \, t_1) \, t_2) \) is called a \(\beta \)-redex.

The last congruence rule is referred as the \(\eta \)-conversion rule.

\((\lambda x. \, (t \, x)) \)
where \(x \) not in \(FV(t) \) is an \(\eta \)-redex

\(\eta \)-conversion related to notion of function extensionality. Why?
Multiple arguments

- The λ calculus has no built-in support to handle multiple arguments.
- However, we can interpret λ terms that when applied yield another λ term as effectively providing the same effect:
- **Example:**
 - double $\equiv \lambda f. \lambda x. (f (f x))$
 - We can think of double as a two-argument function.
- Representing a multi-argument function in terms of single-argument higher-order functions is known as currying.
Programming Examples: Booleans

true ≡ λ t. λ f. t
false ≡ λ t. λ f. f

(true v w) → ((λ t.λ f. t) v) w) →
 ((λ f. v) w) →
 v

(false v w) → ((λ t.λ f. f) v) w) →
 ((λ f. f) w) →
 w
Booleans (cont)

- **not** $\equiv \lambda b. b \text{ false true}

 The function that returns true if b is false, and false if b is true.

- **and** $\equiv \lambda b. \lambda c. b \text{ c false}

 The function that given two Boolean values (v and w) returns w if v is true and false if v is false. Thus, $(\text{and } v \ w)$ yields true only if both v and w are true.
Pairs

We can encode common operations on pairs thus:

- $$\text{pair} \equiv \lambda f \cdot \lambda s \cdot \lambda b \cdot b f s$$
- $$\text{fst} \equiv \lambda p \cdot p \text{ true}$$
- $$\text{snd} \equiv \lambda p \cdot p \text{ false}$$

Example:

$$(\text{fst} (\text{pair} v w)) \rightarrow$$
$$(\text{fst} ((\lambda f \cdot \lambda s \cdot \lambda b \cdot b f s) v w)) \rightarrow$$
$$(\text{fst} (\lambda s \cdot \lambda b \cdot b v s) w)) \rightarrow$$
$$((\lambda p \cdot p \text{ true}) (\lambda b \cdot (b v w))) \rightarrow$$
$$((\lambda b \cdot (b v w)) \text{ true}) \rightarrow$$
$$(\text{true} v w) \rightarrow^* v$$
Numbers (Church Numerals)

- There are no explicit operations to manipulate numbers
- Encode numbers using higher-order functions:
 - zero \(\equiv \lambda s. \lambda z. z \)
 - one \(\equiv \lambda s. \lambda z. (s \ z) \)
 - two \(\equiv \lambda s. \lambda z. (s \ (s \ z)) \)

Read “s” as successor and “z” as zero
Numbers

- **succ**: \(\lambda n. \lambda s. \lambda z . s (n \ s \ z) \)

 A function that takes \(s \) and \(z \) and applies \(s \) repeatedly to \(z \).

- **plus**: \(\lambda m. \lambda n. \lambda s. \lambda z . m \ s (n \ s \ z) \)

 Takes two Church numerals and yields another Church numeral that given \(s \) and \(z \) applies \(s \) iterated \(n \) times to \(z \) and then applies \(s \) iterated \(m \) times to the result.
Example

\[(\text{plus one two succ zero}) \rightarrow\]

\[(\text{plus} \ (\lambda \ s. \lambda \ z. \ (s \ z)) \ (\lambda \ s. \lambda \ z. \ (s \ (s \ z))) \]
\[\text{succ zero} \rightarrow\]

\[(\lambda \ s. \lambda \ z. \ ((\lambda \ s. \lambda \ z. \ (s \ z)) \ s \]
\[\text{(s succ zero)} \rightarrow\]

\[((\lambda \ s. \lambda \ z. \ (s \ z)) \]
\[\text{succ}\]
\[((\lambda \ s. \lambda \ z. \ (s \ (s \ z)))) \text{ succ zero}) \rightarrow\]

\[((\lambda \ s. \lambda \ z. \ (s \ z)) \]
\[\text{succ}\]
\[(\text{succ (succ zero)})) \rightarrow\]

\[(\text{succ (succ (succ zero))})\]