Type Reconstruction and Inference

Lecture 20
CS 565
4/19/06
Type Variables

- Two separate issues:
 - Describing a mapping from type variables to types
 - Applying the mapping to yield instances
 - Must guarantee that types are preserved under substitution: if σ is a type substitution and $\Gamma \vdash t : \tau$, then $\sigma\Gamma \vdash \sigma t : \sigma\tau$
View of Type Variables

- Keep type variables abstract during type checking
 - A well-typed term behaves properly regardless of the concrete types that are substituted for the variables: (System F)
 - \(\lambda f : \tau \rightarrow \tau \cdot \lambda x : \tau. f (f \ x) \)
- The term may not be well-typed, but there exists an instantiation of type variables that make it well-typed: (Type Inference)
 - \(\lambda f : \tau \cdot \lambda x : \tau'. f (f \ x) \)
Inference

- If we omit type parameters, we must discover whether the intended use of an expression matches its actual use.

- Implications for compilation:
 - How do we generate code for a polymorphic procedure that may be applied to objects with very different representations?

- First need to understand how inference works.
Constraint-Based Typing

- Constraints define equation between type expressions that may contain type variables
- Typing rules calculates types (and their constraints)
- Validate the correctness of a given set of constraints under a substitution
Constraints (Example)

\[
\begin{align*}
\Gamma & \vdash t_1 : \tau | C \\
C' & = C \cup \{ \tau = \text{int} \} \\
\Gamma & \vdash \text{pred } t_1 : \text{int} | C'
\end{align*}
\]

\[
\begin{align*}
\Gamma & \vdash t_1 : \tau_1 | C_1 \\
\Gamma & \vdash t_2 : \tau_2 | C_2 \\
C' & = C_1 \cup C_2 \cup \{ \tau_1 = \tau_2 \rightarrow X \} \\
X & \text{ fresh} \\
\Gamma & \vdash t_1 \ t_2 : X | C'
\end{align*}
\]

Constraints for \(t = \lambda x : X \rightarrow Y. (x \ 0) \) is

\[
\{ \text{int } \rightarrow Z = X \rightarrow Y \}
\]
Unification

- Allows us to calculate a solution to a constraint set:

unify (C) =

 if c is empty then []
 else let \{ S = T \} U C' = C in

 if S = T
 then unify(C')
 else if S = X and X not \in\ FV(T)
 then unify([X \rightarrow T]C') o [X \rightarrow T]
 else if T = X and X not \in\ FV(S)
 then unify([X \rightarrow S]C') o [X \rightarrow S]
 else if S = S1 \rightarrow S2 and T = T1 \rightarrow T2
 then unify(C' U \{ S1 = T1, S2 = T2\})
 else fail
Type-checking

- Match type operators and instantiate type variables.
- Need to define where type variables can appear.
- Must also enforce contextual dependencies:
 - 'a → 'a : substituting “int” for 'a must be done uniformly for all occurrences of the type variable in the type.
Type-checking

- Perform context-sensitive type instantiation using unification.
 - Unification fails when
 - trying to match two distinct type operators (int and bool)
 - instantiating a type variable to a term containing that variable ('a and 'a → int)
 - Example: try to type-check the following expression:
 \[\text{fn } x \rightarrow x(x) \]
Example

The type of length in the following program:

```ml
let fun length l = if (null l)
    then 0
    else succ(length(tl(l)))
in ... 
```

is 'a list -> int. How does the ML typechecker deduce this type?

Perform a bottom-up inspection of the program, matching and synthesizing types while proceeding to the root.

- The type of an expression is computed from the type of its subexpressions and the type constraints imposed by the context.
- Important property: order in which we examine programs and perform unification does not affect final result.

Consider the type of length. Perform type-checking using a bottom-up derivation:

<table>
<thead>
<tr>
<th>l:</th>
<th>'a</th>
<th>type of l initially unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>null:</td>
<td>'b list -> bool</td>
<td>definition of null</td>
</tr>
<tr>
<td>null(l):</td>
<td>bool</td>
<td>by definition of null</td>
</tr>
<tr>
<td>0:</td>
<td>int</td>
<td></td>
</tr>
<tr>
<td>tl:</td>
<td>'c list -> 'c list</td>
<td>by definition of tl</td>
</tr>
<tr>
<td>tl(l):</td>
<td>'c list</td>
<td>unification</td>
</tr>
<tr>
<td>l:</td>
<td>'c list</td>
<td></td>
</tr>
</tbody>
</table>
Example (cont)

```
let fun length l = if (null l) then 0 else succ(length(tl(l)))
```

<table>
<thead>
<tr>
<th>length:</th>
<th>'a → 'd</th>
<th>by definition of fn</th>
</tr>
</thead>
<tbody>
<tr>
<td>length(tl(l)):</td>
<td>'d</td>
<td>unification</td>
</tr>
<tr>
<td></td>
<td>'a = 'c list</td>
<td></td>
</tr>
<tr>
<td>succ:</td>
<td>int → int</td>
<td>by definition of succ</td>
</tr>
<tr>
<td>succ(length(..)):</td>
<td>int</td>
<td>unification</td>
</tr>
<tr>
<td></td>
<td>'d = int</td>
<td></td>
</tr>
<tr>
<td>if (null...):</td>
<td>int</td>
<td>by definition of conditional</td>
</tr>
<tr>
<td>fn l => ...</td>
<td>'c list → int</td>
<td></td>
</tr>
</tbody>
</table>
Basic algorithm

1. A variable \(x \) introduced as a function argument assigned a new type variable. Store \(<x,'a>\) in a type environment, where 'a is fresh.

2. In a conditional, predicate type unified with bool, the true and false branch unified with one another. This type (call it 'b) is the type of the conditional.

3. The type of \(e \) in a function \(fn \ x \Rightarrow e \) is inferred in a context where \(x \) is associated with a new type variable.

4. In an application, \((f \ x) \), \(f \) is unified against \(A \Rightarrow 'b \) where \(A \) is the type of \(x \) and 'b is a new type variable.

 The type of \(f \) is therefore a function type whose domain is unifiable to 'b. 'b (or its instantiation) is returned as the type of the function.
To type-check let expressions introduce notion of genericity.

What is the type of the expression:

- fn f => (f(3), f(true))

Cannot type this in ML because f’s type is considered non-generic.

- The first occurrence of f determines a type int → 'a, and the second determines a type bool → 'a.
- Can’t unify these two terms

Non-generic type variables cannot be instantiated multiple times within their defined context.

To implement generic types, make a copy of the type for every distinct context in which it occurs.
Algorithm (cont)

- What about:

  ```ml
  let val f = fn x => x
  in (f(3), f(true))
  end
  ```

- Here, we will assign `f` type `'a -> 'a` and view `'a` as generic:
 - `'a` can assume different values for different instantiations of `f` in the let-body.
Algorithm (cont)

- Need to be careful to not copy non-generic variables:

  ```
  let val f = fn g => let val h = g
               in pair(h(3),h(true))
               end
  
  in ...
  
  end
  ```

Def. A type variable occurring in the type of an expression `e` is generic (with respect to `e`) iff it does not occur in the type of the binder of any function definition enclosing `e`.
Algo{rithm} (cont)

To typecheck a let expression, typecheck its declaration, obtaining an environment of identifiers and types used to typecheck the let-body.

Recursive definitions:

\[
\text{let fun } f(...) = \ldots \ f \ldots \\
\text{in } \ldots f \ldots
\]

Instances of the type variable in the recursive definition must be non-generic, while instances in the body are generic.