The Limitations of F_1 (simply-typed λ-calculus)

- In F_1 each function works exactly for one type
- Example: the identity function
 - $id = \lambda x: \tau. \; x : \tau \rightarrow \tau$
 - We need to write one version for each type
 - Even more important: $sort : (\tau \rightarrow \tau \rightarrow \text{bool}) \rightarrow \tau \text{ array} \rightarrow \text{unit}$
- The various sorting functions differ only in typing
 - At runtime they perform exactly the same operations
 - We need different versions only to keep the type checker happy
- Two alternatives:
 - Circumvent the type system (see C, Java, ...), or
 - Use a more flexible type system that lets us write only one sorting function
Polymorphism

- Informal definition
 A function is polymorphic if it can be applied to “many” types of arguments

- Various kinds of polymorphism depending on the definition of “many”
 - subtype (or bounded) polymorphism
 “many” = all subtypes of a given type
 - ad-hoc polymorphism
 “many” = depends on the function
 choose behavior at runtime (depending on types, e.g. sizeof)
 - parametric predicative polymorphism
 “many” = all monomorphic types
 - parametric impredicative polymorphism
 “many” = all types
Parametric Polymorphism: Types as Parameters (System F)

- We introduce type variables and allow expressions to have variable types
- We introduce polymorphic types
 \[\tau ::= b \mid \tau_1 \rightarrow \tau_2 \mid t \mid \forall t. \tau \]
 \[e ::= x \mid \lambda x: \tau. e \mid e_1 e_2 \mid \forall t. e \mid e[\tau] \]
 - \(\forall t. e \) is type abstraction (or generalization)
 - \(e[\tau] \) is type application (or instantiation)
- Examples:
 - \(\text{id} = \forall t. \lambda x: t. x \quad : \quad \forall t. t \rightarrow t \)
 - \(\text{id[int]} = \lambda x: \text{int}. x \quad : \quad \text{int} \rightarrow \text{int} \)
 - \(\text{id[bool]} = \lambda x: \text{bool}. x \quad : \quad \text{bool} \rightarrow \text{bool} \)
 - “id 5” is invalid. Use “id [int] 5” instead
Impredicative Polymorphism

- The typing rules:

\[\Gamma \vdash x : \tau \]

\[\Gamma, x : \tau \vdash e : \tau' \]

\[\Gamma \vdash \lambda x : \tau. e : \tau \rightarrow \tau' \]

\[\begin{array}{c}
\Gamma \vdash e_1 : \tau \rightarrow \tau' \\
\Gamma \vdash e_2 : \tau
\end{array} \quad \Gamma \vdash e_1 \ e_2 : \tau' \]

\[\Gamma \vdash e : \tau \]

\[\Gamma \vdash \Lambda t. e : \forall t. \tau \] \quad \text{\textit{t does not occur in } } \Gamma

\[\Gamma \vdash e : \forall t. \tau' \]

\[\Gamma \vdash e[\tau] : [\tau/t] \tau' \]
Impredicative Polymorphism (Cont.)

- Verify that “id [int] 5” has type int
- Note the side-condition in the rule for type abstraction
 - Prevents ill-formed terms like: \(\lambda x : t. \Lambda t. x \)
- The evaluation rules are just like those of F₁
 - This means that type abstraction and application are all performed at compile time
 - We do not evaluate under \(\Lambda \) (\(\Lambda t. e \) is a value)
 - We do not have to operate on types at run-time
 - This is called phase separation: type checking and execution
Observations

- Based on the type of a term we can prove properties of that term
- There is only one value of type $\forall t. t \rightarrow t$
 - The polymorphic identity function
- There is no value of type $\forall t. t$
- Take the function: reverse : $\forall t. t \text{ List} \rightarrow t \text{ List}$
 - This function cannot inspect the elements of the list
 - It can only produce a permutation of the original list
- If L_1 and L_2 have the same length and let “match” be a function that compares two lists element-wise according to an arbitrary predicate
 - then “match $L_1 L_2$” \equiv “match (reverse L_1) (reverse L_2)” !
Expressiveness of Impredicative Polymorphism

- This calculus is called
 - F_2
 - system F
 - second-order λ-calculus
 - polymorphic λ-calculus

- Polymorphism is extremely expressive
- We can encode many base and structured types in F_2
Encoding Base Types in F₂

- **Booleans**
 - bool = ∀t.t → t → t (given any two things, select one)
 - There are exactly two values of this type!
 - true = Λt. λx:t.λy:t. x
 - false = Λt. λx:t.λy:t. y
 - not = λb:bool. Λt.λx:t.λy:t. b [t] y x

- **Naturals**
 - nat = ∀t. (t → t) → t → t (given a successor and a zero element, compute a natural number)
 - 0 = Λt. λs:t → t.λz:t. z
 - n = Λt. λs:t → t.λz:t. s (s (s...s(n)))
 - add = λn:nat. λm:nat. Λt. λs:t → t.λz:t. n [t] s (m [t] s z)
 - mul = λn:nat. λm:nat. Λt. λs:t → t.λz:t. n [t] (m [t] s) z
Expressiveness of F_2

- We can encode similarly:
 - $\tau_1 + \tau_2$ as $\forall t. (\tau_1 \rightarrow t) \rightarrow (\tau_2 \rightarrow t) \rightarrow t$
 - $\tau_1 \times \tau_2$ as $\forall t. (\tau_1 \rightarrow \tau_2 \rightarrow t) \rightarrow t$
 - unit as $\forall t. t \rightarrow t$

- Polymorphic application:
 - $\text{selfApp} = \lambda x: \forall t. t \rightarrow t. x[\forall t. t \rightarrow t] x : (\forall t. t \rightarrow t) \rightarrow (\forall t. t \rightarrow t)$
 - $\text{double} = \forall t. \lambda f : t \rightarrow t. \lambda a : t. f(f(a)) : \forall t. (t \rightarrow t) \rightarrow t \rightarrow t$
 - $\text{quadruple} = \forall t. \text{double} [t \rightarrow t] (\text{double} [t]) : \forall t. (t \rightarrow t) \rightarrow t \rightarrow t$

- We cannot encode $\mu t. t$
 - We can encode primitive recursion but not full recursion
 - All terms in F_2 have a termination proof in second-order Peano arithmetic (Girard, 1971): strongly normalizing
 - This is the set of naturals defined using zero, successor, induction along with quantification both over naturals and over sets of naturals