CS 456

Programming Languages

Fall 2025

Week 8
Monads

Type Amplifiers

- Values are often specialized or encapsulated:
>~ An option type specializes a value to Some or None
> A ref type encapsulates a value within a memory container
> An exception type wraps a value around a computational effect

> A list type specializes a set of values around a choice action defined
by a list index

> An |/O operation consumes and returns a value in the context of
actions that modify a input/output stream

>

- Would like to reason about these types in the same way we reason
about types that are not container-ized

Maybe

A “safe” division operation:

let div x y = if y = 0 then None else Some (x / y)
But, can’t use this in the following:
let r = 1 + (4 div 2)

- The signature for “+” expects an int not an option

- Could change all arithmetic operations to accept an option type as
Input.

Maybe

let plus opt (x:int option) (y:int option) : int option =

match x,y with
| None, @ | , None -> None

| Some a, Some b -> Some (Stdlib.(+) a b)

let (+) = plus opt

let minus opt (x:int option) (y:1int option) : int option =
match x,y with
| None, @ | , None -> None

| Some a, Some b -> Some (Stdlib.(-) a b)

let (-) minus_ opt

Better Approach

- Can we define an abstraction that refactors patterns common to
these definitions!?

let propagate none (op : int -> int -> int) (x : int option)
(y : 1nt option) =
match x, y with
| None, @ | _, None -> None

| Some a, Some b -> Some (op a b)

let (+) = propagate none Stdlib.(+)
let (-) = propagate none Stdlib.(-)
let (*) = propagate none Stdlib.(*)
val (+) : int option -> int option -> int option = <fun>

<fun>

val (-) : int option -> int option -> int option

A Better Approach

- Not quite right: abstraction doesn’t account for division which must
check the value of its second argument before applying the “unsafe”
division operator

let propagate none

(op : int -> int -> int option) (x : int option) (y : int option)

match x, y with

, None -> None

| None,

| Some a, Some b -> op a b

let wrap output (op : int -> int -> int) (x : int) (y : int) : int option
= Some (op X V)

let div (x : int) (y : 1int) : int option =
if y = 0 then None else wrap output Stdlib.(/) x y

let (/) = propagate none div

Intuition

- Transformed operations on “unboxed” integer values to operate over
“boxed” Maybe objects

- Employed two basic transforms:

> Taking a regular unboxed integer and turning it into a Maybe
(wrapped with Some) - this is what wrapped output does

> Factoring code to handle pattern-matching against None. This
involved upgrading/specializing functions that operate over integers
to instead accept inputs of type int option.

Monad

- Conversion from ordinary to/from option types is tedious

- Would like to wrap (i.e, amplify) computed values with the option
they are associated with

- Build a type constructor for this purpose:

module type Monad = sig

type ‘a t
val return : ‘a -> ‘a t
val bind : ‘a t -> (‘a -=> ‘b t) -=> ‘b t

end

let (>>=) m £ = bind m £
- A monad defines a container
- return puts a value in that container

- bind takes a container that contains a value of type ‘ a, a function
that takes a value of type ‘a and returns a container containing values
of type ‘b and returns that container

The Maybe Monad

module Maybe : Monad =

struct
val return : int -> int option
let return (x : int) : int option = Some x

val bind : int option -> (int -> int option) -> int option
let bind (x : int option) (op : int -> int option) : int option =
match x with

| None -> None
| Some a -> op a
let (>>=) = bind

end

Maybe Monad

let (+) (x : int option) (y : int option) : 1int option =

x >>= fun a -> y >>= fun b -> return (Stdlib.(+) a b)

let (-) (x : int option) (y : int option) : int option =
x >>= fun a -> y >>= fun b -> return (Stdlib.(-) a b)

let (*) (x : 1int option) (y : int option) : int option =
x >>= fun a -> y >>= fun b -> return (Stdlib.(*) a b)

let (/) (x : int option) (y : int option) : int option =

X >>= fun a -> y >>= fun b ->

if b = 0 then None else return (Stdlib.(/) a b)

Maybe Monad

- Further simplification:

let upgrade binary op x y =
x >>= fun a ->
y >>= fun b ->

op a b

let return binary op x y = return (op X V)

let (+) = upgrade binary (return binary Stdlib.(+))
let (-) = upgrade binary (return binary Stdlib.(-))
let (*) = upgrade binary (return binary Stdlib.(*))
let (/) = upgrade binary div

val upgrade binary :

(int -> int -> int option) -> int option -> int option -> int option = <fun>

val return binary : ('a -> 'b -> int) -> 'a -> 'b -> int option = <fun>

Maybe Monad

12 |
module Maybe : Monad = struct
type 'a t = 'a option
let return x = Some X

let (>>=) m f =
match m with

None -> NoOne

Some X -> f x
end

The State Monad

Consider the function:

let £ v s = let (b, X) = g v s 1n
let (¢, yv) = h (b + 1) x in
let (d, z) =1 (¢ + 1) vy

in (d, z)

Suppose we model a state as a record: { sl :int;s2 :int } and

-g = fun v s -> let {sl = sl; s2 } = s in (sl, {sl = sl + v, s2})

- h = fun v s -> let {sl; s2 = s2} s in (s2, {sl; s2 = s2 + v})

fun v s -> let {sl = sl; s2 = s2} = s 1n

1
-
Il

(sl + s2, {sl = sl + v; s2 = s2 + v})

Then £ o { s1 =0; s2 =o0}vyields (2, {s1 = 2; s2 = 2})

g, h, and i given a value and a state, returns a new value, and a new
state. In other words, they encapsulate a state transformer.

The State Monad

So,
let £ v s = let (b, X) = g v s in
let (¢, yv) = h (b + 1) x in
let (d, z) =1 (¢ + 1) y
in (d, z)

following the design pattern we used for the Maybe monad, we can
express this function monadically as:

let £ v = (g v) >= fun b ->
(h (b + 1)) >>= fun ¢ ->

(1 (¢ + 1)) >>= fun z -> return z

What does (£ 0) return?! It returns a computation that when
applied to an initial state, executes the sequence of calls to g, h,
and 1, threading the state appropriately.

The State Monad

module State : Monad = struct
type state (* the record {sl; s2} *)
type 'a t = state -> ‘a * state
(* a state monad 1is a container over a state transition function *)
(* in our example, these are the functions g, h, and i1 after they have

been applied to an initial value. *)

val return: ‘a -> ‘a t

let return x = fun s -> (x, s)

val bind: ‘a t -> (‘a -> ‘b t) -=> ‘b t
let bind s £ =
fun state ->

(* apply the supplied state transition function *)
let (a, s’') = s state in
(* generate a new state transition function and value *)
let (b, s’’') = £ a s’ in
(b, s'")

end

The State Monad

val bind: ‘a t -> (‘a -> ‘b t) -> ‘b t
let bind s f =

let £ v = (gv) >= fun b -> fun state ->
(h (b + 1)) >>= fun ¢ -> (* apply the supplied state transition function *)
(1 (¢ + 1)) >>= fun z -> return z let (a, s') = s state in

(* generate a new state transition function and value *)
let (b, s’') = £ a s’ in
(b, s'7")

end

(g v) >> fun b -> <rest of computation> ==>

bind (g v) (fun b -> <rest of computation> ==>
returns a function that when applied to state, applies (g v)
(i.e, fun s -> let {sl = sl; s2 } = s in (sl, {sl = sl + v, s2}))

to state, and then applies (fun b -> <rest of computation>) tO s1 and
the new state {s1 = sl + v, s2}

The State Monad

let £ v = (g v) >= fun b ->
(h (b + 1)) >= fun ¢ ->

(L (¢ + 1)) >>= fun z -> return z

The effect of bind in the state monad is to return a computation that
when supplied an initial state, performs the effects on that state as
defined by g, h, and i. If we define:

let run comp = comp {sl = 0; s2 = 0}
then
run (£ 0)

executes the computation. In other words, bind allows us to
compose a sequence of state-manipulating computations and returns
a function that executes these computations when given an initial
state.

Functors

- Ordinary computations operate over values (e.g.,2 + 3 = 5)

- Values often reside in containers or boxes (e.g., an option box)
- Cannot directly apply a value that is wrapped in a context

- First step:

> An operation that applies a function to values wrapped in a context

module type Functor = sig
type ‘a t
val fmap : (‘a -> ‘b) -> ‘a t -> ‘b t
end

An instance of this structure:

module MaybeFunctor : Functor = struct
type ‘a t = ‘a option
let fmap £ x = match x with
| None -> None
| Some y -> Some (f y)

end

Applicative Functors

- Both functions and values can be wrapped in a context (e.g.,
a state transition function)

- An applicative functor handles the application of a function
wrapped in a context to a value wrapped in a context

module type Applicative = sig
include Functor
val pure : ‘a -> ‘' a t (* wraps a value into a context *)
val apply : (‘a -> ‘b) t -> ‘a t -> ‘b t

end

Applicative Functors
2l

module OptionApplicative : Applicative =
struct

type ‘a t = ‘a option

let pure x = Some X

let apply fo xo =
match fo, xo with
Some f, Some x -> Some (f X)

-> None

end

Monads

- Apply a function that returns a wrapped value to a wrapped
value.

- The bind operator provides this functionality
Example:

let half x = 1f (even x)
then Some (x / 2)
else None

Now,

(Some 10) Maybe.>>= half —> Some 5

(Some 10) Maybe.>>

half Maybe .>>=

half —> None

References

OCaml Programming:

https://cs3110.github.io/textbook/chapters/ds/monads.html

Of Course ML Has Monads:

https://existentialtype.wordpress.com/2011/05/01/o0f-course-ml-has-monads/

Understanding Monads (Haskell)
https://en.wikibooks.org/wiki/Haskell/Understanding monads

https://cs3110.github.io/textbook/chapters/ds/monads.html
https://existentialtype.wordpress.com/2011/05/01/of-course-ml-has-monads/

