
1

C
S480 Softw

are Testing

Delta Debugging

2

C
S480 Softw

are Testing

Problem

In 1999 Bugzilla, the bug database for the browser
Mozilla, listed more than 370 open bugs
Each bug in the database describes a scenario which
caused software to fail
  these scenarios are not simplified
  they may contain a lot of irrelevant information
  a lot of the bug reports could be equivalent

Overwhelmed with this work Mozilla developers sent
out a call for volunteers
  Process the bug reports by producing simplified bug reports
  Simplifying means: turning the bug reports into minimal test
cases where every part of the input would be significant in
reproducing the failure

3

C
S480 Softw

are Testing

An Example Bug Report

Printing the following file causes Mozilla to crash:
<td align=left valign=top>
<SELECT NAME="op sys" MULTIPLE SIZE=7>
<OPTION VALUE="All">All<OPTION VALUE="Windows 3.1">Windows 3.1<OPTION
VALUE="Windows 95">Windows 95<OPTION VALUE="Windows
98">Windows 98<OPTION VALUE="Windows ME">Windows ME<OPTION
VALUE="Windows 2000">Windows 2000<OPTION VALUE="Windows
NT">Windows NT<OPTION VALUE="Mac System 7">Mac System 7<OPTION VALUE="Mac
System 7.5">Mac System 7.5<OPTION VALUE="Mac
System 7.6.1">Mac System 7.6.1<OPTION VALUE="Mac System 8.0">Mac System
8.0<OPTION VALUE="Mac System 8.5">Mac System
8.5<OPTION VALUE="Mac System 8.6">Mac System 8.6<OPTION VALUE="Mac System
9.x">Mac System 9.x<OPTION VALUE="MacOS X">MacOS
X<OPTION VALUE="Linux">Linux<OPTION VALUE="BSDI">BSDI<OPTION
VALUE="FreeBSD">FreeBSD<OPTION VALUE="NetBSD">NetBSD<OPTION
VALUE="OpenBSD">OpenBSD<OPTION VALUE="AIX">AIX<OPTION

Continued in the next page

4

C
S480 Softw

are Testing

VALUE="BeOS">BeOS<OPTION VALUE="HP-UX">HP-UX<OPTION
VALUE="IRIX">IRIX<OPTION VALUE="Neutrino">Neutrino<OPTION
VALUE="OpenVMS">OpenVMS<OPTION VALUE="OS/2">OS/2<OPTION
VALUE="OSF/1">OSF/1<OPTION VALUE="Solaris">Solaris<OPTION
VALUE="SunOS">SunOS<OPTION VALUE="other">other</SELECT></td>
<td align=left valign=top>
<SELECT NAME="priority" MULTIPLE SIZE=7>
<OPTION VALUE="--">--<OPTION VALUE="P1">P1<OPTION VALUE="P2">P2<OPTION
VALUE="P3">P3<OPTION VALUE="P4">P4<OPTION
VALUE="P5">P5</SELECT>
</td>
<td align=left valign=top>
<SELECT NAME="bug severity" MULTIPLE SIZE=7>
<OPTION VALUE="blocker">blocker<OPTION VALUE="critical">critical<OPTION
VALUE="major">major<OPTION
VALUE="normal">normal<OPTION VALUE="minor">minor<OPTION
VALUE="trivial">trivial<OPTION VALUE="enhancement">enhancement</SELECT>
</tr>
</table>

5

C
S480 Softw

are Testing

Delta-Debugging

It is hard to figure out what the real cause of the
failure is just by staring at that file
It would be very helpful in finding the error if we
can simplify the input file and still generate the
same failure
A more desirable bug report looks like this
Printing an HTML file which consists of:

 <SELECT>
causes Mozilla to crash.

The question is: Can we automate this?
Andreas Zeller

6

C
S480 Softw

are Testing

Overview

Let’s use a smaller bug report as a running example:

When Mozilla tries to print the following HTML input it crashes:
<SELECT NAME="priority" MULTIPLE SIZE=7>

How do we go about simplifying this input?

  Manually remove parts of the input and see if it still causes
the program to crash

For the above example assume that we remove
characters from the input file

7

C
S480 Softw

are Testing

1 <SELECT NAME="priority" MULTIPLE SIZE=7> F

2 <SELECT NAME="priority" MULTIPLE SIZE=7> P

3 <SELECT NAME="priority" MULTIPLE SIZE=7> P

4 <SELECT NAME="priority" MULTIPLE SIZE=7> P

5 <SELECT NAME="priority" MULTIPLE SIZE=7> F

6 <SELECT NAME="priority" MULTIPLE SIZE=7> F

7 <SELECT NAME="priority" MULTIPLE SIZE=7> P

8 <SELECT NAME="priority" MULTIPLE SIZE=7> P

9 <SELECT NAME="priority" MULTIPLE SIZE=7> P

10 <SELECT NAME="priority" MULTIPLE SIZE=7> F

11 <SELECT NAME="priority" MULTIPLE SIZE=7> P

12 <SELECT NAME="priority" MULTIPLE SIZE=7> P

13 <SELECT NAME="priority" MULTIPLE SIZE=7> P

Bold parts remain in the input, the rest is removed

F means input caused failure
P means input did not cause
 failure (input passed)

8

C
S480 Softw

are Testing

14 <SELECT NAME="priority" MULTIPLE SIZE=7> P

15 <SELECT NAME="priority" MULTIPLE SIZE=7> P

16 <SELECT NAME="priority" MULTIPLE SIZE=7> F

17 <SELECT NAME="priority" MULTIPLE SIZE=7> F

18 <SELECT NAME="priority" MULTIPLE SIZE=7> F

19 <SELECT NAME="priority" MULTIPLE SIZE=7> P

20 <SELECT NAME="priority" MULTIPLE SIZE=7> P

21 <SELECT NAME="priority" MULTIPLE SIZE=7> P

22 <SELECT NAME="priority" MULTIPLE SIZE=7> P

23 <SELECT NAME="priority" MULTIPLE SIZE=7> P

24 <SELECT NAME="priority" MULTIPLE SIZE=7> P

25 <SELECT NAME="priority" MULTIPLE SIZE=7> P

26 <SELECT NAME="priority" MULTIPLE SIZE=7> F

9

C
S480 Softw

are Testing

Example

After 26 tries we found that:

Printing an HTML file which consists of:
 <SELECT>

causes Mozilla to crash.

Delta debugging technique automates this approach
of repeated trials for reducing the input.

10

C
S480 Softw

are Testing

A Simplified Description of the Algorithm
Initially, n=2
(1) Divide a string S equally into Δ1, Δ2, ... Δn and the respective

complements are ∇1, ∇2, ..., ∇n.
(2) Test each Δ1, Δ2, ... Δn and ∇1, ∇2, ..., ∇n .
 if (all pass) {
 n=2n;
 if (n>|s|) return the most recent failure inducing
 substring.
 else goto (1)
} else if (Δt fails) {
 n=2; s= Δt

 if (|s|==1) return s
 else goto (1)
} else { /* ∇t fails */
 s= ∇t ; n=n-1; goto (1);
}

11

C
S480 Softw

are Testing

Examples

a b c d e f * h
  Program fails on any substrings containing ‘*’

a b c d e f g h
  Any strings containing a g h fail

abcdef”,
  the program fails if both *s appear in the input

12

C
S480 Softw

are Testing

Minimality

A test case c ⊆ cF is called the global minimum of cF
if
for all c’ ⊆ cF , |c’| < |c| ⇒ test(c’) ≠ F

Global minimum is the smallest set of changes which
will make the program fail

Finding the global minimum may require us to
perform exponential number of tests

13

C
S480 Softw

are Testing

Minimality

A test case c ⊆ cF is called a local minimum of cF if
for all c’ ⊆ c , test(c’) ≠ F

A test case c ⊆ cF is n-minimal if
for all c’ ⊆ c , |c| - |c’| ≤ n ⇒ test(c’) ≠ F

The delta debugging algorithm finds a 1-minimal test
case

Ex: AAAABBBBCCCC, program fails when |A|=|B|=|C|

>0

14

C
S480 Softw

are Testing

Monotonicity

The super string of a failure inducing string always
induces the failure
DD is not effective for cases without monotonicity.

15

C
S480 Softw

are Testing

Case Studies

The following C program causes GCC to crash
#define SIZE 20
double mult(double z[], int n)
{
 int i , j ;
 i = 0;
 for (j = 0; j < n; j++) {
 i = i + j + 1;
 z[i] = z[i] *(z[0]+1.0);
 return z[n];
}

Continued in the next page

16

C
S480 Softw

are Testing

void copy(double to[], double from[], int count)
{
 int n = count + 7) / 8;
 switch(count % 8) do {
 case 0: *to++ = *from++;
 case 7: *to++ = *from++;
 case 6: *to++ = *from++;
 case 5: *to++ = *from++;
 case 4: *to++ = *from++;
 case 3: *to++ = *from++;
 case 2: *to++ = *from++;
 case 1: *to++ = *from++;
 } while (--n > 0);
 return mult(to, 2);
}
int main(int argc, char *argv[])
{
 double x[SIZE], y[SIZE];
 double *px = x;
 while (px < x + SIZE)
 *px++ = (px – x) * (SIZE + 1.0);
 return copy(y, x, SIZE);
}

17

C
S480 Softw

are Testing

Case Studies

The original input file 755 characters

Delta debugging algorithm minimizes the input file to
the following file with 77 characters

If a single character is removed from this file then
it does not induce the failure

t(double z[],int n){int i,j;for(;;){i=i+j+1;z[i]=z[i]*
(z[0]+0);}return[n];}

18

C
S480 Softw

are Testing

Isolating Failure Inducing
Differences

Instead of minimizing the input that causes the failure we can
also try to isolate the differences that cause the failure
  Minimization means to make each part of the simplified test case
relevant: removing any part makes the failure go away
  Isolation means to find one relevant part of the test case: removing
this particular part makes the failure go away

For example changing the input from
<SELECT NAME="priority" MULTIPLE SIZE=7>
to
SELECT NAME="priority" MULTIPLE SIZE=7>
makes the failure go away
  This means that inserting the character < is a failure
inducing difference

Delta debugging algorithm can be modified to look
for minimal failure inducing differences
  Although it is not as popular, it is quite useful in
some applications.

19

C
S480 Softw

are Testing

Failure Inducing Differences:
Example

Changing the input program for GCC from the one on
the left to the one on the right removes the failure

#define SIZE 20
double mult(double z[], int n)
{
 int i , j ;
 i = 0;
 for (j = 0; j < n; j++) {
 i = i + j + 1;
 z[i] = z[i] *(z[0]+1.0);
 return z[n];
}

#define SIZE 20
double mult(double z[], int n)
{
 int i , j ;
 i = 0;
 for (j = 0; j < n; j++) {
 i + j + 1;
 z[i] = z[i] *(z[0]+1.0);
 return z[n];
}

Modified statement is shown in box

This input causes failure This input does not cause failure

20

C
S480 Softw

are Testing

Discussions

DD on scheduling decisions:
  Given a thread schedule for which a concurrent program works
and another for which the program fails, delta debugging
algorithm can narrow down the differences between two
thread schedules and find the locations where a thread switch
causes the program to fail.

Chipping
  Given two versions of a program such that one works correctly
and the other one fails, delta debugging algorithm can be used
to look for changes which are responsible for introducing the
failure

Fault Localization – apply DD to memory state

21

C
S480 Softw

are Testing

Discussions

Demands an oracle.
A large number of runs required.

