Goal

- We’re interested in understanding how to represent the state of a co-routine
 - Insight into what a thread really means
- How fundamental are co-routines (and threads)?
- Key questions:
 - What do we mean by a program’s execution state?
 - Can this be captured?
 - Is there a way to represent this state directly within a program?
Continuation-Passing Style

• Starting point:
 - How do we represent a program’s control-flow?
 • Loops
 • Procedure call and return
 - Programming languages abstract these notions as primitives:
 • We don’t see the “instruction sequence” that represents a procedure call or a loop iteration.
 - Can we make these sequences explicit?
Example

Consider a factorial function:

```plaintext
fun fact(n:int):int = if n = 0
    then 1
    else n * fact(n-1)
```

Each call to fact is made with a “promise” that the value returned will be multiplied by the value of n at the time of the call.
Now, consider:

let fun fact-iter(n:int):int =
 let fun loop(n:int,acc:int):int =
 if n = 0
 then acc
 else loop(n - 1, n * acc)
 in loop(n,1)
end

There is no promise made in the call to loop by fact-iter, or in the inner calls to loop: each call simply is obligated to return its result. Unlike fact, no extra control state (e.g., promise) is required; this information is supplied explicitly in the recursive calls.

What is the implication of these different approaches?

- Recursive vs. iterative control
Tail position

- An expression in tail position requires no additional control-information to be preserved.
 - Intuitively, no state information needs to be saved.
 - Examples:
 - A loop iteration.
 - A function call that occurs as the last expression of its enclosing definition.
 - Tail recursive implementations can execute an arbitrary number of tail-recursive calls without requiring memory proportional to the number of these calls.
Continuation-passing style

- Is a technique that can translate any procedure into a tail recursive one.

- Example:

 \[4 \times 3 \times 2 \times \text{fact}(1) \]

- Define the context of \text{fact}(1) to be

 \[\text{fn v} \Rightarrow 4 \times 3 \times 2 \times v \]

 The context is a function that given the value produced by \text{fact}(1) returns the result of \text{fact}(4)
Example revisited

fun fact-cps(n:int, k: int -> int): int =
 if n = 0
 then k(1)
 else fact-cps(n-1, fn v => k (n * v))

The k represents the function’s continuation: it is a function that given a value returns the “rest of the computation”

By making k explicit in the program, we make the control-flow properties of fact also explicit, which will enable improved compiler decisions.

Observe that k(fact(n)) = fact-cps(n,k) for any k.
Example revisited

```
fact-cps(4,k) -->
    fact-cps(3, fn v => k(4,v))
    fact-cps(2, fn v => (fn v => k(4 * v))(3 * v))  by def. of fact-cps
    fact-cps(2, fn v => k(4 * 3 * v))  by beta-conversion
    fact-cps(1, fn v =>
               (fn v => k(4 * 3 * v))
               (2 * v))
    fact-cps(1, fn v => k(4 * 3 * 2 * v))
    ....
    fact-cps(0, fn v => k(4 * 3 * 2 * 1 * v))
    (fn v => k(4 * 3 * 2 * 1 * v)) 1
    k 24
```

The initial k supplied to fact-cps represents the “context” in which the call was made.
Our Goal

- Take program and convert it to CPS form.

- Issues:
 - Where do we insert continuations?
 - How do we record the “rest of the computation” that a continuation is to represent?
 - How do we distinguish between continuations that
 - Represent the return point of an arbitrary procedure call (e.g., the outer call to fact-cps).
 - Represent iterative computation (e.g., the inner recursive calls in fact-cps)

- Why?
 - If we can represent a program’s control at any point, then we can use it to suspend and resume the program.
 - This provides the necessary infrastructure to implement co-routines.
First cut

- Start with a very simple language:
 - Variables, functions, applications, and conditionals.
- Define a translation function:
 - $C : \text{Exp} \times \text{Cont} \rightarrow \text{Exp}$
 - A continuation will be represented as a function that takes a single argument, and perform “the rest of the computation”
 - The translation will ensure that
 - Functions never directly return -- they always invoke their continuation when they have a value to provide.
The Initial Algorithm

\[C[\ x\]k = k \ x \]

Returning the value of a variable simply passes that value to the current continuation.

\[C[\ \lambda x. e\]k = k (\lambda x \; k' . \; C[\ e\]k') \]

A function takes an extra argument which represents the continuation(s) of its call point(s), and its body is evaluated in this context. Lambda (\(\lambda \)) notation is used as a shorthand for function definition.

\[C[\ e1(e2)\]k = C[\ e1\]\ \lambda v. \ C[\ e2\]\ \lambda v'. \ v \; (v', \ k) \]

An application evaluates its first argument in the context of a continuation that evaluates its second argument in the context of a continuation that performs the application and supplies the result to its context.
Initial Algorithm (cont)

\[
C \left[\text{if } e_1 \text{ then } e_2 \text{ else } e_3 \right] k =
\]
\[
C[e_1] \lambda v. \text{ if } v \text{ then } C[e_2]k \text{ else } C[e_3]k
\]

Evaluate the test expression in a context that evaluates the true and false branch in the context of the conditional.
Example

\[C \left[(x_1(x_2) \times_3) \right] k \rightarrow \]
\[C \left[x_1(x_2) \right] \lambda v_1 . C \left[x_3 \right] \lambda v_2 . v_1(v_2,k) \rightarrow \]
\[C \left[x_1(x_2) \right] \lambda v_1 . (\lambda v_2 . v_1(v_2,k)) x_3 \rightarrow \]
\[C \left[x_1 \right] \lambda v_3 . C \left[x_2 \right] \lambda v_4 . v_3(v_4,k') \rightarrow \]
\[(\lambda v_3 . (\lambda v_4 . v_3(v_4,k'))) x_2 \]
\[x_1) \]
Example (cont)

\[C \[x_1 \] \lambda v_3 . C \[x_2 \] \lambda v_4 . v_3(\lambda v_4 . k') \rightarrow \]

\[(\lambda v_3 . (\lambda v_4 . v_3(\lambda v_4 . k') x_2) x_1) \rightarrow \]

\[(\lambda v_3 . (\lambda v_4 . v_3(\lambda v_4 . k') x_2) x_1) \rightarrow \]

\[x_1(x_2, k') \rightarrow \]

\[x_1(x_2, (\lambda v_1 . (\lambda v_2 . v_1(v_2,k)) x_3)) \rightarrow \]
Continuations

- CPS provides a translation mechanism that generalizes control structures
- Can we reify this notion into a source language?
 - result is a continuation, a reified representation (in the form of an abstraction) of a program control-stack.
 - Define a primitive operation called call/cc:
 - call-with-current-continuation
 - callcc (fn k => e)
 - captures the current continuation, binds to k, and evaluate e
 - throw k x
 - apply continuation k with argument x
Examples

call/cc (λ k. (k 3) + 2) + 1 → 4

val r = ref (λ v. 0)
call/cc (λ k. (r := k; (k 3) + 2)) + 1 → 4
(!r 4) → 5

let f = call/cc (λ k. λ x. k (λ y. x + y))
in f 6 →
 12
What have we achieved?

- Call/cc gives us a way to capture the remaining part of a computation at any given program point.
- If we capture a continuation and store it, we have a handle on a program state. This is what is necessary to suspend a co-routine.
- If we invoke a captured continuation, we effectively resume a computation (or co-routine) at the point where its continuation was saved.
References

• A good introductory reference on CPS can be found in Friedman, Wand, Haynes, Essentials of Programming Languages.

• You can also find many good tutorials on the Web.