
Efficient Retrieval of Multidimensional Datasets Through Parallel I/O

Sunil Prabhakar
Computer Sciences
Purdue University

W. Lafayette, IN 47907
sunil@cs.purdue.edu

Khaled Abdel-Ghaffar
Elect. & Computer Engg.
University of California

Davis, CA 95616
ghaffar@ece.ucdavis.edu

Divyakant Agrawal Amr El Abbadi
Computer Science

University of California
Santa Barbara, CA 93106
agrawal, amr @cs.ucsb.edu

Abstract

Many scientific and engineering applications process
large multidimensional datasets. An important access pat-
tern for these applications is the retrieval of data corre-
sponding to ranges of values in multiple dimensions. Per-
formance is limited by disks largely due to high disk laten-
cies. Tiling and distributing the data across multiple disks
is an effective technique for improving performance through
parallel I/O. The distribution of tiles across the disks is an
important factor in achieving gains. Several schemes for
declustering multidimensional data to improve the perfor-
mance of range queries have been proposed in the litera-
ture. We extend the class of Cyclic schemes which have
been developed earlier for two-dimensional data to multi-
ple dimensions. We establish important properties of Cyclic
schemes, based upon which we reduce the search space for
determining good declustering schemes within the class of
Cyclic schemes. Through experimental evaluation, we es-
tablish that the Cyclic schemes are superior to other declus-
tering schemes, including the state-of-the-art, both in terms
of the degree of parallelism and robustness.

1 Introduction

Many scientific and engineering applications process
large multidimensional datasets. For example, geographers
and earth scientists work with two or three dimensional
satellite data. Climate models and simulations of physi-
cal or chemical phenomena and other seismological stud-
ies generate high dimensional array data. Multi-spectral
images are also examples of multidimensional data with
several dimensions. More generally, the tables in a rela-

Work supported by a research grant from NSF /ARPA /NASA
IRI9411330 and NSF instrumentation grant CDA-9421978.

Work supported by NSF grant NCR 96-12354.

tional database typically consist of several attributes, each
of which can be viewed as a dimension. A very important
access pattern for these applications is the efficient retrieval
of data corresponding to ranges of values in multiple dimen-
sions. For example, an earth scientist may be interested in
retrieving the rainfall and wind information for January and
February 1995 for a region defined by pairs of longitude and
latitude lines – which corresponds to a range query in three
dimensions (the two spatial dimensions and time).

A range query specifies a range of values for each dimen-
sion. The query result is the set of all data objects (tuples,
images etc.) with values within the specified ranges. Given
the large sizes of typical datasets, retrieving all data objects
to answer the query is very inefficient especially because
disk I/O is a major bottleneck. A more efficient alternative
is to tile the data space and store the data objects that be-
long to a single tile or bucket together. With such tiling, it is
only necessary to retrieve data objects that belong to buck-
ets which intersect the range query, resulting in significant
reduction in the amount of I/O performed.

Even with such tiling, due to the high latency of disks,
the performance of a query is largely dependent upon disk
I/O. A major component of disk access time for random
I/O is latency due to seek and rotational delays. Retrieval
of multiple buckets results in multiple seek and rotational
delays. The use of parallel I/O is a promising technique for
improving performance. The overall latency observed by an
I/O operation can be reduced by executing the I/O in parallel
using multiple disks. If the buckets to be retrieved for eval-
uating a given query are spread across several disks, then
the disk operations take place in parallel, thereby reducing
the overall access time for the query. The key to improving
the performance of range queries is to distribute the buck-
ets across multiple disks such that the retrieval of any set of
buckets is maximally parallelized. Trivially, a distribution
that places each bucket on a separate disk incurs only one
parallel disk read for retrieving any set of buckets. However,
this is highly wasteful and requires too many disks. Alter-

natively, the problem can be viewed as one of maximizing
the parallelism with a given number of disks.

The problem of distributing multidimensional buckets to
optimize the performance of range queries has been well
studied in the literature [1, 2, 4, 5, 6, 9, 11]. The goal is to
maximize parallelism. For any set of buckets to be retrieved
together, the cost is assumed to be proportional to the max-
imum number of buckets retrieved from a single disk. In
this paper we propose a new multidimensional decluster-
ing technique, called Cyclic declustering, based upon cyclic
schemes for two-dimensional data which have been shown
to achieve significant performance improvements over the
other leading schemes [11]. The superior performance of
Cyclic allocation in two dimensions was achieved through
an exhaustive search. As the number of dimensions in-
creases such a brute force approach is unrealistic and prac-
tically infeasible. We start by showing that an exhaustive
search is unnecessary. In fact, only a limited and prac-
tically feasible sub-space needs to be realized. We also
propose a second Cyclic scheme based on Fibonacci num-
bers that requires no search of the space. After this the-
oretical foundation we establish the superior performance
of the Cyclic approach through extensive comparisons with
the most promising existing schemes.

The rest of the paper is organized as follows. The previ-
ously proposed schemes and our new scheme are discussed
in Section 2. In Section 3, we present several properties
of the new Cyclic allocation schemes. In Section 4, we
present two techniques for designing good Cyclic alloca-
tion schemes. A comparative evaluation of the new scheme
with existing schemes is presented in Section 5. Section 6
concludes the paper.

2 Multidimensional Allocation Schemes

In this section we first review the existing approaches for
declustering multidimensional data. The general form for
multiple dimensions for most schemes is presented. Next,
we propose our new Cyclic allocation schemes, which are
extensions of the Cyclic schemes for two-dimensional data.

2.1 Existing Approaches

Several different techniques have been proposed for re-
lational databases including the Disk Modulo or DM ap-
proach [5] also known as the CMD approach [10], the Field-
wise eXclusive or FX approach [9], the Gray code approach
[8] and the HCAM approach [6]. Two approaches based
upon error correcting codes are [7] and [1]. Two schemes
that have been proposed for only two-dimensional data are
FIB [4] and the Cyclic approach [11]. The Cyclic allocation
schemes developed for two-dimensional range queries were
adapted for similarity queries in [12]. The access pattern

Symbol Meaning

Number of Disks
Number of Dimensions
Number of Buckets in Dimension
Coordinate of Bucket in Dimension

Table 1. Meaning of symbols used

for similarity queries is very different from range queries,
primarily because the set of buckets accessed depends upon
the search algorithm and the data distribution. Recently a
new allocation technique was developed that optimizes the
performance of similarity queries [3]. We now show how
each of these approaches allocates buckets to disks. In the
following, we will use to denote the number of buckets
in dimension . If the number of buckets in each dimen-
sion is the same, then will be used to represent this num-
ber. Each bucket, , is identified by a set of coordinates:

for a -dimensional space, where each
coordinate, , is in the range since dimension
is divided into parts. Also, represents the number of
disks over which the buckets are to be declustered, and is
the number of dimensions. The meaning of each symbol is
summarized in Table 1.

An allocation is a mapping that takes bucket and
maps it to a number in the range . The goal is
to maximize parallel I/O when several buckets are retrieved
together. Clearly, to retrieve buckets given disks, the
minimal or optimal cost is given by . An allocation that
results in optimal cost for all queries is said to be strictly op-
timal. In [2], it was shown that strictly optimal allocations
exist in only very special cases for two-dimensional data.
The Disk Modulo or DM approach [5] is defined as:

The Fieldwise eXclusive or FX approach [9] is defined as:

where is the binary representation of and represents
the bitwise exclusive-OR operator.
The HCAM approach [6] is defined as:

where the function returns the entry in the
Hilbert sequence corresponding to the input coordinates.
The Hilbert sequence maps a multidimensional space into
a linear order. The Cyclic allocation schemes [11], defined
only for two dimensions, allocate bucket to disk

where the value of is chosen to ensure good declustering.
Different values of , ranging from 1 through , pro-
duce different allocation schemes. Each of these is called a
Cyclic scheme. The DM allocation method is also a Cyclic
scheme with . The value of , also called the skip
value, is the key factor determining the performance of the
Cyclic scheme. A good choice of depends upon the value
of . Techniques for determining appropriate values of
are described in [11]. The key idea is that should be rel-
atively prime with respect to and .

The relative performance of the above schemes for range
queries in two dimensions was studied in [11]. Several com-
parisons of the above schemes were made. The effective-
ness of declustering achieved by each scheme relative to
the lower bound was evaluated. It was found that all Cyclic
schemes achieve higher levels of declustering than the other
schemes. A Cyclic scheme based upon exhaustive search
always gave the best performance.

The use of parallel I/O for improving the performance
of parallel programs managing multidimensional arrays has
also been investigated in [14, 13]. In [14], it is assumed
that the array is divided among the processors using HPF-
like BLOCK and CYCLIC statements. Data for a processor
may be local or stored globally across all processors. Per-
formance improvements are made through collective I/O,
prefetching, and sieving. The allocation of data to disks
is, however, not explicitly controlled. The PANDA project
[13], is designed for distributed memory parallel machines
with a parallel file system. The multidimensional array is
divided into chunks which are stored consecutively in a file.
Chunks from multiple arrays can be interleaved in a single
file. The allocation of the data to disks is left to the parallel
file system. Both these approaches could potentially bene-
fit from controlling the placement of data on multiple disks
using schemes such as those developed in this paper.

2.2 Cyclic allocation beyond two dimensions

In order to develop Cyclic schemes for multidimensional
data, we begin by generalizing the two-dimensional alloca-
tion to more than two dimensions. The two-dimensional
scheme can be easily extended to yield the Cyclic alloca-
tion schemes for multidimensional data:

The difficult part is to find values for , or the skip values
such that the Cyclic allocation achieves good declustering.

3 Foundational Work

We now investigate some properties of Cyclic allocation.
The following terminology will be used. A range query is

defined as a set of range values for each dimension:

where . The query set is the set of
buckets that satisfy a query, i.e.

The cost of a query is given by the maximum number of el-
ements (buckets) in its query set allocated to a single disk.
For the two-dimensional case, we shall assume that
and . Also, the first coordinate is called the row co-
ordinate, the second coordinate is called the column coordi-
nate. Because , buckets along a row are allocated to
disks in a round robin fashion.

3.1 Basic Theorems

We begin by showing that the allocation generated by a
Cyclic approach results in constant cost for all queries with
the same size, independent of their location.

Lemma 1 The cost of a query is not altered by renaming
the disks. In particular, allocations and are equiva-
lent if , for some constant

.

Proof: Since the allocation of the buckets is not altered by
the renaming (only the identity of the disk is changed), the
disk to which the largest number of buckets are allocated is
changed but not the count of the buckets.

Theorem 1 For any Cyclic scheme, the cost of a query,
, depends only upon the

values of and is independent
of the actual coordinates of query. In other words, the cost
of a query depends on its shape and not its location.

Proof: A query can also be defined by the coordinates of
its “lowest-coordinate” corner bucket (location) and the
hyper rectangle with sides equal to the length of the query
in each dimension (shape). For the query in question, the
location is given by and the shape is

.
Consider the bucket that is located at
relative to the “lowest-coordinate” or location of the
query. The coordinates of this bucket are given by

. This bucket is
allocated to disk

where ,
and depends only on the location of the query. Hence
for queries at different locations, only the value of is
different. In other words, the allocations for different query
locations are identical up to a renaming of the disks. Thus,
according to Lemma 1, in terms of the cost of the query
(the maximum number of buckets allocated to a single

disk), the costs for different locations are identical. Note
that the disk with the largest number of buckets allocated
will be different, but that is not important for our study.
Since the cost depends only upon the shape of the
query, it suffices to consider queries of the form

which can be writ-
ten as . Henceforth, we will use
this notation for queries. Also, we define the func-
tion as the cost of query

.

3.2 Cost of a query

We now determine the cost of evaluating a query using
a Cyclic allocation scheme (note that the location of this
query is not important). We begin with the two-dimensional
case. Given any Cyclic allocation, without loss of general-
ity, we can rename the disks by adding (or subtracting) a
constant value such that the top-left corner bucket of the
query is allocated to disk (Lemma 1).

Observation 1 In each row of the query , the num-
ber of buckets allocated to a disk is either or .
If the first bucket in the row is allocated to disk , then

consecutive disks beginning with disk have
buckets allocated to them and the rest have buck-

ets allocated.

The observation is a direct consequence of the allocation of
buckets to consecutive disks along a row.

Theorem 2 The cost of query is equal to +
cost of query , i.e.

Proof: Since the allocation in each row is consecutive, any
contiguous buckets in the row, are each allocated to a

different disk. Thus in each row, the first columns
are allocated equally to all disks, resulting in buckets
being allocated to each disk. For the complete query, the
first columns are allocated equally to all disks, re-
sulting in buckets allocated to each disk. The cost
of the query is given by the maximum number of buckets
allocated to a single disk. This is given by plus the
maximum number of buckets allocated to a single disk in
query .
A similar result can be found for the second dimension.
However, since the value of may not be relatively prime
with respect to , the analysis is more involved:

Theorem 3 The cost of query is given by
+ cost of buckets shown

in Figure 1(a), where and .

Proof: The allocation along each column is made using a
skip of . If some bucket is allocated to a disk , then the

rest of the buckets in the same column can only be allocated
to disks (all these are
reduced modulo), because we can only make skips that
are multiples of , and is also a multiple of . There-
fore, all buckets in the same column are allocated to only
disks. The allocation as we go down a column repeats after
every rows. This divides the disks into equivalence
classes, each with disks. The first column allocates buck-
ets only to disks in the equivalence class which contains
disk 0, the second column (since it begins with a bucket
allocated to disk 1) allocates buckets only to disk in class
containing disk 1, etc. Therefore, in consecutive columns,
each disk is used in only one column. In each column, the
first rows are allocated equally to the disks in the
equivalence class for that column. Each equivalence class
can be identified by which of the disks , the class
contains. Let represent the equivalence class contain-
ing disk , for . In every rectangular region of

rows and columns, each bucket is allocated to a dif-
ferent disk, i.e., the disks are used equally. Thus the cost
for the query is equal to the sum of the number of
such rectangles in the query plus the maximum number of
remaining buckets that are allocated to a single disk. If we
consider rectangles beginning from the top-left cor-
ner as shown in Figure 1(a), the cost is given by the sum of

and the cost for the remaining buckets (regions A
and B in Figure 1(a)).
Combining the results of the above two theorems, we can
show that the cost of query , is given by:

+
+ cost of in Fig. 1(b).

q

0q

q modC
1

q modd

1

0

(a)

B

A
d

C

q

q modC
1

0
q modM

0q

1

0
q modd

(b)

D

E

Figure 1. Breakup of query

In region , there are rows. Thus in each col-
umn of region , all the disks belonging to the equivalence
class for that column have buckets allocated. In other
words, all disks that belong to the first equiva-
lence classes are each allocated buckets, and all other
disks have no buckets allocated from region . We know
that the top-left bucket of region will be allocated to disk
0. This is because the top-left bucket is a multiple of
columns and a multiple of rows away from the top-left
bucket of the original query. Both these buckets will there-

fore be allocated to the same disk, i.e. disk 0. It is difficult
to determine analytically, the cost for region in general,
however, we can state the following:

Theorem 4 If the cost for region is , then there must be
at least one disk which belongs to equivalence class
that has buckets allocated to it.

Proof: Let us assume that the theorem is false. Therefore,
some disk,) has the largest number of buckets
allocated to it. Let . For every bucket

allocated to , there must be a bucket ,
which is allocated to a disk, . This bucket must
be contained within region because the region begins
with a column that allocates buckets to the first equivalence
class and then the second and so on. Thus in the first
columns, no equivalence class is repeated. Following the
first columns, the next column allocates to the first equiv-
alence class again. For every occurrence of a column which
allocates to , there must precede a column which allo-
cates to . Thus the number of buckets allocated to disk

must be at least equal to the number of buckets allocated
to disk . Hence there must always be a disk from the first
equivalence class which has the largest number of buckets
allocated to it. This contradicts our assumption. Hence the
assumption must be false.

We can therefore see that a disk () with the most
buckets from region , must also have the most number of
buckets from region (because all disks of the first

equivalence classes have disks allocated from region
). The cost of the region is therefore given by cost

of region (plus if). In other words,
the cost of a query is given by:

Extending these theorems to multiple dimensions is quite
involved if some of the skip values are not relatively prime
with respect to . If, however, all the skip values are rela-
tively prime with respect to , we can establish that:

Theorem 5 If all skip values, , are relatively
prime with respect to , (i.e.),
then the cost of any query, is given by

Proof: Since all skip values are relatively prime with re-
spect to , all disks are used along every dimension. More-
over, along each dimension every bucket in any consecutive
set of buckets is allocated to a different disk. I.e., in
any set of consecutive buckets along each dimension,
the disks are used equally. Therefore, the argument of The-
orem 2 can be applied to each dimension in turn. Thus the

cost of query is given by

which eventually yields the desired form.
The cost of the query is therefore deter-
mined by the cost of the (possibly) smaller query

. Note that if the length
of the query in any dimension is a multiple of , then any
Cyclic allocation with relatively prime skips is optimal.

3.3 Bounds on the cost of a query

From the previous section, we observe that the cost of
a query is determined by the cost of a smaller clipped
query whose sides are all smaller than (assuming that
all skip values are relatively prime). The cost of this
clipped region, which we shall call , can be no less

than . Since all skip values are rela-
tively prime, in any consecutive set of less than buck-
ets along any dimension, no two buckets can be allocated
to the same disk. Thus each dimension limits the max-
imum number of buckets that can be allocated to a single
disk to . Therefore the
upper limit on the cost of is given by the minimum of
these limits. For a general query , the up-
per bound on the cost is given by:

It should be noted that for the region of the query other than
, the allocation generated by any Cyclic scheme is op-

timal. Therefore, for larger queries, the cost relative to the
optimal is lower. The cost of the region is the key factor
in the performance of a Cyclic scheme.

4 Choosing Skip Values

From the earlier discussion, we observe that the cost of
a query is largely dependent upon the skip values, . The
greatest common divisor of and , is also an important
factor in the cost. From the cost equations derived earlier,
it is not clear which skip values will result in the lowest
cost for any given query. Moreover, for a set of queries it is
not clear which values of will give the best average per-
formance. The presence of the ceiling and floor functions
in the cost formulae makes is difficult to determine closed
form expressions for the costs. Our intuition is that values
of that are relatively prime with respect to will give

better performance. To test this hypothesis, we determined
through exhaustive evaluation, the values of which give
the best average performance for various values of in
two dimensions. The average performance was computed
by taking the average value of the ratio of the cost of the
query to the optimal cost for that query. All possible query
shapes within a region of 32 32 buckets were considered.
From the results we found that for each value of , the
best performance is indeed given by a value of that is
relatively prime with respect to . To study the validity
of this conclusion for other sets of queries, the following
tests were conducted. The best values of averaged over
only tall, long, square and small queries were determined. It
was found that for tall and small queries, the best values
were always relatively prime with respect to . For long
queries however, a few instances were found where a non-
relatively prime value of gave better performance than
relatively prime values. Based upon this experimental evi-
dence we propose that the skip values should be chosen to
be relatively prime with respect to .

We now develop two heuristics that generate good Cyclic
schemes for multidimensional data. Since one of the skip
values () is assumed to be 1, we need to find skip
values in the range .

The first heuristic is based upon the FIB scheme which
was developed for optimally allocating screen pixel data to
memory chips [4]. FIB was defined only for 2 dimensions
and requires that be an odd order Fibonacci number, i.e.

. FIB is equivalent to a Cyclic scheme
for two dimensions with skip , i.e. the previous
Fibonacci number from . We extended FIB for general
values of for two dimensions [11]. We now extend it for
higher dimensions. The new scheme is called GFIB or Gen-
eralized FIB. The Fibonacci sequence can be viewed as a
mapping from a non-negative integer (the index) to another
non-negative integer, e.g. . The
relationship between the index () and the Fibonacci num-

ber () is given by the well known formula, ,

where is the golden ratio, and is its complement,

. We use this relationship, but allow the index to take
on non-integral values.

The GFIB scheme chooses skip values as follows: given
, we determine such that (note that may

be non-integral). Skip values are then picked in the order
. We pick as a first guess at . If

and are relatively prime, we pick this value for ,
otherwise, we search in the neighborhood of for a value
that is relatively prime with M. Note that if the skip thus
determined is already being used, we choose a skip value
that has not been used. If all values in the range
have been chosen, we choose skip values in the sequence
that the first skip values were chosen.

The second heuristic for finding good skip values, which
we refer to as the EXH Cyclic scheme, is a greedy search
method. The basic idea is to test all skip values in order to
determine those that give good performance. Clearly, due
to the nature of the problem a complete exhaustive search
would be too expensive. Consider the case of 10 dimen-
sions, with 32 disks, and a domain with 4 buckets in each
dimension. The total number of non-trivial query shapes
possible is given by (the length
of the query in dimension can range from 1 through).
The number of combinations of skip values is given by

. It is obvious that
an exhaustive evaluation is intractable. We therefore need
to limit the search space. As we saw earlier, the cost of a
query is determined by the cost of the clipped region .
The performance of a Cyclic scheme for all queries can be
gauged from the performance for small queries only. There-
fore, if the search is limited to those regions whose size is
smaller than in each dimension, we expect to get a good
indication of the performance for all queries. The number
of queries to examine is reduced by evaluating using a sam-
ple set of randomly chosen queries. Several different sets
can be used to ensure the reliability of the solution. The
number of combinations of skip values is reduced by deter-
mining skip values incrementally, dimension by dimension.
Therefore, we begin by testing all possible values for
from for two-dimensional data to determine the
best values of for each value of . Next, we fix the
value of to the best value found for two dimensions and
search over all values for the the best value of . This pro-
cess is repeated until all skip values are found. In this
fashion, we need to test only combinations
rather than combinations, resulting in signif-
icant reductions. This greedy approach gives surprisingly
good results as shown later.

5 Performance Evaluation

We now evaluate the performance of the newly proposed
multidimensional Cyclic schemes and compare them with
previously proposed schemes. The comparisons are made
with the FX, DM and HCAM schemes. The HCAM scheme
has been shown to give the best performance among ex-
isting schemes [6]. Due to the large number of possible
queries, the evaluations are based on the performance for a
set of randomly chosen queries. To achieve a high degree
of confidence in the results, five different random sets of
1000 queries each was used. From these results 95% confi-
dence intervals were calculated. The different schemes are
compared based on their ability to achieve optimal paral-
lelism. For any allocation scheme, the cost of a query is
given by the maximum number of buckets retrieved from
a single disk. A lower bound on the cost is given by ,

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 5 10 15 20 25 30 35

A
ve

ra
ge

 R
at

io

Number of disks

HCAM
DM
FX

GFIB
EXH

Figure 2. Performance for and

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0 5 10 15 20 25 30 35

A
ve

ra
ge

 R
at

io

Number of disks

HCAM
DM
FX

GFIB
EXH

Figure 3. Performance for and

where is the number of buckets retrieved by query. In two
dimensions it has been shown that schemes that attain the
lower bound for all queries exist only in very special cases.
We expect similar restrictions for higher dimensions. For
each query, we compute the ratio of the cost to the lower
bound. These ratios are averaged over all queries to give
a single ratio that reflects the performance of the scheme
for all the queries. A ratio of 1 indicates that the scheme
achieves the lower bound for every query considered – a
higher ratio indicates less parallelism.

For all experiments, we considered 2 through 32 disks.
The experiments were conducted for 2 through 10 dimen-
sions. Since the number of buckets generated for higher di-
mensions is large, the number of buckets in each dimension
was reduced as the number of dimensions was increased.
Due to lack of space, we present only the results for two
representative cases.

In our first experiment we fix the number of dimensions
and vary the number of disks. Figures 2 and 3 shows the
performance of the various schemes for 3 and 8 dimensions
respectively. The 95% confidence intervals for each point
are shown (in the rest of the paper, these intervals are not

plotted for clarity). The graphs show that the performance
of DM degrades regularly as the number of disks increases,
requiring 113% (3 dimensions) and 423% (8 dimensions)
more disk accesses than the lower bound with 32 disks. For
3 dimensions, the performance of FX follows a saw-tooth
pattern which is not seen for 8 dimensions. It should be
pointed out that the FX scheme was originally defined only
for disks that are powers of 2. In general, FX gives worse
performance than DM.

The HCAM approach gives performance that is poorer
than that of DM with few disks, but in general it gives bet-
ter performance than both DM and FX for larger numbers of
disks. The gain of HCAM over FX and DM improves as the
number of dimensions increases. The behavior of HCAM
shows an interesting trend with 8 dimensions (and also with
other high dimensions). The performance degrades when
the number of disk is a multiple of 4. In particular, when the
number of disks is a power of 2, this effect is stronger. This
poor performance for powers of 2 gets worse as the number
of disks increases. For example with 8 dimensions, HCAM
makes 199% more disk accesses than the lower bound and
with 32 disks it makes 263% more. The performance of
the two new Cyclic schemes, GFIB and EXH is seen to be
better than that of all other schemes. In fact, with few ex-
ceptions, the EXH scheme gives the best performance. For
3 dimensions, EXH is clearly the best scheme (except for
25 disks), requiring no more than 14% more accesses than
the lower bound for any number of disks. For 8 dimensions,
GFIB and HCAM have very similar performance for some
values of (19 and 30 disks), but mostly GFIB is bet-
ter. EXH performs uniformly better than all other schemes
and is always within 40% of the lower bound. With more
than 16 disks, HCAM alway requires more than 50% disks
accesses over the lower bound. Another interesting factor
is that the rate at which the performance deviates from the
lower bound as the number of disks increases is least for
the Cyclic schemes, in particular for EXH. We see that with
good choice of skip values, the Cyclic allocation method
gives good results. Note that DM is also a cyclic scheme
but it gives poor performance (because all skip values are
equal to 1). The EXH scheme represents the best among the
Cyclic schemes with skip values chosen through exhaustive
search and therefore it outperforms GFIB (although GFIB
is more efficient in determining skip values).

In all preceding experiments, there were an equal num-
ber of buckets in each dimension. We now discuss the
case where the different dimensions have different num-
ber of buckets. In Figure 4, the performance of the various
schemes for 8 dimensions with

and . The performance of
HCAM shows a very significant degradation for this choice
of buckets – in fact the performance increasingly degrades
to almost 1800% more disk accesses than the lower bound

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30 35

A
ve

ra
ge

 R
at

io

Number of I/O Devices (M)

HCAM
DM
FX

GFIB
EXH

Figure 4. Performance for , unequal

for 32 disks. The performance of the other schemes, how-
ever, has not changed significantly. In particular, GFIB and
EXH still give the best performance. EXH requires at most
21% disk accesses more than the lower bound for any num-
ber of disks. This poor behavior of HCAM was also ob-
served with other combinations of . Therefore we find
that HCAM is sensitive to the values of . Moreover, we
found that the performance of HCAM is sensitive to the
order in which the dimensions are considered for generat-
ing the Hilbert order. The Cyclic schemes do not exhibit
such degradation in performance due to the order in which
dimensions are considered or variations in the numbers of
buckets per dimension.

6 Concluding Remarks

The efficient execution of range queries for multidimen-
sional datasets is important for many scientific and engi-
neering applications. The performance of these queries for
large datasets is limited by the I/O bottleneck. Parallel I/O
from multiple disks is a very effective technique for im-
proving the disk I/O. We have proposed a class of schemes
called Cyclic allocation schemes for declustering the mul-
tidimensional tiles onto parallel disks to provide increased
parallel I/O. We have developed two methods for generat-
ing efficient Cyclic schemes for range queries – GFIB and
EXH. GFIB is efficient to calculate. In order to reduce the
search space for the exhaustive (EXH) scheme, we estab-
lished certain properties of the Cyclic allocation schemes.
In particular, we showed that the cost of a Cyclic scheme
is largely dependent upon the cost for small queries which
makes the greedy approach for finding good Cyclic schemes
feasible. Based upon the evaluation, we show that the new
schemes give very good performance as compared to ex-
isting approaches. In particular, the EXH approach gives
the best performance in all our experiments. The Cyclic
schemes were also shown to be insensitive to variations in

the number of disks, number of dimensions and number of
buckets in different dimensions.

References

[1] K. A. S. Abdel-Ghaffar and A. El Abbadi. Optimal disk allo-
cation for partial match queries. Proc. ACM Symp. on Trans-
actions of Database Systems, 18(1):132–156, Mar. 1993.

[2] K. A. S. Abdel-Ghaffar and A. El Abbadi. Optimal allo-
cation of two-dimensional data. In Int. Conf. on Database
Theory, pages 409–418, Delphi, Greece, Jan. 1997.

[3] S. Berchtold, C. Bohm, B. Braunmuller, D. A. Keim, and
H.-P. Kriegel. Fast parallel similarity search in multimedia
databases. In Proc. ACM SIGMOD Int. Conf. on Manage-
ment of Data, pages 1–12, Arizona, U.S.A., 1997.

[4] B. Chor, C. E. Leiserson, R. L. Rivest, and J. B. Shearer. An
application of number theory to the organization of raster-
graphics memory. Journal of the Association for Computing
Machinery, 33(1):86–104, January 1986.

[5] H. C. Du and J. S. Sobolewski. Disk allocation for cartesian
product files on multiple-disk systems. ACM Transactions
of Database Systems, 7(1):82–101, March 1982.

[6] C. Faloutsos and P. Bhagwat. Declustering using fractals.
In Proc. of the 2nd Int. Conf. on Parallel and Distributed
Information Systems, pages 18 – 25, San Diego, CA, Jan
1993.

[7] C. Faloutsos and D. Metaxas. Declustering using error
correcting codes. In Proc. ACM Symp. on Principles of
Database Systems, pages 253–258, 1989.

[8] J. Gray, B. Horst, and M. Walker. Parity striping of disc ar-
rays: Low-cost reliable storage with acceptable throughput.
In Proceedings of the Int. Conf. on Very Large Data Bases,
pages 148–161, Washington DC., Aug. 1990.

[9] M. H. Kim and S. Pramanik. Optimal file distribution for
partial match retrieval. In Proc. ACM SIGMOD Int. Conf.
on Management of Data, pages 173–182, Chicago, 1988.

[10] J. Li, J. Srivastava, and D. Rotem. CMD: a multidimensional
declustering method for parallel database systems. In Pro-
ceedings of the Int. Conf. on Very Large Data Bases, pages
3–14, Vancouver, Canada, Aug. 1992.

[11] S. Prabhakar, K. Abdel-Ghaffar, D. Agrawal, and A. El Ab-
badi. Cyclic allocation of two-dimensional data. In Proc.
of the International Conference on Data Engineering, pages
94–101, Orlando, Florida, Feb 1998.

[12] S. Prabhakar, D. Agrawal, and A. El Abbadi. Efficient disk
allocation for fast similarity searching. In Proc. of the 10th
Int. Sym. on Parallel Algorithms and Architectures, pages
78–87, Puerto Vallarta, Mexico, June 1998.

[13] K. E. Seamons and M. Winslett. Multidimensional array I/O
in Panda 1.0. Journal of Supercomputing, 10(2):191–211,
1996.

[14] R. Thakur, A. Choudhary, R. Bordawekar, S. More, and
S. Kuditipudi. PASSION optimized I/O for parallel appli-
cations. IEEE Computer, 29(6):70–78, June 1996.

