Similarity Join for Low- and High- Dimensional Dé&ta

Dmitri V. Kalashnikov ~ Sunil Prabhakar
Department of Computer Science, Purdue University.
Email: {dvk,sunilt@cs.purdue.edu

Abstract

The efficient processing of similarity joins is important @ large class of applications. The di-
mensionality of the data for these applications ranges fimmto high. Most existing methods have
focussed on the execution of high-dimensional joins owgd@amounts of disk-based data. The increas-
ing sizes of main memory available on current computerstlamdeed for efficient processing of spatial
joins suggest that spatial joins should be processed in mamory. In this paper we develop two new
spatial join algorithms (Grid-join and EGO*-join), and diutheir performance in comparison to the
state-of-the-art algorithm, EGO-join and the RSJ algarith

Through evaluation we explore the domain of applicabilityeach algorithm and provide recom-
mendations for the choice of join algorithm depending ugmndimensionality of the data as well as
the criticale parameter. We also point out the significance of the choidhisfparameter for ensuring
that the selectivity achieved is reasonable. For low-disieral data both proposed algorithms clearly
outperform EGO-join. For high-dimensional data, the psgIbEGO*-join technique significantly out-
performs the EGO-join. An analysis of the cost of Grid-jarpiresented and cost estimator functions
are developed. These are used to choose an appropriatézgriisoptimal performance and can also
be used by a query optimizer to compute the estimated costidfj@n.

1 INTRODUCTION

Similarity (spatial) joins are an important database dj@ndor several applications including GIS, multi-
media databases, data mining, location-based applisatio time-series analysis. Spatial joins are natural
for geographic information systems and moving object emritents where pairs of objects located close to
each other are to be identified [13, 12]. The state-of-thedgorithms for several basic data mining opera-
tions such as clustering [5], outlier detection [9], ancbagtion rule mining [10] require the processing of
all pairs of points within a certain distance to each otheffaus a similarity join can serve as the first step
for many of these operations [1].

The problem of efficient computation of similarity joins Hzeen addressed by several researchers. Most
researchers have focussed their attention on disk-bageslf@ high-dimensional data. Current high-end
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workstations have enough memory to handle joins even fgelamounts of data. For example, the self-
join of 1 million 32-dimensional data points, using an altjon similar to that of [2] (assumindjloat data
type for coordinate andht for point identities) requires roughly 132MB of memory (i.€32 x 4+ 4) x

10° =~ 132MB, plus memory for stack etc.). Furthermore there ammsons when it is necessary to join
intermediate results situated in main memory or sensor, @ditieh is to be kept in main memory. With the
availability of a large main memory cache, disk-based dtigors may not necessarily be the best choice.
Moreover, for certain applications (e.g. moving objectimmments) near real-time computation may be
critical and require main memory evaluation.

In this paper we consider the problem of main memory prongssf similarity joins, also known as
g-joins. Given two multisets andB of d-dimensional points and valees R, the goal of a join operation is
to identify all pairs of points, one from each set, that arthimidistancee from each other, i.e{(a,b)| a€
A, beB, and|la—Db|| < &}.

While several research efforts have concentrated on dagigfficient high-dimensional join algo-
rithms, the question of which method should be used whemngilow-dimensional (e.g. 2—6 dimensions)
data remains open. This paper addresses this questionvastigiates the choice of join algorithm for low-
and high-dimensional data. We propose two new join algmsthGrid-Join andEGO*-Join, and evaluate
the performance of these methods alongwith the stateesithalgorithm (EGO-Join)?] and the RSJ Join
[4] which has served as a benchmark for most algorithms.

These techniques are compared through experiments ugitigesig and real data. We considered the
total wall-clock time for performing a join without ignognany costs, such as pre-sorting data, build-
ing/maintaining index etc. The experimental results shbat the Grid-join approach showed the best
results for low-dimensional data.

Under the Grid-Join approach, the join of two sét&ndB is computed using an index nested loop
approach: an index (i.e. specifically constructed 2-dirioerad grid) is built on circles with radiuscentered
at the first two coordinates of points from $t The first two coordinates of points from s&fare used as
point-queries to the grid-index in order to compute the.jothough several choices are available for
constructing this index, only the grid is considered in théger. The choice is not accidental, it is based
upon our earlier results for main memory evaluation of ramgeries. In [7] we have shown that for range
gueries over moving objects, using a grid index results imm@er of magnitude better performance than
memory optimized R-tree, CR-tree, R*-tree, or Quad-tree.

The results for high-dimensional data show that the EGQri-idothe best choice of join method. The
EGO*-Join that we propose in this paper is based upon the-efahe-art EGO-Join algorihtm. The Epsilon
Grid Order (EGO) join [2] algorithm was shown to outperforiimer techniques for spatial joins of high-
dimensional data. The new algorithm significantly outpenf® EGO-join for all cases considered. The
improvement is especially noticeable when the number otdsions is not very high, or the value ©is
not large. The RSJ algorithm is significantly poorer tharodiler theree algorithms in all experiments. In
order to join two sets using RSJ, an R-tree index needs to iieobuaintained on both of these sets. But



unlike the case of certain approaches these indexes nede mebuilt when the join is recomputed with a
different value of.

Although not often addressed in related research, the ehafithes parameter for the join is critical
to producing meaningful results. We have discovered thahdh similar research values ofare selected
result in very small (almost no point from the first set joinghsa point from the second set) or very high
selectivities. In Section 4.1 we present a discussion ontbahoose appropriate valuessof

For the case of moving object environments, if the join iseacbmputed between a set of fixed objects
and a set of moving objects, existing techniques that inaei bets are not likely to perform well due to
the need for repeated update to the index as the objects mp%d][ The Grid-join technique provides an
excellent solution to this problem since the index can bé buithe fixed objects requiring no updates. If
both sets of objects are moving, then the index can be buiditer set. Due to its simple structure, the
Grid index is easier to update than other indexes such asd?-or R*-trees.

The contributions of this paper are as follows:

e Two join algorithms that give better performance (almosbater of magnitude better for low dimen-
sions) than the state-of-the-art EGO-join algorithm.

¢ Recommendations for the choice of join algorithm based wata dimensionality, and value ef

¢ Highlight the importance of the choice efand the corresponding selectivity for experimental evalu-
ation.

¢ Highlight the importance of the cache miss reduction temines: spatial sortings (2.5 times speedup)
and clustering via utilization of dynamic arrays (40% imgment).

¢ For the Grid-Join, the choice of grid size is an importantpaater. In order to choose good values for
this parameter, we develop highly accurate estimator fomstfor the cost of the join using Grid-join.
These functions are used to choose an optimal grid size.

The rest of this paper is organized as follows. Related werkiscussed in Section 2. The new Grid-
join and EGO*-join algorithms are presented in Section 3e Pphoposed join algorithms are evaluated in
Section 4, and Section 5 concludes the paper. A sketch oflgjogitam for selecting grid size and cost
estimator functions for Grid-join are presented in App&nili

2 RELATED WORK

The problem of the spatial join of two datasets is to identifyrs of objects, one from each dataset, such
that they satisfy a certain constraint. If both datasetstaesame, this corresponds to a self-join. The most
common join constraint is that of proximity: i.e. the two ebis should be within a certain distance of each
other. This corresponds to tlggoin wheree is the threshold distance beyond which objects are no longer
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considered close enough to be joined. Below we discuss sbthe most prominent solutions for efficient
computation of similarity joins.

Shim et. al. [17] propose to useKDB-tree for performing high-dimensional similarity joé of massive
data. The main-memory based&DB-tree and the corresponding algorithm for similaribynj are modified
to produce a disk-based solution that can scale to largaséist Whenever the number of points in a leaf
node exceed a certain threshold it is split inige| stripes each of width equal to or slightly greater than
e in theith dimension. If the leaf node is at levielthen theit" dimension is used for splitting. The join is
performed by traversing the index structures for each ofitita sets. Each leaf node can join only with its
two adjacent siblings. The points are first sorted with thst 8plitting dimension and stored in an external
file.

The R-Tree Spatial Join (RSJ) algorithm [4] works with anr@etindex built on the two datasets being
joined. The algorithm is recursively applied to corresgogdhildren if their minimum bounding rectangles
(MBRs) are within distance of each other. Several optimizations of this basic algoritiave been proposed
[6]. A cost model for spatial joins was introduced in [3]. Telltipage Index (MuX) was also introduced
that optimizes for /0 and CPU cost at the same time.

In [13] Patel et. al a plane sweeping technigue is modifiedréate a disk-based similarity join for
2-dimensional data. The new procedure is called the RartBased Spatial Merge join, or PBSM-join. A
partition based merge join is also presented in [12]. Sheifat in [16] present a method of parallelizing
high-dimensional proximity joins. TheKDB-tree is parallelized and compared with the approactpate
partitioning. Koudas et al [11] have proposed a generadiraif the Size Separation Spatial Join Algorithm,
named Multidimensional Spatial Join (MSJ).

Recently, Bohm et al [2] proposed the EGO-join. Both setpaihts being joined are first sorted in
accordance with the so called Epsilon Grid Order (EGO). TB®Hoin procedure is recursive. A heuristic
is utilized for determining non-joinable sequences. Martaills about EGO-join will be covered in Section
3.2. The EGO-join was shown to outperform other join methiadg].

A excellent review of multidimensional index structuresluding grid-like and Quad-tree based struc-
tures can be found in [18]. Main-memory optimization of disksed index structures has been explored
recently for B+-trees [15] and multidimensional indexek [Both studies investigate the redesign of the
nodes in order to improve cache performance.

3 SIMILARITY JOIN ALGORITHMS

In this section we introduce two new techniques for perfograne-join: the Grid-join and EGO*-jain.
The Grid-join technique is based upon a simple uniform grid builds upon the approach proposed in
[7] for evaluating continuous range queries over movingeots. The EGO*-join is based upon EGO-join
proposed in [2]. We first present the Grid-join technique andmportant optimization for improving the

INote that for high-dimensional datacan easily exceed 0.5 rendering this approach into a brute foethod.



cache hit-rate for Grid-join in main memory (Section 3.1y &nalysis of the appropriate grid size as well
as cost prediction functions for Grid-join is presentedhi@a Appendix. The EGO*-join method is discussed
in Section 3.2.

3.1 Grid-join

Assume for now that we are dealing with 2-dimensional dakee Jpatial join of two dataset8,andB, can

be computed using a standard Index Nested Loop approacti@ssoWe treat one of the point data sets
as a collection of circles of radiuscentered at each point of one of the two sets @gayThis collection of
circles is then indexed using some spatial index structline join is computed by taking each point from
the other data sef\j and querying the index on the circles to find those circlas ¢bhntain the query point.
Each point (fromB) corresponding to each such circle joins with the query fpfirom A). An advantage
of this approach (as opposed to the alternative of buildmgédex on the points of one set and processing
a circle range query for each point from the other set) is pludtit queries are much simpler than region
gueries and thus tend to be faster. For example, a regioly gueat quad-tree index might need to evaluate
several paths while a point query is guaranteed to be a suadgirequery. An important question is the choice
of index structure for the circles.

In earlier work [7] we have investigated the execution afjéanumbers of range queries over point data
in the context of evaluating multiple concurrent continsioange queries on moving objects. The approach
can also be used for spatial join if we compute the join usiglhdex Nested Loops techinique mentioned
above. The two approaches differ only in the shape of theiegi@vhich are circles for the spatial join
problem and rectangles for the range queries.

In [7] the choice of a good main-memory index was investigateveral key index structures including
R-tree, R*-tree, CR-tree [8], quad-tree, and 32-tree [7ilenmnsidered. All trees were optimized for main
memory. The conclusion of the study was that a simple ong-8vid-index outperformed all other indexes
by almost an order of magnitude for uniform as well as skewatd.dDue to its superior performance, in
this study, we use the Grid-index for indexing #ieircles.

The Grid Index While many variations exist, we have designed our own implaattion of the Grid-
index. The Grid-index is built on circles withiradius. Note however, that it is not necessary to generate a
new dataset consisting of these circles. Since each ciaddhe same radius)( the dataset of the points
representing the centers of these circles is sufficient.

For ease of explanation assume the case of 2-dimensioral Tae grid-index is a 2-dimensional array
of cells. Each cell represents a region of space generatgautifioning the domain using a regular grid.
Figure 1 shows an example of a grid. Throughout the papersasae that the domain is normalized to the
unit d-dimensional hyper-cube.

In this example, the domain is divided into ax2Q0 grid of 100 cells, each of sizeldx 0.1. Since we
have a uniform grid, given the coordinates of an object, &dsy to calculate its cell-coordinates in O(1)
time. Each cell contains two lists that are identifiedfal and part (see Figure 1a). Théull (part) list
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Figure 1: An example of the Grid Index

of a cell containgointers to all the points fronmB such that a circle witls-radius around each of them fully
(partially) cover the cell.

To find all points withine-distance from a given 2-dimensional poanfirst the cell corresponding to
a is retrieved. All points infull list are guaranteed to be with@distance. Points ipart list need to be
post-processed.

The choice of data structures for ttiell and part lists is critical for performance. We implemented
these lists as dynamic-arraysather than lists which improves performance by roughly 409 to the
resulting clustering (and thereby reduced cache misses).

The similarity join algorithm which utilizes the grid is ¢adl the Grid-join. The Grid-join is described
in Figure 2. The z-sort step applies a spatial sort to the mtasgts. The need for this step is explained
below.

%rid-joi n(set A set B, €eR)

z-sort(A);
z-sort(B);

initialize grid-index;, ‘ ‘
add circles to grid with centers in B and &-radi us;

foreach point ae A
conpute a's cell Cg in grid-index;

I* process Cy.part list (and Ca.full lists for 2D) */
find all points {b | beCy.part and ||a—b|| <¢€};
}
}

Figure 2: Grid-join procedure

The reason for two separate lists per cell for 2-dimensipoaits is that points in théull list do not

2A dynamic array is a standard data structure for arrays whiaseadjusts dynamically.
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need potentially costly checks for relevance since theygaaganteed to be withigrdistance.

Case of d dimensions For the generatl-dimensional case, the first 2 coordinates of points are used
for all operations exactly as in 2-dimensional case excepthfe processing opart lists, which uses all
d coordinates to determine whethiga — b|| < €. Keeping a separatéull list is of little value for more
than 2 dimensions since now it too needs post-processingniinate false positives similar to thpart
list. Therefore only one list is kept for all circles that aast partially intersect the cell in the chosen 2
dimensions. We call this theart list.

Choice of grid size The performance of grid-join depends on the choice of grad,dherefore it must
be selected carefully. Intuitively, the finer the grid thetéa the processing but the slower the time needed to
initialize the index and load the data into it. We now presesketch of a solution for selecting appropriate
grid size.

The first step is to develop a set of estimator functions thedipt the cost of the join given a grid size.
The cost is composed of three components: (a) initializhreg @mpty grid; (b) loading the data (circles)
into the index; and (c) processing each point of the othexs#aitthrough this index. The Appendix presents
details on how each of these costs is estimated. The qudlihegrediction of these functions was found
to be extremely high. Using these functions, it is possiblddtermine which grid size would be optimal.
These functions can also be used by a query optimizer — fonpbesto evaluate whether it would be efficient
to perform a grid-join for given parameters or some othenr.joi

Improving the Cache Hit Rate The performance of main-memory algorithms is greatly affddy
cache hit rates. In this section we describe an optimizdtiahimproves cache hit rates (and consequently
the overall performance) for Grid-join.

As can be seen from Figure 2, for each point, its cell is coeghuand thdull and part lists (or just
part list) of this cell are accessed. The algorithm simply preesspoints in sequential order in the array
corresponding to se&%. Cache-hit rates can be improved by altering the order ichvpoints are processed.
In particular, points in the array should be ordered suchgbmmts that are close together according to their
first two coordinates in the 2D domain are also close togethire point array. In this situation index data
for a given cell is likely to be reused from the cache during piocessing of subsequent points from the
array. The speed-up is achieved because such points ardikedydo be covered by the same circles than
points that are far apart, thus the relevant information aserikely to be retrieved from the cache rather
than from main memory.

Sorting the points to ensure that points that are close tb etier are also close in the array order can
easily be achieved by various methods. We choose to useilagsbased on the Z-order. We sort not only
setA but also seB, which reduces the time needed to add circles to the GriexindAs we will see in
the Experimental section, the performance achieved wibiZis almost a factor of-2.5 times faster than
without Z-sorting (for example see Figure 10a.



3.2 EGO*-join

In this section we present an improvement of the disk-ba<e@-oin algorithm proposed in [2]. We dub
the new algorithm the EGO*-join. According to [2], the EG@Fj algorithm is the state-of-the-art algorithm
for e-join, and was shown to outperform other methods for joimmagssive, high-dimensional data.

We begin by briefly describing the EGO-join technique asqméed in [2] followed by our improvement
of EGO-join.

The Epsilon Grid Order: The EGO-join is based on the so called Epsilon Grid Orderf@Q@), see
[2] for details. In order to impose an EGO on%at a regular grid with the cell size @fis laid over the data
space. The grid is imaginary, and never materialized. Bygusiraightforward operations, for each point in
A, its cell-coordinate can be determined in O(1) time. Adegraphical order is imposed on each cell by
choosing an order for the dimensions. The EGO of two pointieisrmined by the lexicographical order of
the corresponding cells that the points belong to.

EGOjoin(set A set B, €e€R)

EGO-sort (A, €);
EGOsort(B, €

j oi n_sequences(A, B);

Figure 3: EGO-join Procedure

EGO-sort: In order to perform an EGO-join of two seAsandB with a certairg, first the points in these
sets are sorted in accordance with the EGO for the givéiote, for a subsequent EGO-join operation with
a differente setsA andB need to be sorted again since their EGO values depend upacelibe

Recursive join: The procedure for joining two sequences is recursive. Eaghence is further subdi-
vided into two roughly equal subsequences and each subsarjigejoined recursively with both its coun-
terparts. The partitioning is carried out until the lengthboth subsequences is smaller than a threshold
value, at which point a simple-join is performed. In ordert@id excessive computation, the algorithm
avoids joining sequences that are guaranteed not to havpaanig within distance of each other. Such
sequences can be termaah-joinable.

EGO-heurigtic: A key element of EGO-join is the heuristic used to identifyn-joinable sequences.
The heuristic is based on the number of inactive dimensiwhah will be explained shortly. To understand
the heuristic, let us consider a simple example. For a slegience its first and last points are likely to
have the same first cell-coordinates. For example, poirtts eairresponding cell-coordinates (2,7,4,1) and
(2,7,6,1) have two common prefix coordinates (2,7,x,X).ifTtherd coordinates differ — this correspond to
the active dimension, the first two dimensions are caliadctive. This in turn means that for this sequence
all points have 2 and 7 as their first two cell-coordinatec#@se both sequences are EGO-sorted before
being joined).

3Throughout this paper we uset instead ofmultiset for short.



The heuristic first determines the number of inactive dinmrssfor both sequences, and computes
— the minimum of the two numbers. It is easy to prove that if find a dimensiore [0,min— 1] such that
the cell-coordinates of the first points of the two sequeniiiésr by at least two in that dimension, then the
sequences are non-joinable. This is based upon the fad¢hthkngth of each cell is.

New EGO*-heuristic: The proposed EGO*-join algorithm is EGO-join with an img@ort change to the
heuristic for determining that two sequences are nonfp@arl he use of the EGO*-heuristic significantly
improves performance of the join, as will be seen in Section 4

We now present our heuristic with the help of an example foiclviEGO-join is unable to detect that
the sequences aren-joinable.

1 1

NN

= |
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(@) (b)

Figure 4: Two sequences with (a) 0 inactive dimensions (Imattive dimension. Unlike EGO-heuristic,
in both cases EGO*-heuristic is able to tell that the seqeg@ace non-joinable.

Two sequences are shown in Figure 4(b). Assume that eackrssgibhas many points. One sequence
starts in cell (0,1,3) and ends in cell (0,2,2). The secongiesece starts in cell (0,5,6) and ends in (0,6,3).
Both sequences have one inactive dimension: 0. The EGGstiewrill conclude that these two should be
joined, allowing recursion to proceed. Figure 4(a) demmass the case when two sequences are located
in two separate slabs, both of which have the size of at leastrt each dimension. There are no inactive
dimensions for this case and recursion will proceed furtbeEGO-join.

The new heuristic being proposed is able to correctly datertinat for the cases depicted in Figures 4(a)
and 4(b) the two sequences aim-joinable. It should become clear later on that, in essence, our hieuris
utilizes not only inactive dimensions but also the activaelsion.

The heuristic uses the notion of a Bounding Rectangle fon saquence. Note that in general, given
only the first and last cells of a sequence, it is impossibledimpute the Minimum Bounding Rectangle
(MBR) for the sequence. However, it is possible to computeargling Rectangle (BR). Figure 5 describes
an algorithm for computing a bounding rectangle. The praoetbkes as input the coordinates for first and
last cells of the sequence and produces the bounding réetangutput. To understand getBR() algorithm,
note that if first and the last cell haweprefix equal coordinates (e.g. (1,2,3,4) and (1,2,9,4) hawe=qual

9



voi d getBR(BR &rect, Cell &first, Cell & ast)
{

for(|nt i =0; i < NUMDM i++4)
rect. Io =first.x[i];
rect. hi = last.x[1];
|{f(rect.lo[i] I=rect.hi[i])
for (int j =i+41l; ] < NUMDIM j+4+)
rect. Io =0
rect. hi = MAX_CELL;
return;
}

}

Figure 5: EGO*-join: procedure for obtaining a Bounding Re&gjle of a sequence

first coordinates — (1,2,x,x) ) then all cells of the sequertave the same values in the first n coordinates
(e.g. (1,2,x,x,) for our example). This means that the firsbardinates of the sequence can be bounded
by that value. Furthermore, the active dimension can be dexibby the coordinates of first and last cell in
that dimension respectively. Continuing with our examgie, lower bound is now (1,2,3,x) and the upper
bound is (1,2,9,x). In general, we cannot say anything defabout the rest of the dimensions, however the
lower bound can always be set to 0 and upper bound to MFELL.

voi d joi n_sequences(A, B)

getBR(BR1, A first, Alast);
get BR(BR2, B.first, B.last);

BRL.inc(); //expand BRL by one in all directions

if (BRL and BR2 do not intersect)
return;

[/-- continue as in EGO-join --

Figure 6: Beginning of EGO*-join: EGO*-heuristic

Once the bounding rectangles for both sequences beingljaireeknown, it is easy to see that if one
BR, expanded by one in all directions, does not intersedt thié other BR, than the two sequences will not
join.

As we shall see in Section 4, EGO*-join significantly outpeni EGO-join in all instances. This im-
provement is a direct result of the reduction of the numbesegiuences needed to be compared based upon
the above criterion.
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4 EXPERIMENTAL RESULTS

In this section we present the performance results for imorg €-join using RSJ, Grid-join, EGO-join [2],
and EGO*-join. The results report the actual time for theceien of the various algorithms. First we
describe the parameters of the experiments, followed byethdts and discussion.

In all our experiments we used a 1GHz Pentium Il machine ®(@&B of memory. The machine has
32K of level-1 cache (16K for instructions and 16K for datajl 256K level-2 cache. All multidimensional
points were distributed on the unit d-dimensional l@@xL]d. The number of points ranges from 68,000 to
200,000. For distributions of points in the domain we coasid the following cases:

1. Uniform: Points are uniformly distributed.

2. Skewed: The points are distributed among five clusters. Within eglokter points are distributed
normally with a standard deviation of 0.05.

3. Real data: We tested data from ColorHistogram and ColorMoments fépsasenting image features.
The files are available at the UC Irvine repository. ColorMuts stores 9-dimensional data, which
we normalized td0, 1]° domain, ColorHistogram — 32-dimensional data. For expemis with low-
dimensional real data, a subset of the leading dimensiam fhese datasets were used. Unlike
uniform and skewed cases, for real data a self-join is done.

Often, in similar research, the cost of sorting the dataldimg or maintaining the index or cost of
other operations needed for a particular implementatiog-jofn are ignored. No cost is ignored in our
experiments for Grid-join, EGO-join, and EGO*-join. Oneutwb argue that since for RSJ join the two
indexes, once built, need not be rebuilt for different valoée. While there are many other situations
where the two indexes need to be build from scratch for RSigmare the cost of building and maintaining
indexes for RSJ join, thus giving it an advantage.

4.1 Correlation between selectivity and €

The choice of the parameteris critical when performing as-join. Little justification for choice of this
parameter has been presented in related research. In &agtegent this section because we have discovered
that often in similar research selected values afe too small.

The choice of the values farhas a significant effect on the selectivity depending uperdilnension-
ality of the data. The-join is a common operation for similarity matching. Tyglgafor each multidimen-
sional point from seA a few points (i.e. from 0 to 10, possibly from 0 to 100, but kely more than 100)
from setB need to be identified on the average. The average numbermbdom seB that joins with a
point from setA on the average is callesd ectivity.

In our experiments, selectivity motivated the range of galehosen foe. The value ofe is typi-
cally lower for smaller number of dimensions and higher fighkdimensional data. For example 4 &
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0.1 squaré query € = 0.1) is 1% of a two-dimensional domain, however it is only % of an eight-
dimensional domain, leading to small selectivity.

Let us estimate what values fershould be considered for joining high-dimensional unifiyrrdis-
tributed data such that a point from gejoins with a few (close to 1) points from sBt Assume that the
cardinality of both sets isn. We need to answer the question: what should the valugebef such thatn
hyper-squares of side completely fill the unitd-dimensional cube? It is easy to see that the solution is
€= # Figure 7(a) plots this functioa(d) for two different values om. Our experimental results for
various number of dimensions corroborate the results pteden the figure. For example the figure pre-
dicts that in order to obtain a selectivity close to one foid@Rensional data, the value ©&hould be close
to 0.65, or 0.7, and furthermore that values smaller tharOs&ylead to zero selectivity (or close to zero)

which is of little valu@. This is in very close agreement to the experimental results

Time to &-join(A,B)
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Figure 7:&-join(A,B) (a) Choosinge for selectivity close to one for P0and 1) points uniformly dis-
tributed on[0,1]¢ (b) Pitfall of using improper selectivity.

If the domain is not normalized to the unit square, such ad.1j, [the values ot should be scaled
accordingly. For example of 0.1 for [-1,1]9 domain correspond te of 0.05 for our[0,1]¢ domain.
Figure 7(b) demonstrates the pitfall of using an impropéedizity. The parameters of the experiment
(distribution of data, cardinality of sets andscaled)) are set to the values used in one publication. With
this choice ofe the selectivity plunges to zero even for the 10-dimensi@ask. In fact, for our case, the
figure presumably shows that the Grid-join is better than E&t@ EGO*-joins even for high-dimensional
cases. However, the contrary is true for a meaningful seigcas will be seen in Section 4.3. Similar
values for the selectivity were obtained using the setup irsgl1].

Due to the importance of the selectivity in addition to théueaof €, we plot the resulting selectivity
in each experiment. The selectivity values are plotted enythxis at the right end of each graph. The
parametek is on thex-axis, and the time taken by each join method is plotted omeiig-axis in seconds.

4A square query was chosen to demonstrate the idea, idealgtwuld consider a circle.

5For self-join selectivity is always at least 1, thus selétti2—100 is desirable.
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4.2 Low-dimensional data

We now present the performance of RSJ, EGO-join, EGO*-jath @rid-join for various settings. The cost
of building indexes for RSJ is ignored, giving it an advaetag

Thex-axis plots the values af, which are varied so that meaningful selectivity is achievElearly, if
selectivity is 0, therz is too small and vice versa if the selectivity is more than.100

In all but one graph the lefy-axis represents the total time in seconds to do the joinHerdiven
settings. The righy-axis plots the selectivity values for each value @f the experiments, in actual number
of matching points. As expected, in each graph the selggtstiown by the line with thex’, increases as
€ increases.

RSJ is depicted only in Figure 8 because for all tested casesishown much worse results than the
other joins, Figure 8a depicts performance of the joins fdiMensional uniform data with cardinality of
both sets being PO Figure 8b shows the performance of the same joins relatitieat of RSJ.
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Figure 8: Time to d&-join for 4D uniform data (with RSJ)

In Figure 8b, the EGO-join shows 3.5-6.5 times better reshtin those of RSJ, which corroborates the
fact that, by itself, EGO-join is a quite competitive schefmelow-dimensional data. But it is not as good
as the two new schemes.

Next comes EGO*-join whose performancels/ays better than that of the EGO-join in all experiments.
This shows the strength of the EGO*-heuristic. Because e@f&tiectivity, the values af are likely to be
small for low-dimensional data and large for high-dimensiodata. The EGO-heuristic is not well-suited
for small values ot. The smaller the epsilon, the less likely that a sequencamasactive dimension. In
Figure 8b EGO*-join is seen to give 13.5-24 times bettergrerbnce than RSJ.

Another trend that can be observed from the graphs is thaBtltkjoin is better that the EGO*-join,
except for high-selectivity cases (Figure 10b). EGO-jdinws results several times worse than those of
the Grid-join, which corroborates the choice of the Grider which also was the clear winner in our
comparison [7] with main memory optimized versions of RefrB*-tree, CR-tree, and quad-tree indexes.
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In Figure 8b Grid-join showed 15.5-46 times better perfarogathan RSJ.
Unlike EGO-join, EGO*-join always shows results at leasinparable to those of Grid-join. For all the
methods, the difference in relative performance shrinks(asd selectivity) increases.

Time to &-join(A,A) Time to &-join(A,A)
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Figure 9: Time fore-join for 3 dimensions with real data. (a) With EGO-join (b)tiéut EGO-join (for
clarity)

Figure 9 shows the results for the self-join of real 3-dimemal data taken from the ColorMom file.
The cardinality of the set is 68,000. The graph on the leftivshtine best three schemes, and the graph on
the right omits the EGO-join scheme due to its much poorefopmance. From these two graphs we can
see that the Grid-join is almost 2 times better than the E(@®tfor small values o€t.
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Figure 10: Time to de&-join for 4D, uniform data (a)A| = |B| = 100,000 (b)|A| = |B| = 200,000
Figure 10 shows the results for 4-dimensional uniform d&kee graph on the left is for sets of cardinality
100,000, and that on the right is for sets with cardinalitp,200. Figure 10a emphasizes the importance

of performing Z-sort on data being joined: the performamogrovement isv 2.5 times. The Grid-join
without Z-sort, in general, while being better than EGQyj@hows worse results than that of EGO*-join.
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Figure 10b presents another trend. In this figure EGO*-j@ndmes a better choice than the Grid-
join for values ofe greater than~ 0.07. This choice of epsilon corresponds to a high selectivity 43.
Therefore EGO*-join can be applied for joining high seleityi cases for low-dimensional data.
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Figure 11: Time to de-join for 4D (a) Skewed data (b) Real data

Figures 11 (a) and (b) show the results for 4-dimensionalvelleand real data. Note that the values
of € are now varied over a smaller range than that of the unifomtgiributed case. This is so because in
these cases points are closer together and smaller valgemr@heeded to achieve the same selectivity as
in uniform case. In these graphs the EGO-join, EGO*-joird @mid-join exhibit behavior similar to that in
the previous figures with the Grid-join being the best scheme

4.3 High-dimensional data

We now study the performance of the various algorithms fghér dimensions. Figures 12(a) and (b) show
the results for 9-dimensional data for uniformly distribditdata. Figure 13 (a) presenets the results for
9-dimensional skewed data, Figure 13 gives the resultsefalra-dimensional data. Figures 14 (a) and (b)
show the results with the 9- and 16-dimensional real dajzertively. As with low-dimensional data, for all
tested cases, RSJ had the worst results. Therefore, tlwmparice of RSJ is ommitted from most graphs —
only one representative case is shown in Figure 12a.

An interesting change in the relative performance of thed@in is observed for high-dimensional
data. Unlike the case of low-dimensional data, EGO-join B&D*-join give better results than the Grid-
join. The Grid-join is not competitive for high-dimensidrdata, and its results are often omitted for clear
presentation of the EGO-join and EGO*-join results. A cetesit trend in all graphs is that EGO*-join
results arelways better than those of EGO-join. The difference is especiatijceable for the values af
corresponding to low selectivity. This is a general tren@&C&join does not work well for smaller epsilons,
because in this case a sequences is less likely to have divendinension. EGO*-join does not suffer
from this limitation.
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Figure 12: Performance of join for 9D uniform data (a) WithIR#d Grid (b) Only best two schemes
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Figure 13: Performance of join for 9D data (a) Skewed data R@gl data

Set Cardinality When the join of two sets is to be computed using Grid-Joirindax is built on one of
the two sets. Naturally, the question of which set to buikitidex on arises. We Ran experiments to study
this issue. The results indicate that building the indexhendmaller dataset always gave better results.

5 CONCLUSIONS

In this paper we considered the problem of similarity joirmain memory for low- and high-dimensional
data. We propose two new algorithm@rid-join and EGO*-join that were shown to give superior perfor-
mance than the state-of-the-art technique (EGO-join) a&dl R

The significance of the choice efand recommendations for a good choice for testing and cantgpar
algorihtms with meaningful selectivity were discussed. dgenonstrated an example with valuesdbo
small for the given dimensionality where one methods shaivedbest results over the others whereas with
more meaningful settings it would show the worst results.
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Figure 14: Performance of join (a) 16D, Real data (b) 32D, RBata

While recent research has concentrated on joining highed#ional data, little attention was been given
to the choice of technique for low-dimensional data. In oyregiments, the proposed Grid-join approach
showed the best results for low-dimensional case or wharesabfe are very small. The EGO*-join has
demonstrated substantial improvement over EGO-join idhalcases considered and is the best choice for
high-dimensional data or when valueseoére large. The results of the experiments with RSJ proves the
strength of Grid-join and EGO*-join.

An analytical study has been presented for selecting tloksgze. As a side effect of the study the cost-
estimating function for the Grid-join has been developetisTunction can be used by a query optimizer
for selecting the best execution plan.

Based upon the experimental results, the recommendatiamdice of join algorithm is summarized in

Table 1.

[ [ Lowe | High ¢ |
L ow Dimensionality Grid-join Grid-join/EGO*-join(very largee’s)
High Dimensionality || EGO*-join/Grid-join(very smalk’s) EGO*-join

Table 1: Choice of Join Algorithm
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Appendix A: CHOICE OF GRID SIZE

In this section we develop cost estimator functions for Guid. These functions can be used to determine
the appropriate choice of grid size for computing ¢qein for a specific problem. The discussion focuses
on the case of two dimensions, but can be generalized to ampewof dimensions in a straight-forward
manner.

Table 2: Parameters used fjoin
H Parameter ‘ Meaning H

A first multiset for join
B second multiset, (on which the index is built)
k=|A] | cardinality of multisetA
m= |B| | cardinality of multiseB
c length of side of a cell
n=1/c | grid size:nx ngrid
eps, € epsilon parameter for the join

Table 2 lists parameters needed for our analysis. All thampaters are known before the join, except
for grid sizen, which needs to be determined. We are interested in findisigch that the time needed for
the join is minimized. Furthermore, if there are severalgalofn that yield minimal or close to minimal
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join cost, then we are interested in the smallest sucfihis is because the memory requirements for the
grid increase with the number of cells in the grid.

In order to determine the relationship between the join aastthe various parameters of the problem,
we develop what we call estimator (or predictor) functioos the various phases of grid-join. Once the
predictor functions are constructed, a suitable choicanfcan be found by identifying a minimal value of
the cost. For the value of selected, the predictor functions are also useful in piogiéin estimated cost
to the query optimizer which can use this information to deavhether or not Grid-join should be used for
the problem.

In our analysis we assume uniform distribution of pointsat¥sandB. The grid-join procedure can be
divided into three phases:

1. init phase: initialization of the grid pointers and lists
2. add phase: loading the data into the grid
3. proc phase: processing the point queries using the grid.

Init andadd phases collectively are called thaild index phase. There is a tradeoff between toéd and
proc phases with respect to the grid simeWith fewer cells, each circle is likely to intersect fewetls and
thus be added to fewer full and part lists. On the other haiith, fewer cells the length of the part lists is
likely to be longer and each query may take longer to procksether words, the coarser (i.e. smaltgr
the grid the faster thbuild phase, but the slower thgeoc phase. Due to this fact, the total time needed for
join is likely to be a concave downwards functionrofThis has been the case in all our experiments.

Upper Bound While the general trend is that a finer grid would imply shogaery processing time
(since the part lists would be shorter or empty), beyond &aitepoint, a finer grid may not noticeably
improve performance. For our implementation, the diffeeeim time needed to process a cell when its part
list is empty vs. when its part list has size one is very smals enough to choose grid size such that the
size of part list is one and further partitioning does nofgeatbly improve query processing time. Thus we
can estimate an upper bound foand search only for number of cells in the interf@ainypper].

For example, for 2-dimensional square data, it can be shoatrthie upper bound is given by [7]:

4gm  if g> ﬁ;

n= )
2~ otherwise.

vm
In this formulaqg is the size of each square. Since fgpin we are adding circles, the formulas is reused by
approximating the circle by a square with the same asea & /). The corresponding formula faris
therefore:

[4/TEm] ife> ﬁ;

n= )
otherwise.

1
el
A finer grid than that specified by the above formula will give¥ywminor performance improvement while
incurring a large memory penalty. Thus the formula esthblsthe upper bound for grid size domain.
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However, if the value returned by the formula is too large, ghid might not fit in memory. In that case
can be further limited by memory space availability.

In our experiments the optimal value for grid size tendeddaloser to 1 rather than t@pper, as in
Figure 17.

Analysis For each of the phases of the Grid-join, the analysis is ccieduas follows. 1) First the
parameters on which a phase depends are determined. 2)Héheattire of dependence on each parameter
separately is predicted based on the algorithm and implextien of the grid. Since the Grid is a simple
data structure, dependence on a parameter, as a rule, ismeticated. 3) Next the dependence on the
combination of the parameters is predicted based on thendepee for each parameter. 4) Finally, an
explanation is given on how the calibration of predictordions can be achieved for a specific machine.
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Figure 15: Time to initialize index (&) € [10,100 (b) n € [100,1000

Estimating init Phase: The time to initialize the index depends only on the grid siz&he process of
index initialization can be described @(1) operation followed by the initialization of® cells. Thus the
index initialization time is expected to be a polynomial efjee two oven such asP;(n) = an® +bn+-c,
for some coefficients, b, andc. This value of the coefficients depend upon the particulachime on
which the initialization is performed. They can be detemuirthrough a calibration step. To validate the
correctness of this estimator, we calibrated it for a giveatihine. The corresponding estimator function
was then used to predict the performance for other valuesnoft used for the calibration. The result is
shown in Figure 158 = 8.26x 10~/, b =0, andc = 0). The two graphs shown are for different ranges of
n: on the leftn varies from 10 to 100, on the rightvaries from 100 to 1000. The graphs show the actual
times measured for different valuesroas well as the time predicted by the estimator function. Asluza
seen, the estimator gives very good approximation of theshatitialization times. This is especially true
for larger values oh.

Figure 15 shows that the time needed for index initializagihase can be approximated well with a
simple polynomial. Any numerical method can be used forbeating the coefficients, b, andc for a
particular machine.
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Estimating add Phase: This phase is more complicated then the init phase becaudspénds on
three parametersn — grid size ,m — cardinality of indexed set B, ardl By analyzing the dependence
on each parameter separately, we estimate that the overallidn can be represented as a polynomial
Paga(n,m,€) = a;7n’e?m+ - .- + aym+ ag with degrees oh ande no greater than two and degreernio
greater than one. The next step is to calibrate the coeftecsgs. This can be done by solving a system of
18 linear equations. These equations can be obtained bgiclgathiree different values of three values of
€, and two values ofn (3x 3x 2= 18).

The combinations of the following calibration points haeeh examined in order to get the coefficients:
Ng =10,n; = 100,n; = 200; &5 = 0.001,e1; = 0.01,&, = 0.02; my = 50, andmy; = 100. The choice of values
implies we assume that typicaltye [10,200, € € [0.001,0.02], andm € [50,100. The linear system was
solved using Gaussian elimination with pivoting methodyufé 16 demonstrates time needed for add phase
for various values of whenn = 150 andm= 75 and another curve is our interpolation polynomial. Again
we observe that the estimator function is highly accuratefatt we never encountered more than a 3%
relative error in our experiments.

Estimating proc Phase: The processing phase depends on all parametergrid sizek= |A|, m=B|,
ande. Thankfully, dependence duis linear since each point is processed independent of pthiets. Once
the solution for some fixely is known, it is easy to compute for an arbitrdcy However, there is a small
complication: the average lengths of thd | and part lists are given by different formulae depending upon
whether cell size is greater thar/Te or not (see [7], in our case query side sigis replaced by/Te).

Consequently theroc phase cost can be estimated by two polynomials (dependinghether./Te >
C OF NOt): Pyyo sresc(C,€,M, ko) @nd Pyoe (G €, M ko) each of typeP(c,e,m ko) = ag7c’e?m+--- +
a;m+ ag with degrees ot ande no greater than two and degreemho greater than one. Once again the
calibration can be done by solving a system of 18 linear eégumfor each of the two cases.

Estimating Total Time: The estimated total time needed for Grid-join is the sum tifreged time
needed for each phase. Figure 17 demonstrates estimattoneoheeded for Grid-join whea = 0.001,
m= 20,000,k = 10,000 as a function of grid size The estimator functions of each phase were calibrated

22



using different values than those shown in the graph.
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Figure 17: Estimation of total time needed &join (a)n € [10,190 (b) n e [70,80]

A simple bisection method for finding the optimal value ofl was used. This method assumes that it is
given a concave downwards function, defined[ai]. The function has been concave downwards in all
our experiments, however in future work we plan to prove thatestimator function is always concave
downwards for various combinations of parameters. Theb@emethod in this context works as follows.
The goal is to find the leftmost minimum on the interfab]. Computec= (a+b)/2. If f(c—1) < f(c+1)
then make new be equak and repeat the process, otherwise make abe& equak and repeat the process.
The process is repeated ur{tl— a) < 2.

The bisection method for the example in Figure 17 gives dmattd optimal value fon as 74. Exper-
imentally, we found that the actual optimal value fowas 73. The difference between time needed for the
grid-join with 73x 73 grid and 74« 74 grid is just two milliseconds for the given settings. Tdvesimbers
show the high accuracy of the estimator functions. the Ndinat the results of interpolation look even
better if they are rounded to the closest millisecond values
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