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Abstract

In moving object environments it is infeasible for the database tracking the movement of

objects to store the exact locations of objects at all times. Typically the location of an object is

known with certainty only at the time of the update. The uncertainty in its location increases

until the next update. In this environment, it is possible for queries to produce incorrect results

based upon old data. However, if the degree of uncertainty is controlled, then the error of the

answers to queries can be reduced. More generally, query answers can be augmented with

probabilistic estimates of the validity of the answer. In this paper we study the execution of

probabilistic range and nearest-neighbor queries. The imprecision in answers to queries is

an inherent property of these applications due to uncertainty in data, unlike the techniques

for approximate nearest-neighbor processing that trade accuracy for performance. Algorithms

for computing these queries are presented for a generic object movement model, and detailed

solutions are discussed for two common models of uncertainty in moving object databases. We

also study approximate evaluation of these queries to reduce their computation time.

∗Portions of this work were supported by NSF CAREER grant IIS-9985019, NSF grant 0010044-CCR and NSF

grant 9972883. A short, preliminary version of this paper appeared in [3].
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Index Terms: Data Uncertainty, Probabilistic Queries, Range and Nearest-Neighbor queries.

1 Introduction

Systems for continuous monitoring or tracking of mobile objects receive updated locations of

objects as they move in space. Due to limitations of bandwidth and the battery power of the

mobile devices, it is infeasible for the database to contain the exact position of each object at

each point in time. For example, if there is a time delay between the capture of the location and

its receipt at the database, the location values received by the object may be different from the

actual location values. An inherent property of these applications is that object locations cannot

be updated continuously. Following an update, the position of the object is unknown until the next

update is received. Under these conditions, the data in the database is only an estimate of the actual

location at most points in time. This inherent uncertainty affects the accuracy of the answers to

queries. Figure 1(a) illustrates how a nearest-neighbor query for point q can yield an incorrect

result. Based upon the recorded locations x0 and y0 of objects o1 and o2, the database returns “o1”

as the object closest to q. However, in reality the objects could have moved to positions x1 and y1

in which case “o2” is nearer.

Due to the inherent uncertainty in the data, providing meaningful answers seems impossible.

However, one can argue that for most moving objects, the locations of objects cannot change

drastically in a short period of time. In fact, the degree and rate of movement of an object is often

constrained. For example, uncertainty models have been proposed for moving object environments

in order to reduce the overhead of updates [21]. Such information can help address the problem.

Consider the above example again. Suppose we can provide a guarantee that at the time the query

is evaluated, o1 and o2 could be no further than some distances d1 and d2 from their locations

stored in the database, respectively, as shown in Figure 1(b). With this information, we can state

with confidence that o1 is the nearest neighbor of q. In general, the uncertainty of the objects may

not allow us to determine a single object as the nearest neighbor. Instead, several objects could
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Figure 1: (a) A nearest-neighbor query for a point q can yield false results by using the data values

stored in the database. (b) Imprecision can be used to provide answers with guaranteed certainty.

have the possibility of being the nearest neighbor.

The notion of probabilistic answers to queries over uncertain data was introduced in [21] for

range queries, where the answer consists of objects along with the probability of each object lying

in the query range. We extend this idea to answer nearest-neighbor queries – the answer consists

of not a single object that is closest to the object, but a set of objects each of which have the

potential of being the nearest neighbor of the query point. In addition to identifying these objects,

the probability of each object being the nearest neighbor can also be evaluated. The probabilities

allow the user to place appropriate confidence in the answer as opposed to having an incorrect

answer or no answer at all. Note that, depending upon the application, one may choose to report

only the object with the highest probability as the nearest neighbor, or only those objects whose

probabilities exceed a minimum threshold.

Providing probabilistic answers to nearest-neighbor queries is much more difficult than range

queries. For range queries, the probability for each object can be determined independent of the

other objects – it depends only upon the query and the uncertainty of the object in question. How-

ever, for nearest-neighbor queries, the interplay between objects is critical, and the probability that

an object is the closest to the query is greatly influenced by the position and uncertainty of the
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other objects. In this paper, we present a novel technique for providing probabilistic guarantees to

answers of nearest-neighbor queries. As an overview, our algorithm first eliminates all the objects

that have no chance of being the nearest neighbor. Then, for every object that may be the nearest

neighbor, its probability is evaluated by summing up the probability of being the nearest neighbor

for all its possible locations. Our solution is generic since it makes no assumption about the method

of movement or uncertainty of objects. It can thus be applied to any practical object movement

model. We illustrate our algorithm can be easily applied to two of the most important classes of

object movement models.

It should be noted that in contrast to the problem of finding an approximate nearest neighbor

wherein accuracy is traded for efficiency, the imprecision in the query answers is inherent in this

problem. To the best of our knowledge, the problem of inherent imprecise query processing has

only been addressed in [21], where the discussion is limited to the the case of range queries for

objects moving in straight lines with known mean speed. We generalize this problem for range

queries with a less constrained model of movement, and also address the more challenging problem

of nearest-neighbor queries which has not been considered earlier.

To sum up, the contributions of this paper are:

• A formal notion of probabilistic nearest-neighbor queries;

• An algorithm for answering probabilistic nearest-neighbor queries under a general model of

uncertainty;

• Solutions to probabilistic nearest-neighbor queries for two of the most important moving-

object models; and

• Methods for efficient execution of our algorithms, including the use of index structures and

approximation techniques.

The rest of this paper is organized as follows. In Section 2 we describe a general model of

uncertainty for moving objects, and the concept of probabilistic queries. Section 3 discusses the
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algorithms for evaluating probabilistic queries under a general uncertainty model. Section 4 studies

how to evaluate queries for two popular uncertainty models: line-segment and free-moving uncer-

tainty. Section 5 addresses the issue of computing the answers efficiently with the use of index

structures and faster query processing through approximation. In Section 6 we present detailed

experiment results. Section 7 discusses related work and Section 8 concludes the paper. Special

cases of the solutions are discussed in Appendix A and Appendix B.

2 Uncertainty Model and Probabilistic Queries

In this section, we describe a model of uncertainty for moving objects. This uncertainty model

is a generic one, in the sense that it fits into the paradigm of most applications. Based on this

uncertainty model, we introduce the concepts of probabilistic range and nearest-neighbor queries.

Several specific models of uncertainty have been proposed. One popular model for uncertainty

is that at any point in time, the location of the object is within a certain distance, d, of its last

reported position. If the object moves further than this distance, it reports its new location and

possibly alters the distance d to a new value (known to both the object and the server) [21]. A less

uncertain model is one in which objects are constrained to move along straight lines (which may

correspond to road segments for example). The position of the object at any time is within a certain

interval, centered at its last reported position, along the line of movement [21]. Other models

include those that have no uncertainty [11] where the exact speed and direction of movement are

known. This model requires updates at the server whenever the objects speed or direction change.

Another model assumes that the object travels with known velocity along a straight line, but may

deviate from this path by a certain distance [16, 20].

For the purpose of our discussion, the exact model of movement of the object is not important.

All that is required is that at the time of execution of the query, the location (and uncertainty) be

known for each object. The uncertainty of an object can be characterized as follows:
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Definition 1: An uncertainty region of an object Oi at time t, denoted by Ui(t), is a closed region

such that Oi can be found only inside this region.

Definition 2: The uncertainty probability density function of an object Oi, denoted by fi(x,y, t),

is a probability density function of Oi’s location (x,y) at time t, that has a value of 0 outside Ui(t).

In the above definitions, we assume each object is a point i.e., its spatial extents are not consid-

ered. Also, since fi(x,y, t) is a probability density function, it has the property that
�
Ui(t) fi(x,y, t)dxdy =

1. We do not limit how the uncertainty region evolves over time, or what the probability density

function of an object is inside the uncertainty region. The only requirement for the probability

density function is that its value is 0 outside the uncertainty region. A trivial probability den-

sity function is the uniform density function, which depicts the worst-case or “most uncertain”

scenario. Usually, the scope of uncertainty is determined by the recorded location of the mov-

ing object, the time elapsed since its last update, and other application-specific assumptions. For

example, one may decide that the uncertainty region of an object contains all the points within

distance (t− tu)× v from its last reported position, where tu is the time that the reported position

was sent, and v is the maximum speed of the object. One can also specify that the object location

follows the Gaussian distribution inside the uncertainty region.

Based on the above model, different types of location-related queries, such as range queries

and nearest-neighbor queries can be issued. The imprecision of location values imply that some

objects may satisfy a query. Therefore, it is natural to assign a probability value to each object that

satisfies the query result. In [21], a probabilistic method for capturing the uncertainty information

in range queries is presented. Each query returns a set of tuples in the form (O,p) where O is the

object, and p is the probability that O is in the “range query region” specified by the user. Only the

tuples where p is greater than some minimum threshold are returned.

We now generalize their ideas with the definition of a probabilistic range query:

Definition 3: Probabilistic Range Query (PRQ) Given a rectangle R, and a set of n objects

O1,O2, . . . ,On with uncertainty regions and probability density functions at time t0, a PRQ returns
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a set of tuples in the form of (Oi, pi), where pi is the non-zero probability that Oi is located inside

R at time t0.

A probabilistic nearest-neighbor query can be defined in a similar manner:

Definition 4: Probabilistic Nearest-Neighbor Query (PNNQ) For a set of n objects O1,O2, . . . ,On

with uncertainty regions and probability density functions given at time t0, a PNNQ for a point q

is a query that returns a set of tuples of the form (Oi, pi), where pi is the non-zero probability that

Oi is the nearest neighbor of q at time t0.

Note that the answer to the same probabilistic query executed at two different time instants

over the same database can be different even if no updates are received by the database during the

time between the two executions, because uncertainty regions may change over time.

Recorded Location

Bound for Current Location

a

b

c

d

q

R

Figure 2: Example of PRQ and PNNQ.

We conclude this section with a simple example. In Figure 2, objects a,b,c,d, each with

different uncertainty regions (shaded) are being queried. Assume each object has an even chance

of being located in its uncertainty region i.e., fa(x,y, t), fb(x,y, t), fc(x,y, t), fd(x,y, t) are uniform

density functions at any time t. A PRQ (represented by the rectangle R) is invoked at time t0 to

find out which objects are inside R. Object a is always inside the rectangle, so its probability value

is 1. Object d is always outside the rectangle, thus it has no chance of being located inside R.

Ub(t0) and Uc(t0) partially overlap the query rectangle. In this example, the result of the PRQ is:

{(a,1),(b,0.7),(c,0.4)}.
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In the same example, a PNNQ is issued at point q at time t0. We can see that a lot of points

in Ub(t0) are closer to q than points in other uncertainty regions. Moreover, fb(x,y, t) is a uniform

density function over Ub(t0), and so b has a high probability of being the nearest neighbor of

q. Object d does not have any chance of being the nearest neighbor, since none of the points in

Ud(t0) is closer to q than all other objects. For this example, the result of the PNNQ may be:

{(a,0.3),(b,0.5),(c,0.2)}. We will investigate how these probability values can be obtained in the

next section.

3 Evaluating Queries for Imprecise Data

In this section we examine how PRQ and PNNQ can be answered under the uncertainty model

described in the last section. Although the solutions to PRQ is trivial compared with PNNQ,

understanding the solution to PRQ is useful for understanding how PNNQ is evaluated.

3.1 Evaluation of PRQ

A PRQ returns a set of tuples (Oi, pi) where pi is the non-zero probability that object Oi is located

in the query rectangle R at time t0. Let S = {O1, . . . ,O|S|} be the set of all moving objects that have

to be considered by the PRQ, and let X be the set of tuples returned by the PRQ. The algorithm for

evaluating the PRQ at time t0 is described in Figure 3, which basically integrates the probability

distribution function in the overlapping area of Ui(t0) and R to compute pi. In Section 7, we

compare our method with Wolfson et al.’s approach [21] in evaluating a PRQ.

3.2 Evaluation of PNNQ

Processing a PNNQ involves evaluating the probability of each object being closest to a query

point. Unlike the case of PRQ, we can no longer determine the probability for an object indepen-
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1. Let S be the set of all moving objects in the database

2. X ← /0

3. for i← 1 to |S| do

(a) A←Ui(t0)∩R

(b) if (A 6= 0) then

i. pi← � A fi(x,y, t0)dxdy

ii. if (pi 6= 0) then X ← X ∪ (Oi, pi)

4. return X

Figure 3: PRQ Algorithm.

dent of the other objects. In this section, we present a framework to answer PNNQ, for a generic

model of uncertainty. Section 4 discusses how this solution framework can be applied easily to

two of the most common uncertainty models in Section 4.

Recall that a PNNQ returns a set of tuples (Oi, pi) for a point q where pi denotes the non-zero

probability that Oi is the nearest neighbor of q at time t0. Again, let S = {O1,O2, . . . ,O|S|} be the

set of objects to be considered by q in evaluating the query, and let X be the set of tuples returned

by the query. The solution presented here consists of 4 steps: the projection, pruning, bounding

and evaluation phases. The first three phases filter out any objects in the database that have no

chance of being the nearest neighbor. The last phase, namely the evaluation phase, is the core

part of our solution: it computes the probability of being the nearest neighbor for each object that

remains after the first three phases.

1. Projection Phase. In this phase, the uncertainty region of each moving object is computed based

on the uncertainty model used by the application. Figures 4(a) and 4(b) illustrate how this phase

works. The last recorded locations of the objects in S are shown in Figure 4(a). The uncertainty

regions “projected” onto the object space are shown in Figure 4(b). The shapes of these uncertainty

regions are usually determined by the uncertainty model used, the last recorded location of Oi, the

time elapsed since the last location update, and the maximum speeds of the objects.
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Figure 4: An example of a PNNQ processing: (a) Locations of objects; (b) Uncertainty regions

and distances from q; (c) Bounding circle; and (d) Bounded regions.

2. Pruning Phase. Consider two uncertainty regions U1(t0) and U2(t0). If the shortest distance of

U1(t0) to q is greater than the longest distance of U2(t0) to q, we can immediately conclude that O1

is not an answer to the PNNQ: even if O2 is at the location farthest from q in U2(t0), O1 cannot be

closer than O2 to q. Based on this observation, we can eliminate objects from S by the algorithm

shown in Figure 5. The key of this algorithm is to find f , the minimum of the longest distances of

the uncertainty regions from q, and eliminate any object with shortest distance to q larger than f .

In Section 5.1, we examine a method adopted from the nearest-neighbor search algorithm [14] to

find f efficiently.

After this phase, S contains the (possibly fewer) objects which must be considered by q. This

is the minimal set of objects which must be considered by the query since any of them could be

the nearest neighbor of q. Figure 4(b) illustrates how this phase removes objects that are irrelevant
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1. for i← 1 to |S| do

(a) Let ni be the shortest distance of Ui(t0) from q

(b) Let fi be the longest distance of Ui(t0) from q

2. f ← mini=1,...,|S| fi

3. m← |S|
4. for i← 1 to m do

(a) if (ni > f ) then S← S−Oi

5. return S

Figure 5: Algorithm for the Pruning Phase.

to q from S.

3. Bounding Phase. For each element in S, there is no need to examine all portions in the uncer-

tainty region. We only have to look at the regions that are located no farther than f from q. We

do this conceptually by drawing a bounding circle C of radius f , centered at q. Any portion of the

uncertainty region outside C can be ignored. Figures 4(c) and (d) illustrate the result of this phase.

The phases we have just described essentially reduce the number of objects to be evaluated, and

derive an upper bound on the range of possible location values, based on the uncertainty regions

of the objects and the position of q. We are now ready to present the details of the most important

part of our solution – the evaluation phase. We will present the algorithm first before explaining

how it works.

4. Evaluation Phase. Based on S and the bounding circle C, our aim is to calculate, for each object

in S, the probability that it is the nearest neighbor of q. The solution is based on the fact that the

probability of an object o being the nearest neighbor with distance r to q is given by the probability

of o being at distance r to q times the probability that every other object is at a distance of r or

larger from q. Let Cq(r) denote a circle with center q and radius r. Let Pi(r) be the probability that

Oi is located inside Cq(r), and pri(r) be the probability density function of r such that Oi is located

at the boundary of Cq(r). Figure 6 presents the algorithm for this phase.
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1. X ← /0

2. Sort the elements in S in ascending order of ni, and rename the sorted elements

in S as O1,O2, . . . ,O|S|

3. n|S|+1← f

4. for i← 1 to |S| do

(a) pi← 0

(b) for j← i to |S| do

i. p← � n j+1
n j

pri(r) ·∏ j
k=1∧k 6=i(1−Pk(r)) dr

ii. pi← pi + p

(c) X ← X ∪ (Oi, pi)

5. return X

Figure 6: Algorithm for the Evaluation Phase.

In order to handle zero uncertainty i.e., Ui(t0) is the recorded location of Oi, a special procedure

has to be inserted to this algorithm. To simplify discussions, we assume non-zero uncertainty

throughout the paper. Appendix A discusses how to handle zero uncertainty in details.

Evaluation of Pi(r) and pri(r) As introduced before, Pi(r) is the probability that Oi is located

inside the circle Cq(r) (with center q and radius r). The computation of Pi(r) is shown in Figure 7.

1. if (r < ni) then return 0

2. if (r > fi) then return 1

3. A←Ui(t0)∩Cq(r)

4. return � A fi(x,y, t0)dxdy

Figure 7: Computation of Pi(r).

If r < ni, we are assured that Cq(r) cannot cover any part of Ui(t0), so Oi cannot lie inside Cq(r)

and Pi(r) equals 0 (Step 1). On the other hand, if r > fi, then we can be certain that Cq(r) covers

all parts of Ui(t0) i.e., Oi must be inside Cq(r) and Pi(r) equals 1 (Step 2). Steps 3 and 4 returns a
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non-zero Pi(r) value.

The evaluation phase needs another parameter called pri(r), a probability density function of r

where Oi lies on an infinitesimally narrow ring of radius r centered at q. If Pi(r) is a differentiable

function, then pri(r) is the derivative of Pi(r). Note that pri(r) is undefined at t0 if Ui(t0) is a

point (i.e., zero uncertainty), because Pi(r) becomes a step function and the derivative of Pi(r) is

undefined at t0. These subtle details are discussed in Appendix A.

Evaluation of pi We can now explain how pi is computed. Let Prob(r) denote the probability

density function that Oi lies on the boundary of Cq(r) and is the nearest-neighbor of q. Then

Equation 1 illustrates the structure of our solution:

pi =
� f

ni

Prob(r) dr (1)

The correctness of Equation 1 depends on whether it can correctly consider the probability that

Oi is the nearest-neighbor for every location inside Ui(t0), and then sum up all those probability

values. Recall that ni represents the shortest distance of Ui(t0) from q, while f is the radius of the

bounding circle, beyond which we do not need to consider. Equation 1 expands Cq(r) with radius

ni to f . Therefore, each point in Ui(t0) must lie on some circular ring of width dr, center q and

radius r, where r ∈ [ni, f ]. Essentially, we consider all the points in Ui(t0) that are equidistant from

q, and evaluate the chance that they are nearest to q.

For each ring, the event that Oi is the nearest neighbor of q occurs when: (1) Oi lies on the ring,

and (2) Oi is the nearest neighbor of q. Assuming that these two events are independent, we can

rewrite Equation 1 in terms of pri(r) and Pk(r) (where k 6= i):

pi =

� f

ni

Prob(Oi lies on the boundary of Cq(r)) ·Prob(other objects lie outside Cq(r)) dr (2)

=

� f

ni

pi(r) ·
|S|
∏

k=1∧k 6=i

(1−Pk(r)) dr (3)

Observe that each 1−Pk(r) term registers the probability that object Ok (where k 6= i) lies at a

distance greater than r.
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Efficient Computation of pi We can improve the computation time of Equation 3. Note that Pk(r)

has a value of 0 if r ≤ nk. This means when r ≤ nk, 1−Pk(r) is always 1, and Ok has no effect on

the computation of pi. Instead of always considering |S|− 1 objects in the ∏ term of Equation 3

throughout [ni, f ], we may actually consider fewer objects in some ranges of values. First, we sort

the objects according to their shortest distances (ni) from q. Next, the integration interval [ni, f ] is

broken down into a number of intervals with end points defined by ni. The probability of an object

being the nearest neighbor of q is then evaluated for each interval in a way similar to Equation

3, except that we only consider the objects with non-zero Pk(r). The sum of the probabilities for

these intervals is pi. The final equation for pi is:

pi =
|S|
∑
j=i

� n j+1

n j

pri(r) ·
j

∏
k=1∧k 6=i

(1−Pk(r)) dr (4)

Here we let n|S|+1 be f for notational convenience. Instead of considering |S|−1 objects in the ∏

term, Equation 4 only handles j−1 objects in interval [n j,n j +1].

Equation 4 is implemented in our evaluation phase algorithm. Step 2 sorts the objects in S in

ascending order of the near distances. Step 3 assigns the value of f to n|S|+1. Step 4 executes

Equation 4 once for every object Oi in S, and puts the tuples (Oi, pi) into X , which is returned in

Step 5.

Example Let us use an example to illustrate how the evaluation phase works. Figure 8(a) shows

5 objects O1, . . . ,O5, captured after the bounding phase with uncertainty regions is shown. Figure

8(b) shows the result after these objects have been sorted in ascending order of ni, with the r-axis

being the distance of the object from q, and n6 equals f . The probability pi of each object Oi being

the nearest neighbor of q is the sum of the probability that Oi is the nearest neighbor at each point

in the line interval [ni,n6].

We now show how p3 is evaluated. Equation 4 tells us that p3 is evaluated by applying an

integration on [n3,n6]. Since objects are sorted according to ni, we do not need to consider all 5

objects throughout [n3,n6]; Instead, we break down [n3,n6] into 3 smaller intervals, and consider

(possibly) fewer objects in each small interval: O1,O2,O3 in [n3,n4], O1,O2,O3,O4 in [n4,n5] and
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Figure 8: This example illustrates how the evaluation phase works. (a) Uncertainty regions of 5

objects, and the bounding circle with center q and radius f . (b) Oi sorted in ascending order of ni.

O1,O2,O3,O4,O5 in [n5,n6].

Let us examine how p3 is evaluated in interval [n3,n4]. For O3 to be the nearest neighbor of

q in [n3,n4], we require that (1) O3 is inside [n3,n4], and (2) O1 and O2 are farther than O3 to

q. The first condition is captured by the term pri(r) dr, while the second condition is met by the

term ∏ j
k=1∧k 6=i(1−Pk(r)) of Equation 4. Therefore, probability that O3 is the nearest neighbor in

[n3,n4] is
� n4

n3
pr3(r) · (1−P1(r)) · (1−P2(r)) dr.

The probability values are evaluated similarly in [n4,n5] and [n5,n6]. The final value of p3 is

equal to the sum of the probability values over the 3 intervals:

p3 =

� n4

n3

pr3(r) · (1−P1(r)) · (1−P2(r)) dr

+
� n5

n4

pr3(r) · (1−P1(r)) · (1−P2(r)) · (1−P4(r)) dr

+

� n6

n5

pr3(r) · (1−P1(r)) · (1−P2(r)) · (1−P4(r)) · (1−P5(r)) dr

We can see that p3 is evaluated based on the expressions of pri(r) and Pi(r). We will talk about

how pri(r) and Pi(r) can be found for two common uncertainty models in Section 4. We then

discuss how to efficiently evaluate PNNQ in Section 5.
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4 Querying with Line-Segment and Free-Moving Uncertainty

In this section, we demonstrate how the PRQ and PNNQ algorithms presented in the last section

can be adapted to two practical models of uncertainty: line-segment and free-moving uncertainty.

4.1 Line-Segment and Free-Moving Uncertainty Models

We now present two of the most important types of uncertainty based upon the popular models

proposed in the literature [21, 16]:

Line-segment uncertainty For objects that move along straight line paths, the uncertainty at any

time is given by a line-segment. The line along which the object is currently moving is known to

the database. The center and length of this segment is determined by the exact model of movement

used. For example, the length of the segment may be fixed, or may vary over time based upon a

maximum allowed speed of movement.

Free-moving uncertainty For objects that are free to move in any direction, the uncertainty at any

time is given by a circle. The center and radius of the circle are determined by the last reported

location and the exact model of movement used. For example, the radius could be fixed, or may be

determined by the product of the maximum speed of the object and time since the last update. It

may also be a pre-defined value evaluated by dead-reckoning policies [21]. The center of the circle

could be the last reported location or could be determined by the last reported location, direction

and speed of movement, and the time since the last update.

From now on, we assume that the uncertainty regions at time t (Ui(t)) for object Oi in the form

of either line segments or circles. If Ui(t) is a line segment, then |Ui(t)| is the length of Ui(t); if

Ui(t) is a circle, then |Ui(t)| is the area of Ui(t). Furthermore, we assume that an object has the

same chance of being located anywhere within Ui(t) i.e., the probability density function fi(x,y, t)
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of Ui(t) is a bounded uniform distribution:

fi(x,y, t) =







1/|Ui(t)| if (x,y) ∈Ui(t)

0 otherwise.

The bounded uniform distribution is important in situations when we have no information about the

location of the object within the uncertainty region – the worst-case uncertainty. The best guess is

then the object has the same chance of being located in every point in the uncertainty region. This

is also the case when probabilistic queries are the most useful – when querying old data under high

level of uncertainty is prone to error. Due to its simplicity and practicability, we will illustrate how

to evaluate probabilistic queries using uniform distribution in this section. We note that, however,it

is easy to extend our generic solution in Section 3 to other kinds of distributions, such as the normal

distribution for dead-reckoning policies [21].

Figures 9(a) and 9(c) illustrate the notions of uncertainty for these two models. For the case of

line-moving objects, an object reports its current location, line of movement and maximum speed,

Sm. Following this location report, the object is free to move along the reported line of movement

at any speed not exceeding the maximum reported speed. Thus the uncertainty of the object t

seconds after the location report is received is given by a line segment centered at the previous

reported location, of length equal to 2Smt along the line of movement. Since the next update from

the object will provide a new location, line of movement, and maximum speed, the uncertainty

of the objects is a line segment with length increasing from one update until the next update is

received. For the case of the free moving object, an update reports the current location and a

maximum speed. The uncertainty region is a circle with radius Smt that increases over time, until

the next update occurs. Figures 9(b) and 9(d) demonstrate that evaluating a probabilistic query is

equivalent to looking at the uncertainty regions in Figures 9(a) and 9(c), respectively, at time t0,

when the query is issued.

In the rest of this section, we will discuss the evaluation of probabilistic queries in line-segment

and free-moving uncertainty models. Readers are reminded that our approach is also applicable to

other uncertainty models.
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Figure 9: Example of uncertainty model under the assumption that objects specify a maximum

speed with each update. (a) Line-moving objects. (b) The uncertainty regions of objects a, b, and

c. (c) Free-moving objects. (d) The uncertainty regions of objects a, b and c.

4.2 PRQ for Line-Segment and Free-Moving Uncertainty

Answering a PRQ for our line-uncertainty and free-moving uncertainty models is easy. Assume

that a PRQ is evaluated at time t0. First, notice that the probability density function fi(x,y, t0)

of uncertainty region Ui(t0) is uniform, and so Oi has equal opportunity of locating anywhere in

Ui(t0). Thus pi is simply equal to the fraction of Ui(t0) that overlaps the query rectangle R. The

following two equations derive pi for line-segment and free-moving uncertainty. They can be used

to replace Step 3(b)(i) of the generic PRQ algorithm shown in Section 3.1.
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Line-moving uncertainty. Since Ui(t0) is a straight line,

pi =
length of Ui(t0) that overlaps R

length of Ui(t0)

Free-moving uncertainty. In this case, Ui(t0) is a circle,

pi =
Area of Ui(t0) that overlaps R

Area of Ui(t0)

4.3 PNNQ for Line-Segment and Free-Moving Uncertainty

Recall that the PNNQ solution presented in Section 3.2 is generic i.e., it can be applied to different

uncertainty models. In order to evaluate PNNQ for a particular uncertainty model, we need to

parametize the generic solution according to the specifications of the uncertainty model. Once

all parameters are defined appropriately, the parameterized generic PNNQ solution will correctly

evaluate the queries for that particular model.

Suppose a PNNQ is evaluated at time t0. The parameters that need to be found to adapt the

generic PNNQ solution to a particular uncertainty model, for every object Oi, are:

1. Ui(t0) and fi(x,y, t0);

2. ni and fi, the shortest and longest distance of Ui(t0) from q, respectively;

3. Pi(r) and pri(r).

We have already discussed what Ui(t0) and fi(x,y, t0) are for both line-segment and free-moving

uncertainty models. In the rest of this section, we discuss the technical details involved in obtaining

ni, fi, Pi(r), and pri(r) for line-segment and free-moving uncertainty. Also, we use d(A,B) to

denote the distance between two points A and B. For clarity, we only illustrate the derivation of

Pi(r) and pri(r) with the assumption that q does not lie on Ui(t0) for any object i. In Appendix B,

we will show how to derive Pi(r) and pri(r) for the case where q is inside Ui(t0). f
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Figure 10: An example of Case 1 (ni < din) Line-Segment Uncertainty. (b) Intersection by Cq(r)

with radius r, centered at q, such that ni ≤ r≤ din. (c) Intersection by Cq(r) with radius r, centered

at q, such that din < r < dil.

4.3.1 Parametizing Generic PNNQ Solution for Line-Segment Uncertainty

Let xin be the endpoint of the line-segment uncertainty Ui(t0) with a shorter distance from q, and

let this distance be din. Let xil be the end point (before the bounding phase) of the line-segment un-

certainty with a longer distance from q, and let this distance be dil . These parameters are illustrated

in Figure 10(a).

Obtaining ni and fi. When q does not lie on Ui(t0), ni(t0) is equal to either (1) the perpendicular

distance between Ui(t0) and q (Figure 10(a)), or (2) the distance between one of the end points and

Ui(t0) (Figure 12(a)). In the former case, 0 < ni < din; in the latter, 0 < ni = din. If q lies on Ui(t0),

then ni = 0. In any case, fi = dil.

Obtaining Pi(r) and pri(r). Assume that q does not lie on Ui(t0) i.e., ni 6= 0 (Appendix B

discusses Pi(r) for ni = 0.). There are two cases to consider: ni < din and ni = din. In both cases,

since fi(x,y, t0) is a uniform probability density function, Pi(r) is given by:

Length of Ui(t0) inside Cq(r)

Length of Ui(t0)

Case 1: ni < din. Figure 10(a) illustrates this case. Pi(r) has the following characteristics:

• When r < ni, Ui(t0) is not contained in Cq(r). Hence Pi(r) = 0.
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• When ni≤ r≤ din, the length of the line-segment uncertainty intersected by Cq(r) is 2
√

r2−n2
i ,

as shown in Figure 10(b). Thus Pi(r) =
2
√

r2−n2
i

d(xin,xil)
.

• When din < r < dil , as illustrated by Figure 10(c), Pi(r) =

√
r2−n2

i +
√

d2
in−n2

i
d(xin,xil)

.

• When r ≥ dil, the line-segment uncertainty of Oi is covered entirely by Cq(r). This implies

Oi is ensured to be inside Cq(r), and thus Pi(r) equals to 1.

The shape of the resulting Pi(r) in this case is shown in Figure 11(a). Note that the graph of Pi(r)

is composed of two quadratic pieces of a piecewise curve.

Case 2: ni = din. Let the perpendicular distance between q and Ui(t0) be l. An example of this

case is shown in Figure 12(a).

r
ni din

0

1

Pi(r)

dil
r

dil

0

1

Pi(r)

din

Figure 11: Pi(r) of (a) Case 1 and (b) Case 2.

• When r < din, Ui(t0) is not contained in Cq(r). Hence Pi(r) = 0.

• When din ≤ r ≤ dil , as shown in Figure 12(b), Pi(r) =
√

r2−l2−
√

d2
in−l2

d(xin,xil)
.

• When r > dil , the line-segment uncertainty of Oi is covered entirely by Cq(r). As shown in

Figure 12(c), Oi is sure to be inside Cq(r), and thus Pi(r) equals to 1.

The shape of this Pi(r) is illustrated in Figure 11(b). We can observe that it is only composed of 1

quadratic curve, as opposed to case 1, which contains 2 quadratic pieces of a piecewise curve.
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with radius r, centered at q, such that din≤ r≤ dil. (c) Intersection by Cq(r) with radius r, centered

at q, such that r > dil.

We now summarize Pi(r) of both cases. We also give the the equation of pri(r), which are the

derivatives of Pi(r).

Case 1 (ni < din):

Pi(r) =































0 r < ni

2
√

r2−n2
i

d(xin,xil)
ni ≤ r ≤ din√

r2−n2
i +
√

d2
in−n2

i
d(xin,xil)

din < r < dil

1 otherwise

pri(r) =























0 r < ni or r ≥ dil

2r√
r2−n2

i d(xin,xil)
ni ≤ r ≤ din

r√
r2−n2

i d(xin,xil)
din < r < dil

Case 2 (ni = din):

Pi(r) =



















0 r < din√
r2−l2−

√
d2

in−l2

d(xin,xil)
din ≤ r ≤ dil

1 otherwise

pri(r) =







0 r < din or r > dil

r√
r2−l2d(xin,xil)

din ≤ r ≤ dil

4.3.2 Parametizing Generic PNNQ Solution for Free-Moving Uncertainty

Let Li(tu) be the latest recorded location of Oi in the database at time tu. At time t0 > tu, the

uncertainty region Ui(t0) is given by a circle with center Li(tu) and radius Ri where Ri = Si(t0− tu)

and Si is the maximum speed of object Oi. Let di = d(q,Li(tu)). These parameters are illustrated

in Figure 13(a).
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Obtaining ni and fi. Depending on the relative positions of q and Ui(t0), there are two scenarios:

Case 1: q is outside Ui(t0). From Figure 13(a), we see that ni and fi can be obtained by considering

the intersections of Ui(t0) and the line joining q and Li(tu).

Case 2: q is inside Ui(t0). This situation is illustrated in 13(b). Since object Oi can be anywhere

in Ui(t0), the closest possible location of Oi to q is when Oi coincides with q. ni = 0 in this case.

i 0U   (t  )

i
i

in
d

fq

R =S

i    u

i       i

L (t   )

0 u(t  −t )

q

R

f

di

i

i

U  (t  )

n = 0i

L  (t  )i    u

i    0

(a) (b)

Figure 13: Free-Moving Uncertainty. (a) q outside Ui(t0), and (b) q inside Ui(t0).

Obtaining Pi(r) and pri(r). The key to derive Pi(r) is to observe that if an object Oi is located

inside the Cq(r), it must be situated in the overlapping region of the circles Cq(r) and Ui(t0). Since

fi(x,y, t0) is a uniform probability density function, we can deduce that

Pi(r) =
Overlapping area of Cq(r) and Ui(t0)

Area of Ui(t0)
(5)

The problem of finding Pi(r) is therefore reduced to the problem of finding the overlapping area

of Cq(r) and Ui(t0). As discussed earlier, the lengths of ni and fi depend on whether q is inside

or outside Ui(t0). This results in different overlapping area equations. Here we only present the

derivation of Pi(r) by assuming q is located outside Ui(t0). A discussion of the derivation of Pi(r)

when q is inside Ui(t0) can be found in Appendix B.

Figure 14 shows the overlapping area of Cq(r) and Ui(t0) when q is outside Ui(t0). By cosine
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Figure 14: Intersection of Cq(r) and Ui(t0)

rule,

θ = arccos
di

2 + r2−R2
i

2dir
and α = arccos

di
2 +R2

i − r2

2diRi

The overlapping area can then be evaluated as follows:

(
1
2

r2(2θ)− 1
2

r2 sin(2θ))+(
1
2

R2
i (2α)− 1

2
R2

i sin(2α)) (6)

= r2(θ− 1
2

sin(2θ))+R2
i (α−

1
2

sin(2α)) (7)

Since the area of Ui(t0) is πR2
i , by Equations 5 and 7, we have

Pi(r) =



















0 r < ni

r2

πR2
i
(θ− 1

2 sin(2θ))+ 1
π(α− 1

2 sin(2α)) ni ≤ r ≤ fi

1 otherwise

The probability density function, pri(r), is the derivative of Pi(r):

pri(r) =







0 r < ni or r > fi

2r
πR2

i
(θ− 1

2 sin(2θ))+ r2θ′
πR2

i
(1− cos(2θ))+ α′

π (1− cos(2α)) ni ≤ r ≤ fi

where θ′ = dθ
dr = 1

2di sinθ(
d2

i −R2
i

r2 −1), and α′ = dα
dr = r

diRi sinα .
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5 Efficient Query Processing

In this section we address the problem of computing the answers to a PNNQ efficiently. First, we

discuss the use of index structures for facilitating the execution of the pruning phase. Then we

discuss how to execute the evaluation phase in an efficient manner.

5.1 Efficient Execution of the Pruning Phase Using VCI

The execution time for the queries is significantly affected by the number of objects that need to be

considered. With a large database, it is impractical to evaluate each point for answering the query –

this is especially true for the nearest-neighbor queries since in Step 4 of the evaluation phase, they

are quadratic in the number of points considered. It is therefore important to reduce the number of

points. As with traditional queries, indexes can be used for this purpose.

The key challenge for any indexing solution for moving objects is efficient updating of the

index as the object locations change. Any of the index structures proposed for moving objects can

be used for efficiently processing nearest-neighbor queries. We present details for the Velocity-

Constrained Index which is particularly suited for handling uncertainty of free-moving objects.

We describe it only briefly here, details can be found in [13].

The only restriction imposed on the movement of objects is that they do not exceed a certain

speed. This speed could potentially be adjusted if the object wants to move faster than its current

maximum speed. The maximum speeds of all objects are used in the construction of the index.

The velocity constrained index (VCI) is an R-tree-like index structure. It differs from the R-tree

in that each node has an additional field: vmax – the maximum possible speed of movement over

all the objects that fall under that node. The index uses the locations of objects at a given point in

time, t0. Construction is similar to the R-tree except that the velocity field is always adjusted to

ensure that it is equal to the largest speed of any object in the sub-tree. Upon the split of a node,

the vmax entry is simply copied to the new node. At the leaf level the maximum velocity of each

25



indexed object is stored (not just the maximum velocity of the leaf node).

As objects move, their locations are noted in the database. However, no change is made to the

VCI. When the index is used at a later time, t, to process a query, the actual positions of objects

would be different from those recorded in the index. Also the minimum bounding rectangles

(MBR) of the R-tree would not contain these new locations. However, no object under the node

in question can move faster than the maximum velocity stored in the node. Thus if we expand

the MBR by vmax(t− t0), then the expanded region is guaranteed to contain all the points under

this sub-tree. Thus the index can be used without being updated. A range query can easily be

performed using this structure. When the search reaches the leaf nodes, the uncertainty of the

object is used to compute the probability that it intersects the range.

For nearest-neighbor queries, we use an algorithm similar to the well-known algorithm pro-

posed in [14]. The algorithm uses two measures for each MBR to determine whether or not to

search the sub-tree: mindist and minmaxdist. Given a query point and an MBR of the index struc-

ture, the mindist between the two is the minimum possible distance between the query point and

any other point in the sub-tree with that MBR. The minmaxdist is the minimum distance from

the query point for which we can guarantee that at least one point in the sub-tree must be at this

distance or closer. This distance is computed based upon the fact that for an MBR to be minimal

there must be at least one object touching each of the edges of the MBR. When searching for a

nearest-neighbor, the algorithm keeps track of the guaranteed minimum distance from the query

point. This is given by the smallest value of minmaxdist or distance to an actual point seen so far.

Any MBR with a mindist larger than this distance does not need to be searched further.

This algorithm is easily adapted to work for uncertain data with VCI. Instead of finding the

nearest object, the role of the index is now to identify the subset of objects that could possibly

be the nearest neighbors of the query point due to their uncertainty regions. This is exactly the

set of objects that intersect the circle centered at the query point with radius equal to the shortest

maximum distance from the query point. In other words, the index is used to perform the Pruning

Phase of the probabilistic nearest-neighbor query.
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The search algorithm proceeds in exactly the same fashion as the regular algorithm [14], except

for the following differences. When it reaches a leaf node, it computes the maximum distance

of each object (based upon its uncertainty) from the query. The minimum such value seen so

far is called the pruning distance. When it encounters an index node, it computes mindist and

minmaxdist. These two are adjusted to take into account the fact that objects may have moved.

Thus mindist (minmaxdist) is reduced (increased) by vmax(t − t0), where vmax is the maximum

velocity stored in the node. During the search, each object that could possibly be closer than the

pruning distance (based upon the uncertainty in the object) is recorded. At the end of the search

these objects are returned as the pruned set of objects.

5.2 Efficient Execution of the Evaluation Phase

Since the query evaluation algorithms frequently employ costly integration operations, one need

to implement them carefully to optimize the query performance. If the algebraic expressions of

Pi(r) and pri(r) are simple, we can evaluate integrals like those in Step 4(b)(i) of Figure 6 easily.

We may also replace the trigonometric terms of Pi(r) and pri(r) with mathematical series such as

Taylor’s series. We then truncate the series according to the desired degree of accuracy, and handle

simpler integration expressions.

In general, we have to rely on numeric integration methods to get approximate answers. To

integrate a function f (x) over an integration interval [a,b], numeric methods divide the area under

the curve of f (x) into small stripes, each with equal width ∆. Then
� b

a f (x)dx is equal to the

sum of the area of the stripes. The answer accuracy depends on the width of the stripe ∆. One may

therefore use ∆ to trade off accuracy and execution time. However, choosing a right value of ∆ for a

query can be difficult. In the algorithms, we evaluate integrals with end points defined by ni’s. The

interval width of each integral can differ, and if ∆ is used to control the accuracy, then all integrals

in the algorithm will employ the same value of ∆. A large ∆ value may not be accurate for a small

integration interval, while a small ∆ may make integration using a large interval unnecessarily

slow. Thus ∆ should be adaptive to the length of integration interval. For this purpose, we define
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ε, the inverse of the number of small stripes used by a numeric method:

∆ = integration interval width · ε = [ni+1−ni] · ε (8)

For example, if ε = 0.1, then 1
0.1 = 10 stripes are used by the numeric method. If the integration

interval is [2,4], ∆ = (4−2) ·0.1 = 0.2. Therefore, ε controls the precision by adjusting the number

of stripes, and is adaptive to the length of integration interval. We have done some sensitivity

experiments on our simulation data to decide a good value of ε that ensures both precision and

efficiency.

Another method to speed up the evaluation phase at the expense of a lesser degree of accuracy

is to reduce the number of candidates after we obtain the circle C. For example, we can set a

threshold h and remove any uncertainty interval whose fraction of overlap with C is less than h.

6 Experimental Results

In this section we study the performance of the proposed approach for PNN queries. Since real

data are not available, all tests are done on synthetic data. The synthetic data distribution is similar

to the skewed distribution of [5], model of object movement are similar to that of [13]. Such data

distribution and model of object movement are very common in the literature. The dataset used

consists of 100,000 objects composed of a collection of 5 normal distributions each with 20,000

objects. The mean values for the normal distribution are uniformly distributed, and the standard

deviation is 0.05 (the points are all in the unit square). The centers of PNN queries are also assumed

to follow the same distribution but with a standard deviation of 0.1. The total number of queries is

varied between 100 and 500 in our experimentation.

The maximum velocities of objects follow the uniform distribution with an overall maximum

value of Vmax. Note that in [13] a Zipf distribution was used (instead of the uniform) making

average object speed there smaller and higher speed cases are typically harder to handle.

For most experiments overall maximum value of Vmax was set to 0.00007 – if we assume that

28



the data space represents a square of size 1000 miles (as in [7]), this corresponds to an overall

maximum velocity of 250 miles an hour. Objects move according to their current speeds and di-

rections. There are parameters that control how often each object changes its speed and direction

of movement. When the speed is changed, new speed can be generated according to three cate-

gories: slow (generated 50% of time), medium (25%), and fast (25%). Slow category corresponds

to speeds from 0 to Vmax
3 , medium to from Vmax

3 to 2Vmax
3 , and fast from 2Vmax

3 to Vmax. Objects send

updates to the server when they move more than a certain distance specified as a system threshold

and when the time since the last update exceed a certain threshold. Each update include time of up-

date tupd , objects current location xupd and the maximum speed vupd object promises not to exceed,

by which server determines the uncertainty region of that object. At later time instant t, the cur-

rent location of the objects is assumed to be uniformly distributed anywhere inside the circle with

radius (t− tupd) · vupd around x. Object also send an update in case it about to leave its declared

uncertainty region. While there are many simulation parameters mentioned above, combination

of them control average uncertainty among all objects, which in turn determines the performance

of PNN queries. We plot average uncertainty as x-axis of many of our graphs. For the rest of the

graphs the parameters were chosen such that reasonable average uncertainty is achieved.

We maintain an in-memory version of VCI index proposed in [13] on moving objects.
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We begin with an evaluation of time needed to process PNN query as function of parameter
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ε which control the number of integration steps. Figure 15 shows the time in seconds needed to

process 100 of PNN queries where ε is varied from 0.001 to 0.01. From the figure we can observe

a clear trade-off between the quality of calculated result and the time needed to process the queries.

Value 0.001 corresponds to high precision and value 0.01 to low precision. As epsilon becomes

larger and precision requirements lower the queries take less time to compute.

As was noted in the previous sections, the nearest neighbor algorithm on old data might pro-

duce incorrect results. Unlike NN algorithm, PNN algorithm always produce correct result by

constructing candidate set and giving probabilities that each candidate can be the true nearest

neighbor to the query point. Figure 16 shows the average probability PNN algorithms assigns to

the real nearest neighbor in two cases (i) when NN algorithm on old data guesses the real nearest

neighbor correctly; and (ii) when NN on old data guesses incorrectly. Both curves predictably

decreases as average uncertainty increases. This is so because as uncertainty increases the cardi-

nality of candidate set tends to increase and because with higher uncertainty it becomes harder to

give a preference to a particular candidate. Figure 16 shows that for wide range of uncertainties,

ranged from very low to high, PNN algorithm assigns probability between 30% and 40% to the

real nearest neighbor even when NN algorithm on old data makes mistake. This figure also shows

that if NN algorithm guesses correctly then PNN algorithm will assign high probability from 80%

to 100% to the real nearest neighbor.
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7 Related Work

The uncertainty model described in this paper is based on [21]. In that paper, each moving object

is equipped with a facility to detect the deviation of its actual location from the location value in

the DBMS. A threshold value, called uncertainty, is defined in such a way that if the deviation is

larger than it, then an update of the location of that object is sent to the DBMS. The uncertainty

value depends on various update policies proposed by the authors, as well as the object movement

behavior. An object can move on a predefined route, or move freely without following any route. In

the former case, a route is a line-spatial object, and the object’s motion is characterized by motion

vectors in the form (direction, speed). The uncertainty is a line segment on the line representing the

route. For the latter, a route does not need to be defined, and the uncertainty is a circle bounding

the possible location of the object.

Another important study on the issues of uncertainty in moving-object database systems is

described by Pfoser et al. [10]. They introduce a framework to represent moving objects in a re-

lational database, and describe the error sources that occur during the sampling of positions of

objects: measurement and sampling error. Measurement error is the result of inaccurate instru-

ments, while sampling error occurs because the system only captures the continuous movement

of an object periodically, bringing uncertainty between two consecutive observations. The authors

point out that in a GPS, sampling error is a more serious problem than measurement error. Assum-

ing the maximum velocity of an object is known, they prove that all possible locations of an object

during the time interval between two consecutive observations lie on an error ellipse. A complete

trajectory of any object is obtained by using linear interpolation between two adjacent samples

i.e., a trajectory is approximated by piecewise linear line segments. By using the error ellipse, the

authors demonstrate how to process uncertainty range queries for trajectories.

Querying trajectories over uncertain data is also considered in [20]. The uncertainty of object

locations is modeled as a 3D cylindrical body around the trajectory. The authors argue that such

an uncertainty model facilitates efficient spatial-temporal range querying. The problem of how
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to improve the speed of range query executions on trajectories using a spatial index was studied

in [11]. The work assumes that there exist static objects, called infrastructures, that limit the

movement of moving objects. In a spatial index such as an R-tree, a line segment is usually

approximated by a minimum bounding box. This introduces a lot of “dead-space” – areas where

the spatial index is unaware that there is no trajectory at all. As a result, unnecessary searching may

be performed on these regions. The utilization of the infrastructure information makes it possible to

reduce the searching effort on dead-space. If an infrastructure does not change over time, it implies

that none of the moving objects can exist within the space occupied by the infrastructure at any

time. Therefore, a pre-processing step can be done to discover which parts of the query window are

occupied by the infrastructure. Those parts will be chopped off from the query window, resulting

in a smaller query window size and faster index retrieval speed.

Numerous papers have addressed the linguistic issues of moving object database queries. A

spatio-temporal query language, called the Future Temporal Logic (FTL), has been proposed in

[16] for querying moving object databases. It is a spatio-temporal query that allows future val-

ues of dynamic attributes1 to be queried in a natural way. Due to the inherent uncertain nature of

object locations, the authors define the “may” and “must” semantics for FTL: the former seman-

tic specified that the answer to a query has a probability of being incorrect, while the latter one

requires the answer to be correct. The paper also describes how to implement FTL on top of an

existing relational database. Other works on the specification of spatio-temporal queries include

Abdessalem et al.’s paper [1], which uses Pfoser et al.’s uncertainty model [10] to develop a new

set of database operations for answering queries of moving objects. They propose three semantics

in the new operations that capture uncertainty: (1) possibly semantics, in which the answer to a

query certainly contains all correct results, but may also contain some incorrect ones; (2) surely se-

mantics, in which the answers are subsets of correct results; and (3) probably semantics, in which

each answer has a certain probability of being correct. An example query is “retrieve the location

of an object that is probably 0.2 miles from a given object”. In [20], range queries for trajectories
1Dynamic attributes are database attributes that have their values change over time, even if there is no explicit

update to the database.
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have been proposed, with certain quantifiers defined: (1) a trajectory sometimes or always satisfies

the range query within a time interval specified by the user; (2) a trajectory is satisfied everywhere

or somewhere within the query region. Notice that these three papers take a qualitative approach

in the form of specifying the uncertainty in the query by using keywords like “may” and “surely”

in the query constructs. We adopt a quantitative presentation of the answers i.e., probability values

to specify the answers to queries.

As far as we know, there is no work addressing a comprehensive discussion of probabilistic

methods for specifying and processing moving-object queries as done in this paper. In [21], Wolf-

son et al. discuss how to process range queries that give probability values as answers. They define

the range query as one that finds the objects within a region R, and the answers are given by the

pairs (o, p), with p being the probability that object o is in R. They assume that the objects move

in straight-line routes, with mean speed v. The location of every object on its route is modeled

as a random variable, with a normal density function; its mean is derived from v and the standard

deviation is a function of the uncertainty threshold. The intervals of the route that are inside R are

then found out, and the probability density function is integrated over these intervals to give the

probability p for each object o. In our paper, we do not assume that the mean speed is known.

The query region of a range query in our paper is a rectangle for simplifying discussions, although

our methods can be extended to query regions of any shape. Also, the authors only consider the

objects traveling on straight-line routes, while our solutions are capable of handling most practical

uncertainty models. To the best of our knowledge we are unaware of any work that addresses the

handling of nearest-neighbor queries over uncertain data.

Recently, new types of queries for moving-object databases have been proposed. Lazaridis et

al. [8] propose a new query type called dynamic query, which is executed continuously by the

observer as it moves in space. Since the query results are close in nearby locations, the authors

propose techniques for reducing disk I/O.

The problems of indexing and efficient access of spatio-temporal objects have been addressed

in [2, 7, 4, 17, 19]. The issues of dynamic attributes indexing were discussed in [15, 18]. A spatial
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index for trajectories has been developed in [11, 12]. In [9, 14], the use of spatial indexes for

execution of nearest neighbor queries is discussed. The processing of nearest neighbor queries

in a moving-object environment is discussed in [6]. Song et al. [17] investigate how to execute

k-nearest neighbor queries for moving query point efficiently.

8 Conclusions

In this paper we studied the execution of probabilistic range and nearest-neighbor queries over

uncertain data for moving objects. We define a generic model of uncertainty, and then present

algorithms for computing these queries for this model. We further illustrate how this solution can

be applied to two common models of uncertainty in moving object databases: line-segment and

free-moving uncertainty. We studied evaluation of these queries that allows a trade-off between

execution time and accuracy. The use of indexes for efficient execution of approximate queries

over large collections of moving objects is also presented. To the best of our knowledge, with the

exception of [21] which addresses probabilistic range queries for objects moving in a straight lines

with fixed speed, there is no work on probabilistic queries over uncertain data. We address the

problem of range queries as well as the more complicated nearest-neighbor queries under a more

relaxed model.
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Appendix A: Objects with Zero Uncertainty

An object is said to have zero uncertainty at time t if it has no uncertainty at time t, i.e., Ui(t)
is simply the last recorded location of Oi. Zero uncertainty occurs in objects where their locations
do not change with time e.g., infrastructures. In this appendix we discuss how to change our
probabilistic query solutions for these kind of objects.

A.1 Evaluation of PRQ for Zero Uncertainty Objects

Step 3(a) of the PRQ algorithm in Section 3.1 evaluates the overlapping area of Ui(t0) and R. If
Ui(t0) is a point, then it always has zero overlapping area with R. To handle this special case, we
present the modified PRQ algorithm in Figure 19.

1. Let S be the set of all moving objects in the database

2. X ← /0

3. for i← 1 to |S| do

(a) if Ui(t0) is a point then

i. if R contains Ui(t0) then X ← (Oi,1)

ii. continue Step 3

(b) A←Ui(t0)∩R

(c) if (A 6= 0) then

i. pi← � A fi(x,y, t0)dxdy

ii. if (pi 6= 0) then X ← X ∪ (Oi, pi)

4. return X

Figure 19: Modified PRQ algorithm for Handling Zero Uncertainty.

The only change that we make to the original algorithm is the addition of Step 3(a), where we
handle Ui(t0) separately when it is a zero uncertainty region. If Ui(t0) is inside R, we add (Oi,1) to
X . Otherwise, pi must be 0 and we do not include Oi into X .
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A.2 Evaluation of PNNQ for Zero Uncertainty Objects

Recall that Pi(r) is the probability that Ui(t0) lies in Cq(r). When Ui(t0) is a point, Cq(r) either
contains Ui(t0) or does not contain Ui(t0), and we have:

Pi(r) =







0 r < d(q,Ui(t0))

1 otherwise

Since Pi(r) becomes a step function, its derivative, pri(r), is undefined at r = d(q,Ui(t0)). There-
fore, we cannot use pri(r) in Step 4 of the evaluation phase of the PNNQ algorithm. The PNNQ
algorithm that also handles zero uncertainty is shown in Figure 20.

Observe that Step 4(a) is inserted to the original PNNQ algorithm to find the probability that an
object with zero uncertainty is the nearest neighbor of q. To determine this probability, Step 4(a)
evaluates the probability that all other points are farther to q than Ui(t0), i.e.,

pi =
|S|
∏

j=1∧ j 6=i

(1−Pr j(d(q,Ui(t0)))

There are situations when two or more objects have zero uncertainty, and their locations coincide.
If this happens, they share the same probability of being the nearest neighbor of q. This is catered
by a counter called samept in the above algorithm, where it counts the number of objects that have
their point uncertainty regions coincide. The final probability is thus equal to pi/samept.

Appendix B: Query Point Inside an Uncertainty Region

In Section 4, we derive Pi(r) and pri(r) for both line-segment and free-moving uncertainty,
assuming that the query point q is outside Ui(t0). We will now derive Pi(r) and its derivative pri(r)
for the case when q is inside Ui(t0), which can be a line segment or a circle.

B.1 Query Point Inside a Line-Segment Uncertainty Region

When q lies on Ui(t0), ni = 0, as shown in Figure 21(a). Pi(r) has the following characteristics:

• When r≤ din, the length of the line-segment uncertainty intersected by Cq(r) is simply 2r as
shown in Figure 21(b). Thus Pi(r) = 2r

d(xin,xil)
.
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• When din < r < dil , as illustrated by Figure 21(c), Pi(r) = r+din
d(xin,xil)

.

• When r ≥ dil, the line-segment uncertainty of Oi is covered entirely by Cq(r). This implies
Oi is ensured to be inside Cq(r), and thus Pi(r) equals to 1.

The following is a summary of Pi(r) and pri(r) for this case:

Pi(r) =



















2r
d(xin,xil)

r ≤ din

r+din
d(xin,xil)

din < r < dil

1 otherwise

pri(r) =



















2
d(xin,xil)

r ≤ din

1
d(xin,xil)

din < r < dil

0 otherwise

B.2 Query Point Inside a Free-Moving Uncertainty Region

As illustrated in Figure 13(b), we have ni = 0. Also, the overlapping area of Cq(r) and Ui(t0) when
r ≤ Ri−di is simply Cq(r) itself. Therefore, when r ≤ Ri−di, we have:

Pi(r) =
Area of Cq(r)

Area of Ui(t0)
=

πr2

πR2
i

=
r2

R2
i

When r > Ri− di, Cq(r) is not totally contained inside Ui(t0). The overlapping area of Cq(r) and
Ui(t0) has the same form as Equation 7, so does Pi(r).

The overall formula of Pi(r) is:

Pi(r) =



















r2

R2
i

r ≤ Ri−di

r2

πR2
i
(θ− 1

2 sin(2θ))+ 1
π(α− 1

2 sin(2α)) Ri−di < r ≤ fi

1 otherwise

where θ = arccos di
2+r2−R2

i
2dir

and α = arccos di
2+R2

i−r2

2diRi
.

Recall that pri(r) is the derivative of Pi(r):

pri(r) =



















2r
R2 r ≤ Ri−di

2r
πR2

i
(θ− 1

2 sin(2θ))+ r2θ′
πR2

i
(1− cos(2θ))+ α′

π (1− cos(2α)) Ri−di ≤ r ≤ fi

0 otherwise

where θ′ = 1
2di sinθ(

d2
i −R2

i
r2 −1) and α′ = r

diRi sinα .
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1. X ← /0

2. Sort the elements in S in ascending order of ni, and rename the sorted elements

in S as O1,O2, . . . ,O|S|

3. n|S|+1← f

4. for i← 1 to |S| do

(a) if Ui(t0) is a point then

i. pi← 1

ii. samept ← 1

iii. for j← 1 to |S| do

A. if j 6= i then

I. if U j(t0) 6= Ui(t0) then pi← pi · (1−Pj(d(q,Ui(t0)))

II. else samept ← samept +1

iv. X ← X ∪ (Oi, pi/samept)

v. continue Step 4

(b) pi← 0

(c) for j← i to |S| do

i. p← � n j+1
n j

pri(r) ·∏ j
k=1∧k 6=i(1−Pk(r)) dr

ii. pi← pi + p

(d) X ← X ∪ (Oi, pi)

5. return X

Figure 20: Modified Evaluation Phase for Handling Zero Uncertainty.
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Figure 21: Line Moving Uncertainty for ni = 0. (a) An example of this case. xin is the end point

of the line-segment uncertainty that yields a shorter distance to q than another end point xil . (b)

Portion of the line-segment uncertainty intersected by Cq(r) with radius r, centered at q, such that

r ≤ din. (c) Portion of the line-segment uncertainty intersected by Cq(r) with radius r, centered at

q, such that din < r < dil.
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