Serializability

Theorem 2

Serializability Theorem

- **Theorem**: A history H is serializable iff $SG(H)$ is acyclic.
- **Proof**: IF
 - Suppose H is a history over $T=\{T_1, T_2, ..., T_n\}$.
 - WLOG assume $T_1, T_2, ..., T_m$ ($m \leq n$) are all txns in T that are committed in H.
 - Thus $T_1, T_2, ..., T_m$ are the nodes in $SG(H)$.
 - Since $SG(H)$ is acyclic, it can be topologically sorted.
Serializability Theorem

• Let i_1, i_2, \ldots, i_m be a permutation of $1, 2, \ldots, m$ such that $T_{i_1}, T_{i_2}, \ldots, T_{i_m}$ is a topological sort of $SG(H)$.
• Let H_s be the serial history $T_{i_1}, T_{i_2}, \ldots, T_{i_m}$.
• We claim that $C(H) \equiv H_s$.
• Let $p_i \in T_i$ and $q_j \in T_j$, where T_i, T_j are committed in H.
• Suppose p_i, q_j conflict and $p_i <_H q_j$.
• By the definition of $SG(H)$, $T_i \rightarrow T_j$ is in $SG(H)$.

Serializability Theorem

• Therefore in any topological sort of $SG(H)$, T_i must appear before T_j.
• Thus in H_s all operations of T_i must precede all operations of T_j, and in particular, $p_i <_{H_s} q_j$.
• Thus any two conflicting operations are ordered in the same way in $C(H)$ as H_s. Thus $C(H) \equiv H_s$, which is serial, therefore H is SR.
Serializability Theorem

• **ONLY IF:**
 - Suppose H is SR. Let H_s be a serial history equivalent to $C(H)$.
 - Consider an edge $T_i \rightarrow T_j$ in $SG(H)$.
 - Thus there are two conflicting operations p_i, q_j of T_i, T_j (respectively), such that $p_i <_H q_j$.
 - Because $C(H) \equiv H_s, p_i <_{Hs} q_j$.
 - Because H_s is serial, and p_i precedes q_j, it implies that T_i precedes T_j in H_s.

Serializability Theorem

• Thus we see that if $T_i \rightarrow T_j$ is in $SG(H)$, then T_i precedes T_j in H_s.
• Suppose that there is a cycle in $SG(H)$, say $T_1 \rightarrow T_2 \rightarrow \ldots \rightarrow T_k \rightarrow T_l$
• This implies that T_i appears before itself in H_s, which is absurd.
• Thus no cycle can exist in $SG(H)$ if H is SR.
• QED
Recoverable Histories

• A txn T_i reads x from T_j in history H if
 - $w_j[x] < r_i[x]$;
 - NOT $(a_j < r_i[x])$ and
 - If there is some $w_k[x]$ such that $w_j[x] < w_k[x] < r_i[x]$, then $a_k < r_i[x]$.

• A history is Recoverable (RC) if, whenever T_i reads from T_j ($i \neq j$) in H, $c_i \in H$, $c_j < c_i$.

• A history Avoids Cascading Aborts (ACA) if, whenever T_i reads x from T_j ($i \neq j$) in H, $c_i < r_i[x]$.

• A history H is Strict (ST) if whenever $w_j[x] < o_i[x]$ ($i \neq j$), either $a_j < o_i[x]$ or $c_j < o_i[x]$, where $o_i[x]$ is $r_i[x]$ or $w_i[x]$.

Examples

• $T_1 = w_1[x] w_1[y] w_1[z] c_1$
• $T_2 = r_2[u] w_2[x] r_2[y] w_2[y] c_2$
• $w_1[x] w_1[y] r_2[u] w_2[x] r_2[y] w_2[y] w_1[z] c_2 w_1[z] c_1$
• Not RC
• $w_1[x] w_1[y] r_2[u] w_2[x] r_2[y] w_2[y] w_1[z] c_1 c_2$
• RC, not ACA
• $w_1[x] w_1[y] r_2[u] w_1[z] w_2[x] c_1 r_2[y] w_2[y] c_2$
• RC, ACA, not Strict
Prefix Commit-closed

• A property of a history is called prefix commit-closed if, whenever the property is true of history H, it is also true of history $C(H')$, for any prefix H' of H.

• Since failures may occur when a prefix of an acceptable history has been processed, DBMS schedulers and recovery managers must satisfy prefix commit-closed properties for CC and recovery, i.e. every $C(H')$ must be acceptable too.
Theorem

• Serializability is a prefix commit-closed property.
• **Proof:** Since H is **SR**, $SG(H)$ is acyclic. Consider $SG(C(H'))$ where H' is any prefix of H.
• If $T_i \rightarrow T_j$ is an edge of this graph, then we have two conflicting operations p_i, q_j belonging to T_i, T_j (respectively) with $p_i <_{C(H')} q_j$.
• But then clearly $p_i <_H q_j$ and thus $T_i \rightarrow T_j$ exists in $SG(H)$.
• Therefore $SG(C(H'))$ is a subgraph of $SG(H)$.
• If $SG(H)$ is acyclic, so must $SG(C(H'))$, hence $C(H')$ is **SR**.

Other Operations

• So far, we have limited ourselves to reads and writes.
• However, serializability does not limit us to these.
• We just need to redefine conflicting operations as any pair for which the result, in general, depends upon the order of their execution.
• Effect is: value returned, and final value of data.
• Thus we need only define the notion of conflict appropriately. For example, we could add Increment and Decrement as basic (atomic) operations. Assume they do not return a value.
Compatibility Matrix

<table>
<thead>
<tr>
<th></th>
<th>Read</th>
<th>Write</th>
<th>Increment</th>
<th>Decrement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Write</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Increment</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Decrement</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

View Equivalence

- So far, we have based equivalence of histories on the fact that the ordering of writes with respect to other operations on the same object should be the same.
- We can say that the effects are simply the values read and the final values of data objects. If these are the same in two histories, then they are declared to be view equivalent.
View Equivalence

- The final write of x in a history H is the operation $w_i[x] \in H$, such that $a_i \notin H$ and for any $w_j[x] \in H$ ($j \neq i$) either $w_j[x] < w_i[x]$ or $a_j \in H$.

- Two histories H, H' are view equivalent if
 - they are over the same set of txns and have the same operations;
 - For any T_i, T_j such that $a_i, a_j \notin H$ (hence $a_i, a_j \notin H'$) and for any x, if T_i reads x from T_j in H then T_i reads x from T_j in H' and
 - For each x, if $w_i[x]$ is the final write of x in H then it is also the final write of x in H'.

View Serializability

- A history, H, is defined to be view serializable (VSR) if for any prefix H' of H, $C(H')$ is view equivalent to some serial history.
- We need to ensure prefix commit closure
 - $w_1[x] w_2[x] w_2[y] c_2 w_1[y] c_1 w_3[x] w_3[y] c_3$
 - The complete history is view equiv. to $T_1 T_2 T_3$.
 - However, upto c_i it is not view equiv. to either $T_1 T_2$ or $T_2 T_1$!
CSR vs. VSR

- **Theorem**: If H is conflict serializable then it is view serializable. The converse is not, generally, true.

- **Proof**: Suppose H is CSR. Let H_s be a serial history equivalent to $C(H')$.

- If T_i reads x from T_j in $C(H')$, then $w_j[x] <_{C(H')} r_i[x]$ and there is no $w_k[x]$ such that $w_j[x] <_{C(H')} w_k[x] <_{C(H')} r_i[x]$.

- H_s must order these in the same way i.e. $w_j[x] <_{H_s} r_i[x]$, and no intermediate $w_k[x]$. Hence they have the same reads-from relationships.

- Similarly for final writes.

\[\begin{align*}
w_1[x] & \quad w_2[x] & \quad w_2[y] & \quad c_2 & \quad w_1[y] & \quad w_3[x] & \quad w_3[y] & \quad c_3 & \quad w_1 \\
[z] & \quad c_1
\end{align*}\]