Relational Calculus
Chapter 4, Part B

Domain Relational Calculus
- Query has the form:
 \[p(x_1, x_2, ..., x_n) \]
- Answer includes all tuples \((x_1, x_2, ..., x_n) \) that make the formula \(p(x_1, x_2, ..., x_n) \) be true.
- Formula is recursively defined, starting with simple atomic formulas (getting tuples from relations or making comparisons of values), and building bigger and better formulas using the logical connectives.

DRC Formulas
- Atomic formula:
 - \((x_1, x_2, ..., x_n) \in Rname \) or \(x \in op Y \) or \(x \in op constant \)
 - \(op \) is one of \(<, >, =, \neq, \leq, \geq \)
- Formula:
 - an atomic formula, or
 - \(t \land p \land q \), \(p \lor q \), where \(p \) and \(q \) are formulas, or
 - \(\exists X (p(X)) \), where variable \(X \) is free in \(p(X) \)
 - \(\forall X (p(X)) \), where variable \(X \) is free in \(p(X) \)
- The use of quantifiers \(\exists X \) and \(\forall X \) is said to bind \(X \).
 - A variable that is not bound is said to be free.

Free and Bound Variables
- The use of quantifiers \(\exists X \) and \(\forall X \) in a formula is said to bind \(X \).
 - A variable that is not bound is free.
- Let us revisit the definition of a query:
 \[p(x_1, x_2, ..., x_n) \]
- There is an important restriction: the variables \(x_1, ..., x_n \) that appear to the left of `\(\)` must be the only free variables in the formula \(p(\cdot) \).

Find all sailors with a rating above 7
\[\{ I, N, T, A \} \mid \{ I, N, T, A \} \in \text{Sailors} \land T > 7 \]
- The condition \(\{ I, N, T, A \} \in \text{Sailors} \) ensures that the domain variables \(I, N, T \) and \(A \) are bound to fields of the same Sailors tuple.
- The term \(\{ I, N, T, A \} \) to the left of `\(\)` (which should be read as `such that`) says that every tuple \(\{ I, N, T, A \} \) that satisfies \(T > 7 \) is in the answer.
- Modify this query to answer:
 - Find sailors who are older than 18 or have a rating under 9, and are called `jock`.
Find sailors rated > 7 who've reserved boat #103

\[(I, N, T, A) \in \text{Sailors} \land T > 7 \]

\[\exists \ I_r, B_r, D_r \ [(I_r, B_r, D_r) \in \text{Reserves} \land I_r = 1 \land B_r = 103] \]

- We have used \(\exists \ I_r, B_r, D_r \) (…) as a shorthand for \(\exists \ I_r \ (\exists \ B_r \ (\exists \ D_r \ (\ldots))) \)
- Note the use of \(\exists \) to find a tuple in Reserves that 'joins with' the Sailors tuple under consideration.

Find sailors who've reserved all boats

\[(I, N, T, A) \in \text{Sailors} \land \forall \ B, B, N, C \ [(B, B, N, C) \in \text{Boats}] \]

\[\exists \ I_r, B_r, D_r \ [(I_r, B_r, D_r) \in \text{Reserves} \land I_r = 1 \land B_r = B] \]

- Find all sailors \(I \) such that for each 3-tuple \(B, B, N, C \) either it is not a tuple in Boats or there is a tuple in Reserves showing that sailor \(I \) has reserved it.

unsafe Queries, Expressive Power

- It is possible to write syntactically correct calculus queries that have an infinite number of answers! Such queries are called unsafe.
- For example: \[S \subseteq \text{Sailors} \]

- It is known that every query that can be expressed in relational algebra can be expressed as a safe query in DRC / TRC; the converse is also true.
- Relational Completeness: Query language (e.g., SQL) can express every query that is expressible in relational algebra/calculus.

Summary

- Relational calculus is non-operational, and users define queries in terms of what they want, not in terms of how to compute it. (Declarativeness.)
- Algebra and safe calculus have same expressive power, leading to the notion of relational completeness.