
Applications of Factoring and

Discrete Logarithms to Cryptography

or

The Invention of Public Key Cryptography

Sam Wagstaff

Computer Sciences and Mathematics

1



Cryptography before the 1970s

Cryptography has been used to hide messages

at least since the time of Julius Caesar more

than 2000 years ago.

Usually, the sender and receiver would meet

some time before the secret communication

and decide how to hide their future secret mes-

sage. They would choose an algorithm, which

remained fixed for a long time, and a key,

which might change periodically. Or, perhaps

a trusted messenger would carry a new key

from one to the other.

We review old-fashioned cryptography, most of

it from before the 1970s.

Junior Space Cadet to AES.

2



NSA was created by President Truman in 1952

to protect US secret communication and to

attack that of other countries. It performed

this mission secretly and apparently with great

success until at least the 1970s. It believed

that it should control all work on cryptography

done in the United States.

Some businesses needed cryptography to com-

municate secretly with their offices overseas.

On March 17, 1975, a Federal Register post-

ing by the national Bureau of Standards an-

nounced a cipher, DES, approved for individu-

als and businesses.

It was soon suspected that NSA had approved

it after putting secret weaknesses into it (S-

boxes) that would allow it, but not others, to

break it easily.

3



In the early 1970s, people began to hook com-

puters together and think about email and other

forms of electronic communication.

Computer theoreticians began to ponder how

one could “sign” an electronic document so

that the reader could be certain who wrote it.

If each person used a unique long number as a

signature, say, it could be copied perfectly by

a forger.

Others pondered how to create a system where

people who had never met could communicate

securely. Recall that one-key ciphers require

users to meet and exchange keys before their

secret communication. All ciphers known then

were of this type.

4



Whit Diffie and Marty Hellman thought about

these matters and came up with several bril-

liant solutions in a 1976 paper.

First, they considered one-way functions, easy

to compute (forwards), but almost impossible

to invert. A function f is one-way if it is easy

to compute f(x) for any x, but, given almost

any value y in the range, it is hard to find any

x with f(x) = y.

Computer password files were under attack in

the early 1970s. George Purdy and others sug-

gested storing f(password) in a file rather than

the plaintext password. The login program

would compute f of whatever password you

type and compare it with the password file en-

try.

Example: a high-degree, sparse polynomial mod-

ulo p, like f(x) = (x864391 + 43937x1023 +

461x17 +23) mod p.

5



Diffie and Hellman invented a method of key

exchange based on the one-way function

f(x) = bx mod p.

Given b, p and y, it is hard to find a “discrete

logarithm” x with f(x) = y. It is easy to com-

pute bx mod p by “fast exponentiation.”

Fast Exponentiation

Input: An integer x ≥ 0, a prime p and a num-

ber b.

Output: The value y = bx mod p.

e = x

y = 1

z = b mod p

while (e>0) {

if (e is odd) y = y * z mod p

z = z * z mod p

e = e/2

}

return y

6



The Diffie-Hellman Key-Exchange Protocol

This protocol allows two users to choose a

common secret key, while communicating over

a channel with eavesdroppers.

The two users agree on a common large prime

p and a constant value g, which may be publicly

known and available to everyone.

Alice secretly chooses a random A in 0 < A <
p− 1 and computes yA = gA mod p. She sends

yA to Bob. Bob secretly chooses a random B
in 0 < B < p−1 and computes yB = gB mod p.
He sends yB to Alice.

Alice computes KA = yAB mod p. Bob com-

putes KB = yBA mod p. Now

KB ≡ yBA ≡ gA·B ≡ yAB ≡ KA mod p,

so both have chosen the same key KA = KB.

Knowing p, g, yA and yB is not enough infor-

mation to compute KA = KB, A or B.

7



This key-exchange protocol provides secure com-

munication between one user and whomever is

at the other end of the connection. It is also

subject to the man-in-the-middle attack.

The second innovation in the Diffie-Hellman

paper of 1976 solved this problem. Their idea

was to split the key!

Bob would use a cipher with two independent

keys. He would make public his enciphering key

and the enciphering algorithm. His deciphering

algorithm would be public, but only Bob would

know his deciphering key.

To send Bob a secret message, Alice would

find his public key and use it to encipher the

message. Once enciphered, no one but Bob

could decipher it.

8



A public-key cipher lacks authenticity. Anyone

could write a letter to Bob, sign it “Alice,”

encipher it using Bob’s public key, and send it

to Bob. Bob would not know whether it came

from Alice.

The third innovation of Diffie and Hellman was

the notion of a digital signature.

Alice could construct her own public and pri-

vate keys and “sign” a message by applying

the deciphering algorithm with her private key

to the plaintext message.

A recipient of this signed message would be

certain that it came from Alice when he ob-

tained her public key, used it with the encipher-

ing algorithm, and obtained meaningful text

from Alice. Only Alice could have constructed

a message with this property because only

Alice knows her private key.

9



Diffie and Hellman did not propose encipher-

ing and deciphering algorithms for public-key

cryptography in their paper.

Ron Rivest, Adi Shamir and Leonard Adleman

read their paper and tried many complicated

algorithms for doing this. One or two of them

would propose a scheme and the other would

break it. Some of these schemes involved the

difficulty of factoring large integers.

On April 3, 1977, Rivest discovered the system

now called RSA. It stripped down the idea of

factoring to the bare essentials. He gave a sim-

ple formula for enciphering a message. It used

the product of two large primes, which would

be public. He also gave a formula for deci-

phering the ciphertext which used the public

information and information derived from the

two large primes.

10



The RSA public-key cipher

Let n = pq be the product of two large primes.

Choose a random e prime to φ(n) = φ(pq) =

(p− 1)(q − 1). Use the Euclidean algorithm to

compute d with ed ≡ 1 (mod (p− 1)(q − 1)).

Encode plaintext as (blocks) 0 ≤ M < n.

Encipher M as C = E(M) = Me mod n.

Decipher C as M = D(C) = Cd mod n.

This works, that is, D(E(M)) = M for all M in

0 ≤ M < n, provided that ed ≡ 1 (mod φ(n)),

since Mφ(n) ≡ 1 (mod n) by Euler’s Theorem.

(Proof: Write ed = tφ(n) + 1 for some integer

t.)

Each user of RSA has her own set of keys:

Make n and e public, but keep d secret. The

factors p and q are not needed after e and d

are computed, but in any case should not be

revealed.

11



The first version of the RSA paper was MIT

Tech Memo 18, “A Method for Obtaining Dig-

ital Signatures and Public Key Cryptosystems,”

April 4, 1977.

Martin Gardner wrote a column in the August,

1977, Scientific American describing the work

of Diffie, Hellman, Rivest, Shamir and Adle-

man. In it, RSA offered a challenge mes-

sage encoded with a 129-digit modulus and

e = 9007. The modulus was factored in 1993–

1994 by Derek Atkins, Michael Graff, Arjen

Lenstra and Paul Leyland who supervised 600

volunteers using 1600 machines.

In the column, RSA offered copies of their

Tech Memo for a SASE. Thousands requested

it. NSA blocked its mailing and tried to prevent

publication, citing the ITARs. It was aghast

at the Diffie-Hellman paper and then the RSA

discovery. NSA would not allow NSF to fund

cryptography.

12



Senator Frank Church’s Intelligence Commit-

tee was investigating NSA’s eavesdropping prac-

tices. Eventually, NSA’s new director, Vice

Admiral Bobby Inman backed down and al-

lowed publication. NSF agreed to give NSA

copies of crypto proposals.

In December, 1977, R, S and A invited stu-

dents to a pizza and envelope-stuffing party.

Thousands of copies of the paper were mailed

out. It introduced “Alice” and “Bob” to the

crypto world.

It was revealed in 1997 that James Ellis of

GCHQ invented public key crypto (like Diffie-

Hellman) in 1969 and Cliff Cocks of GCHQ

invented the RSA cipher in 1973.

13



After the RSA paper appeared, others began

inventing new public key cryptosystems. Many

schemes, like knapsacks, were quickly shot down.

At CRYPTO ’84, Taher ElGamal announced

a public key cryptosystems based on the diffi-

culty of the discrete logarithm problem.

DLP for a multiplicative group: Given group

elements P and Q find x so that Q = P x. (x is

sort of logP Q.)

DLP for an additive group: Given group ele-

ments P and Q find x so that Q = x · P . (x

is sort of Q/P , but it is still called a discrete

logarithm.)

14



Here is the ElGamal public key cipher for an

additive group. (ElGamal did it first for a sub-

group of the the multiplicative group of inte-

gers modulo a prime.)

Public are a large finite cyclic group G (of

prime order p) and a generator g ∈ G. Assume

it is easy to choose random group elements

and to add two group elements quickly. Also,

there is a fast way to encode a message as a

group element and to extract a message from

any group element.

Alice begins by choosing a secret integer 0 <

a < p. She computes PA = a · g. She makes PA

public and remembers the secret a.

Bob sends a message to Alice by encoding it

in an element P ∈ G. He chooses a random

integer 0 < x < p. He obtains Alice’s public

key PA. He enciphers the message as the pair

of group elements (x · g, (x ·PA)+P ), which he

sends to Alice.

15



An eavesdropper who sees the pair

(x · g, (x ·PA)+P ) in transit cannot obtain the

message P because it is hidden by having x ·PA

added to it, and he doesn’t know x. He knows

g and could get x if he could solve the DLP

x · g = the first component of the pair. But

the DLP is hard and the ciphertext looks like

a pair of random group elements.

Say Alice receives the message as the pair (y, t).

She recalls her secret a and computes

a · y = (ax · g) = x · (a · g) = x · PA.

Then the plaintext is

t− a · y = (x · PA) + P − (x · PA) = P.

The second component holds the message dis-

guised by having x · PA added to it. The first

component is a hint for computing x · PA, but

one useful only to someone who knows the se-

cret a, and Alice is the only person who knows

a.

16



It may be possible to break RSA without fac-

toring the public modulus or ElGamal without

solving a DLP, but it appears that if the keys

are chosen properly, the only way to break the

cipher is to solve the hard problem.

How hard is factoring the product n = pq of

nearly equal primes?

Trial division takes O(
√
n) steps. This is too

slow, but sometimes cited in popular articles:

“It would take 1080 years to factor a number

of this size.”

The quadratic sieve factors n in time

L(n) = exp

(

√

(logn)(log logn)

)

.

For all ε > 0 and all K we have

(logn)K < L(n) < nε

for all sufficiently large n.

17



The basic idea of QS (and CFRAC and NFS)

is that you have a good chance to factor n

if you can find two integers x and y so that

x2 ≡ y2 mod n. Then n divides

x2 − y2 = (x+ y)(x− y).

If x 6≡ ±y mod n, then gcd(n, x+ y) and

gcd(n, x− y) are non-trivial factors of n.

When n has just two prime factors, we are done

if we find one of them.

It is not fruitful to compute

12, 22, 32, 42, . . . mod n

and hope for a repeated value. This would

take O(
√
n) steps.

18



The QS forms many squares f(x) = x2 mod n,

with x chosen to make f(x) small, factors the

numbers f(x) and matches their prime factors

to form a square.

Example: Let’s factor n = 1649.

f(41) = 412 mod n = 1681 mod n = 32 = 25

f(42) = 422 mod n = 1764 mod n = 115 = 5·23

f(43) = 432 mod n = 1849 mod n = 200 = 23·52

f(44) = 442 mod n = 1936 mod n = 287 = 7·41

Note that 32 · 200 = 28 · 52 = 802, so

(41 · 43)2 ≡ 802 mod 1649.

Also, 41 · 43 = 1763 ≡ 114 mod 1649 and we

have gcd(114− 80,1649) = 17 and

gcd(114 + 80,1649) = 97, so 1649 = 17 · 97.

19



The auxiliary numbers factored by the QS can

be factored efficiently by a “sieve.” Another

key ingredient in the algorithm is the fact that

a positive fraction of the auxiliary numbers

have all of their prime factors less than a fixed

upper bound, so there will be plenty of them.

The Number Field Sieve, the current fastest

known integer factoring algorithm does the

same matching of prime factors in millions of

identities of the form:

small integer ≡ small algebraic integer mod n

All the integers and the algebraic integers are

factored efficiently by sieves. Linear algebra

over GF (2) is used to match their prime fac-

tors on both sides and form congruent squares.

The final step is the same as for QS. The time

complexity to factor n by NFS is

exp
(

2(logn)1/3(log logn)2/3
)

.

20



In a general group of order p, the DLP can

be solved in O(
√
p log p) steps, and this is the

fastest known time. Several methods achieve

this speed.

Dan Shanks’ Baby-step-giant-step method

solves Q = x · P as follows.

Let m =
⌈√

p
⌉

.

Compute and sort the m pairs (j,mjP ), for j

from 0 to m− 1, by second component.

Compute and sort the m pairs (i, Q− iP ), for i

from 0 to m− 1, by second component.

Find a pair (j, y) in the first list with the same

second component as a pair (i, y) in the second

list. The search will succeed because every

integer between 0 and p− 1 can be written as

a two-digit number ji in base m.

Finally, x = (mj + i) mod p.

21



The DLP P x ≡ Q mod p may be solved by

much faster methods similar to QS or NFS.

The QS analogue is called the index calculus

method and finds x in time L(p).

Similar fast methods also apply to supersin-

gular elliptic curves and perhaps some elliptic

curves with complex multiplication. This is the

subject of current research.

Any elliptic curve can be embedded into a fi-

nite field, with point addition corresponding to

multiplication of field elements. Usually, the

finite field is enormous. But in certain cases

(supersingular), the finite field is about as large

as the elliptic curve. In these cases the index

calculus solves the DLP quickly.

22


