Fermat and Euler's Theorems

Definition: A reduced set of residues (RSR) modulo m is a set of integers R so that every integer relatively prime to m is congruent to exactly one integer in R.

Fact. $\quad a \equiv b(\bmod m)$ implies $\operatorname{gcd}(a, m)=$ $\operatorname{gcd}(b, m)$.

Fact. All RSR's modulo m have the same size.
Definition: $\phi(m)$ is the size of a RSR modulo m. ϕ is called the Euler Phi or totient function.

The standard CSR modulo m is $\{0, \ldots, m-1\}$.
The standard RSR modulo m is

$$
\{1 \leq r \leq m ; \operatorname{gcd}(r, m)=1\} .
$$

Example: $\phi(12)=4$ because $\{1,5,7,11\}$ is the standard RSR modulo 12.

Fact. ϕ is multiplicative, that is, $\phi(a b)=$ $\phi(a) \phi(b)$ whenever $\operatorname{gcd}(a, b)=1$.

Some special formulas for ϕ : Let p be prime. Then

$$
\begin{gathered}
\phi(p)=p-1, \\
\phi\left(p^{\alpha}\right)=p^{\alpha}-p^{\alpha-1}, \\
\phi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right) .
\end{gathered}
$$

When $p \neq q$ are primes, we have

$$
\phi(p q)=(p-1)(q-1) .
$$

Proof: Begin with the $\operatorname{CSR}\{0,1, \ldots, p q-1\}$. Delete all q multiples of p. Delete all p multiples of q. 0 was deleted twice, so add 1 back. We get $\phi(p q)=p q-p-q+1=(p-1)(q-1)$.

Fermat's "Little" Theorem

Theorem. Let p be prime and a be an integer which is not a multiple of p. Then

$$
a^{p-1} \equiv 1(\bmod p) .
$$

Proof: Since $\operatorname{gcd}(a, p)=1$, the set $\{a i \bmod p ; i=1, \ldots, p-1\}$ is the same as the set $\{1, \ldots, p-1\}$. Therefore,

$$
a^{p-1} \prod_{i=1}^{p-1} i=\prod_{i=1}^{p-1}(a i) \equiv\left(\prod_{i=1}^{p-1} i\right) \cdot 1(\bmod p)
$$

Since $\operatorname{gcd}\left(\prod_{i=1}^{p-1} i, p\right)=1$, we can cancel and get $a^{p-1} \equiv 1(\bmod p)$.

Example. 97 is prime and 2 is not a multiple of 97 , so $2^{96} \equiv 1(\bmod 97)$.

Euler's Theorem

Theorem. Let $m>1$ and $\operatorname{gcd}(a, m)=1$. Then

$$
a^{\phi(m)} \equiv 1 \quad(\bmod m) .
$$

Proof: Let $\left\{r_{1}, \ldots, r_{\phi(m)}\right\}$ be a RSR modulo m. Then $\left\{a r_{1}, \ldots, a r_{\phi(m)}\right\}$ is a RSR modulo m, too. Therefore, for all i, there is a unique j so that $r_{i} \equiv a r_{j}(\bmod m)$. Then
$a^{\phi(m)} \prod_{i=1}^{\phi(m)} r_{i}=\prod_{i=1}^{\phi(m)}\left(a r_{i}\right) \equiv\left(\prod_{i=1}^{\phi(m)} r_{i}\right) \quad(\bmod m)$.
Since $\operatorname{gcd}\left(\prod_{i=1}^{\phi(m)} r_{i}, m\right)=1$, we can cancel and get $a^{\phi(m)} \equiv 1(\bmod m)$.

Example. Let $m=13 \times 23=299$, where 13 and 23 are primes. Then
$\phi(m)=\phi(299)=(13-1)(23-1)=12 \times 22=264$.
Note that $\operatorname{gcd}(5,299)=1$. Euler's Theorem says $5^{264} \equiv 1(\bmod 299)$, that is, $299 \mid\left(5^{264}-1\right)$.

Example of the use of Euler's theorem.

Find the two low-order decimal digits of 33862513^{119442}.

First, $33862513 \equiv 13$ (mod 100), so the answer is the same as the two low-order decimal digits of 13^{119442}
(because $(100 k+13)^{n} \equiv 13^{n}(\bmod 100)$ and the two low-order decimal digits of m are m mod 100).

Second, $\phi(100)=\phi\left(2^{2}\right) \phi\left(5^{2}\right)=2(2-1) \cdot 5(5-1)=40$. Now $119442 \equiv 2(\bmod 40)$, so by Euler, $13^{119442} \equiv 13^{2}(\bmod 100)$.

Finally, $33862513^{119442} \equiv 13^{119442} \equiv 13^{2}=$ $169 \equiv 69(\bmod 100)$, and the two low-order decimal digits of 33862513^{119442} are 69.

A Corollary of Euler's Theorem

Here is an alternate way to compute the multiplicative inverse a^{-1} of a modulo m : Recall that a^{-1} is the residue class mod m such that $a^{-1} a \equiv a a^{-1} \equiv 1(\bmod m)$. It is defined only when $\operatorname{gcd}(a, m)=1$. In that situation we have $a^{\phi(m)} \equiv 1(\bmod m)$ by Euler's Theorem.

Factoring out one a gives

$$
a \cdot a^{\phi(m)-1} \equiv 1 \quad(\bmod m),
$$

whence $a^{-1} \equiv a^{\phi(m)-1}(\bmod m)$. For a prime modulus p we have $a^{-1} \equiv a^{p-2}(\bmod p)$.

For large m, computing $a^{-1} \bmod m$ by this formula requires roughly the same number of bit operations as computing $a^{-1} \bmod m$ by the Extended Euclidean Algorithm. (The latter must be used if one does not know $\phi(m)$.)

How to compute a^{n} mod m swiftly

Here is an algorithm for computing $a^{n} \bmod m$ in $\mathrm{O}\left(\log _{2} n\right)$ multiplications.
procedure power (a,n,m)
e = n;
$\mathrm{y}=1$;
z = a;
repeat \{

$$
\begin{aligned}
& \text { if }(e \text { is odd) } y=(y * z) \% m ; \\
& \text { if }(e<=1) \text { return }(y) \text {; } \\
& z=(z * z) \% m ; \\
& e=\text { floor }(e / 2) ; \\
& \}
\end{aligned}
$$

end power;

Finding large primes

Fermat's Little Theorem says that if p is prime and p does not divide a, then $a^{p-1} \equiv 1 \quad(\bmod p)$.

This theorem gives a test for compositeness: If p is odd and p does not divide a and $a^{p-1} \not \equiv$ $1(\bmod p)$, then p is not prime.

If the converse of Fermat's theorem were true, it would give a fast test for primality. The converse would say, if p is odd and p does not divide a and $a^{p-1} \equiv 1(\bmod p)$, then p is prime.

Unfortunately, this converse is not a true statement, although it is true for most p and most a. Consider $p=341=11 \times 31$ and $a=2$. We have $2^{340} \equiv 1(\bmod 341)$.

The test, "Is $2^{m-1} \equiv 1(\bmod m)$?" is widely used as a test for primality of very large odd numbers m, as the probability that it fails is incredibly small.

Now we will see some applications of number theory to cryptography.

A cipher is a way of converting ordinary text M, called plaintext, into meaningless symbols C, called ciphertext, and converting it back to plaintext under the control of a key K.

Here M and C are strings of letters or bits, and K is a number or a bit string.

The conversion of plaintext to ciphertext is called encryption and is written $C=E_{K}(M)$.

The conversion of ciphertext back to plaintext is called decryption and is written $M=D_{K}(C)$.

A basic property of ciphers is that $D_{K}\left(E_{K}(M)\right)=$ M for every M.

Another important property of ciphers is that if you know C, but not M or K, then it should be hard to find M or K.

The ciphers just described are the one-key or symmetric ciphers. They use the same key to decipher as to encipher. Until the 1970s, all known ciphers were of this type.

The Caesar rotate-the-alphabet cipher is a simple one-key cipher. The key K is the amount of rotation of the alphabet.

Modern one-key ciphers usually use bit operations, like shift and xor, to achieve high speed for the enciphering and deciphering algorithms.

Some modern one-key ciphers are the Data Encryption Standard, DES, and the Advanced Encryption Standard, AES.

Around 1980, two-key or asymmetric ciphers were invented.

They use different, but related, keys for enciphering and deciphering: $C=E_{K_{1}}(M)$ and $M=D_{K_{2}}(C)$.

Of course, if K_{1} and K_{2} are the correct keys, then $M=D_{K_{2}}\left(E_{K_{1}}(M)\right)$ for every M.

The remarkable property of two-key ciphers is that if you know the enciphering key K_{1}, then you cannot easily find the deciphering key K_{2}. In fact, K_{1} and the enciphering algorithm E are made public. Hence asymmetric ciphers are also called public-key ciphers.

Most public-key ciphers use arithmetic with large numbers and their algorithms are slow compared those of to one-key ciphers.

RSA (Rivest-Shamir-Adleman) and ElGamal are examples of public-key ciphers.

Here is a typical use of a public-key cipher.
Suppose Alice wants to email a long secret letter M to Bob. If the two have previously agreed on a secret AES key, Alice would just encipher M using AES with that key and send the ciphertext to Bob.

But if Alice and Bob did not share a secret AES key, then Alice could chose a random AES key K, encipher M using AES and K, and send the ciphertext C to Bob. She would then find Bob's public enciphering key K_{1} from Bob's web page, say, and send $C_{1}=E_{K_{1}}(K)$ to Bob.

Bob would decipher C_{1} with $D_{K_{2}}\left(C_{1}\right)=K$, where K_{2} is Bob's secret deciphering key. Then Bob would use AES and K to decipher C.

Note that it does not matter that the publickey cipher is slow because it used only to transmit the very short message K and not the long message M.

The first application is not a cipher but rather a way for Alice and Bob to choose a common AES key. It uses fast exponentiation and congruences, but not Euler's theorem.

Diffie-Hellman key-exchange protocol

This protocol allows two users to choose a common secret key, for DES or AES, say, while communicating over an insecure channel (with eavesdroppers).

The two users agree on a common large prime p and a constant value a, which may be publicly known and available to everyone. It is best if the smallest exponent $e>0$ for which $a^{e} \equiv$ $1(\bmod p)$ is $e=p-1$, but the protocol will work if $e<p-1$ provided e is still large.

Alice secretly chooses a random x_{A} in
$0<x_{A}<p-1$ and computes $y_{A}=a^{x_{A}} \bmod p$.
Bob secretly chooses a random x_{B} in
$0<x_{B}<p-1$ and computes $y_{B}=a^{x_{B}} \bmod p$.

Alice sends y_{A} to Bob. Bob sends y_{B} to Alice. An eavesdropper, knowing p and a, and seeing y_{A} and y_{B}, cannot compute x_{A} or x_{B} from this data unless he can solve the Discrete Logarithm Problem quickly. (See below.)

Alice computes $K_{A}=y_{B}^{x_{A}} \bmod p$.
Bob computes $K_{B}=y_{A}^{x_{B}} \bmod p$.

Then

$$
K_{A} \equiv a^{x_{A} \cdot x_{B}} \equiv K_{B}(\bmod p)
$$

and $0<K_{A}, K_{B}<p$, so $K_{A}=K_{B}$.

Alice and Bob choose certain agreed-upon bits from K_{A} to use as their key for a single-key cipher like DES or AES.

Although this protocol provides secure communication between Alice and whoever is at the other end of the communication line, it does not prove that Bob is the other party. To guarantee that Bob is at the other end, they would have to use a signature system like RSA.

Discrete Logarithms

The Diffie-Hellman key exchange and several other crypto algorithms could all be broken if we could compute discrete logarithms quickly, that is, if we could easily solve the exponential congruence $a^{x} \equiv b \bmod p$.

By analogy to ordinary logarithms, we may write $x=\log _{a} b$ when p is understood from the context. These discrete logarithms enjoy many properties of ordinary logarithms, such as $\log _{a} b c=\log _{a} b+\log _{a} c$, except that the arithmetic with logarithms must be done modulo $p-1$ because $a^{p-1} \equiv 1 \bmod p$.

The RSA public-key cipher

Rivest-Shamir-Adleman. Let $n=p q$ be the product of two large primes.
Then $\phi(n)=\phi(p q)=(p-1)(q-1)$. Choose a random e in $1<e<n-1$ with $\operatorname{gcd}(e, \phi(n))=1$. Use Extended Euclid to compute $d=e^{-1} \bmod$ $\phi(n)$, so that $e d \equiv 1 \quad(\bmod (p-1)(q-1))$.

Encode plaintext as (blocks) $0 \leq M<n$. Encipher M as $C=E(M)=M^{e} \bmod n$. Decipher C as $M=D(C)=C^{d} \bmod n$.

This works, that is, $D(E(M))=M$ for all M in $0 \leq M<n$, provided that $e d \equiv 1(\bmod \phi(n))$. Write $e d=1+k \phi(n)$. Then $D(E(M)) \equiv\left(M^{e}\right)^{d}=$ $M^{e d}=M^{1+k \phi(n)}=M \cdot\left(M^{\phi(n)}\right)^{k} \equiv M(\bmod n)$, since $M^{\phi(n)} \equiv 1(\bmod n)$ by Euler's Theorem.

Each user of RSA has her own set of keys: Make n and e public, but keep d secret. The factors p and q are not needed after e and d are computed, but in any case should not be revealed.

If many users wish to communicate securely in pairs, then RSA requires fewer total keys to be stored than DES or AES.

Cryptanalysis: Since n is public and one can easily compute d from e and the factors of n, a direct approach to breaking RSA is to factor n. Using the best currently-known methods, this is about as hard as solving the Discrete Logarithm Problem with the same sized modulus. For a modulus n of 400 decimal digits, this is too hard for current algorithms and computers.

Pohlig-Hellman cipher

This is NOT a public-key cipher.

Let $n=p=$ prime. Then $\phi(p)=p-1$ and $e d \equiv 1(\bmod p-1)$.

Keep all of p, e, d secret. All three are the "key". There is just one user or one pair of users.

Encode plaintext as (blocks) $0 \leq M<p$.
Encipher M as $C=E(M)=M^{e} \bmod p$. Decipher C as $M=D(C)=C^{d} \bmod p$.

This works, that is, $D(E(M))=M$ for all M in $0 \leq M<p$, provided that $e d \equiv 1(\bmod \phi(p))$. Write ed $=1+k \phi(p)$. Then $D(E(M)) \equiv\left(M^{e}\right)^{d}=$ $M^{e d}=M^{1+k \phi(p)}=M \cdot\left(M^{\phi(p)}\right)^{k} \equiv M(\bmod p)$, since $M^{\phi(p)} \equiv 1(\bmod p)$ by Euler's Theorem.

RSA Signatures

RSA has no direct authentication: Anyone can send any message to you and claim it came from anyone. However, one can sign RSA messages as follows:

Suppose both Alice and Bob have complete RSA public-key ciphers, with different primes, moduli, and exponents. Write $E_{A}(M)=M^{e_{A}}$ mod n_{A} and $D_{A}(C)=C^{d_{A}} \bmod n_{A}$ for Alice's RSA enciphering and deciphering functions, where n_{A} is the product of Alice's two secret primes and e_{A} and d_{A} are Alice's enciphering and deciphering exponents. Likewise define Bob's enciphering function $E_{B}(\cdot)$ and his deciphering function $D_{B}(\cdot)$.

Suppose $n_{A}<n_{B}$. Then Alice can sign (and encipher) a message M to Bob by sending $C=$ $E_{B}\left(D_{A}(M)\right)$ to Bob. Bob can decipher C by applying D_{B} to it (to get $D_{A}(M)$) and then check the signature by applying E_{A} to the latter.

In case $n_{A}>n_{B}$, Alice can sign (and encipher) a message M to Bob by sending $C=$ $D_{A}\left(E_{B}(M)\right)$ to Bob. Bob checks it by applying E_{A} to C and then D_{B} to the result.

In both cases, Bob and only Bob knows $D_{B}(\cdot)$, so only Bob can do that part of the calculation. Bob obtains Alice's enciphering function $E_{A}(\cdot)$ from a public directory.

