Distribution of Primes

Definition. For positive real numbers x, let
w(x) be the number of prime numbers less than
or equal to =.

For example, 7(1) = 0, n(10) = 4 and «(100) =
25. To use some ciphers, we will have to

choose some large primes, say, 100-digit primes.
The growth rate of n#(x) has a strong effect on

the difficulty of finding a large prime. Fortu-

nately for cryptography, w(x) grows nearly as

rapidly as x.

Suppose, for example, that n(x) ~ /x when «x
in large. Then there would be about 10°9 100-
digit primes, that is, one out of 10°° 100-digit
numbers would be prime. If we tried to choose
a random 100-digit prime by choosing random
100-digit numbers and testing whether each is
prime, we would have to try about 1029 100-
digit numbers to get one prime!



The Prime Number Theorem:

The ratio of n(x) to z/Inz tends to 1 as x
goes to infinity. In symbols,

im T®)
=0 /Inx

1.

Thus, n(z) = z/Inx when x in large. There are
about 10199/1n 10190 100-digit primes, that is,
one out of In 10190 ~ 230 100-digit numbers is
prime. If we try to choose a random 100-digit
prime by choosing a random 100-digit number
and testing whether it is prime, we would have
to try about 230 100-digit numbers to get one
prime. And, since no even 100-digit number is
prime, we can skip the even numbers and just
try about 230/2 = 115 odd 100-digit numbers
to get one prime.

When we study congruences, we will learn a
fast way to test whether a 100-digit odd num-
ber is prime, so that we can test 115 of them
in a millisecond.



Identifying and Finding Primes

Now that we know there are plenty of large
primes, how do we distinguish them from com-
posite numbers? The next theorem tells how
to tell in O(y/n) steps whether n is prime or
composite. This is really slow, but one must
learn to walk before one learns to run.

Theorem. If the integer n > 1 is composite,
then n has a prime divisor p < /n. In other
words, if the integer n > 1 has no prime divisor
p < +/n, then n is prime.

Proof: Suppose n is composite. Then we can
write n = ab, where a and b are integers > 1.
Swap a and b, if necessary, to make 1l <a <b<
n. Then a < /n, forifa>+/n,thenb>a>/n
and n = ab > y/n/n = n, which is impossible.
By the fundamental theorem of arithmetic a
must have a prime divisor p <a <+/n. Then p
divides n.



The theorem suggests a simple algorithm for
testing a small number for primality and for
factoring it if it is composite.

[Factoring and Prime Testing by Trial Division]
Input: A positive integer n to factor or to test
for primeness.

Output: Whether n is prime, or one or more
prime factors of n.

m=n
p=2
while (p < y/m) {
if (m mod p =0) {
Print "n is composite with factor p"

T=mm
else { p=p—+1}

}

if (m =n) { Print "n is prime" }
else if (m > 1)
{ Print "The last prime factor of n is m" }



Congruences

A congruence is a statement about divisibility.
It is a notation that simplifies reasoning about
divisibility. It suggests proofs by its analogy to
equations.

Congruences are familiar to us as “clock arith-
metic.” Four hours after 10 AM it will be 2
PM. How do we get the 2 from the 10 and the
47 We add four to ten and then subtract 12.
We have used a congruence modulo 12.



Definition: Suppose a and b are integers and
m IS a positive integer. If m divides a — b, then
we say a is congruent to b modulo m and write
a=b (mod m). If m does not divide a — b, we
say a Is not congruent to b modulo m and write
aZb (mod m). The formula a =b (mod m) is
called a congruence. The integer m is called
the modulus (plural moduli) of the congruence.

Do not confuse the binary operator “mod’ in
a mod b, which means the remainder when a
IS divided by b, with the “mod’ enclosed in
parentheses together with the modulus of a
congruence. T hese concepts are related as fol-
lows. If m is a positive integer and a and b are
integers, then a = b (mod m) if and only if
(a mod m) = (b mod m).

We will often use the fact that a=b (mod m)
if and only if there is an integer k so that a =
b+ km. This fact follows immediately from the
definitions of congruence and divide.



The congruence relation has many similarities
to equality. The following theorem says that
congruence, like equality, is an equivalence re-
lation.

Theorem. Let m be a positive integer. Let a,
b and c be integers. Then:

1. a=a (mod m).
2. If a=b (mod m), then b=a (mod m).

3. If a=b (mod m)and b = ¢ (mod m), then
a=c (mod m).



Let m > O be fixed. For each integer a, the
set of all integers b = a (mod m) is called the
congruence class or residue class of a mod-
ulo m. The congruence class of a modulo m
consists of all integers in the arithmetic pro-
gression a+ dm, where d runs through all inte-
gers. Each integer in a congruence class is a
representative of it. If the modulus m is under-
stood and a and b are in the same congruence
class, then each is called a residue of the other.
The smallest honnegative representative of a
congruence class is often used as the standard
representative of it. For example, the stan-
dard representative of the congruence class of
27 (mod 5) is 2.



Theorem. Let a, b, c and d be integers. Let m
be a positive integer. Suppose a =b (mod m)
and ¢=d (mod m). Then

1. a+c=b+d (mod m).
2. a—c=b—d (mod m).
3. ac=bd (mod m).

Let a and b be integers. Let m be a positive
integer. Let f be a polynomial with integer
coefficients. If a = b (mod m), then f(a) =
f(b) (mod m).

Let a and b be integers. Let m and d be positive
integers with dim. If a = b (mod m), then
a=b (mod d).



Although the arithmetic operations of addi-
tion, subtraction and multiplication for con-
gruences obey the usual rules for the same op-
erations with integers, division does not always
work as for integers. For example, 2-3 =6 =
18 =2-9 (mod 12), but 39 (mod 12).

In general ac = be (mod m) does not always

imply a = b (mod m). We now investigate
when this implication will be true.
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Theorem. If gcd(a,m) = 1, then there |
a unique = in 0 < x < m such that ax
1 (mod m).

Proof: The function (i) = (ai mod m) for 1 <
1 <m — 1 is one-to-one, and so the set

{aimodm;i=1,...,m—1}

is a permutation of {1,...,m — 1}. Therefore
1 appears exactly once in the first set, that is,
there is exactly one z in O < x < m such that
ax =1 (mod m).

Note that the z in this theorem is like “a—1"
the reciprocal of a modulo m. Sometimes we
even use the notation “a~1 (mod m)” to mean
the x of this theorem.
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Warning. Do not write a1 (mod m) unless
you already know that gcd(a,m) = 1!

When you do know that gcd(a,m) = 1, a good
way to compute a1 (mod m) is with the Ex-
tended Euclidean algorithm.

The Extended Euclidean algorithm gives us in-
tegers x and y with
ax + my = gcd(a,m) = 1.
This equation implies the congruence
axr =1 (mod m)

so that z (or m+z if £ < 0) is a=1 (mod m).
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Theorem. If m > 1, a, b, ¢ are integers,
(¢ %= 0), gcd(e,m) = 1, then ac = bec (Mmod m)
implies a=b (mod m).

Proof: BYy the previous theorem, there is an
x such that cx = 1 (mod m). Then ac =
be (mod m) implies acx = becx (mod m), which
implies al = b1 (mod m), which implies a =
b (mod m).

Definition: A set of m integers rq,...,rm IS
a complete set of residues (CSR) modulo m if
every integer is congruent modulo m to exactly
one of the r;’s.

The set {1,...,m} is called the standard CSR
modulo m.
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Examples of Congruences

1. A computer job starts at 3 PM and runs for
100 hours. At what time of day does it finish?

This is a job for a congruence modulo 24,
as there are 24 hours in a day. Now 100 =
4 (mod 24), and 3+ 4 =7, so the job finishes
at 7 PM (four days later).

2. Suppose today is Tuesday. What day of the
week will it be 100 days from now?

Use a congruence modulo 7, as there are 7
days in a week. We have 100 = 2 (mod 7)
(since 7 x 14 = 98), so the answer is two week
days after Tuesday, or Thursday.
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Caesar Cipher

Let n mod m denote the remainder when n is
divided by m, i.e., mod means % in C or Java.

Use the numbers O to 25 to code the English
alphabet: 0 = A, 1 =8B, 2 = C, 25 = Z.

With this code, we can encipher a message by
computing with the numbers corresponding to
the letters of the message.

Encipher the numbers with a formula.

Then we use the code to change numbers back
to letters.
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For example, we can “rotate the alphabet” by
k letters.

In terms of the numbers, we encipher = by
adding k to it modulo 26:
E(x) = (x + k) mod 26.

Julias Caesar used this cipher with £k = 3. Un-
der this cipher, the message
RENAISSANCE

IS enciphered as
UHQDLVVDQFH

One deciphers this cipher either by rotating the
alphabet backwards by k letters:

D(x) = (x — k) mod 26 or by rotating the al-
phabet forward by 26 — k letters: D(x) = (z +
(26—k)) mod 26. These two formulas for D(x)
are equivalent because

(— k)= (z+ (26 —k)) (mod 26).
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The case kK = 13 gives the rotate cipher used
in some newsgroups. It has the nice property
that the deciphering formula is the same as the
enciphering formula:

D(x) = (x 4+ 13) mod 26 = E(x). This works
because

z— 13 =24 13 (mod 26).
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Another possibility is to multiply the numbers

that represent the letters by a constant: E(x) =
kx mod 26.

Under this cipher with £k = 9, the message
RENAISSANCE

IS enciphered as
XKNAUGGANSK

In order for deciphering to be possible, £ and
26 must be relatively prime. When this is so,
let jk mod 26 =1

The deciphering function is D(x) = jx mod 26.

How do you compute 5 from k and 267 Hint:
Extended Euclid.
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Linear Congruences

We now tell how to solve congruences like ax =
b (mod m), where a, b and m > 1 are given
integers and x is an unknown integer. The
solution to an equation ax = b, where a %+ 0, is
the single number z = a/b. In contrast, if the
congruence ax = b (mod m) has any solution,
then infinitely many integers x satisfy it.

For example, the solution to the congruence
2r = 1 (mod 5) is all integers of the form
x = 5k 4+ 3, where £k may be any integer, that
IS, x lies in the arithmetic progression

...,—12,-7,-2.3,8,13,18,....

This set of integers may be described com-
pactly as £ =3 (mod 5). We could have writ-
ten this solution as x = 28 (mod 5), but we
generally use the least nonnegative residue as
the standard representative of its congruence
class.
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Theorem. Let m > 1, a and b be integers.
Then axr = b (mod m) has a solution if and
only if gcd(a, m) divides b.

Theorem. Let m > 1, a and b be integers.
Suppose gcd(a,m) = 1. Then ax =b (mod m)
has exactly 1 solution modulo m. It is

x = bxg (Mmod m),

where xg is any solution of axg =1 (mod m).
This means that
xr=bxg+tm, t=0,1,...,

are all integer solutions =x.
Example: Solve 7z =3 (mod 12).

We find ¢ = gcd(7,12) = 1, so there is a so-
lution. Since 7-7 = 1 (mod 12), we have
xg = 7, and the solution to 72 = 3 (mod 12)
isz=3-7=21=9 (mod 12).
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Example: Solve 59z = 23 (mod 103).
We have gcd(59,103) = 1 since both are prime.

The Extended Euclidean Algorithm gives
(103)(—4) + (59)(7) =1,
so (59)(7) =1 (mod 103).

This means 59! mod 103 = 7.

The solution to 592 = 23 (mod 103) is

r = (23)(5971) = (23)(7) = 161 = 58 (mod 103).

This may also be written x = 58+ 103¢, where
t is any integer.
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