
Distribution of Primes

Definition. For positive real numbers x, let

π(x) be the number of prime numbers less than

or equal to x.

For example, π(1) = 0, π(10) = 4 and π(100) =

25. To use some ciphers, we will have to

choose some large primes, say, 100-digit primes.

The growth rate of π(x) has a strong effect on

the difficulty of finding a large prime. Fortu-

nately for cryptography, π(x) grows nearly as

rapidly as x.

Suppose, for example, that π(x) ≈ √
x when x

in large. Then there would be about 1050 100-

digit primes, that is, one out of 1050 100-digit

numbers would be prime. If we tried to choose

a random 100-digit prime by choosing random

100-digit numbers and testing whether each is

prime, we would have to try about 1050 100-

digit numbers to get one prime!
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The Prime Number Theorem:

The ratio of π(x) to x/ lnx tends to 1 as x

goes to infinity. In symbols,

lim
x→∞

π(x)

x/ ln x
= 1.

Thus, π(x) ≈ x/ ln x when x in large. There are

about 10100/ ln 10100 100-digit primes, that is,

one out of ln 10100 ≈ 230 100-digit numbers is

prime. If we try to choose a random 100-digit

prime by choosing a random 100-digit number

and testing whether it is prime, we would have

to try about 230 100-digit numbers to get one

prime. And, since no even 100-digit number is

prime, we can skip the even numbers and just

try about 230/2 = 115 odd 100-digit numbers

to get one prime.

When we study congruences, we will learn a

fast way to test whether a 100-digit odd num-

ber is prime, so that we can test 115 of them

in a millisecond.
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Identifying and Finding Primes

Now that we know there are plenty of large

primes, how do we distinguish them from com-

posite numbers? The next theorem tells how

to tell in O(
√
n) steps whether n is prime or

composite. This is really slow, but one must

learn to walk before one learns to run.

Theorem. If the integer n > 1 is composite,

then n has a prime divisor p ≤ √
n. In other

words, if the integer n > 1 has no prime divisor

p ≤ √
n, then n is prime.

Proof: Suppose n is composite. Then we can

write n = ab, where a and b are integers > 1.

Swap a and b, if necessary, to make 1 < a ≤ b <

n. Then a ≤ √
n, for if a >

√
n, then b ≥ a >

√
n

and n = ab >
√
n
√
n = n, which is impossible.

By the fundamental theorem of arithmetic a

must have a prime divisor p ≤ a ≤ √
n. Then p

divides n.

3



The theorem suggests a simple algorithm for

testing a small number for primality and for

factoring it if it is composite.

[Factoring and Prime Testing by Trial Division]

Input: A positive integer n to factor or to test

for primeness.

Output: Whether n is prime, or one or more

prime factors of n.

m = n
p = 2

while (p ≤ √
m) {

if (m mod p = 0) {
Print "n is composite with factor p"
m = m/p
}

else { p = p+1 }
}

if (m = n) { Print "n is prime" }
else if (m > 1)

{ Print "The last prime factor of n is m" }
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Congruences

A congruence is a statement about divisibility.

It is a notation that simplifies reasoning about

divisibility. It suggests proofs by its analogy to

equations.

Congruences are familiar to us as “clock arith-

metic.” Four hours after 10 AM it will be 2

PM. How do we get the 2 from the 10 and the

4? We add four to ten and then subtract 12.

We have used a congruence modulo 12.
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Definition: Suppose a and b are integers and

m is a positive integer. If m divides a− b, then

we say a is congruent to b modulo m and write

a ≡ b (mod m). If m does not divide a− b, we

say a is not congruent to b modulo m and write

a 6≡ b (mod m). The formula a ≡ b (mod m) is

called a congruence. The integer m is called

the modulus (plural moduli) of the congruence.

Do not confuse the binary operator “mod” in

a mod b, which means the remainder when a

is divided by b, with the “mod” enclosed in

parentheses together with the modulus of a

congruence. These concepts are related as fol-

lows. If m is a positive integer and a and b are

integers, then a ≡ b (mod m) if and only if

(a mod m) = (b mod m).

We will often use the fact that a ≡ b (mod m)

if and only if there is an integer k so that a =

b+km. This fact follows immediately from the

definitions of congruence and divide.
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The congruence relation has many similarities

to equality. The following theorem says that

congruence, like equality, is an equivalence re-

lation.

Theorem. Let m be a positive integer. Let a,

b and c be integers. Then:

1. a ≡ a (mod m).

2. If a ≡ b (mod m), then b ≡ a (mod m).

3. If a ≡ b (mod m)and b ≡ c (mod m), then

a ≡ c (mod m).
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Let m > 0 be fixed. For each integer a, the

set of all integers b ≡ a (mod m) is called the

congruence class or residue class of a mod-

ulo m. The congruence class of a modulo m

consists of all integers in the arithmetic pro-

gression a+ dm, where d runs through all inte-

gers. Each integer in a congruence class is a

representative of it. If the modulus m is under-

stood and a and b are in the same congruence

class, then each is called a residue of the other.

The smallest nonnegative representative of a

congruence class is often used as the standard

representative of it. For example, the stan-

dard representative of the congruence class of

27 (mod 5) is 2.
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Theorem. Let a, b, c and d be integers. Let m

be a positive integer. Suppose a ≡ b (mod m)

and c ≡ d (mod m). Then

1. a+ c ≡ b+ d (mod m).

2. a− c ≡ b− d (mod m).

3. ac ≡ bd (mod m).

Let a and b be integers. Let m be a positive

integer. Let f be a polynomial with integer

coefficients. If a ≡ b (mod m), then f(a) ≡
f(b) (mod m).

Let a and b be integers. Let m and d be positive

integers with d|m. If a ≡ b (mod m), then

a ≡ b (mod d).
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Although the arithmetic operations of addi-

tion, subtraction and multiplication for con-

gruences obey the usual rules for the same op-

erations with integers, division does not always

work as for integers. For example, 2 · 3 = 6 ≡
18 = 2 · 9 (mod 12), but 3 6≡ 9 (mod 12).

In general ac ≡ bc (mod m) does not always

imply a ≡ b (mod m). We now investigate

when this implication will be true.
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Theorem. If gcd(a,m) = 1, then there is

a unique x in 0 < x < m such that ax ≡
1 (mod m).

Proof: The function f(i) = (ai mod m) for 1 ≤
i ≤ m− 1 is one-to-one, and so the set

{ai mod m; i = 1, . . . ,m− 1}

is a permutation of {1, . . . ,m − 1}. Therefore

1 appears exactly once in the first set, that is,

there is exactly one x in 0 < x < m such that

ax ≡ 1 (mod m).

Note that the x in this theorem is like “a−1,”

the reciprocal of a modulo m. Sometimes we

even use the notation “a−1 (mod m)” to mean

the x of this theorem.
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Warning. Do not write a−1 (mod m) unless

you already know that gcd(a,m) = 1!

When you do know that gcd(a,m) = 1, a good

way to compute a−1 (mod m) is with the Ex-

tended Euclidean algorithm.

The Extended Euclidean algorithm gives us in-

tegers x and y with

ax+my = gcd(a,m) = 1.

This equation implies the congruence

ax ≡ 1 (mod m)

so that x (or m+ x if x < 0) is a−1 (mod m).
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Theorem. If m > 1, a, b, c are integers,

(c 6= 0), gcd(c,m) = 1, then ac ≡ bc (mod m)

implies a ≡ b (mod m).

Proof: By the previous theorem, there is an

x such that cx ≡ 1 (mod m). Then ac ≡
bc (mod m) implies acx ≡ bcx (mod m), which

implies a1 ≡ b1 (mod m), which implies a ≡
b (mod m).

Definition: A set of m integers r1, . . . , rm is

a complete set of residues (CSR) modulo m if

every integer is congruent modulo m to exactly

one of the ri’s.

The set {1, . . . ,m} is called the standard CSR

modulo m.
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Examples of Congruences

1. A computer job starts at 3 PM and runs for

100 hours. At what time of day does it finish?

This is a job for a congruence modulo 24,

as there are 24 hours in a day. Now 100 ≡
4 (mod 24), and 3+4 = 7, so the job finishes

at 7 PM (four days later).

2. Suppose today is Tuesday. What day of the

week will it be 100 days from now?

Use a congruence modulo 7, as there are 7

days in a week. We have 100 ≡ 2 (mod 7)

(since 7×14 = 98), so the answer is two week

days after Tuesday, or Thursday.
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Caesar Cipher

Let n mod m denote the remainder when n is

divided by m, i.e., mod means % in C or Java.

Use the numbers 0 to 25 to code the English

alphabet: 0 = A, 1 = B, 2 = C, . . ., 25 = Z.

With this code, we can encipher a message by

computing with the numbers corresponding to

the letters of the message.

Encipher the numbers with a formula.

Then we use the code to change numbers back

to letters.
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For example, we can “rotate the alphabet” by

k letters.

In terms of the numbers, we encipher x by

adding k to it modulo 26:

E(x) = (x+ k) mod 26.

Julias Caesar used this cipher with k = 3. Un-

der this cipher, the message

RENAISSANCE

is enciphered as

UHQDLVVDQFH

One deciphers this cipher either by rotating the

alphabet backwards by k letters:

D(x) = (x − k) mod 26 or by rotating the al-

phabet forward by 26− k letters: D(x) = (x+

(26−k)) mod 26. These two formulas for D(x)

are equivalent because

(x− k) ≡ (x+ (26− k)) (mod 26).
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The case k = 13 gives the rotate cipher used

in some newsgroups. It has the nice property

that the deciphering formula is the same as the

enciphering formula:

D(x) = (x + 13) mod 26 = E(x). This works

because

x− 13 ≡ x+13 (mod 26).
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Another possibility is to multiply the numbers

that represent the letters by a constant: E(x) =

kx mod 26.

Under this cipher with k = 9, the message

RENAISSANCE

is enciphered as

XKNAUGGANSK

In order for deciphering to be possible, k and

26 must be relatively prime. When this is so,

let jk mod 26 = 1

The deciphering function is D(x) = jx mod 26.

How do you compute j from k and 26? Hint:

Extended Euclid.
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Linear Congruences

We now tell how to solve congruences like ax ≡
b (mod m), where a, b and m > 1 are given

integers and x is an unknown integer. The

solution to an equation ax = b, where a 6= 0, is

the single number x = a/b. In contrast, if the

congruence ax ≡ b (mod m) has any solution,

then infinitely many integers x satisfy it.

For example, the solution to the congruence

2x ≡ 1 (mod 5) is all integers of the form

x = 5k + 3, where k may be any integer, that

is, x lies in the arithmetic progression

. . . ,−12,−7,−2,3,8,13,18, . . . .

This set of integers may be described com-

pactly as x ≡ 3 (mod 5). We could have writ-

ten this solution as x ≡ 28 (mod 5), but we

generally use the least nonnegative residue as

the standard representative of its congruence

class.
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Theorem. Let m > 1, a and b be integers.

Then ax ≡ b (mod m) has a solution if and

only if gcd(a,m) divides b.

Theorem. Let m > 1, a and b be integers.

Suppose gcd(a,m) = 1. Then ax ≡ b (mod m)

has exactly 1 solution modulo m. It is

x ≡ bx0 (mod m),

where x0 is any solution of ax0 ≡ 1 (mod m).

This means that

x = bx0 + tm, t = 0,1, . . . ,

are all integer solutions x.

Example: Solve 7x ≡ 3 (mod 12).

We find g = gcd(7,12) = 1, so there is a so-

lution. Since 7 · 7 ≡ 1 (mod 12), we have

x0 = 7, and the solution to 7x ≡ 3 (mod 12)

is x ≡ 3 · 7 = 21 ≡ 9 (mod 12).
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Example: Solve 59x ≡ 23 (mod 103).

We have gcd(59,103) = 1 since both are prime.

The Extended Euclidean Algorithm gives

(103)(−4) + (59)(7) = 1,

so (59)(7) ≡ 1 (mod 103).

This means 59−1 mod 103 = 7.

The solution to 59x ≡ 23 (mod 103) is

x ≡ (23)(59−1) ≡ (23)(7) = 161 ≡ 58 (mod 103).

This may also be written x = 58+103t, where

t is any integer.
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