
Remainders

We learned how to multiply and divide in ele-

mentary school.

As adults we perform division mostly by press-

ing the ÷ key on a calculator. This key supplies

the quotient. In numerical analysis and most

other parts of math, the quotient is what is

needed.

But when division is performed in number the-

ory and cryptography, the quotient usually does

not matter and we just need the remainder.

Example. Divide 23 by 4. The answer is 5.75

using floating-point arithmetic. Using integer

arithmetic, the quotient is 5 and the remainder

is 3. We have 23÷4 = 5 with 3 left over as the

remainder. We can also write 23÷ 4 = 5+ 3
4.

We can multiply both sides by 4 to get 23 =

5× 4+ 3.

1

In a computer, numbers are stored either as

floats (doubles) or as integers (ints). The

arithmetic operations performed on numbers

differ according as what type they are.

If x and y are floats and y 6= 0.0, then x/y is a

floating-point number which is a good approx-

imation to the real value of x/y.

If x and y are ints and y 6= 0, then x/y is the

quotient (an int) equal to the floor of the real

number x/y.

Example. The code

int x, y, z; x = 23; y = 4; z = x/y;

produces z = 5. The remainder is ignored.

There is an operator to give remainders in

computer languages. In C and Java the op-

erator is “%”.

Example. The code

int x, y, z; x = 23; y = 4; z = x%y;

produces z = 3. The quotient is ignored.

2

Many computers have a machine instruction

that produces both the quotient and remainder

when it divides an integer by another integer.

When a compiler uses this instruction it usually

keeps one result and discards the other.

Example. The code

int x, y, z; x = 23; y = 4; z = (x/y)*y;

produces z = 20. The compiler does not “sim-

plify” this code to z = x; by canceling the ys,

as it would if x, y and z were floats. In the in-

teger case, the code (x/y)*y gives the largest

multiple of y that is ≤ x.

3

The integer divide machine instruction on dif-

ferent computers may give different answers

when one or both operands are negative, but

all machines agree on positive operands.

For example, when a computer divides −23 by

4 it may give a quotient of −6 and a remainder

of +1, the “correct” answer for number theory,

or it may truncate the quotient to −5 and give

a remainder of −3.

You should experiment with integer division of

positive and negative integers on your

computers. What answer does it give for

(+23)/(+4), (−23)/(+4), (+23)/(−4),

(−23)/(−4), (+23)%(+4), (−23)%(+4),

(+23)%(−4), and (−23)%(−4)?

4

Divisibility

The most important remainder is 0. Note that
b%a = 0 iff the real number b/a is an integer.

Definition. When a and b are integers and
a 6= 0 we say a divides b, and write a | b, if
b%a = 0, that is, if b/a is a whole number.

Theorem. Let a, b and c be integers. If a | b
and b | c, then a | c.

Proof: By hypothesis, the two quotients b/a
and c/b are whole numbers. Therefore their
product, (b/a)×(c/b) = c/a, is a whole number,
which means that a | c.

Theorem. Let a, b, c, x and y be integers. If
a | b and a | c, then a | (bx+ cy).

Proof: We are given that the two quotients
b/a and c/a are whole numbers. Therefore the
linear combination (b/a)×x+(c/a)×y = (bx+
cy)/a is a whole number, which means that
a | (bx+ cy).

5

Theorem (The division algorithm): Suppose

a > 0 and b are two integers. Then there exist

two unique integers q and r such that 0 ≤ r < a

and b = aq + r.

Definition. The integers q and r in this the-

orem are called the quotient and remainder

when b is divided by a.

We use the notation ⌊x⌋, the floor of x, to

mean the largest integer ≤ x, and ⌈x⌉, the ceil-

ing of x, to mean the smallest integer ≥ x.

Example. ⌊3⌋ = 3 = ⌈3⌉. ⌊3.14⌋ = 3. ⌈3.14⌉ =

4. ⌊−3.14⌋ = −4. ⌈−3.14⌉ = −3.

With this notation, the quotient q may be writ-

ten q = ⌊b/a⌋. We use the notation b mod a

for the remainder r. Note that b mod a =

b− a× ⌊b/a⌋.

6

Arithmetic with Large Integers

Theorem (positional number systems): Let

b be an integer greater than 1. Let n be a

positive integer. Then n has a unique repre-

sentation in the form

n =
k∑

i=0

dib
i,

where k ≥ 0 is an integer, the di are integers

in 0 ≤ di ≤ b− 1 and dk 6= 0.

The number b is called the base of the number

system. The di are the digits of n in base b.

Base 10 is familiar:

36210 = 3 · 102 +6 · 101 +2 · 100.

Computer scientists often use base 2:

11012 = 1·23+1·22+0·21+1·20 = 8+4+1 =

1310.

7

Cryptographic algorithms need arithmetic with

large integers. Computer hardware has a fixed

maximum size, such as 231 − 1, for the inte-

gers it can handle directly. Cryptographic al-

gorithms use much larger integers than this

maximum value.

Integers greater than the natural word size are

stored in arrays with a fixed number of bits

per word. It would be wasteful memory usage

to store only one bit per word. Usually, all

or nearly all bits of a computer word are used

to store a multi-precision integer in an array.

Several libraries of procedures for arithmetic

with large integers are available, such as GNU-

MP and the Java Bigint class.

8

The basic operations of arithmetic are addi-

tion, subtraction, multiplication and division.

In order to perform these operations on large

integers we represent the numbers in a conve-

nient base, like b = 230, with their digits in this

base stored in arrays.

Suppose we use base b and we wish to add A =
∑k

i=0 aib
i to B =

∑m
i=0 bib

i. If k 6= m, prepend

enough leading 0 digits to the shorter number

to give the two numbers the same length. Af-

ter this has been done, assume the problem is

to add A =
∑k

i=0 aib
i to B =

∑k
i=0 bib

i. Call the

sum C =
∑k+1

i=0 cib
i. Note that the sum might

have one more digit than the summands. The

addition algorithm is to add corresponding dig-

its of A and B to form each digit of C, and

carry a 1 if the digit sum is ≥ b. Here is the

algorithm.

9

[Addition: C = A+B using base b arithmetic]

Input: The base b digits of A and B.

Output: The base b digits of C = A+B.

carry = 0

for (i = 0 to k) {

ci = ai + bi+ carry

if (ci < b) { carry = 0 }

else { carry = 1; ci = ci − b }

}

ck+1 = carry

Trace through the algorithm to add 462 and

159 in base b = 10.

10

The product of a k-digit integer times an m-

digit integer has either k + m or k + m − 1

digits (or is zero). Suppose we wish to multiply

A =
∑k−1

i=0 aib
i times B =

∑m−1
i=0 bib

i. Call the

product C =
∑k+m−1

i=0 cib
i. Note that the high-

order digit might be 0. The elementary school

method forms partial products bi × A, shifts

their digits into appropriate columns and adds

the shifted partial products. In a computer,

it saves space to do the addition concurrently

with the multiplication. Here is the algorithm

in pseudocode.

11

[Multiplication: C = A × B using base b arith-

metic]

Input: The base b digits of A and B.

Output: The base b digits of C = A×B.

carry = 0

for (i = 0 to k +m− 1) { ci = 0 }

for (i = 0 to k − 1) {

carry = 0

for (j = 0 to m− 1) {

t = ai × bj + ci+j+ carry

ci+j = t mod b

carry = ⌊t/b⌋

cm+i+1 = carry }

}

Trace through the algorithm to multiply 462

times 159 in base b = 10.

12

In order to analyze the complexity of algo-

rithms that use arithmetic we will need to know

the time taken by the four arithmetic opera-

tions. We do not concern ourselves with the

actual time taken, since this time depends on

the computer hardware. Rather we will count

the number of basic steps. The basic steps we

consider are adding, subtracting or multiplying

two 1-bit numbers, or dividing a 2-bit num-

ber by a 1-bit number, giving a quotient and a

remainder. These are called bit operations.

Furthermore, we will not worry about the exact

count of bit operations. We will use the big-

O notation to approximate the growth rate of

the number of bit operations as the length of

the operands grows.

13

Definition. If f and g are functions defined

and positive for all sufficiently large x, then we

say f is O(g) if there is a constant c > 0 so

that f(x) < cg(x) for all sufficiently large x.

Theorem (Complexity of arithmetic): One can

add or subtract two k-bit integers in O(k) bit

operations. One can multiply two k-bit inte-

gers in O(k2) bit operations. One can divide a

2k-bit dividend by a k-bit divisor to produce a

k-bit quotient and a k-bit remainder in O(k2)

bit operations.

There is a similar theorem for complexity of

arithmetic on operands that do not have the

same length.

14

Definition. We say that an algorithm runs in

polynomial time if there is a d and a constant

c > 0 so that for every input I of length k bits,

the algorithm on input I finishes in no more

than ckd bit operations.

Base changing, addition, subtraction, multipli-

cation and division of integers can be done by

algorithms that run in polynomial time.

The degree d of the polynomial is 1 for addition

and subtraction. It is 2 for multiplication and

division.

There are fancier algorithms for multiplication

and division when k is very large that reduce

the execution time to about ck log k.

15

Greatest Common Divisors

Definition. When a and b are integers and not

both zero we define the greatest common divi-

sor of a and b, written gcd(a, b), as the largest

integer which divides both a and b. We say

that the integers a and b are relatively prime if

their greatest common divisor is 1.

It is clear from the definition that gcd(a, b) =

gcd(b, a). One way to compute the greatest

common divisor of two nonzero integers is to

list all of their divisors and choose the largest

number which appears in both lists. Since d

divides a if and only if −d divides a, it is enough

to list the positive divisors.

16

Example. Find the greatest common divisor

of 4 and 14.

The positive divisors of 4 are 1, 2, 4.

The positive divisors of 14 are 1, 2, 7, 14.

The largest number in the intersection of these

two lists is gcd(4,14) = 2.

17

A much faster way to compute GCDs depends

on this theorem.

Theorem (GCDs and division): If a is a pos-

itive integer and b, q and r are integers with

b = aq + r, then gcd(b, a) = gcd(a, r).

Proof: Let g = gcd(b, a) and h = gcd(a, r).

Since h divides both a and r, it must divide

the linear combination b = aq+r. Therefore, h

divides both b and a, so it divides g = gcd(b, a).

Since g divides both b and a, it must divide

the linear combination r = b−aq. Therefore, g

divides both a and r, so it divides h = gcd(a, r).

Both g and h are positive integers. We have

shown that g | h and h | g, that is, both h/g and

g/h are positive integers. But h/g = 1/(g/h)

and the only positive integer that is the re-

ciprocal of a positive integer is 1. Therefore,

g = h.

18

Euclidean Algorithm

Theorem (Simple form of the Euclidean al-

gorithm): Let r0 = a and r1 = b be integers

with a ≥ b > 0. Apply the division algorithm

iteratively to obtain

ri = ri+1qi+1 + ri+2 with 0 < ri+2 < ri+1

for 0 ≤ i < n−1 and rn+1 = 0. Then gcd(a, b) =

rn, the last nonzero remainder.

Example. To find gcd(4,14) we let r0 = a =

14 and r1 = b = 4. Now 14 = 4 · 3 + 2, so

q1 = 3 and r2 = 2. Next, 4 = 2 · 2 + 0, so

q2 = 2 and r3 = 0. Since r3 = 0, the answer is

gcd(4,14) = r2 = 2.

When 4 and 14 are changed to much larger

numbers, this method is much faster than list-

ing all the divisors of the two numbers.

19

Here is the algorithm in iterative form.

[Euclidean Algorithm]

Input: Integers a ≥ b > 0.

Output: g = gcd(a, b).

g = a; t = b

while (t > 0) {

q = ⌊g/t⌋

w = g − qt

g = t

t = w

}

return g

Here is a recursive version, one line in C.

gcd(a,b) int a,b; {return(b ? gcd(b, a%b) : a);}

20

Example. Compute the greatest common di-

visor of 165 and 285.

285 = 1× 165 + 120

165 = 1× 120 + 45

120 = 2× 45+ 30

45 = 1× 30+ 15

30 = 2× 15+ 0,

so gcd(165,285) = 15.

21

Theorem. If the integers a and b are not both

0, then there are integers x and y so that

ax+ by = gcd(a, b).

Example. Above, we found that gcd(285,165) =

15. Now let us find x and y with

285x+165y = gcd(285,165) = 15.

Beginning with the next to last equation in

that example and working backwards, we find

15 = 45− 30 = 45− (120− 2× 45)

15 = 3× 45− 120

15 = 3(165− 120)− 120

15 = 3× 165− 4× 120

15 = 3× 165− 4(285− 165)

15 = 7× 165− 4× 285.

Thus x = −4 and y = 7.

22

The following algorithm finds the same answer

without working backwards.

[Extended Euclidean Algorithm]

Input: Integers a ≥ b > 0.

Output: g = gcd(a, b) and x and y with ax +

by = gcd(a, b).

x = 1; y = 0; g = a; r = 0; s = 1; t = b

while (t > 0) {

q = ⌊g/t⌋

u = x− qr; v = y − qs; w = g − qt

x = r; y = s; g = t

r = u; s = v; t = w

}

return (g, x, y)

23

To prove that the simple form of the Euclidean

Algorithm works, use induction and the theo-

rem about GCDs and division to show that

gcd(ri, ri+1) = gcd(ri+1, ri+2)

for each i = 0, 1, 2, . . . n − 1. The final step

is gcd(r0, r1) = gcd(rn,0) = rn.

To prove that the Extended Euclidean Algo-

rithm is correct, use induction to show that

each time the while loop begins and ends we

have

xa+ yb = g and ra+ sb = t.

Finally, note that if the variables x, y, r and s

are deleted from the Extended Euclidean Algo-

rithm, the result is the simple iterative form of

the Euclidean Algorithm, so that it ends with

g = gcd(a, b).

24

An example of Extended Euclid

Trace through the Extended Euclidean algo-

rithm to find x and y with

285x+165y = gcd(285,165) = 15.

The values are shown each time the while loop

begins.

x y g r s t q
1 0 285 0 1 165 1
0 1 165 1 −1 120 1
1 −1 120 −1 2 45 2
−1 2 45 3 −5 30 1
3 −5 30 −4 7 15 2
−4 7 15 11 −19 0 −

The last line shows that

285(−4) + 165(+7) = 15 = gcd(285,165).

25

Theorem (Complexity of the Euclidean algo-

rithm, Lamé, 1845). The number of steps (di-

vision operations) needed by the Euclidean al-

gorithm to find the greatest common divisor of

two positive integers is no more than five times

the number of decimal digits in the smaller of

the two numbers.

This was the first nontrivial algorithm to have

its worst-case complexity determined. The proof

shows that the worst case happens when one

computes the GCD of two consecutive Fibonacci

numbers. The average complexity is much

harder to determine. (It is about 1.94 times

the number of decimal digits in the smaller of

the two input numbers.)

26

Corollary. The number of bit operations needed

by the Euclidean algorithm to find the great-

est common divisor of two positive integers is

O((log2 a)
3), where a is the larger of the two

numbers.

This shows that we can compute GCDs in

polynomial time, and the polynomial has low

degree (3), so it is easy to compute GCDs.

27

Primes

Definition. A prime number is an integer greater

than 1 which is divisible only by 1 and itself,

and by no other positive integer. A composite

number is an integer greater than 1 which is

not prime.

A composite number n has a positive divisor

other than 1 and itself. This factor must be

less than n and greater than 1.

The first few prime numbers are 2, 3, 5, 7, 11,

13, 17, 19, 23, 29, 31 and 37.

The first few composite numbers are 4, 6, 8,

9, 10, 12, 14, 15, 16, 18 and 20.

The integers 4 = 2 · 2, 12 = 2 · 2 · 3 and 63 =

3 · 3 · 7 are all composite because they each

have divisors other than 1 and themselves.

28

Theorem. Let a, b and c be positive integers.

If a | bc and gcd(a, b) = 1, then a | c.

Proof: Since a and b are relatively prime, there

are integers x and y so that ax+by = gcd(a, b) =

1. Multiply by c to get axc + bcy = c. Clearly

a | a. Also, a | bc by the hypothesis. Therefore,

a divides a(xc)+ (bc)y = c by the theorem just

before the division algorithm.

29

Theorem. If a prime p divides a product

a1a2 · · · an of positive integers, then it divides

at least one of them.

Proof: We use mathematical induction on the

number n of factors. If n = 1, there is nothing

to prove. Assume the statement is true for n

factors. Suppose the prime p divides a prod-

uct of n + 1 positive integers a1a2 · · · anan+1.

If p | a1, we are done. Otherwise, p is rel-

atively prime to a1 because p has only the

divisors 1 and p, and p doesn’t divide a1, so

gcd(p, a1) = 1. By the previous theorem, p di-

vides the product a2a3 · · · anan+1 of n factors,

and so p must divide one of these n numbers

by the induction hypothesis.

30

The Fundamental Theorem of Arithmetic

Theorem. Every integer greater than 1 can be

written as a product of primes, perhaps with

just one prime, and this product is unique if

the primes are written in nondecreasing order.

Proof (by contradiction).

Suppose some number could not be written as

the product of primes. Let n be the small-

est such number. Then n cannot be prime,

because each prime is the “product” of one

prime. Thus n is composite, say, n = ab with

1 < a < n and 1 < b < n. Since a and b

are smaller than n, they can be written as the

product of primes, and so n = ab can be so

written, too.

31

Proof (by contradiction) continued.

Now suppose the factorization of n into primes

is not unique. Then n has two different fac-

torizations

n = p1p2 · · · pj = q1q2 · · · qk

into primes. Cancel any common primes on

the two sides, so that no prime appears on

both sides. There must be at least one prime

on each side since we assume the two factor-

izations of n differ. Then the prime p1 must

divide one number qi on the other side. But qi
is also prime, so qi = p1 and so not all com-

mon factors have been canceled. This contra-

diction shows that the factorization of n must

be unique.

32

Suppose the positive integer n is factored into

the product of primes, and the primes are in

nondecreasing order. The fundamental theo-

rem of arithmetic says that this representation

is unique. If we collect repeated prime factors

and write them as the power pe of a prime, we

have the following standard representation:

n = p
e1
1 p

e2
2 · · · p

ek
k =

k∏

i=1

p
ei
i ,

where p1, p2, . . . , pk are the distinct primes that

actually divide n and ei ≥ 1 is the number of

factors of pi dividing n.

33

